
Proc. Int'l Workshop on Mixed Language Explanations in Learning, Environments
(XLANG), in conj. with AIED2005,
Amsterdam, July, 2005, Copyright 2005.

1

Text Classification Rule Induction in the
Presence of Domain-Specific Expression

Forms 1

Adam Carlson and Steven Tanimoto 2

Dept. of Computer Science and Engineering
Univ. of Washington, Seattle, WA, 98195, USA.

Abstract. We describe a new method for learning text-classification rules from ex-
amples. The text consists of messages written by students in an online learning en-
vironment, and it may contain ungrammatical expressions as well as specialized
expressions such as formulas. The method is based on the version-space machine
learning technique. Experiments show that our method successfully generalizes
over certain classes of embedded numerical expressions involving ranges of values
in RGB triples that represent colors in an image processing system.

Keywords. text classification, learning, numerical expressions, domain-specific
terms, rule induction

1. Introduction

When students interact with online learning systems, they generate events sequences that
express patterns of activity. Learning environments such as the INFACT system at the
University of Washington[5] capture these event sequences and record them in a database
where they are available to a suite of tools for analyzing them.

Student activity data collected by systems such as INFACT falls into three cate-
gories: (1) textual messages posted by students in dialogs and in response to assignments,
(2) sketches drawn to accompany textual messages, and (3) user-interface events that
occur as students operate tools such as calculators and programming environments. In
this paper, we discuss a pattern recognition problem related to data in category 1. The
problem is to take textual messages together with two additional kinds of information
(categorizations of the messages and textual selections from the messages) and to induce
rules that can classify these and additional, unseen messages correctly into the categories
to which they belong.

This paper describes a particular variation on this problem of inducing text classifi-
cation rules. Rather than work only with natural-language text, our system permits spe-
cial expressions of a domain-specific nature to be included within the text, and it treats
these expressions in special ways. For example, our method can process expressions that

1Research supported in part by the US National Science Foundation under grant EIA-0121345.
2Correspondence to: Steven Tanimoto, Box 352350, Dept. of CSE, University of Washington, Seattle, WA

98195, USA. Tel.: +1 206 543 4848; Fax: +1 206 543 2969; E-mail: tanimoto@cs.washington.edu.

2 A. Carlson and S. Tanimoto / Rule Induction

we call RGB color specifications. These expressions may involve the color names “Red”,
“Green” and “Blue” as well as some numeric values that must all be between 0 and 255.
They may also be represented by triples of numbers with no color names. These forms
are different from natural language text and similar in some ways to mathematical ex-
pressions. Other examples of “domain-specific expressions” include program snippets,
mathematical expressions and chemical formulae.

The text classifications rules we induce are used for two purposes. One is to construct
“diagnoses” of misconceptions that teachers can inspect in order to monitor the progress
of their students. The other is to automatically construct feedback that can be given to
students to help them overcome obstacles and learn more effectively.

2. Rule Induction Method

Our rule learner uses a variation of the Version Space algorithm [4]. It also uses an
extensible rule language architecture inspired by the Version Space Algebra [3,2]

2.1. Version Space Data Types

The rule learner functions via interactions among three primary types of objects: ver-
sion spaces, examples and positions. Version spaces essentially represent the classifica-
tion rules. Examples encapsulate the data from which version spaces are learned, and
positions are an abstract way of representing the notion of a portion of an example. This
generality is meant to allow for the eventual inclusion of sketch data as additional evi-
dence in examples. Currently the only kind of Example that is fully supported is the
TextEvidence class and the only kind of position is the TextPosition class.

In order to describe the architecture of the rule learner in more detail, we present the
application programming interface for version spaces and their related constructs. Our
system is implemented in the Java language.

2.2. VS interface

The VS interface is the fundamental interface of the rule learner. It specifies the basic
functionality of a version space.1

Classify takes an Example as input and returns a Boolean. The return value is
Boolean.TRUE if the example is classified as positive,Boolean.FALSE if the
example is classified as negative and null if the classification cannot be deter-
mined.

