
Game Design as a Game

Robert H. Thompson and Steven L. Tanimoto
Dept. of Computer Science and Engineering

University of Washington
Seattle, WA 98195

robthomp@cs.washington.edu, tanimoto@cs.washington.edu

Abstract—The software engineering process for games has
enough special structure that it can be formulated as a kind of
game itself. This, in turn, permits the teaching of game
construction in a unique way with new potential to motivate
students. We present a new game design client program for an
existing collaborative problem-solving website known as CoSolve.
The client was built with an emphasis on increased interaction
and fine control over a problem’s state. With this comes the
opportunity to more easily design and test games in the CoSolve
space. It is our hope that this will teach and inspire student users
to learn more about game design, problem posing, and
programming in general.

Index Terms—Game design, problem solving, collaborative
computing, software engineering, education, meta-game.

INTRODUCTION

Game design has significant potential as an educational
activity [1]. State-of-the-art games require coding skills just as
formidable as for any other software type. Interesting problems
can arise from human-computer interaction, artificial
intelligence, systems and other aspects of computer games.
Perhaps most important however is the connection between
playing games and learning game design, because of games’
motivational power. Games are a rapidly expanding form of
entertainment and most young students have played and
enjoyed at least one. Framing game design as a game itself can
interest students unfamiliar with the process of game
development, after which they can be gradually exposed to
more complex ideas. Competition and working towards task-
oriented goals are types of activity that can be leveraged to
engage students even as they learn how to use the same
elements themselves in their own game designs [2].

TOOL DESIGN CRITERIA

There are many ways to frame game design. When framed
in the context of open-source software development, it has been
found that complex and uniquely organized communities can
form to optimize design output [3]. Our project, on the other
hand, is concerned with the use of a problem-solving
framework for the game design process. Our intent is not so
much to offer a robust design tool as to provide a tool that
employs a unique structure and centers on motivating students
who are new to the activity of game design.

A. The CoSolve System

Our research group at the University of Washington has
developed a web-based system called CoSolve for research in
computer-supported collaborative problem solving [4].
CoSolve uses the state-space search methodology as a structure
for the problem-solving process. (A well-known proponent of
this approach is Herbert Simon [5].) One interpretation of what
CoSolve does is that it offers scaffolded problem-solving
experiences to users, offering specific actions that can be taken
at each step of the problem-solving process. A CoSolve
“template” represents a class of problems, each of which has an
initial state and which uses a set of operators defined with the
template. The initial state and operators together specify a
“problem space.” Such a problem space is a potentially infinite
set of discrete states that can be constructed by applying
transformations to the initial state or other states in the set.

When a team of users begins to solve a problem with
CoSolve, one member of the team selects an existing template
and creates a new “solving session” associated with that
template. The solving session is represented to the users as a
dynamic tree, which starts out containing only one node: a root
that represents a realization of the initial state. The team
members, accessing the tree through their own web browsers,
build new nodes in the tree in order to construct a branch that
leads to a goal node, thus representing a solution. To build a
node, a user selects an existing node, chooses on operator from
a given list of operators that are applicable to the selected node,
and (if required) specifies the values of any relevant parameters
to the operator. The CoSolve server receives this information
and applies the specified operation to the specified state, thus
computing an explicit representation of the implied new state.
The view of the user who initiated the operation is immediately
updated with a new node, while the other users are notified that
an update has taken place and given the option to update their
own views.

A problem template may specify a goal state, but it is not
required to do so. Thus the CoSolve framework is applicable
not only to solving problems with concrete solution criteria but
also to working on design problems with fuzzier goals. A
session tree representing the states visited in a design space is
actually a history of the design process. Such a process may
involve significant branching, and it may contain the work of
many different people.

The CoSolve system is comprised of (1) a server-side
content management system (Drupal) augmented by a special
module to handle state creation and operator application, and
(2) various associated CoSolve clients. Different clients can be
used to view the same information, often presenting that
information in different forms to better suit an individual user’s
needs or personal device for accessing the internet. This
structure is shown in Fig. 1.

Fig. 1. Relationship between the CoSolve server and various clients. Users
interact with the server through one of several clients.

Since different clients can access and change the same
content at any time, CoSolve supports both synchronous and
asynchronous collaboration. Changes are always additive. In
addition to creating new nodes, a user can create textual
annotations associated with any node. One node may carry any
number of annotations, and the annotations of a single node
may be written one user or many users. Nodes cannot be
deleted or altered after they are first generated. Thus users do
not have to worry about their annotations being unlinked or
disappearing. When a user makes additions to a tree, any other
users currently editing it are informed and given the option to
view these changes immediately or at a later time. The
changes will also automatically be included for new users
viewing the tree at any time after that point.

