
Transparent Software Methodologies

in Image Processing

Steven L. Tanimoto

Dept. of Computer Science and Engineering

University of Washington

Seattle, WA 98195, USA.

tanimoto@cs.washington.edu.

Abstract

As software grows ever more complex, there is a

tendency for it to become more diÆcult to under-

stand. One way to help counteract these ill e�ects

is to design software to be transparent in the sense

that important structures or processes within the

software are made visible. Image processing al-

ready involves data with its own natural visualiza-

tions, but there are more ways to increase trans-

parency. Here, two particular approaches to trans-

parency are presented. One involves showing the

numeric as well as graphical representation of im-

ages, while the other involves displaying trees of

image transformation relationships. The �rst tech-

nique is an important part of a new image pro-

cessing course for undergraduates, while the sec-

ond technique is aimed at users in research and

development.

1 Introduction

Software systems, including those for image pro-
cessing, tend to increase in power and complex-
ity as successive products and their versions are
released. While users generally welcome the in-
creased power, the increased complexity of the soft-
ware has drawbacks in terms of user understand-
ing, and being more prone to bugs. One way to
counteract these aspects is to design the software
to be more \transparent."

Software systems are becoming more complex
for several reasons: commercial competition, jus-
tifying upgrades to new versions, and taking ad-
vantage of new hardware or techniques. Although
users may welcome the increased capabilities, the
added complexity typically makes the user's task
of learning the system more diÆcult.

By making software more transparent, that is,
opening up new views of a program's computation,

it is possible to alleviate, to a degree, the ill e�ects
of software complexity.

2 Transparent Interfaces

A transparent interface to a software system is one
that reveals some of the inner workings of the sys-
tem. The inner workings are implementation de-
tails that are separate from the prescribed func-
tional inputs and outputs of the system. Trans-
parency is not an all-or-nothing matter, but an
aspect of each datum and subprocess within the
system. For each data structure and processing
component of a software system, a discussion of
transparency is concerned with whether to show
it and how to show it. Answering the question of
what to show and how to show it may involve user
modeling and system modelling [3].

Transparency in a system's interface can lead
to the following bene�ts... Curiosity satis�ed:
Curiosity is a form of cognitive tension. This ten-
sion subsides when curiosity is satis�ed. Educa-
tion supported: When a user begins using a new
tool, there is typically a \teachable moment" dur-
ing which the user's attention is available. Soft-
ware that can present itself during this time has
the potential to impart lessons of value. Error
detection/correction facilitated: Faulty soft-
ware is the norm in large commercial products.
Transparency can help users detect errors. Flu-
ency and being \in the ow" encouraged:
Users are most productive when they can use a
software system uently. This means that they
can react quickly and appropriately to changes in
system state. Transparency can support this u-
ency by making the changes in system state more
apparent. Trust engendered: Users may be in-
clined to distrust software systems for a variety of
reasons including distrust of the vendor and lack of
faith in the correctness of the software's functions.



Transparency can counteract such inclinations by
demonstrating that the internal software state is
consistent with claims made.

3 Mathematics Experiences

Via Image Processing

In this section, the �rst of two examples of trans-
parency in image processing is presented. It arises
in a project whose goal has been to engage stu-
dents in mathematics and computing by involving
them in image processing activities.

The project called \Mathematics Experiences
Through Image Processing" (METIP) has been
developing educational materials for image pro-
cessing, mathematics, and computing at the Univ.
of Washington, since 1992. It was funded by the
U.S. National Science Foundation during the pe-
riod 1992-97. Images appeal to students for many
reasons: they are visual and the students have
grown up in a visually-oriented culture of tele-
vision, movies, magazine photo advertising, web-
page images, and more recently, cellular-telephone
photos. Mathematics, on the other hand, has been
a relatively unpopular, uncool subject in school, at
least in the United States. The fact that a digital
image is a mathematical object thus a�ords an op-
portunity to bring students closer to mathematics.

Most image processing software hides the math-
ematics, because it is marketed to artists. Prod-
ucts like Paint Shop Pro and Adobe PhotoShop are
examples of such products. In the METIP project,
the opposite approach was taken, with the software
showing clearly the relationship between the visual
and mathematical aspects of digital images.

3.1 The Pixel Calculator

The \Pixel Calculator" program, developed by the
METIP project, integrates visual and mathemati-
cal views of images and o�ers a pocket calculator-
like interface with which a user can operate on
images. The operations, while similar in appear-
ance to ordinary calculator arithmetic, are actually
well-de�ned operations in a system called \Pixel
Arithmetic." For example, in Pixel Arithmetic,
255 [+] 1 = 255. The [+] operation is called \pixel
addition" and it obeys \truncation semantics." The
pixel operations ensure that results are in the range
f0; 1; 2; : : : ; 255g and division of pixel values is al-
ways de�ned, i.e., x[=]0 = 255, for any x > 0, and
0[=]0 = 1.

In the METIP project, transparency means two
things: (1) automatically showing the numeric val-

(a)

(b)

Figure 1: Pixel Calculator displays of the house
image (a) at a normal scale, and (b) zoomed-in;
the RGB values are automatically displayed when
the scale factor is appropriate.

ues of pixels along with their colors whenever pix-
els are viewed at a suitable scale, and (2) allowing
the user to employ mathematical expressions to
modify images. The software does not hide the
mathematics of image processing. Figure 1 shows
an image of a house as displayed using the Color
Pixel Calculator, (a) at normal resolution, and (b)
zoomed in.

