


Abstract— Collaborative design practices are evolving
rapidly today as a result of improvements in telecommun-
ications and human-computer interfaces. We present a suite of
research tools that we have built in order to evaluate a
particular methodology for design based on a theory of problem
solving from the field of artificial intelligence. These tools are
(a) a formal specification for a class of multimedia games, (b) a
game-building tool called PRIME Designer, and (c) a game
engine that brings games to life. The design of these tools
addresses several issues: (1) support for a common language for
the design process, deriving from state-space search, (2) visual
interfaces for collaboration, (3) specifications for a class of
games (called PRIME games) whose affordances represent a
balance between simplicity and richness, (4) educating students
to work in design teams that use advanced computational
services, and (5) assessing the learning and contributions of
each team member. We also report on a focus group study in
which four undergraduate students used the tools. Our
experience suggests that users without a computing background
can learn how to employ state-space trees to organize the design
process, and thereby gain facilities to coordinate their
individual contributions to the design of a game.

I. INTRODUCTION

The ubiquity of computers and the growth of networks
have intensified efforts to support collaborative design and
problem solving [3]. We are exploring a methodology to
engage teams in collaborative design that uses the “classical
theory of problem solving”. As a part of this effort, we are
constructing tools that follow a transparency theme wherein
various structures are revealed to users that have traditionally
been hidden, such as design histories. We have described
aspects of our methodology elsewhere [11, 12].

 In this paper, we describe a suite of tools for conducting
research in collaborative design following this methodology.
We begin by identifying the issues of interest in the design of
the tools. We then explain why we chose game design to
support the research. That’s followed by a discussion of
prior work and related issues. We give some details on a new
game format called PRIME games, and then we describe the
tools. Then we describe a focus group study and provide a
discussion of both game design and educational issues that
arose in the research

Steven L. Tanimoto is on the faculty of the Univ. of Washington,
Seattle WA 98195 USA (corresponding author, tel: 206-543-4848; fax:
206-543-2969; e-mail: tanimoto@cs.washington.edu).

Tyler Robison is a doctoral student at the Univ. of Washington, Seattle
WA 98195 USA (e-mail: trobison@cs.washington.edu).

Sandra B. Fan is a doctoral student at the Univ. of Washington, Seattle
WA 98195 USA (e-mail: sbfan@cs.washington.edu).

Partial support from the National Science Foundation under grants IIS-
0537322 and 0613550 is gratefully acknowledged.

A. Issues of Interest
 Our question of primary interest is this: Can the field of

artificial intelligence give us a common language for the
design process? But we are also interested in these secondary
issues: effectiveness of collaboration; teaching design
methodology; readiness of designers to use computational
services; the use of games as collaboratively designable
objects; and assessment of student learning.

B. Why Game Design?
In our research on the design process, we needed a class

of “designable objects” with several properties: (a) they
should be software-based, as a practical matter; we did not
want to worry about glue, welding, chemicals, etc., (b) they
should have controllable complexity, so that the time
required to complete a design could be limited to 2 hours, (c)
they should require, or at least permit, interdisciplinary
contributions; that is, expertise from multiple fields should
be needed during the design process, and (d) they should
represent a compelling goal, in terms of reward and
challenge, for undergraduates serving as human subjects.

C.Prior Work on End-User Game Design
The relevant literature for this article falls into four

categories: game design by end-users, collaboration, formal
design methodologies, and the use of artificial intelligence in
game design. Let’s now consider the first of these.

Tools such as MissionMaker [6, 7] and the Mockingbird
kits [4] allow users to create their own games, within certain
constraints, without the need for prior programming
experience. MissionMaker allows designers, often young
students, to construct “complex 3D adventure and puzzle
games.” These games involve players exploring 3D spaces
populated with images and sounds, objects to be interacted
with, characters to comunicate with, and rules that respond to
events as dictated by the designer. Users are able to
construct these games using a perspective similar to that in
playing the game, and then can play through the games.

