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Abstract

Most successful object recognition systems rely on bi-
nary classification, deciding only if an object is present or
not, but not providing information on the actual object lo-
cation. To perform localization, one can take a sliding win-
dow approach, but this strongly increases the computational
cost, because the classifier function has to be evaluated over
a large set of candidate subwindows.

In this paper, we propose a simple yet powerful branch-
and-bound scheme that allows efficient maximization of a
large class of classifier functions over all possible subim-
ages. It converges to a globally optimal solution typically
in sublinear time. We show how our method is applicable
to different object detection and retrieval scenarios. The
achieved speedup allows the use of classifiers for localiza-
tion that formerly were considered too slow for this task,
such as SVMs with a spatial pyramid kernel or nearest
neighbor classifiers based on the χ2-distance. We demon-
strate state-of-the-art performance of the resulting systems
on the UIUC Cars dataset, the PASCAL VOC 2006 dataset
and in the PASCAL VOC 2007 competition.

1. Introduction
Recent years have seen great progress in the area of ob-

ject category recognition for natural images. Recognition
rates beyond 95% are the rule rather than the exception on
many datasets. However, in their basic form, many state-of-
the-art methods only solve a binary classification problem.
They can decide whether an object is present in an image or
not, but not where exactly in the image the object is located.

Object localization is an important task for the automatic
understanding of images as well, e.g. to separate an object
from the background, or to analyze the spatial relations of
different objects in an image to each other. To add this func-
tionality to generic object categorization systems, sliding
window approaches have established themselves as state-
of-the-art. Most successful localization techniques at the
recent PASCAL VOC 2007 challenge on object category

localization relied on this technique. The sliding window
principle treats localization as localized detection, applying
a classifier function subsequently to subimages within an
image and taking the maximum of the classification score as
indication for the presence of an object in this region. How-
ever, already an image of as low resolution as 320× 240
contains more than one billion rectangular subimages. In
general, the number of subimages grows as n4 for images
of size n×n, which makes it computationally too expensive
to evaluate the quality function exhaustively for all of these.
Instead, one typically uses heuristics to speed up the search,
which introduces the risk of mispredicting the location of
an object or even missing it.

In this paper, we propose a method to perform object
localization in a way that does not suffer from these draw-
backs. It relies on a branch-and-bound scheme to find the
global optimum of the quality function over all possible
subimages, thus returning the same object locations that an
exhaustive sliding window approach would. At the same
time it requires much fewer classifier evaluations than there
are candidate regions in the image—often even less than
there are pixels— and typically runs in linear time or faster.

The details of this method, which we call Efficient Sub-
window Search (ESS), are explained in Section 2. ESS
allows object localization by localized detection and also
localized image retrieval for classifiers which previously
were considered unusable in these applications, because
they were too slow or showed too many local maxima in
their classification scores. We will describe the proposed
systems in Sections 3–5, demonstrating their state-of-the-
art performance. First, we give an overview of other ap-
proaches for object localization and their relation to ESS.

1.1. Sliding Window Object Localization

Many different definitions of object localization exist in
the literature. Typically, they differ in the form that the lo-
cation of an object in the image is represented, e.g. by its
center point, its contour, a bounding box, or by a pixel-wise
segmentation. In the following we will only study localiza-
tion where the target is to find a bounding box around the

1
978-1-4244-2243-2/08/$25.00 ©2008 IEEE



object. This is a reasonable compromise between the sim-
plicity of the parametrization and its expressive power for
subsequent scene understanding. An additional advantage
is that it is much easier to provide ground truth annotation
for bounding boxes than e.g. for pixel-wise segmentations.

In the field of object localization with bounding boxes,
sliding window approaches have been the method of choice
for many years [3, 6, 7, 11, 19]. They rely on evaluating a
quality function f , e.g. a classifier score, over many rectan-
gular subregions of the image and taking its maximum as
the object’s location. Formally, we write this as

Robj = argmaxR⊆I f(R), (1)

where R ranges over all rectangular regions in the image I .
Because the number of rectangles in an n×n image is

of the order n4, this maximization usually cannot be done
exhaustively. Instead, several heuristics have been proposed
to speed up the search. Typically, these consist of reducing
the number of necessary function evaluations by searching
only over a coarse grid of possible rectangle locations and
by allowing only rectangles of certain fixed sizes as can-
didates [7, 11, 19]. Alternatively, local optimization meth-
ods can be applied instead of global ones, by first identify
promising regions in the image and then maximizing f by a
discrete gradient ascent procedure from there [3, 6].