B. Gaming Elements in Problem Solving and Design

Our previous experience with the CoSolve project has
shown that the problem-solving process in CoSolve can be
treated as a game, even if the problem itself is not presented
that way. The following is a list of game-like elements we’ve
observed during CoSolve activities:

 Short and long-term goals
 Levels
 Points/Score
 Competition/Leader Boards
 Collaboration

The long-term goal of any user in CoSolve is often to solve
a particular problem. Short-term goals can take many forms,
but they may involve escaping a local minimum in the state
space, out-scoring another user or team, or even just better
understanding how a problem is structured. Different instances

of a problem or different problems themselves can be thought
of as levels. Once a user team has solved a problem to their
satisfaction they can move up to another. A state evaluation
function can provide a score that users are encouraged to
optimize. Users often end up collaborating or competing in the
same solving session to find superior states. The overall
contribution a user has made to a problem-solving session is
easily measured and compared with those of other members of
the team. Another member of our research group, Tyler
Robison, has created client functionality that displays aggregate
data about a solving session including users’ contributions [6],
which can be thought of as a leaderboard. Users sometimes
interact with the problem solving process as if they are playing
a game. Right now, the primary obstacle to a better game-
design experience is the lack of sufficient interactivity in the
CoSolve client program. This makes many problem types, and
design problems in particular, more difficult to tackle than
necessary.

C. Overcoming Current Client Drawbacks

The standard CoSolve client runs in Adobe Flash and was
written in ActionScript. (We will refer to this client as the
“Flash client.”) An example solving session as viewed through
the Flash client is shown in Fig. 2. The root node is the
problem’s initial state and branches exploring different
problem solutions can be seen. The usual way to interact with
states in the Flash client is through lines of text. New states are
generated by typing in a line of parameter values to be parsed
by an operator1. States are shown as static PNG images that are
generated by the server at the same time as the state is created.
If specified in the template, multiple PNG images can be made
for the same state to show different aspects of the state, but
they are all still static. Because processing is done on the
server, the Flash client does not have the ability to manipulate
states in any more organic or complex way. The Flash client
also offers no opportunity for augmentation of the solver
interface by template developers, unless they are CoSolve site
developers. With this in mind, we have developed a new client
built to be an effective game design tool and to be more
interactive and moldable in general.

THE NEW TOOL’S AFFORDANCES

This section describes the new tool’s features and its
potential for different types of collaboration.

A. Standard Tool Features

Rather than a static visualization as in the Flash client, the
Game Design Client (GDC) is implemented as dynamic
JavaScript code that runs in the browser on the client’s side.
States are maintained and manipulated in the client rather than
on the server, so new modes of interaction beyond just text are
now possible. For example, an object in a game space can be
moved much more intuitively with a mouse than by typing in
object coordinates as one would have to do in the Flash client.

1 An experimental method that converted a single click into a coordinate string

that was applied to an operator as a parameter was made as well.

This is not a deficiency of the Flash plugin but rather due to
how the Flash client was designed. With JavaScript, there are
several libraries available that can make these behaviors easy to
implement, such as the RaphaelJS library that offers Scaling
Vector Graphics with click-drag functionality.

To illustrate the capability of this new client as a platform
for game design tools, we have made an example problem
template TGDC1 based on a predecessor of CoSolve, which
was called PRIME Designer [7]. PRIME Designer is a
standalone Python program that corresponds to a CoSolve
template plus an interactive control program. It supports
collaborative game design with several users working together
while inhabiting different design roles: architect, image-puzzle
designer, music-puzzle designer, and game-logic designer.

Each game in the class of games enabled by the new
TGDC1 template and the GDC client involves a large room
with a top-down view in which users can place walls, doors,
and other interactive game objects. Objects are placed with the
mouse, and they snap to grid intersection points automatically.
An example of the design interface is shown in Fig. 3. Object
behavior is defined by binary relationships between objects.
For example, if a button object is paired with a door object, the
door will be closed or opened when the button is pressed.
While this type of association cannot fully describe the
complex behavior one might see in a modern game, it can serve
as part of an easily understood introduction to more advanced
types of scripting.

