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Abstract—Craniosynostosis, a disorder in which one or more
fibrous joints of the skull fuse prematurely, causes skull de-
formity and is associated with increased intracranial pressure
and developmental delays. Although clinicians can easily diag-
nose craniosynostosis and can classify its type, being able to
quantify the condition is an important problem in craniofacial
research. While several papers have attempted this quantification
through statistical models, the methods have not been intuitive
to biomedical researchers and clinicians who want to use them.
The goal of this work was to develop a general platform upon
which new quantification measures could be developed and tested.
The features reported in this paper were developed as basic
shape measures, both single-valued and vector-valued, that are
extracted from a single plane projection of the 3D skull. This
technique allows us to process images that would otherwise be
eliminated in previous systems due to poor resolution, noise
or imperfections on their CT scans. We test our new features
on classification tasks and also compare their performance to
previous research. In spite of its simplicity, the classification
accuracy of our new features is significantly higher than previous
results on head CT scan data from the same research studies.

I. INTRODUCTION

Craniosynostosis is a birth defect that occurs when one or
more sutures, the fibrous joints of the skull, fuse prematurely
[1]. Despite the prevalence of this condition, the natural course
of craniosynostosis is not well understood. An infant’s skull
is made up of several bony plates (calvaria), connected by
sutures. The persistence of sutures between the calvaria is
necessary for skull deformation during birth and expansion of
the cranial vault during brain growth. The four main sutures
of the calvarial vault are the sagittal suture, left and right
coronal sutures, metopic suture, and left and right lambdoid
sutures. The sutures must remain unossified so that the skull
can stay malleable and the brain can have enough space to
grow properly. Most craniosynostosis cases are isolated, with
only one fibrous suture on an infant’s skull fusing prematurely,
but there are also syndromic cases with multiple affected
sutures. A skull cannot easily expand perpendicular to a closed
suture, which redirects growth parallel to the closed suture.
Subsequently, a misshapen head and frequently abnormal
facial features are induced [2].

Craniosynostosis occurs in one in 2,000 to 2,500 live births

Fig. 1. Shapes of unaffected (left), sagittal, uni-coronal and metopic
synostosis skulls.

[1]. Sagittal synostosis, the most common form, represents
about 40% to 55% of the non-syndromic cases. Coronal syn-
ostosis, the second most common synostosis, represents about
20% to 25%. Metopic synostosis, the third most common
synostosis, represents about 5% to 15%. Each class shape
(sagittal, unilateral coronal and metopic) is illustrated in Fig.
1. If left untreated, craniosynostosis can be associated with
increasing intracranial pressure [3] and neurocognitive delays.

Currently, the diagnosis of craniosynostosis relies on clinical
evaluation by a trained clinician. If synostosis is suspected, a
CT scan of the head may be ordered as part of a standard
diagnostic procedure. Sometimes the deformity caused by
craniosynostosis may be mild at birth, and the signs can take
a few months to become visually noticeable; however, early
detection is essential to a timely surgery, while the infant is ex-
periencing rapid brain growth. The objective of the surgery is
to allow cranial expansion so that there will be adequate space
for the brain to grow, intracranial pressure can be prevented
and a normal appearance of the child’s head can be restored.
Although clinicians can easily diagnose craniosynostosis and
can classify its type, being able to quantify the condition is
an important problem in craniofacial research. The goal of
this work was to develop a general platform upon which new
quantification measures could be developed and tested on large
numbers of CT subject images from multiple different sites
and CT setup environments.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the data
set used in this study. Section IV presents the approach
and methodology that are used in our system to process,



Fig. 2. Imperfections like holes, rings and noise as seen on some older CT
scans can make processing and shape analysis difficult.

extract important information, analyze and classify the data.
Section V presents the classification results using our image
processing and analytic system. Finally, Section VI provides
the conclusions.

