
FUNCTIONAL ABSTRACTION AND
COMPILATION IN A DATA FACTORY

by

Allen Chen

A senior thesis submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science
with Departmental Honors

University of Washington
Department of Computer Science and Engineering

June 2007

Presentation of work given on: _____________________________

Thesis and presentation approved by: _________________________________
	

 	

 	

 	

 	

 	

 	

 Steven Tanimoto, Project Advisor
Date: __________________

1

May 9th, 2007

CONTENTS

Abstract	

 4
1. Introduction	

 4
2. Related Work	

 4

2.1 The Data Factory	

 5
2.2 Programming Environments for Children	

 5
2.3 Visual Data Flow	

 5

3. An Experimental Version of the Data Factory	

 5
3.1 Project Goals	

 6
3.2 Structure of the Experimental Data Factory	

 7
3.3 Program Palettes	

 7

3.3.1 The Project Palette	

 7
3.3.2 The Standard Palette	

 7
3.3.3 The Testing Palette 	

 8
3.3.4 The Compilation Palette	

 8
3.3.5 The Custom Devices Palette	

 8

3.4 Building a Factory	

 8
4. Sample Factories	

 9

4.1 Square	

 9
4.2 Modulus	

 10
4.3 Super Divide	

 11

5. Implementation Details	

 11
5.1 Language Selection	

 11
5.2 Stages of the Data Factory	

 11
5.3 Device Creation	

 12
5.4 Java Code Generation and Compilation	

 13

5.4.1 Code Generation of Tree-structured Factories	

 13
5.4.2 Code Generation of Directed Acyclic Factories	

 13

5.5 Class Loading	

 15
6. Results of Informal Testing	

 15

6.1 Subject 1	

 15
6.2 Subject 2	

 16
6.3 Observations	

 16

7. Future Improvements	

 17
7.1 Additional Functionality	

 17
7.2 Layout and Usability	

 17

2

8. Conclusion	

 18
9. Acknowledgments	

 18
10. References	

 18

3

Abstract
 Functional abstraction is a central concept in many modern programming languages.
However, the syntactical nature of these languages may sometimes intimidate and discourage
younger users. As an alternative, visual programming languages can provide a way to introduce
programming concepts such as functional abstraction to novice programmers. For some, the
visual nature of visual programming languages may be more approachable than standard
programming languages. We demonstrate an experimental version of the Data Factory, a data
flow visual programming language, that supports functional abstraction and the compilation of
virtual devices for seamless re-use.

1. Introduction
	

 Most modern programming languages, like Java and C, support abstraction through
the use of functions, and for good reason. Not only does this concept reduce duplicated
code, it also encourages users to approach and think about problems from a more general
standpoint. Whereas an inexperienced programmer may solve a problem as a series of
distinct tasks, one who understands the usefulness of functional abstraction may realize that
the solution is in fact a repetition of the same task, but with different parameters. The latter
thinking process is ideal, as it demonstrates a truer understanding of the task at hand.
However, for most, acquiring such a skill proves to be a daunting task.
	

 We introduce an experimental version of the Data Factory visual programming
language that is targeted for use by children between the ages of ten to eighteen. This
experimental version supports functional abstraction through the compilation of devices
created by the user. This not only allows the user to re-use devices they’ve created to design
increasingly complex factories, but also addresses an issue of scaling. Since devices are
compiled to a byte-code representation, they behave and perform just like the devices
natively included in the program. As a result, showing the data flow of a factory with deeply
nested custom devices will not suffer the same types of slow-downs that are experienced
when the devices are emulating an instantaneous calculation.
	

 In this paper, we will discuss the usage and implementation details of this version of
the Data Factory, as well as the results of some informal user testing.

2. Related Work

4

2.1 The Data Factory
	

 The Data Factory is a visual programming language based on the “factory model.” [5]
Users create a program with a specific behavior by building a factory with various devices
chained together with conveyers. In a real factory, parts are put onto the conveyer belts, pass
through large machines, and come out the other side more “complete”, in some sense.
Likewise, in the Data Factory, data is put onto conveyers and passes through devices, which
then perform a computation on the data and output the result.
	