B. Instant Playtesting

Another key feature of the GDC is that at any time, a user
can click an onscreen “Demo” button, which engages an
embedded Unity web-player to generate an interactive scene
from the current problem state, an example of which is shown
in Fig. 4. This is one of the features that distinguishes the GDC
from other online collaborative design tools. The ability to
instantly playtest and interact with a game while it is being
designed is a large motivating factor for students. For new
users just starting to comprehend the design process, we can

present a complete pre-designed game scenario, allowing them
to play through it, and then step back through the state-space,
seeing how the scene was built piece-by-piece by different
users and even viewing design alternatives that eventually were
abandoned. For more experienced users, this is a way to
quickly playtest a design and discover any flaws or
deficiencies.

C. Design as Collaboration

The collaborative aspect provided to the GDC by CoSolve
is a relatively unique feature in the realm of game design.
Traditional game engines are desktop-based and lack any sort
of collaborative aspect beyond the use of standard version-
control software. The GDC runs in a browser without any
plugins, allowing anyone with interest to participate, and
automatically preserves the game design at all points of its
development. This allows users joining a design in-progress to
view the history that led to its current state. User activities can
be monitored and compared to each other. Unsuccessful
offshoots can still be studied to garner any useful aspects they
may still have. Since every state can also be played at any time,

Fig. 2. A view in CoSolve of a tree representing the portion of the state
space explored by a team for the Towers of Hanoi problem. Such a tree is
displayed by the preexisting Flash client. Branches represent the
exploration of alternatives.

Fig. 3. Screenshot of new game design client interface. The main work area
is shown in the center with object list on the left and detailed object view
on the right.

Fig 4. Screenshot of Unity playtest scene. This scene was generated from
the same state shown in Fig 3.

quick comparisons can be made between two or more states.
All states can be commented upon and organized by these
comments as well, encouraging dialog between users. This
means the client facilitates all three types of what Alex Games
calls “dialogic interactions” [8]. Designers interface with the
physical design of the game while also interacting with other
designers and players. Dialog can take place as design iteration
in addition to standard text discussion.

D. Design Roles

To further explore the potential for collaboration, students
working on the same design can be assigned different roles.
Should users desire to specialize in one particular aspect of the
game design process, roles are just as easily assigned as in
PRIME Designer, and since the visualization in the GDC is not
entirely dependent on the design state, a template could be
made that offered a completely different set of tools and visuals
depending on user role. For example, an “artist” user’s
interface could include a rudimentary drawing program for
texture generation. A “sound design” user’s interface could
include an interface to upload custom sound files to the game
scenario. Roles offer a way for students to specialize on one
particular aspect of game design, and roles can help distribute
the students’ efforts in an effective way.

THE GAME DESIGN CLIENT AS A GAME

We have described the GDC as it stands now, making full
use of the already game-like system that CoSolve offers but not
yet adding more. However, it is easily expanded in many
different directions beyond the natural framing.

A. Design-Based Goals

Design-based goals could be tested for and recognized. A
problem template could contain functionality to prompt users to
“Make a game that uses all object types” or “Make a game that
takes more than 5 minutes to complete” and recognize when
these goals are met. These are explicit goals that can work in
tandem with the personal goals users create for themselves
discussed already. These goals can also encourage competition
both within a group working on the same solving session and
between separate groups working on different ones. This means
teams themselves are also encouraged to collaborate. In a
classroom setting, the client could be used for teams to
compete against one another. Different goals, even when
applied to the same initial design state, can be treated as
different levels. Perhaps a team that meets a design goal is
allowed to start a new design “level” based around a different,
more complex goal.

B. Rewards as Buildup

Game object types or behavior could be introduced to users
as they perform more basic operations, thus reducing the
chance of overwhelming new users with too many choices. In
addition to smoothing the learning process, this can also serve
to present a reward or milestone to a student. Again coming
back to goals, providing feedback about measured, in-game
progress and making it clear to players is a powerful

motivational tool in games today. If a student reaches a
milestone such as “used all available object types in their game
design” and as a result unlocks a new set of objects, we can
assert that he or she has used a desirable set of tools and is now
very likely to try out the newly presented ones.

C. Evaluation Functions

In a very similar vein, evaluation functions could be used to
quantify game design quality. Evaluation functions have
already been used in CoSolve in a variety of ways to measure
state quality. Simple examples of measures for session quality
include the depth and breadth of a solving-session tree.
Students could be evaluated on the fraction of nodes they
personally made compared to their group’s total, or on how
often they built on work done by others. Designs could be
evaluated on how close they come to certain reference designs
or how well they conform to established game genres, or on
how complex their behaviors are. Since each node a in CoSolve
session tree can be annotated by any user, that means that
designs can be scored on the quantity or quality of dialogue, as
represented in the annotations, that the users expressed during
the process of coming up with the design. These metrics can
also be a way for students to think critically about the inner
workings of the GDC, as they may become curious about how
exactly these values are being created. For when a student
desires to know how the GDC works or even when they see a
need to expand its current features, we have designed the GDC
to accommodate these more ambitious users.