The game kits from Mockingbird [4] offer children the
means to construct games that include stories and characters
that may be personally meaningful. The company
emphasizes the idea that constructing games might be more
enjoyable and worthwhile than playing games.

D.Collaboration in Game Design
Any game designer working in a team will need to find

ways to collaborate with teammates. Collaborative software
often provides affordances for articulation work [7, 9] and
awareness [2]. Articulation work is the process of deciding
upon a division of the work into separate units required to

A Game-Building Environment for Research in Collaborative Design
Steven L. Tanimoto, Fellow, IEEE, Tyler Robison, and Sandra B. Fan

complete a project, and how to integrate it back together.
Awareness is maintaining knowledge of other group
members’ activities. Some version control systems may use
“lock” icons to show when another developer has taken
exclusive-write privileges on a file; this is a rudimentary
awareness affordance. Our tools support collaboration in the
game design process through the use of “roles.” We describe
this further in Section III.

E. Formal Design Methodologies
Much of the theoretical work on design methodologies has

been developed by architects such as Christopher Alexander
or in the field of software engineering. Some of these ideas
are codified in the “metadesign” approach of Fischer et al
[3]. Our own design methodology grows out of work done in
the 1960s by members of the artificial intelligence research
community. The key ideas have been well articulated by
Herbert Simon [9]. We elaborate on this methodology in
Section III.

A different type of formal design methodology for games
(Church [1]) focuses on patterns of player experience, in
terms of subgoal formation, awareness of possibilities, player
control, and unforseen consequences of actions. This
approach is particular to games, whereas ours is a general
design methodology that we happen to apply to games.

F. Artificial Intelligence in Game Design
The work of Togelius and Schmidhuber [13] addresses the

use of artificial intelligence techniques to create content for
games. In that work, the rules of the game are created
automatically by the computer with a fitness function based
on Koster’s theory of fun. The search space is explored via a
hill-climbing algorithm using this fitness function. Their
work illustrates how the mechanics of a game itself (as
opposed to an agent inside the game) can be created with the
help of artificial intelligence techniques. In our work we use
structures from artificial intelligence while still keeping
humans in the loop. Our design system represents possible
game configurations as states in a search space, but instead
of automatically picking one, it allows users to inspect and
traverse the search space, and exercise their own judgment in
picking successor states.

G. Overview of the Game-Building Environment
There are three components to the suite we describe here:

(a) a game class specification called PRIME games, (b) a
game-design tool, and (c) a 3D game engine for playing the
games. Each is described in one of the next three sections.

II.THE PRIME GAMES SPECIFICATION

We have designed a class of computer games to meet
several objectives: (a) integration of four disciplinary
components in the design process (architecture, engineering,
music, and computer science); (b) simplicity; and (c)
richness of possible player experiences.

A. Rationale for PRIME Games
While the main reason to develop a class of games has

been to create something to support our research, we also
found a lack of open game formats that would support the
type of games we needed. The lack of standards can be
attributed to an industry tendency toward proprietary formats
[5]. The PRIME acronym stands for “Puzzle Rooms with
Image and Music Experiences”. The four disciplinary
components of a PRIME game are these: (a) the architectural
layout, including the selection and placement of wallpaper,
background music, puzzles, and doors; (b) image puzzles in
which secret messages are embedded in scrambled images
and which must be unscrambled during the game; (c) music
puzzles in which melodies are permuted and must be
unpermuted during the game; and (d) logical rules that
control opening of doors, awarding of points, playing of
audio clips, and textual announcements.

The current version of the PRIME specification is 1.0.
Games in this format are limited to 9 square (or cubical)
rooms in a 3 by 3 layout. Any adjacent pair of rooms may
have a door between them. Each room may have
background music that starts playing when the player enters
the room. Each wall may have wallpaper (given as an image
file) as well as an image puzzle or a music puzzle. When a
player solves a puzzle, credit is awarded in the form of a
“magic phrase” which can be uttered to perform actions such
as opening a door or gaining points.