 One important feature of the Data Factory is that it supports explicit visual data
flow. This means that users can watch the data move across the conveyers and observe every
step of a factory’s computation. This can help in an educational context because the results
are less mysterious when the user can see what is happening every step of the way. Explicit
visual data flow also helps with troubleshooting by allowing the user to quickly locate and fix
problem areas in their factory. Had the data flow not been visible, any single element of the
factory could be the culprit, degrading the troubleshooting process to trial-and-error.
	

 Previous work on the Data Factory has been done to support advanced features such
as functional abstraction, but did so without compilation [3].

2.2 Programming Environments for Children
	

 Stagecast Creator is an environment that allows children to create games and
simulations visually [4]. It is relatively open ended, allowing the user to create a wide variety
of programs, but does not explicitly support the kind of data flow model as seen in the Data
Factory.
	

 ToonTalk is a visual programming environment that represents many programming
constructs as animated objects and characters in the LEGO-style world [2]. However, unlike
the Data Factory, where programs are created by connecting a series of devices, programs in
ToonTalk are created by teaching “robots” a series of operations.

2.3 Visual Data Flow
	

 LabVIEW is a visual programming language used in industry for data acquisition and
instrument control, but also can be used a a teaching tool [1]. LabVIEW is a data flow
language, but unlike the Data Factory, it does not allow the state of the data flow to be
viewed at every step of execution.

3. An Experimental Version of the Data Factory

5

3.1 Project Goals
	

 The primary goal of this project was to implement a visual programming language
that retained the data flow and factory model aspects of the Data Factory while
implementing support for functional abstraction and compilation. More specifically, we
define functional abstraction as the ability to take a user-created factory and turn it into an
atomic device for re-use in another user-created factory. Compilation is what will transform
the factory into a single, programming language native unit (in this case, a Java .class file).
	

 Another goal of this project is to keep a simple feature set and target this program
towards younger children. By allowing users to manipulate data with basic arithmetic
operations, we hoped to create a version of the Data Factory that could be used as an
educational tool to reinforce basic mathematical and problem solving skills.

6

Figure 1: The experimental Data Factory interface. In the workspace (the gridded area) is a
factory that takes a single input and outputs the value of the input cubed. Around the
workspace are five button palettes that contain all of the program’s operations and options.

3.2 Structure of the Experimental Data Factory
	

 From this point on, unless otherwise noted, the Data Factory will refer to the
experimental version addressed in this paper.
	

 When a user first launches the Data Factory, he/she will see a screen much like the
one in Figure 1, except with a blank workspace. The workspace is the gridded area where the
user will place devices and connect them with conveyers. Located around the workspace are
five button palettes that provide access to all of the program’s functionality.
	

 For the sake of clarity, we will refer to an arrangement of devices connected with
conveyers as a factory. The area where the user lays out the factory is called the workspace.
Devices added from the Standard Devices palette will be called native devices, whereas
devices created by the user will be called custom devices. A project refers to the state of a
factory, it’s layout, and it’s designated input and output devices. Projects can be saved and
opened by the user to be worked on in multiple sessions.

3.3 Program Palettes
	

 The Data Factory user interface has five button palettes, which are groupings of
buttons with functions related to a single type of operation. These are also sometimes
known as toolbars or panes.

3.3.1 The Project Palette
	

 The Project Palette contains basic project-related operations. From here, a user can
open, save, and close a project. The user can also clear the workspace of any devices and
conveyers that have been placed.

3.3.2 The Standard Palette
	

 The Standard Palette allows the user to select which device he/she would like to add
to the workspace. In addition to the devices corresponding to the four basic arithmetic
operations (addition, subtraction, multiplication, and division), there are two other devices
the user can select. The # (pronounced “number”) device serves two purposes. First, it can
supply a constant value. For example, to multiply a value by two, it is necessary to use a #
device to output twos into an input of a multiplication device. Also, # devices can be set as
the location where outside input will flow into a factory. When a completed factory is later
used as a single, compiled device, values sent into the device’s inputs will logically enter into
the factory at these # devices. The Cloner device does what you might expect; it takes in a
single input and outputs two copies of that value. In a conventional programming context,
this operation is not one that seems particularly useful. However, because devices consume

7

their input values, it is necessary to clone values in order to use them as the input for two
different devices.