TEMPLATE AS EDUCATIONAL TOOL

To make full use of the TGDC1 template and GDC client
as a motivator to students for further exploring game-design
theory and programming in general, we have structured the
client to be malleable on several layers of increasing
complexity and required knowledge.

A. Options Without Coding

Should a student desire finer control over the GDC
behavior, most likely to give it more affordances, they can take
some steps without having to write code directly. Objects can
be designed and placed in Unity scenes without programming
knowledge. While it is true that eventually one must start
programming to have full control over the GDC and
accompanying Unity scene, we see it as a tool to educate and
motivate students just starting to explore the field of game
design rather than a robust tool on its own.

B. Popular Language Makes Coding Transition Easier

If users do decide to start programming, there are still steps
that can be taken to gradually explore the possibilities that are
available. The GDC’s JavaScript is a popular language for
budding programmers, being featured in learning sites such as
Codecademy and Code School. New game object types can be
added to Unity and the GDC with minimal coding to change
the types of games that can be created. The object types
currently available support the generation of a puzzle style of
game. The player-camera is itself an object type, and thus can

be easily switched to a 3rd person camera. Trigger-zone object
types could be added to create more scripted behavior, and
hostile non-player characters (NPCs) could also be added to
create a more action-oriented game. The Unity engine contains
a large number of pre-built assets that can be made available
for game designers and GDC designers to use as well. Should a
student desire to add custom behavior to game objects, one of
the scripting languages Unity offers is JavaScript, making the
transition into scripting familiar and easier. It is not the goal of
the project to create a complete game design tool that does not
require any programming. Instead we want to present a simple
tool whose inner workings are as accessible as possible for
students that want to self-select for a greater challenge.

CONCLUSION

We have succeeded in making a more interactive game
design client that maintains the current CoSolve collaborative
state-space process model. With this interactivity, the process
of using the GDC can itself be framed as a game, and take with
it all of the motivational aspects inherent to games. The GDC
offers a simplified view of game design, ideal for students just
starting to explore the field, while also harboring the potential
for augmentation should a student wish to explore further.
While our current set of affordances for the game-design
process has a limited range of functions at this time, new
features are easily implemented by interested students of
varying skill levels. Our educational goal is to produce students
familiar enough with design and coding through their
experiences with the GDC that they are better prepared to
tackle game design and programming problems on an advanced
level.

REFERENCES

[1] Claypool, K. and Claypool, M. “Teaching software engineering

through game design,” in Proceedings of the 10th Annual
SIGCSE Conference on innovation and Technology in
Computer Science Education (ITiCSE '05), Caparica, Portugal,
2005, pp. 123–127.

[2] Scacchi, Walt. “Competitive game development: Software
engineering as team sport,” Keynote talk delivered at 2nd
International Workshop on Games and Software Engineering.
Zurich. June 9, 2012. Powerpoint presentation slides at
http://www.ics.uci.edu/~wscacchi/GameLab/GAS2012-Scacchi-
Keynote.pdf

[3] Scacchi, Walt. “Free and open source development practices in
the game community.” IEEE Software. 2004. 0740-7459/04. pp.
59-66.

[4] Fan, S. B., Robison, T., and Tanimoto, S. L. “CoSolve: A
system for engaging users in computer-supported collaborative
problem solving,” Proceedings of the 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing. 1-3 Oct.
2012, pp.205-212.

[5] Simon, H. The Sciences of the Artificial, 3rd ed. Cambridge,
MA: MIT Press, 1996.

[6] Robison, T. Opening up the Collaborative Problem-Solving
Process to Solvers. Ph.D. dissertation, Dept. of Computer
Science and Engineering, University of Washington, Seattle,
2012.

[7] Tanimoto, S. L., Fan, S. B., and Robison, T. “A game-building
environment for research in collaborative design,” Proc. 2009
IEEE Symposium on Computational Intelligence and Games.
Sept. 7-10, 2009, Milan, Italy, pp.96-103.

[8] Games, Ivan A. “Three dialogs: A framework for the analysis
and assessment of twenty-first-century literacy practices, and its
use in the context of game design within Gamestar Mechanic”.
E-Learning Volume 5 Number 4, 2008. pp.396-417.