3.2 Autostereograms

One of the activities used in the projec's \Pix-
els, Numbers & Programs" course is creating au-
tostereograms (Magic-Eye pictures). A special in-
terface, written in Visual Basic, to the project's
\XFORM" image processing software makes the
mathematics of stereogram generation apparent.
This interface is illustrated in Figure 2. Of im-
portance are the relationships among various dis-
tances, particularly the fact that there is a pair of



similar triangles in the diagram; the �rst triangle
has base E and height V + z; the other has base d
and height z. Therefore d=z = E=(V + z), which
means that d = Ez=(V+z). Roughly speaking, the
stereogram is computed by determining the value
of d at each pixel of the stereogram, and then copy-
ing the color of the pixel d units to the left (or
right). Figures 3 and 4 show a conical depth map
and resulting stereogram, assuming that the image
of Figure 1a is used as the carrier image.

Figure 2: Stereogram-creation interface.

Figure 3: Depth map with the surface of a cone,
computed as the distance transform of the center
point.

The METIP project has developed a variety
of ideas for making image processing more read-
ily understood, and yet there remain many more
techniques to be tried.

4 Strategic Transparency

While the techniques developed by the METIP
project have helped to reveal the mathematical
structure of images, some more recent work has
striven to make visible the higher-level problem

Figure 4: Stereogram created from the cone depth
map and house carrier image.

solving structures used in the design of image pro-
cessing experiments and applications. A system
called TRAIPSE for image processing is built on a
more general transparent software framework called
T* (or T-STAR). Before illustrating TRAIPSE, a
description of T* is given.

4.1 T-STAR

Many design and problem solving activities share
a common pattern of development. One starts
with a given problem and a starting arrangement
or \state" (possibly simply a blank slate). Step
by step, elements are either added to the arrange-
ment, removed from the arrangement, or modi�ed
within the arrangement. For example, in design-
ing a house, one might begin with a site map, and
then one might add one room or another of the
house, remove a room, modify a room, etc., until a
satisfactory combination of rooms has been found.
Such processes have been modeled as \state-space
search" [2].

While the theory of state-space search refers to
trees or more general graphs that show the rela-
tions among various possible states, the computer
programs that automatically search the spaces of
possibilities seldom, if ever, show these trees or
graphs. As a result, a human user is not given a
picture of problem-solving process and might well
�nd the activity to be diÆcult to comprehend.

The T* software package provides a \Transpar-
ent STate-space search ARchitecture." It is writ-
ten in Python and the GUI development kit Tk-
inter [1]. It provides facilities for keeping track of
states in a state-space search and for displaying
the tree of possibilities explored by the computer
in a session. Figure 5 shows an application of T*
to the well-known \Missionaries and Cannibals"
puzzle. The puzzle starts with three missionaries
and three cannibals and a canoe on the left bank
of a river. The goal is having everybody on the



right bank. Rules are (1) the canoe can carry at
most three people at a time, (2) there must be at
least one missionary in the boat to steer it, and
(3) if the cannibals ever outnumber the mission-
aries either on the left bank, right bank or in the
canoe, then the missionaries are eaten. The T*

Figure 5: T* display for a tree of explored states
in the Missionaries and Cannibals puzzle.

code enforces the rules and shows the states that
have been \explored" by the user.

4.2 T* in Image Processing

The TRAIPSE software adapts T* for image pro-
cessing. The adaptation consists of (a) de�nition
of image-processing states and their displays, and
(b) provision of a set of image-processing opera-
tors. Each state consists of a small number of data
objects, usually a string and an image. Each oper-
ator contains a precondition (a predicate on states
that determines whether the operator is applica-
ble to a given state or not), and a function that
maps one state to another. TRAIPSE currently
comes with only a small set of operators, mainly
written as calls on the open-source Python Imag-
ing Library. However, additional operators can be
written either in Python or in C/C++ and loaded
into TRAIPSE.

The transparency in TRAIPSE facilitates two
types of work: (1) sequencing operators to achieve
particular kinds of results, and (2) comparison of
results of di�erent operators or operator sequences.
The �rst activity is a kind of computer program-
ming: the formation of recipes or sequences of
steps to take in order to transform given input data
into useful results. The second activity is evalua-
tion and is used in �ne-tuning operator sequences.

Figure 6 shows a four-level tree with the origi-
nal image at the root and various derived versions
below it. The popup menu shows T* commands
available for the selected node, which is highlighted
in green. TRAIPSE was recently used by students

Figure 6: An example display with the TRAIPSE
system.

at the University of Rome under the direction of
L. Cinque for their term projects. One project
team applied TRAIPSE to face recognition. An-
other applied it to motion analysis in image se-
quences.

5 Acknowledgments

For encouragement with T* thanks to S. Levialdi,
L. Cinque, A. Malizia, C. Bernardelli, P. Bottoni,
M. DeMarsico, and E. Panizzi. For encouraging
the presentation, thanks to G. Borgefors, E. Bengts-
son, I. Nystr�om, S. Svensson and F. Georgsson.
Thanks also to the many METIP project collab-
orators. Finally, presentation of this paper was
supported in part by NSF Grant IIS-0537322.

References

[1] Lundh, F. 1999. An Introduction to Tkinter.
http://www.pythonware.com/library/tkinter
/introduction/.

[2] Newell, A., and Simon, H. A. 1972. Hu-
man Problem Solving. Englewood Cli�s, NJ:
Prentice-Hall.

[3] Tanimoto, S. L. 2004. Transparent interfaces:
Model and methods. Proc. Workshop on In-

visible and Transparent Interfaces, Gallipoli,
Italy.