II. RELATED WORK

A. Various Representative Descriptors

Ruiz-Correa et al. [4] developed the cranial image, a high-
dimensional distance matrix representation of the skull, and
used it to classify different types of craniosynostosis. Lin
et al. [5] extended the methodology to symbolic-signature
descriptors derived from the cranial image. With the symbolic
descriptors capturing the information in the much larger cra-
nial image, Lin obtained a more compact representation of
a 3D shape. The symbolic shape descriptors encode global
geometric properties that capture the uniqueness of each
shape class by probabilistic modeling of their local geometric
properties.

Atmosukarto et al. [6] determined several measures for
quantifying the severity of deformational plagiocephaly (DP),
a postnatal flattening of the back of the skull. Her descriptors
used the concept of an azimuth-elevation-angle histogram of
the surface normals of the back of the head and produced
severity errors that were functions of the left and right side
bins of these histograms. Atmosukarto’s approach achieved
high accuracy (all classification were greater than 90%) in
distinguishing DP cases from non-DP controls. Her asymmetry
score descriptor provided the best overall discrimination.

Lele and Richtsmeier [7] have used descriptors that
combined Euclidian distance matrix analysis (EDMA) and
likelihood-based classification methods but the approach led
to a high error rate in the 18 – 32% range, as discussed in
Ruiz-Correa [8].

B. Sparse Logistic Regression Models

Yang et al. [9] developed a plane-based retrieval system
that produced a variation of Ruiz-Correa’s cranial image. To
classify, Yang used logistic regression, L1-regularized logistic
regression, the fused lasso and the clustering lasso classi-
fiers but the method requires a high-dimensional 100 x 100
distance matrix to achieve mid-90% classification accuracy.
Yang traded higher computational and memory costs for better
performance. Her method was also sensitive to poor resolution,
noise or other imperfections on the original CT scans, as

shown in Fig. 2; consequently, only 70 skull images could
be used. Furthermore, some automatically-placed landmark
points were not correct.

Our work builds on the work of Yang, but there are impor-
tant differences. Our methods were able to process additional
data including 149 total skull images of four different types:
sagittal, unilateral coronal, metopic, and control. Yang had less
data and no control images. Yang’s features were simply a
set of points taken along the contour of the skull on multiple
different planes. We have developed specific shape descriptors
for our work. Finally, because Yang had no controls, her
experiments could only classify abnormals compared to other
abnormals. We are able to classify abnormals as compared to
controls, which is the more medically relevant task when it is
used for diagnosis, as well as to compare our work to Yang’s
by making the same two-class comparisons and multi-class
comparisons she made.

C. Classifying by Inspection

In some clinics, visual inspection was highly encouraged.
For example, in Massimi’s clinics [10], CT scans were re-
stricted to severe bone constriction and hypertrophic scalp
veins or evident sellar deformation of the cranial vault. How-
ever, visual inspection is subjective and may be biased and
limiting. Since procedures and test results that are consistent,
efficient and reproducible are highly valued, developing an
automated, 3D image-processing-based system for the charac-
terization of craniosynotosis remains a research objective.

III. DATA SET

For our craniosynostosis study, the 3D computed tomogra-
phy (CT) scans of heads were collected from hospitals in four
different cities in the US. Our study is limited to three types of
synostosis: sagittal (the affected suture is between the parietal
bones), metopic (the affected suture is between the frontal
bones) and unilateral coronal (the affected suture is between
the frontal and the parietal bones on either the right side or the
left side of the skull). For the control dataset, the Radiology
database at Seattle Children’s Hospital was interrogated for
children that had head CTs at age 2 years and younger.
First, all children with craniofacial malformations, including
craniosynostosis, were excluded. Next, CT scans obtained for
minor head trauma, headache, or other reasons that would not
effect calvarial shape were reviewed in 3D format. Finally,
cases without abnormalities in calvarial form were used as
controls. For our experiments, 149 skull meshes were included.
34 images were from the unaffected subjects (children who
do not have craniosynostosis disorder), and 115 images were
from the affected subjects (children with sagittal synostosis,
unilateral coronal synostosis, or metopic synostosis). All the
subjects were under two years of age.