3.3.3 The Testing Palette
	

 The Testing Palette allows the users to control the playback of the data flow. In
additional to being able to start and stop the playback, the user can adjust the speed as well
as clear all the data currently on the conveyers and in the devices. When the user hits the
Test button, all # devices in the current working factory will output a single value onto their
respective output conveyers.

3.3.4 The Compilation Palette
	

 The Compilation Palette allows the user to prepare a factory for compilation. Before
actually compiling the factory into a custom device, the user must specify which of the
devices will act as the inputs and outputs of the custom device. Users can select # devices
and then click Set Input to set that device as the input. All other types of devices can be
selected and set as output device using the Set Output button. There can be a maximum of
two inputs devices and two output devices.

3.3.5 The Custom Devices Palette
	

 After compiling a factory, the user can add it as a custom device using the Custom
Devices Palette. A successful compilation will result in a .device file to be created, which can
be selected from the file chooser after clicking the Load button. After the custom device is
loaded, it will appear in the dropdown menu. By selecting the desired device from the
dropdown and clicking Add Selected, the user can add custom devices to the workspace.

3.4 Building a Factory
	

 To add a device to the workspace, the user selects the desired device from the
Standard Devices palette and clicks on the grid to place the device. To connect two devices,
the user clicks on the output port of one device (in red) and clicks on input port of another
(in green). If necessary, multiple conveyers links can be chained together by clicking on an
empty space in the workspace. The link is set when the conveyer goes from transparent to
opaque.
	

 To delete a device, the user first selects a device by clicking on it. A yellow border
will appear, signifying that the device has been selected. Hitting delete on the keyboard will
delete the device, as well as any conveyers it is connected to.
	

 The value output by # devices during testing can be changed by right-clicking on the
sign and selecting a number from the pop-up menu.

8

4. Sample Factories
	

 The Data Factory can be used to create factories that perform a wide variety of
operations, ranging from very simple to relatively complex. Here, we will discuss several
factories that span this range of complexities and the steps necessary to create them.

4.1 Square
	

 As shown in Figure 2, a user can create a factory that takes a single input and outputs
its squared value using three devices. The input value will flow in from the # device on the
left, enter the Cloner device, which will then send two copies of the input value into a
multiplication device to obtain the final squared value.

9

Figure 3: A factory for computing modulus

Figure 2: A factory for computing the square of a number

	

 Notice that the # device has been designated Input 1 and the multiplication device
Output 1. As a result, when this factory is compiled and inserted into a new factory as a
custom device, it will have one input and one output. Those two ports will be logically
“linked” to their respectively designated input and output device (in this case, the # device
and the multiplication device).
	

 The 3 above the # device designates the value that the device outputs when the Test
button is clicked. For # devices that have been designated as an input device, this value is
only output when testing. During actual usage as a custom device, the value that is input
into the custom square device’s input port will be that value that logically flows from this #
device.

4.2 Modulus
	

 To compute modulus, a factory with more devices will be necessary, as shown in
Figure 3. Since modulus is an operation that requires two input values, we need to have two
devices that are appropriately designated as input devices. As with the square device, we

designate the device that performs the final computational step as the output port.
	

 Because the length of the conveyers leading into the inputs of each device are of
varying length, the input values will often arrive in a staggered manner. Every device in the
Data Factory will wait for both of its inputs to be filled before consuming the values and
outputting the result.

10

Figure 4: A factory that can be compiled into a device to implement the SuperDivide
device interface

4.3 Super Divide
	

 Suppose that a student has been given the task of completing a specific factory in the
Data Factory. Such an assignment might read like this:

Create a SuperDivide factory that has two inputs and two outputs. The first of these outputs
should be the first input divided by the second input, ignoring the remainder (integer division).
The other output should be the remainder (modulus) of the division operation.