AddExample takes an Example and returns a Vector of version spaces that incor-
porate that example. The returned version spaces represent a disjunction of the
various ways the version space can be modified to handle the example.

Generalize takes a positive Example and returns a Vector of version spaces that
incorporate that example. This is how AddExample handles positive examples.

1The actual interface is larger than this, but several of the methods are either for convenience or for features
that are orthogonal to the approach described here.

A. Carlson and S. Tanimoto / Rule Induction 3

Specialize takes a negative Example and returns a Vector of version spaces that
incorporate that example. This is how AddExample handles negative examples.

Subsumes takes a VS. It returns true if and only if the set of examples this VS classifies
as positive is a superset of those classified as positive by the VS passed in as an
argument.

GetMatchingPositions takes an Example and returns a Vector of VSMatch
objects. Each VSMatch returned encapsulates a Position within the example
where the match was found and the VS it was accepted by.

toRegex returns a regular expression that is guaranteed to match a superset of all
strings that will be classified as true by the VS. (Further filtering of strings matched
by the regular expression is done via GetMatchingPositions.)2

GetUniverse returns the instance implementing the Universal VS for this type of VS.
GetEmpty returns the instance implementing the Empty VS for this type of VS.

2.3. Compound Version Spaces

A compound version space is a version space that is predominantly defined in terms of
sub-version spaces. The prime example of this is the Conjunction. A conjunction
classifies an example as true if and only if all its conjuncts classify the example as true.
Other methods are similarly defined in terms of the conjuncts. The CompoundVS in-
herits from VS, and adds a few methods that allow for specification of sub-version space
classes.

MakeVS takes a Vector of VSs and returns a VS. This is a factory-like method that
builds an instance of the CompoundVS (or possibly one of its sub-VSs) given a
set of VSs.

registerVS takes a VS class (either the class name or the actual class object) and
registers it as a sub-VS.

unregisterVS takes a VS class (either the class name or the actual class object) and
removes it from the list of sub-VSs.

2.4. How it works

Here’s a description of how the VS and CompoundVS interfaces work together in prac-
tice, using the Conjunction, Term and NumericRange classes as examples.

The Term class implements VS. It’s a simple version space that recognizes whites-
pace separated words. The generalization lattice for this version space, shown in figure 1
is quite simple. A string either contains the term or it doesn’t.

2.5. Numeric Ranges

The NumericRange class also implementsVS. It’s a slightly more complex example
of generalization. While the entire generalization lattice is handled by the same class,
there is some flexibility in what data it will accept. The generalization lattice is shown in
figure 2.

2The use of regular expressions is required by the database interface of the system in which the rule learner
is embedded.

4 A. Carlson and S. Tanimoto / Rule Induction

Universe

Empty

Term

Figure 1. Generalization lattice for term version space

Universe

Empty

Single Number

Numeric Range

Figure 2. Generalization lattice for a numeric range.

Numeric ranges are a little trickier than terms. For example, as a regular expression,
it produces a sequence of digit characters long enough to accept the high end of the range.
In order to confirm that the regular expression has actually matched a number within the
range, the GetMatchingPositionsmethod must be called.

Both the Term and NumericRange version spaces are simple version spaces.
Even though a numeric range can accept a variety of numbers, and requires post-
processing of regular expression matches to confirm a positive classification, it’s still
handled by a single object in a single class. The CompoundVS interface allows for the
creation of version spaces which are built out of other version spaces.

2.6. Conjunctive Version Spaces

The Conjunction is a compound version space that represents the conjunction
of a number of other version spaces. The Conjunction class implements the
CompoundVS interface. Therefore it supports a number of version space registration
methods. A version space can be registered with the conjunction class (or, for that matter,
a particular conjunction object.) This will allow the conjunction to include that version
space as it processes examples.