IV. APPROACH AND METHODOLOGY

As shown in Fig. 3, our system is a general platform for 3D
craniofacial shape analysis. For this manuscript, we describe
five modules:



Fig. 3. Flow chart of our system. Step A Data Acquisition and Preprocessing
is not part of the automated system being developed. Step E.2 Severity
Assessment and Class Ranking and Step E.3 Analysis of Change Effect After
Surgery are out of scope on this paper.

A. Data Acquisition and Preprocessing
B. 3D Mesh Region of Interest Extraction and Re-orientation
C. 2D External Contour Points Extraction from each 3D Mesh
D. Aggregate and Low Level Features Extraction
E. Classification

A. Data Acquisition and Preprocessing

This module is not part of the automated system being
developed and requires human interaction.

a) CT Acquisition: Seattle Children’s Hospital acquired
the CT images from four different sites: Atlanta, Chicago,
Seattle and St. Louis. Seattle Children’s Hospital used a GE
Lightspeed VCT 64-channel CT, to simultaneously obtain up
to 64 slices of images from each head scan. Each slice is 0.5-
mm thick with a scanning resolution of either 0.351 mm or
0.391 mm in both x and y dimensions. The sampling frequency
for the scan is 2,460 Hz. Each CT image slice is stored in
16-bit and 500 x 500 pixel resolution according to the Digital
Imaging and Communications in Medicine (DICOM) standard.

b) CT Cleaning: Each CT image is cleaned so that all
surfaces below the chin (e.g., the neck, shoulder, clothing or
hands) are deleted. We do not repair the surface or apply any
smoothing algorithm to the cleaned CT image.

c) Mesh Extraction: From the CT volume data of the
head, our system first extracts the skull slices and creates a
single 3D image of the skull surface mesh. Each mesh contains
between 140,000 and 850,000 vertices.

d) Mesh Normalization: Because our 3D CT scans are
not consistently posed, our system next performs normaliza-
tion on the cleaned skull surface mesh to ensure the skull
poses are symmetrical between its left and right sides. For
our analysis and classification, it is also important that all
skull surface meshes use the same coordinate reference and
orientation (top view of the skull with head facing straight
and forward).

e) Landmarking: The final step in this module is land-
marking, which locates and records the x-y-z locations of
two landmark points: nasion and opisthion. We use only
two landmark points to define our base plane. To assure

Fig. 4. Identifying the base plane based on the nasion and opisthion
anatomical landmark points. This base plane was used as one x-y-z coordinate
plane to re-orient the entire extracted 3D ROI.

Fig. 5. Extracting a 2D external contour (right) by first projecting the 3D
surface mesh (left) onto a 2D plane (middle). Keeping only the exterior points
from the silhouette. This approach allows processing and shape analysis to be
done even on older CT scans that have noise and challenging imperfections.

consistency, the open source application meshlab is used to
mark these two points by hand on each 3D surface mesh. The
x-y-z location values of these two points are then stored in
a text file so that the points can be used to extract the ROI
and contour points for data analysis and classification. Yang’s
automatic landmark finder is available for future experiments.

B. 3D Mesh Region of Interest Extraction and Re-orientation

Based on the location of the nasion and opisthion landmark
points, the algorithm identifies a base plane as shown in Fig. 4.
The surface mesh on and above this base plane is considered to
be the region of interest (ROI), which our algorithm extracts
and uses for the remaining analysis. This tilted base plane
replaces one of the three x-y-z coordinate planes (in our case,
the new z-plane). Subsequently, the coordinate reference of the
3D ROI is re-oriented. This module standardizes and positions
the extracted ROI uniformly to ensure accurate comparison
and later analysis.