	

 After familiarizing himself/herself to the Data Factory, the student will realize that
the built-in divide device does exactly what is specified to be first output value. However,
the Data Factory lacks any native support for computing modulus. The student will need to
create their own device to compute modulus, so at this point, the student would begin a new
project on a separate tab and eventually arrive at a factory that looks much like the one
described in Section 4.2. The student could then save and compile their modulus/remainder
factory and add it as a custom device in their original project to complete their SuperDivide
device. Their factory will likely look something like the one depicted in Figure 4.

5. Implementation Details

5.1 Language Selection
	

 This version of the Data Factory, like the previous ones, is implemented entirely in
Java, specifically Java 1.5. Although this project came out of an entirely new code base, the
decision to continue using Java was motivated by platform portability and a familiarity.
	

 Platform portability is an important concern because it allows us to quickly deploy
the software regardless of operating system as well as gives users a consistent look-and-feel.
The decision to use Java for its familiarity was advantageous in improving development
time, although it did present its share of challenges, which will be discussed later on.

5.2 Stages of the Data Factory
	

 The processes that drive the creation of a factory, its compilation, and re-use as a
custom device can be described in three stages. First is, of course, the actual construction of
the factory in the project workspace. The second stage involves taking that factory and
turning it into Java byte-code. Lastly, the Data Factory must read in that byte-code and turn
it into a Java class that can be instantiated and used in a factory just like the other native
Data Factory devices.

11

5.3 Device Creation
	

 The workspaces on which factories are laid out are represented by 2D arrays of
objects, with each array position corresponding to its respective visible grid square. Devices
and conveyers are subclasses of Connectable, which requires that they each also have a 2D
array of objects, representing their individual layouts. For example, each device has a three-
by-three array, with input and output ports instantiated in the appropriate positions. When
a device is placed onto the workspace, this three-by-three array is put onto a three-by-three
area on the workspace’s array at the desired location.
	

 When one device’s output is connected to another’s input, the latter device keeps a

reference to the device that is supplying the value for that input port. Thus, in the process
of building a factory, we have effectively constructed a binary tree of devices (devices can
have at most two inputs), though this may not be visually evident. This fact will have
important consequences when it comes time to generate Java code for the factory in
preparation for compilation and will be discussed in greater detail in the next section.

12

Figure 5: A tree-structured factory being traversed to produce
an equivalent Java statement.

5.4 Java Code Generation and Compilation
	

 Though it may have been possible to generate Java byte-code directly from a
completed factory, this was neither a practical nor efficient way to approach the problem. By
first generating proper Java code, we greatly improve our ease of troubleshooting as well as
our use of already available tools, in this case, the javac compiler. Thus, the factory
compilation stage is in fact two steps: first, the Java code generation, and then the actual
invocation of the Java compiler.
	

 As mentioned in Section 5.3, completed factories will have a logical tree structure.
This is the key to allowing us to produce the corresponding Java code. First, we will discuss
code generation in the case where a factory is strictly tree-structured. Then, we will discuss
how we approach generating code for factories that look more like directed acyclic graphs.

5.4.1 Code Generation of Tree-structured Factories
	

 This version of the Data Factory does not currently support any types of loops or
cycles. As a result, many basic factories will look much like trees tilted on their side. The
consequence of this is that, for generating Java code, a factory can be treated as an abstract
syntax tree. Since each device “knows” of its equivalent Java statement, traversing the tree
from root (output) to leaves (inputs) can generate a new, single statement that is
representative of the entire factory.
	

 In Figure 5, we have a factory that takes in two inputs, multiplies them, and then
adds two. Since the addition device has been designated the single output device, the
traversal will begin there. Traversing the tree will result in a final string of ((in1 * in2) + 2),
which is the statement that will be put into the generated Java code to represent the
behavior of this factory.