For conjunctions, the primary way registered version spaces are used is in parsing
new examples. When an example is seen, the conjunction calls theGetMatchingExamples
operation of the Universal instance of all registered version spaces. Each of these return
a list of the locations in the example where they have identified a match. The lists of
matching locations from all the different sub-version spaces are merged, and any over-
lapping matches are used to create alternate conjunctions. For example, take the string
“A 10 by 20 rectangle.” The terms that are found in this string are, T(A), T(10), T(by),
T(20) and T(rectangle). (We use the convention X(y) to denote a version space of type
X recognizing content y.) In addition, the numeric ranges NR(10) and NR(20) are also

A. Carlson and S. Tanimoto / Rule Induction 5

found. However, the positions matching T(10) and NR(10) overlap, as do T(20) and
NR(20). As a result four version spaces are created:

C(T (A) ∧ T (10) ∧ T (by) ∧ T (20) ∧ T (rectangle)),

C(T (A) ∧ NR(10) ∧ T (by) ∧ T (20) ∧ T (rectangle)),

C(T (A) ∧ T (10) ∧ T (by) ∧ NR(20) ∧ T (rectangle)),

C(T (A) ∧ NR(10) ∧ T (by) ∧ NR(20) ∧ T (rectangle)).

This example is somewhat contrived, as it would be easier to make terms not include
numbers and only return the last conjunction in which “A”, “by” and “rectangle” are
terms, and “10” and “20” are numeric ranges. We will see a more realistic example
involving RGB color specifications later, however this example is simpler and easier to
talk about, so we will continue to use it for the time being.

Now consider a new example, “the square is 15 by 15.” This example only shares
one non-numeric term with the previous one, that being “by”. However, it does have
numbers, and though they don’t match the ones in the original example, if they’re being
interpreted as ranges, those ranges can be extended to include them. Thus each of the
version spaces above is generalized below (in the same order):

T (by),

C(NR(10 − 15) ∧ T (by)),

C(T (by) ∧ NR(15 − 20)),

C(NR(10 − 15) ∧ T (by) ∧ NR(15 − 20)).

One can think of a version space as a set of constraints that must be satisfied in order
to classify an example as positive. Simple version spaces test those constraints against
the example directly. Compound version spaces use their constituent sub-version spaces
to test each of their constraints, and then may apply additional constraints as well (such
as requiring that the portions of matching text be non-overlapping.)

When generalization must occur to incorporate a new example, the conjunction first
tests which of its constituents already matches the example. Those do not need further
generalization. Constituents that don’t match are generalized against the example. If
those generalizations do not fail (that is, if they don’t require generalizing all the way
to the universe), then each generalization of the constituent is considered. Just as before
when overlaps of different parses of an example caused multiple conjunctions to be cre-
ated, multiple generalizations are handled by taking the cross product and then making
sure no overlaps occur.

Similarly, classification of compound version spaces is handled by classifying all
constituents and then checking any additional constraints. Note that the implementation
of this strategy might be different; for example, the conjunction could short-cut the clas-
sification process if any of its constituents returned false.

6 A. Carlson and S. Tanimoto / Rule Induction

2.7. Ordered Conjunctions

Another example of a compound version space is the ordered conjunction. This is a con-
junction that also places an ordering constraint on its constituents. It operates in much
the same way as a conjunction, but in addition to imposing the constraint that substrings
matching various constituents not overlap, it also requires that they be in a specified or-
der. Similarly, a Sequence is like an ordered conjunction, but also restricts the num-
ber of items that can intercede between any two of its constituent parts. I.e. it restricts
consecutive components to be separated by some fixed number of elements.

2.8. RGB Recognizer

The idea of version spaces farming out some of their work to other version spaces is used
in the handling of RGB color specifications. Students use a number of different ways to
describe RGB colors. They might type “Red: 100, Blue: 50, Green: 20” or they might
just use “(100, 20, 50).” In order to handle these different representations, the RGB color
recognizer uses a number of sub-version spaces to do a lot of its work. First, there is
an intermediate version space type called a color specification. This recognizes a single
color out of an RGB triple specified in the Colorname : number format. The RGB
recognizer looks for sequences of up to three color specifications, in which each of the
colors are “Red”, “Green” or “Blue”, and no color is repeated. The color specifications
themselves are expressed in terms of a fixed string, followed by a numeric range. Finally,
because students sometimes just use numeric triples, the RGB color recognizer can also
look for a sequence of three numeric range terms. A schematic of the way the RGB
recognizer is constructed is shown in figures 3 and 4.