B. Standard Affordances and their Specification
A PRIME game is described in an XML file, and the file

must be accompanied by any image and audio files referred
to in the XML. The following example is part of the XML
file describing a game called Mozart’s Maze that we use as a
running example in this paper.

<prime_game name="Mozart's Maze" version="0.1">
 <layout>
 <overall_default_wallpaper name="Fcm.jpg">
 </overall_default_wallpaper>
 <room num="0" name="ROOM-1"
bg_audio="Ssmp.mp3">
 <wall loc="N">
 <wallpaper name="Sburg.jpg"></wallpaper>
 </wall>
 <wall loc="E">
 <door num="12" into="1" state="open"></door>
 </wall>
 <wall loc="S"></wall>
 <wall loc="W"></wall>
 </room>

Figure 1a. Portion of a PRIME game XML file, showing
header information and contents of the first room.

As can be seen in Figure 1a, a room is described as an
entity inside the layout and having four walls. Each wall in
the room can have its own features, including wall-specific
wallpaper, or a door. A wall can also hold a puzzle, though
this is not shown in this example.

In Figure 1b, the XML specification of (most of) an image

puzzle is given. The puzzle is identified by a number (for
the computer) and a name (for the designers and players).
The embedded secret message in this example is
“Papageno.” There are some operators specified here as part
of the puzzle: Horizontal flip, and Shuffle rows twice. These
are options that a player will have when working out a
solution to the puzzle. (Note, some operators of the real
puzzle have been left out of this excerpt for reasons of space
and simplicity.) The correct sequence of operator
applications, given in this excerpt, tells a game engine how
to determine whether the player has solved the puzzle. The
puzzle specification is completed with a sequence of
“procimage” declarations. Each of these serves to associate
with a particular operator sequence a preprocessed image
that the engine can display.

<image_puzzle num="1" name="Symphony #40 in G minor">
<message text="Papageno"></message>
<source role="1" file="papageno.jpg"></source>
<operator role="0" name="Horizontal flip" op="T_0">
</operator>
<operator role="1" name="Shuffle rows twice" op="T_1">
 </operator>
<correct_sequence seq="(3, 1, 2)"></correct_sequence>
<proc_image seq="()" filename="Puzzle-1-img-ver--.jpg">
</proc_image>
<proc_image seq="(0,)" filename="Puzzle-1-img-ver--0.jpg">
 </proc_image>
<proc_image seq="(0, 0)" filename="Puzzle-1-img-ver--0-0.jpg">
</proc_image>
<proc_image seq="(0, 1)" filename="Puzzle-1-img-ver--0-1.jpg">
 </proc_image>
<proc_image seq="(0, 2)" filename="Puzzle-1-img-ver--0-2.jpg">
 </proc_image>

Figure 1b. Portion of a PRIME game XML file, showing part
of an image puzzle specification.

These images are computed by the design tool at game
export time, so game engine need not have an image
processing facility. Only five declarations are shown in this
excerpt. In a normal puzzle, there are many more.

The XML specification for a music puzzle is similar in
structure to the description of an image puzzle. What’s
scrambled is a melody rather than a digital image. In order
to save space, we do not show the music puzzle XML here.

One more type of item specification in a PRIME XML file
is that for a rule. A rule tells the game engine to do
something when certain conditions are met. Each rule
therefore has a conditions section and an actions section.
The example in Figure 1c has a single condition and a single
action. The condition is satisfied when the player first gets
to room 3. The action increases the score by 10 points.

We do not list all the possible conditions and actions that
can be represented in PRIME XML files here. However,
some of them have to do with setting and testing boolean
variables called flags. The rule designer can set up any
number of flags to maintain the state of the game such as
whether particular challenges have been met, etc.

<rule num="0" name="RULE_1"
 condition_type="AND">
 <condition event="Reached" arg="3">
 </condition>
 <action event="Score" arg="10">
 </action>
</rule>

Figure 1c. Portion of a PRIME game XML file, showing a
rule specification.