5.4.2 Code Generation of Directed Acyclic Factories
	

 As mentioned in Section 5.4.1, often times, in order to create more complex
factories, you cannot adhere to a strict tree structure. In these cases, the code generation
process remains largely the same, though several design decisions had to be made for it to
work correctly. Perhaps the most important of these decisions was in the design of the
devices with two output ports (notice that these devices are what allows non-tree factories
to be created). Though in the workspace, they appear as single devices, the input ports of
two-output devices are actually linked to two (unseen) single-output devices that provide
output values for the two-output device that they implement. What this allows is the
output ports of a two-output device to be traversed independently through their respective
internal devices, effectively restoring a tree structure.

13

14

Figure 6: The factory in (a) is traversed as two separate trees rooted at each output
device, as illustrated in (b) and (c). This effectively restores the tree structure necessary
for traversal. The traversals will produce two Java statements, which are then used to
generate code for the two internal devices necessary to implement the factory in (a).

(a)

(b)

(c)

	

 The design decision described above is also what allows factories with two
designated output devices to be compiled. As shown in Figure 6, two traversals are done,
one rooted at each of the outputs. This allows two single-output devices to be created,
which will then be used to implement the actual two-output factory being compiled. Also
seen in Figure 6 is how the output ports of the Cloner device (a two-output device) can be
traversed separately to restore the tree structure.

5.5 Class Loading
	

 After factories are compiled, they must be loaded back into the JVM as proper Java
classes before instantiating them as a custom device. The class loading in the Data Factory is
implemented by extending Java’s ClassLoader with a custom class loader. The .class files are
read in as a byte-stream and then loaded as a Java Class that can later be instantiated.
	

 However, as a user begins adding custom devices to factories, class dependencies
begin to build. This causes a problem when a user tries to open a project with a factory using
custom devices. The project will not be able to load properly if the external classes for the
custom devices have not been already loaded (using the Custom Devices palette). Due to the
way persistence is implemented (using Serializable objects), there is no simple way to first
execute an initialization routine to load the dependent classes before the rest of a project.
One possible solution is to bundle saved projects as a jar file with all dependent classes
copied into it. Only after those classes have been loaded will the project be opened.

6. Results of Informal Testing
	

 Unfortunately, a user study with the targeted audience (late elementary to high
school-aged children) was not able to be completed in time for this paper. However,
informal testing was conducted with two college sophomore students. Each student
participated in a single session lasting approximately twenty to twenty-five minutes. The
first ten minutes of each session was spent introducing the Data Factory and going over how
to use the program. Basic usage was demonstrated by building a factory for squaring a value,
as described in Section 4.1. Once the subjects felt comfortable using the program, they were
given the task to complete a factory that takes a single input and outputs the cubed value of
that input.

6.1 Subject 1
	

 The first subject was a student that had no previous computer science related
coursework. It took this subject eight minutes to complete a properly working cube factory.
While the subject immediately understood that the cubed value could be obtained by taking

15

the square and then multiplying again by the original input, the subject had a difficult time
visualizing what the corresponding factory would look like. After getting stuck, the subject
decided to go ahead and test the factory he/she had built, though incomplete. Once the
values began to flow on the conveyers and through the devices, the steps necessary to
complete a properly working factory immediately became evident to the subject.

6.2 Subject 2
	

 The second subject was a student that had previously taken an introductory
computer programming course in Java but was not interested in continuing in the series. It
took this subject ten minutes to complete the cube factory. On this subject’s first attempt,
he/she built the square factory, cloned the squared value, and then sent the cloned values
into a multiplication device. After testing, the subject realized that this factory raised the
input to the fourth power rather than the third and was able to fix the problem to complete
the factory. The subject’s solution is shown in Figure 7.

6.3 Observations
	

 Perhaps the most striking insight gained from these informal tests was the usefulness
of the visual data flow. Neither of the subjects were able to easily visualize the correct

16

Figure 7: Subject 2’s solution to the cube factory exercise.

solution in their head and instead resorted to placing devices and conveyers in a manner that
“just made sense.” However, once the subjects saw the data flowing on the conveyers and
where exactly the data was going (or not going), the problems with their factories became
immediately evident to them. For many computer scientists who are accustomed to the type
of thinking required by building factories, the visual data flow may not provide much more
in addition to what they can already simulate in their heads. However, it appears that
visualizing the flow of data can quickly accelerate the understanding and troubleshooting
process for some subjects.
	