Disjunction

Red Numeric Range

Sequence

Green Blue

ColorSpec

Figure 3. The Color Specification recognizer.

3. Experiments and results

To test this system, we collected data from INFACT-FORUM consisting of student re-
sponses to an additive color-mixing assignment. Each example was manually classified
as positive or negative for the color requested. Using a leave-one-out strategy of defining
training and test data, classification rules were induced and used to classify the remaining
example. Two kinds of data were used: pruned and unpruned. The pruned data consisted

A. Carlson and S. Tanimoto / Rule Induction 7

Sequence

Numeric Range

Numeric Range

Numeric Range

ColorSpec

ColorSpec

ColorSpec

Sequence

Disjunction

RGB

Figure 4. The RGB recognizer.

only of examples including RGB terms in the two formats handled by the RGB recog-
nizer. The unpruned examples also included a number of expressions in other patterns.

With the pruned data, the use of the domain-specific RGB component tended to im-
prove precision over the use of straight text terms only; RGB alone gave a 0.50 total pre-
cision value compared with 0.35 for term only. Combining the two gave an even better
result: 0.66. Recall remained relatively unchanged. With the unfiltered data, the precision
was fairly low, due to the large number of false positives obtained due to overgeneraliza-
tion of the rules on the basis of misinterpreted RGB values.

4. Additional Information

Additional details on our methods and experiments can be found in the first author’s
Ph.D. dissertation[1].

References

[1] Adam Carlson. Making the Implicit Explicit: Tools for Human Communication. Ph.D. thesis,
University of Washington, 2005.

[2] Tessa Lau. Programming by Demonstration: A Machine Learning Approach. PhD thesis,
University of Washington, 2001.

[3] Tessa Lau, Steven Wolfman, Pedro Domingos, and Daniel Weld. Programming by demonstra-
tion using version space algebra. Machine Learning, 2003.

[4] Tom Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.
[5] Steven Tanimoto, Adam Carlson, Justin Husted, Earl Hunt, Josef Larsson, David Madigan, and

Jim Minstrell. Text forum features for small group discussions with facet-based pedagogy. In
Proceedings of CSCL’02, Boulder, CO., 2002.

8 A. Carlson and S. Tanimoto / Rule Induction

Pruned data sets
Com bined True+ True-False-False+ Prec.RecallF-score
Yellow 5 9 3 11 0.31 0.63 0.42
Purple 0 26 2 0 1.00 0.00 0.00
Pink 16 12 0 0 1.00 1.00 1.00
G ray 0 26 2 0 1.00 0.00 0.00
Totals 21 73 7 11 0.66 0.75 0.70

RG B O nly
Yellow 6 9 2 11 0.35 0.75 0.48
Purple 0 26 2 0 1.00 0.00 0.00
Pink 16 1 0 11 0.59 1.00 0.74
G ray 0 26 2 0 1.00 0.00 0.00
Totals 22 62 6 22 0.50 0.79 0.61

Term O nly
Yellow 6 2 2 18 0.25 0.75 0.38
Purple 0 3 2 23 0.00 0.00 0.00
Pink 16 12 0 0 1.00 1.00 1.00
G ray 0 26 2 0 1.00 0.00 0.00
Totals 22 43 6 41 0.35 0.79 0.48

Unpruned:
RBG only
Color True+ True-False-False+ Prec.RecallF-score
Yellow 22 0 0 43 0.34 1.00 0.51
Purple 12 12 3 38 0.24 0.80 0.37
Pink 19 12 3 31 0.38 0.86 0.53
G ray 6 0 0 59 0.09 1.00 0.17
Totals 14.8 6 1.5 42.75 0.26 0.91 0.40

Figure 5. Experimental results.