III. THE GAME DESIGN TOOL

Our game design tool is called PRIME Designer. It is an
interactive tool that makes the game design process into a
sequence of “design acts”. The interface of this tool is based
on state-space search trees [9] and its diagrammatic features
were described in [12]. The tool is intended for teams of up
to four designers, with each member using a separate copy
on his or her own personal computer. Before we describe
the tool itself, we first present the general theory of problem
solving on which it is based, and the adaptation of this theory
to the realm of design.

A. The Classical Theory of Problem Solving
Our reliance on a theory of problem solving as the

foundation for our design tool is consistent with the
statement, “Designers solve problems.” (from the
Preliminary Report on the NSF Workshop on Science of
Design: Software and Software Intensive Systems, p.10).
The theory is better known in the artificial intelligence
community as the theory of state-space search. The two
fundamental constructs of this theory are the state and the
operator. A state represents the progress made, at a
particular point in time, along a particular line of attack,
towards solving a problem. For example, in solving the
"Towers of Hanoi" puzzle (in which a series of rings of
diminishing sizes is to be moved from a first peg to a third
peg, making use of a second, intermediate peg, where only
the topmost ring on a peg can be moved at any one time, and
it must never be placed on top of a ring of smaller size), a
state consists of one arrangement of the rings on the pegs.

An operator is a scheme for making a “move.” For
example, an operator for the same puzzle could be “Move a
ring from Peg 1 to Peg 2.” This operator would only be
applicable if there is a ring on Peg 1 and if any ring on Peg 2
is larger than the ring to be moved.

The theory is concerned with such issues as the
representation of states, the rate of growth of the number of
possible states, as a function of how many moves are made,
methods for automatically creating and testing the states
(search algorithms). A solution to a problem may
correspond to a particular state or to a sequence of states
known as a path. For the Towers of Hanoi problem, it is the
path starting with the initial state (having all rings on Peg 1)
and ending at the goal state (having all rings on Peg 3) that
represents the solution.

Next we discuss how state-space search is used in design.

B. Design Acts
A design problem can be formulated as a state-space

search problem by specifying an initial state (usually the
"empty" design) together with a set of operators. The
operators generally add some element to a state, producing a
new state in which there is one more element of the design
than there was before. For example, to design a house, one
might begin with an empty floor plan and, with an operator,
add a living room. With another operator, a bedroom might
be added, and another operator might select the location of
the bedroom relative to the rooms already added. When an
operator is chosen by a designer to apply to the current state,
the designer commits a design act. Another kind of design
act is selecting, from all of the states constructed so far, a
state to be the current state. This may involve a judgment
about which state is the best so far.

C.Collaboration via Roles
Each member of the game design team carries out specific

duties in his or her specialty area, and is able to view the
contributions of others. Currently these duties are
predefined in the system, e.g. one team member is in charge
of creating certain types of puzzles, another is responsible
for logic rules concerning points earned in the game, etc.

After members finish their parts, they can merge their
designs, and are able to see all the specific design decisions
their teammates made. Additionally, our game designers can
comment on other’s design decisions by adding annotations
to any given state. In the following subsections, we describe
each of the four roles in details.

D.Designer Views by Role
Each team member sets his or her “role” to either

architect, image puzzle designer, music puzzle designer, or
rule-base designer. It is also possible to select “all roles” to
see all four aspects of the game being designed. Figure 2
shows an all-roles view, whereas Figure 3 shows the
architect’s view of one node, and Figure 4 shows the image
puzzle designer’s view of one node. Figure 5 shows the
music puzzle designer’s view, and Figure 6 illustrates the
rule-base designer’s view.

The role of the architect on the design team is to place
game items in rooms or on walls. Most importantly, the
architect specifies where doors go. The architect can place
puzzles (that have been created by the team's image puzzle
designer and music puzzle designer) on walls. He or she can
also specify background music for each room and wallpaper
for each wall, room, or for the entire set of rooms.