 The informal testing also brought to light some usability deficiencies in the Data
Factory, which will be discussed in greater depth in Section 7.2.

7. Future Improvements

7.1 Additional Functionality
	

 While this version of the Data Factory added support for functional abstraction and
compilation, some features were sacrificed in order to make those features possible. Perhaps
most notably of these missing features is loops. Loops open up a variety of new possibilities
for the types of factories that can be created. For example, in this version, there is no way to
create a factory that takes two values and outputs the first to the power of the second
without a native power device. With loops, creating such a device would be possible.
	

 Another useful feature would be to have recursion. Currently, there is no way to
signify a self-invocation in a factory. However, as in a previous non-compiling version of the
Data Factory, this could be done with a “self” device that dynamically adjusts its number of
inputs and outputs to match the current working factory [3]. Also, implicit in the support of
recursion is the support of boolean operations, which would prevent infinite recursion.
	

 Additional data types would also help increase the power of the Data Factory.
Currently, only integer values are supported, though fractions and floating-point numbers
would be welcome additions. These improvements, along with those discussed previously,
would all greatly improve the Data Factory’s usefulness as an educational tool by expanding
the possibilities for the types of factories that can be created.

7.2 Layout and Usability
	

 Since this version of the Data Factory was considered experimental, some usability
conveniences were left out. For example, the moving of devices was not supported, nor was
the deletion of an individual conveyer. However, after the informal user tests were
conducted, it became clear how necessary these types of features were. One of the goals of
visual data flow is to aid users by allowing them to see their factories operate, and then let

17

them quickly make any necessary changes. Unfortunately, the level of control provided in
the program workspace did not make this process particularly simple or streamlined.
Allowing the user a finer-grained level of control in manipulating devices and conveyers in
the workspace would allow factories to be completed faster, as well reduce the time penalty
for making mistakes.
	

 Another usability issue that was brought to light in the course of user testing was the
appearance of the conveyers. Since they do not have distinct edges, the conveyers that were
side-by-side bled into each other and created a layout that was confusing to the eyes. This is
particularly evident in Figure 7. Adding a border to the conveyers would help alleviate this
issue.

8. Conclusion
	

 We have described the design and implementation of a mechanism by which
functional abstraction with compilation can be supported in a visual programming language.
Though a proper user study of this version of the Data Factory could not be completed in
time for this paper, it still presents an interesting approach in visualizing functional
abstraction, a concept that is so fundamental to modern programming languages. In the
future, such a user study would allow this visual programming language to be evaluated as a
teaching tool and then appropriately modified to create a interesting and usable method of
teaching programming language concepts visually.

9. Acknowledgments
	

 The author would like to thank Professor Steven Tanimoto and Tyler Robison for
their guidance and advice, as well as their previous work on the Data Factory.

10. References
[1] Egarievwe, S. U., Ajiboye, A. O., Biswas, G., Okobiah, O. K., Fowler, L. A., Thorne, S. K.,
and W. E. Collins. Internet Application of LabVIEW in Computer Based Learning. European
Journal of Open and Distance Learning 2000.
[2] Kahn, K. A Computer Game to Teach Programming. Proceedings of the National
Educational Computing Conference 1999, pp. 127-135. 1999.
[3] Robison, T. and S. Tanimoto. Transparent Procedural Abstraction. University of Washington,
Seattle, WA. 2006.
[4] Smith, D. C. and A. Cypher. Making Programming Easier for Children. In Druin A., ed. The
Design of Children's Technology, Morgan Kaufmann, San Francisco, 1998, pp. 201-221.

18

[5] Tanimoto, S. Programming in a Data Factory. Proceedings of the 2003 IEEE Symposium on
Human Centric Computing Languages and Environment, Auckland, New Zealand, pp. 100-107.
2003.

19