C. 2D External Contour Points Extraction from each 3D Mesh

The bird’s-eye view from the top of a skull can reveal
many unique characteristics for describing its shape. Our shape
analytic system uses a simple 3D projection-based contouring
technique to extract exterior shape information from the 3D
surface mesh as a whole. Our contour extraction module first
projects a top view of the 3D ROI onto a 2D plane. Then



Fig. 6. Original image (left). Removing all vertices below the base plane to
obtain the extracted ROI (right). The contour (yellow line on right) is rescaled
and translated so that it shares the same center and bounds as the ROI.

Fig. 7. A less circular skull.

it extracts only the exterior contour points uniformly in one-
degree steps for a 360-degree sweep. The top view of a 3D
extracted ROI and its 2D external contour are shown in Fig. 5.
The contour is rescaled and translated so that it shares the same
center and bounds as the extracted ROI, as shown in Fig. 6.
Different numbers of contour points were experimented with
by varying the degree interval, but no significant differences
were observed in their resulting classification performance.

D. Aggregate and Low-Level Feature Extraction

Let the 2D contour be defined with an x-y axis, whose origin
is at the center of the shape. Let P = (p1, p2, . . . , p360) be the
N = 360 contour points used to generate the features.

Our system uses two kinds of features: 1) low-level features
that are computed directly from the contour points and 2)
aggregate features that combine multiple low-level features
mathematically to produce a single score value.

Compare to Circle is a single-valued descriptor, which
compares the 2D contour to the shape of a circle. A higher
error score value indicates a less circular skull, as illustrated
in Fig. 7, which is less circular. A more circular skull is shown
in Fig. 8. In order to avoid errors induced by skull size in this
aggregate measure, size normalization is used. Otherwise, a
CT scan that was acquired from an older child, whose skull

Fig. 8. A more circular skull.

Fig. 9. Illustration of a symmetrical sagittal synostosis skull (left) and an
asymmetrical unilateral coronal synostosis skull (right).

might be larger would be incorrectly scored with a higher error
value.

Let rmax be the maximum distance from origin to a point p
∈ P and rmin be the minimum distance. The average distance
ravg is used to construct a circle centered at the origin. Then,
the normalized feature cmp2Circle is defined by (1)

cmp2Circle =

∑
p∈P ‖pdist − ravg‖2

N × ravg
. (1)

Symmetry is a single-valued descriptor, which compares the
contour points of the left and right sides to determine the
symmetry of a skull. A higher error score value indicates a
more asymmetrical skull. As shown in Fig. 9, our algorithm
divides the contour into left and right sides. The yellow lines
represent the complete contour extracted from both sides of
a skull. The white lines are the mirror image from one side,
flipped to the opposite side so that the symmetrical charac-
teristic of a skull can be easily visualized. If the yellow and
white lines meet exactly, the skull is perfectly symmetrical.
For example, the unilateral coronal skull on the right side in
Fig. 9 shows a highly asymmetrical characteristic. The side
where the white line lies is the side our algorithm determines
to have an affected suture.

Let PR = (pr1, pr2, . . . , prn, . . . , pr180) be the 180 points
on the right side of the contour, PL = (pl1, pl2, . . . , pln, . . . ,
pl180) be those on the corresponding left side.

Let prn = (x, y) and its corresponding point pln = (a, b).
Let pl′n be the mirror image of pln along the y-axis. With
origin at (0, 0), pl′n = (−a, b). The Euclidean distance
d(prn, pl

′
n) =

√
(x+ a)2 + (y − b)2. Then, the normalized

feature symmetry is defined by (2)

symmetry =

∑
pr∈PR,pl∈PL

d(pr, pl′)

N × ravg
. (2)

Angle is a low-level vector descriptor, which describes the
angle between a line with the slope of two neighboring contour
points and the horizontal x-axis. In our experiments, there are
360 contour points. Therefore, there are 180 angle descriptor
features on the front side of the skull contour, and there are
another 180 on the back.