The image puzzle designer creates one or more image
puzzles that can be placed by the architect in the maze. Each
image puzzle has three elements: a hidden image, a hidden
textual message, and a sequence of scrambling
transformations that effectively hide the image and the
message. When a game player works on an image puzzle, he
or she tries to unscramble the image and the textual message
by finding the sequence of image transformations that inverts
the scrambling done by the image puzzle designer.

Figure 2. A view of the design history tree in a PRIME
Designer session.

Figure 3. Enlarged node as viewed by the design team’s
architect.

The music puzzle designer creates one or more music
puzzles. A music puzzle consists of a background image, a
musical melody that is represented as a string of note names
(i.e., A, B, ..., G) and a sequence of permutations that
scrambles the melody. A player who works on a music
puzzle tries to unscramble the melody by creating a
sequences of permutations that inverts the scrambling. The

current version of the partially unscrambled melody is played
after each step of puzzle solving.

The rule-base designer's responsibility is to create a set of
IF-THEN rules to control the operation of the game. Each
rule has a list of conditions that must be met for the rule to
fire, plus a list of actions to be taken when the rule fires.

To an extent, the team members can work independently
on their own components of a game. However, the
components must work together if the game is to be an
enjoyable experience for its players. The messages and
images involved in puzzles should fit the themes of the
rooms in which they are placed. Solving them should, with
the help of appropriate rules, lead to new opportunities (i.e.,
doors opening). Formal communication among the team
members is only required for merging their contributions, but
informal communication and adjustment are needed all
through the design process, so that the components will work
together and all support a consistent theme or story.

E. Facilities for Combining Work
Partial designs by different designers can be combined

through tree merging operations. Most nodes represent
incomplete games. In the current version of PRIME
Designer, the work done by each team member must be
combined using a 4 step process. First each team member
saves their work locally and then extracts the path (from root
to leaf node) representing the contribution they wish to
share. Next, each team member uploads this contribution to
the PRIME Designer server. Third, a designated team
member downloads the single-path trees of the other
members, forming a tree with separate branches for each of
the contributions. Fourth, the four paths are merged using a
special menu option in the tool. The resulting tree contains
one very long path produced by taking all the operator
sequences involved in all the contributions and concatenating
them. The leaf of this long path represents the final design.

Figure 4. A node as viewed by the team’s image puzzle
designer.

Figure 5. Music puzzle designer’s view. Figure 6. State view of a rule-base designer.

IV. GAME ENGINES

 Our suite of tools includes three game engines for
playing PRIME games. The simplest is a textual engine;
when using this engine, no images are shown and no audio is
played (only their filenames are shown). There is a 2D
graphical game engine that graphically shows the doors,
wallpaper and the image puzzles in a game. Music puzzles
operate with simple sound generation. This engine shows an
architect’s view of the game at all times, making it useful for
debugging a game, but usually too easy for players.

Figure 7. The 2D graphical game engine. Player commands
are given through the text input pane.

The 3D engine, in contrast, offers players a more
immersive experience, comparable in some respects to what
many game players expect. Except when a special birds-eye
view is enabled (see Fig. 8), players can only see the room
they are in, plus whatever they can see through open doors.
They move through the game using navigation keys that
work geometrically -- more like driving a car than
commanding an agent. Figure 9 gives a player view within
the example game Mozart's Maze.

Figure 8. Birds-eye view of the Mozart’s Maze game in the
3D graphical game engine.

Figure 9. Player’s view in the first room (Salzburg) of
Mozart’s Maze, using the 3D graphical game engine.

An image puzzle initially appears to a player as a
scrambled image (Fig. 12). By selecting transformations in
the right sequence, a puzzle can be solved. Music puzzles
have a similar structure, but it is the notes of a tune, rather
than the pixels of an image, that are scrambled and
unscrambled.

The PRIME specification allows the designers to indicate
both per-game wallpaper defaults and per-room wallpaper
defaults. The image specified is used to cover the surfaces
of rooms.

V. EDUCATIONAL ASPECTS

A. Educational Use of PRIME Designer
One motivation for our research is to come up with an

approach to teaching elements of the classical theory of
problem solving to students and designers. We want
designers from different backgrounds to share a common
language about the design process. This common language
should also support the designers in controlling and
monitoring computational agents that perform services
related to exploring the tree of states. While we do explicitly
teach about the theory before having students use the tools,
the tools themselves can provide a certain amount of
feedback to the students to help them learn the theory and
understand their (and their team’s) progress in the task.

B. Needs and Affordances for Assessment
The assessment needs for an educational tool can be

classified into several groups: (a) confirmation for actions
taken, (b) sources of information for user self-assessment,
and (c) automatic performance evaluation. The PRIME
Designer tool currently supports only the first two of these.

For confirming actions taken, there are two important
aspects: first, letting users know that the system has accepted

their input and responded, and secondly, expressing the
confirmation using the language of design in such as way as
to reinforce the user’s knowledge of the language. The menu
of commands for state-dependent actions contains an item
“apply one operator” so that the user knows that the function
being chosen is an operator. Then, after the operator has
been applied, the tree is updated to show a new state, and the
state is labeled to show that it is a state, e.g., “State 29.”
Thus the interface’s feedback reinforces the vocabulary of
the classical theory.

Sources of information for user self-assessment are
provided in several forms. Figure 10 shows some of the
means by which team members may be supported (by the
current implementation of PRIME Designer) in their efforts
to assess their own progress. First, there is the tree display,
which can help a user see how far they have come and what
detours they may have taken along the way. Shown in the
lower left of Fig. 10 is the displayed list of postings on the
server; from this one can infer how many of one’s teammates
have reached a design milestone. The tool also outputs two
textual streams – one to the Python console, containing short
messages to confirm I/O operations and activity during
longer operations such as exporting games, and the other
stream to a log file, where a more permanent record of the
session is kept for research purposes.

VI. FOCUS GROUP STUDY

We conducted a formal evaluation session in which four
paid undergraduate students were introduced to the tools and
given an opportunity to design a game. The session lasted
approximately two hours and 30 minutes. After 45 minutes
devoted to background questionnaires and an introduction to
the tools, the students began designing their own game. They
were given the choice of starting a game from scratch or
extending Mozart’s Maze; they chose to start from scratch.
At the end of the session, they had many elements of a
playable game, though some aspects of their game were not
yet debugged. Here are some of our observations: although
the role of architect involved the most work, the role of rule-
base designer was the most difficult one, requiring thinking
at a more abstract level than the others and requiring a
mental model of the game as a whole. The puzzle designers
had few constraints on their contributions and only had to
coordinate their work with the architect and rule-base
designer at an artistic and strategic level, not a technical
level. The rule-base designer used in interesting design
strategy: to “follow” the architect from room to room and
write rules associated with each room reached in the order
reached. One misconception exhibited by team members
was that the individual puzzles and rules could be created in
separate branches of their trees and yet contribute to one
design. With path merging, this is true, but normally, each
branch in a tree represents an alternative design sequence

rather than a component of a design. There was also
confusion about how to “undo” a design decision. Backing
up in the tree and creating a branch to “undo” an early choice
of operators also “undoes” the applications of operators
subsequent to the early one. It took the team a while to
realize this. In terms of collaboration and communication,
the architect and rule-base designer had the greatest needs to
coordinate their work. To save time and reduce the learning
load on the team, the authors took care of uploading,
downloading, path extraction and path merging to combine
the contributions of the team. We have begun work on a new
version of the design tool that will simplify this.

VII. DISCUSSION

Designing with PRIME Designer could be considered
playing a kind of game in its own right. We are thinking of
adding a scoring system that might add an extra measure of
motivation to the designers to meet milestones. While
PRIME Designer trees might be compared to game trees of
games like Checkers, etc., PRIME teams are assumed to be
cooperating rather than competing. Nonetheless, a scoring
scheme could provide both individual and team scores.

The most obvious limitation of the current PRIME class of
games is probably the restriction to 3 by 3 arrays of square
rooms. We could drop it, but the architect’s responsibilities
during game design would then significantly exceed the
responsibilities of the other designers.