This feature is a 360-dimensional vector whose values are
computed at each pair of consecutive contour points. For such
a pair (pi, pj), the angle is given by the arctangent as in (3)



angle = arctan(
yj − yi
xj − xi

)× 180◦

π
. (3)

Radius Distance is a low-level vector descriptor, which
describes the radius distance from each contour point to the
center of the extracted surface mesh. There are a total of 360
contour points, one degree apart. Therefore, there are a total
of 180 radius distance descriptor features on the front side of
the skull contour, and there are another 180 on the back.

This feature is a 360-dimensional vector whose values are
computed at each contour point. For a point pi, the distance
is given by its distance to the origin (0, 0) as in (4)

dist(pi) = ‖pi‖2. (4)

E. Classification

In the Classification module, sequential minimal optimiza-
tion (SMO) and logistic regression, both of which are linear
classifiers that assign a score to predict class are used from the
WEKA suite of classifiers. The SMO classifier is essentially
a support vector machine. In general, 10-fold cross-validation
experiments are applied to evaluate the performance of the
trained classifiers, except when comparing to previous results
that used 3-fold cross-validation. Each experiment is run
several times by randomizing the incidents in order to observe
any unexpected outliers, unusual patterns or unexplainable
randomness in the results. Prediction accuracy is recorded.

V. EXPERIMENTS AND RESULTS

In our classification experiments, there were three affected
skull datasets: a 57 subject sagittal dataset, a 33 subject
uni-coronal dataset, and a 25 subject metopic dataset. Each
affected skull dataset was run against the same 34 unaffected
skull dataset. To compare the effectiveness in distinguishing
each affected group from controls, the above-described fea-
tures were tested, both individually and in combination.

Table I gives the results of trying each of the four features
individually. Column 1 shows the accuracy for the single-
valued Compare to Circle (cmp2Circle) feature. Column 2
shows the accuracy for the single-valued Symmetry (symme-
try) feature. Column 3 shows the results for the Angle feature
(angleFnB) taken from 360 positions on the front and the back
of the skull. Column 4 gives the accuracy for the Radius
Distance feature (distFnB) taken from 360 positions on the
front and the back of the skull. In both tables, #features refers
to the total number of aggregate and low-level features used
in that column.

TABLE I
ACCURACY WITH STANDARD DEVIATION OF USING EACH DESCRIPTOR

(COLUMN) INDIVIDUALLY TO DISTINGUISH EACH AFFECTED SKULL
DATASET (ROW) FROM 34 UNAFFECTED SKULLS.

cmp2Circle symmetry angleFnB distFnB

#features 1 1 360 360

Sagittal 94.50
(4.46)

67.54
(5.05)

97.22
(3.93)

95.06
(4.79)

Uni-coronal 73.08
(10.28)

91.15
(5.72)

89.56
(9.28)

86.65
(7.57)

Metopic 57.58
(1.60)

57.58
(1.60)

99.17
(2.64)

91.59
(8.79)

In Table II, column 1, (c-s) contains accuracy results using
both comp2Circle and symmetry. Column 2 shows accuracy
for the combination of these two features plus all the angle
features (c-s + angleFnB). Column 3 contains the accuracy
for the first two features plus all the distance features (c-s +
distFnB). Column 4 shows the accuracy for all of the features
(all). The total of all features is 722.

TABLE II
ACCURACY WITH STANDARD DEVIATION OF USING EACH DESCRIPTOR

(COLUMN) COLLECTIVELY TO DISTINGUISH EACH AFFECTED SKULL
DATASET (ROW) FROM 34 UNAFFECTED SKULLS.

c-s c-s +
angleFnB

c-s +
distFnB

all

#features 2 362 362 722

Sagittal 96.70
(3.87)

97.22
(3.93)

95.61
(4.29)

95.58
(4.38)

Uni-coronal 88.74
(6.58)

91.04
(7.54)

92.58
(5.99)

89.51
(10.13)

Metopic 57.58
(1.60)

99.17
(2.64)

91.59
(8.79)

99.17
(2.64)

In Table III, an additional experiment was performed in
order to compare with Yang’s results. Here, 3-fold cross
validation with classifiers SMO and logistic regression were
used in order to perform a direct comparison. The results
demonstrated that the descriptor cmp2Circle is highly effective
for sagittal detection, symmetry for uni-coronal, and angleFnB
for most cases. Overall, the accuracy observed was higher in
this system than in Yang’s, particularly when all the descriptors
were used together.