Figure 10. Affordances with potential use in self-
assessment. The tree diagram can be used to show the
separate contributions of team members (top). The
console text stream (center) reports on the success,
failure or status of actions such as input and output, the
list of server postings (lower left) indicates milestones
being met by team members, and the log-file stream
(lower right) shows what aspects of the session are
being recorded.

An interesting implementation issue in our tool suite
concerns where to put specialized processing for puzzle-
solving. In principle, a player solving an image puzzle would
be doing actual image processing. However, to simplify our
game engines, that activity is simulated by having the design
tool precompute most of the images that a player is likely to
need to see during the activity. If the image puzzle designer
makes a puzzle complicated (by scrambling the target image
with a long sequence of transformations), then many images
will be necessary. Figure 11 shows thumbnails of some of
the images automatically produced for the Papageno puzzle
in Mozart’s Maze. The XML file associates one image with
each sequence of transformations a player might try. When
the player tries sequences not in the precomputed list, a
special “dead end” image is shown by the engine.

Our work thus far shows how it is possible to structure the
game-design process as a kind of game itself, using state-
space search trees in an explicity way. Future work includes
additional testing of the tools with users and reimplementing
the design tool for the web.

Figure 12. View of Papageno image puzzle in Mozart’s
Maze.

VIII.ACKNOWLEDGEMENTS

The authors would like to thank Earl Hunt, Brian Johnson,
Daryl Lawton, Andrew Morozov, Linda Shapiro and Kofi
Weusijana for participating in discussions of PRIME games.

REFERENCES

[1] D. Church. "Formal abstract design tools." Game Developer,
August, 1999. Republished online at Gamasutra:
http://
www.gamasutra.com/features/19990716/design_tools_01.htm

[2] P. Dourish, and V. Bellotti, “Awareness and coordination in
shared workspaces”. Proceedings of the 1992 ACM Conference
on Computer-Supported Cooperative Work, pp.107-114, ACM
Press, New York, NY, USA, 1992.

[3] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N.
Mehandjiev, “Meta-design: a manifesto for end-user
development”, CACM , Vol. 47, No. 9, 2004, pp. 33-37.

[4] T. Gilbert. "Game Making is the Game: Lessons Learned from
Mockingbird" (presentation at GDC 2009, San Francisco, CA)
http://mockingbirdgames.com/wp-content/uploads/2009/04/
game-making-is-the-game-presentation.pdf

[5] K. Hoet, "Open Game Format". 14 Oct. 2008. Blog at
http://crossthebreeze.com/2008/10/14/open-game-format/.

[6] Immersive Education. MissionMaker. Product website at
http://www.immersiveeducation.com/missionmaker/.

[7] C. Pelletier, “Making Games: Developing Games Authoring
Software for Educational and Creative Use: Non-Technical
Summary”, RES-328-25-0001. Swindon: ESRC. (2007).

[8] K. Schmidt, and L. Bannon. "Taking CSCW seriously". Computer
Supported Cooperative Work, Vol. 1, No. 1, 1992, pp.7–40.

[9] H. Simon, The Sciences of the Artificial, 3rd ed. Cambridge MA:
MIT Press, 1996.

[10] A. Strauss, “Work and the division of labor". The Sociological
Quarterly, Vol. 26, No. 1, 1985, pp.1–19.

[11] S. Tanimoto, “Enhancing state-space tree diagrams for
collaborative problem solving”. Proc. DIAGRAMS 2008, also at
http://www.cs.washington.edu/ole/d08.pdf.

[12] S. Tanimoto, and S. Levialdi, “A transparent interface to state-
space search programs”. Proc. ACM SoftVis 2006, Brighton,
UK.

[13] J. Togelius, and J. Schmidhuber, “An experiment in automatic
game design”, Proc. IEEE Symposium on Computational
Intelligence in Games 2008, Perth, Australia, 2008.

Figure 11. A subset of the puzzle images precomputed
by PRIME Designer.