TABLE III
ACCURACY OF COMPARISON TO PREVIOUS RESULTS [9]. C IS CORONAL.

M IS METOPIC. S IS SAGITTAL.

C vs M M vs S S vs C Three-
Classes

Yang

C lasso 95.71 95.71 94.29 92.86

F lasso 94.29 94.29 95.71 81.43

L1 92.86 95 93.57 91.43

Log 86.43 86.43 76.07 90

all
SMO 99.67 99.64 98.89 99.2

Log 96.55 96.34 100 -

angleFnB
SMO 100 100 100 100

Log 98.28 96.34 100 97.39

distFnB
SMO 93.1 98.78 98.89 94.78

Log 82.76 96.34 97.78 94.78

symmetry
SMO 87.93 69.51 93.33 73.04

Log 91.38 70.73 93.33 73.91

cmp2Circle
SMO 81.03 93.9 100 82.61

Log 79.31 93.9 100 86.96

VI. DISCUSSIONS AND CONCLUSIONS

This work was carried out to improve on prior work in
which 1) no control data was available, 2) poor resolution,
noise, missing slices, and other imperfections in the CT data
eliminated many scans from use, and 3) the quantification
measure was based on the mathematics of the classification
method, not on an intuitive measure of shape. This work has
a control set, is able to solve the imperfect data problem
for many CT scans, and provides both a simple projection
technique and several intuitive shape measures as part of a
general platform.

By applying this framework on a CT surface mesh, our
system can distinguish affected skulls from the unaffected
ones. As shown in Table II, the two single-valued features
(cmp2Circle and symmetry) plus the vector feature of 360
angle (angleFnB) achieves accuracies of 97.22%, 91.04%
and 99.17% on the classification tasks of sagittal, unilateral
coronal, and metopic vs control, respectively. Furthermore, as
shown in Table III, when all features are used, accuracies reach
99.67%, 99.64%, 98.89% and 99.2% in four cases, respec-
tively. These results show clear improvement over previous
work [9].

Note that the angle descriptor (angleFnB) gave very high
accuracies both in our own experiments of affected vs. control
and on the comparison experiments with Yang’s work, which
had no controls and included classifications of pairs of classes
and a 3-way class comparison. The accuracy of this feature in
the latter comparisons with the SMO classifier was particularly
high, 100% in all four cases. Since we are using cross-
validation, we do not suspect overtraining. Instead, we believe
that this is just a much easier task than distinguishing affected
skulls from controls. The three abnormal classes are very
different from one another. The SMO is a very powerful
classifier, and it was able to learn to fully separate these classes

on the amount of data we possess. On the more difficult task
of distinguishing affected from controls, above 99% accuracy
was only achieved on the metopic vs. control task and required
the angleFnB feature.

We also note that the cmp2Circle descriptor gave very
high accuracies to cases that involved sagittal synostosis
on our own experiments of sagittal vs. control and on the
comparison experiments with previous work. Similarly, the
symmetry descriptor gave very high accuracies to cases that
involved unilateral coronal synostosis on our own experiments
of uni-coronal vs. control and on the comparison experiments
with previous work. The symmetry descriptor can assess and
determine which side of an unilateral coronal synostosis skull
has the affected suture. In this experiment, the algorithm
correctly predicted the affected sides 94% of the total uni-
coronal synostosis cases.

Classification is not our final goal; it merely allows us to
develop and judge shape features to be used for quantification.
The results from our experiments are very promising not
just for this classification experiment but for future work
in assessing the severity of a skull’s deformation caused
by craniosynostosis and measuring the change effects from
corrective surgery.
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