The reduced search techniques sacrifice localization ro-
bustness to achieve acceptable speed. Their implicit as-
sumption is that the quality function is smooth and slowly
varying. This can lead to false estimations or even complete
misses of the objects locations, in particular if the classi-
fier function’s maximum takes the form of a sharp peak in
the parameter space. However, such a sharply peaked maxi-
mum is exactly what one would hope for to achieve accurate
and reliable object localization.

2. Efficient Subwindow Search (ESS)
In contrast to approximation methods, ESS is guaran-

teed to find the globally maximal region, independent of
the shape of f ’s quality landscape. At the same time ESS is
very fast, because it relies on a branch-and-bound search in-
stead of an exhaustive search. This speed advantage allows
the use of more complex and better classifiers.

ESS also differs from previous branch-and-bound ap-
proaches for object localization, because it is flexible in
the choice of quality function. Previous methods were re-
stricted to either finding simple parametric objects like lines
and circles in line drawings [4], or to nearest-neighbor clas-
sification using a fixed L2-like distance between the fea-
tures points in an image to sets of rigid prototypes [13]. To
our knowledge, ESS is currently the only efficient method
that allows globally optimal localization of arbitrary objects
in images with results equivalent to an exhaustive sliding
windows search.

2.1. Branch-and-Bound Search

The underlying intuition of ESS is the following: even
though there is a very large number of candidate regions
for the presence of the objects we are searching for, only
very few of them can actually contain object instances. It
is wasteful to evaluate the quality function for all candidate
regions if only the value of the best few is required. In-
stead, one should target the search directly to identify the
regions of highest score, and ignore the rest of the search
space where possible.

The branch-and-bound framework allows such a tar-
geted search. It hierarchically splits the parameter space
into disjoint subsets, while keeping bounds of the maximal
quality on all of the subsets. This way, large parts of the
parameter space can be discarded early during the search
process by noticing that their upper bounds are lower than a
guaranteed score from some previously examined state.

For ESS, the parameter space is the set of all possible
rectangles in an image, and subsets are formed by impos-
ing restrictions on the values that the rectangle coordinates
can take. We parameterizes rectangles by their top, bottom,
left and right coordinates (t, b, l, r). We incorporate uncer-
tainty in these values by using intervals instead of single
integers for each coordinate. This allows the efficient repre-
sentation of set of rectangles as tuples [T,B,L,R], where
T = [tlow , thigh ] etc., see Figure 1 for an illustration.

For each rectangle set, we calculate a bound for the high-
est score that the quality function f could take on any of the
rectangles in the set. ESS terminates when it has identified
a rectangle with a quality score that is at least as good as
the upper bound of all remaining candidate regions. This
guarantees that a global maximum has been found. If tight
enough bounds are available, ESS typically converges to a
globally optimal solution much faster than the worst case
complexity indicates. In our experiments, the speed was at
most O(n2) for n×n images instead of O(n4).

ESS organizes the search over candidate sets in a best-
first manner, always examining the rectangle set that looks
most promising in terms of its quality bound. The candidate
set is split along its largest coordinate interval into halves,
thus forming two smaller disjoint candidate sets. The search
is stopped if the most promising set contains only a sin-
gle rectangle with the guarantee that this is the rectangle of
globally maximal score. Algorithm 1 gives pseudo-code for
ESS using a priority queue to hold the search states.

Two extensions of the basic search scheme provide ad-
ditional functionality: to favor boxes with specific shapes
properties one can add a geometric penalization term to f ,
e.g. a Gaussian that takes its maximum at a certain rectangle
size or aspect ratio. Of course this term has to be taken in
account when bounding the values of f .

To find multiple object locations in an image, the best-
first search can be performed repeatedly. Whenever an ob-



Figure 1. Representation of rectangle sets by 4 integer intervals.

ject is found, the corresponding region is removed from the
image and the search is restarted until the desired number
of locations have been returned. In contrast to simply con-
tinuing the search after the best location has been identified,
this avoids the need for a non-maximum suppression step as
is usually required in sliding window approaches.

2.2. Bounding the Quality Function

To use ESS for a given quality function f , we require a
function f̂ that bounds the values of f over sets of rectan-
gles. Denoting rectangles by R and sets of rectangles byR,
the bound has to fulfill the following two conditions:

i) f̂(R) ≥ max
R∈R

f(R),

ii) f̂(R) = f(R), if R is the only element inR.

Condition i) ensures that f̂ acts as an upper bound to f ,
whereas condition ii) guarantees the optimality of the solu-
tion to which the algorithm converges.

Note that for any f there is a spectrum of possible bounds
f̂ . On the one end, one could perform an exhaustive search
to achieve exact equality in (i). On the other end, one could
set f̂ to a large constant on everything but single rectangles.
A good bound f̂ is located between these extremes, fast to
evaluate but also tight enough to ensure fast convergence.
In the following sections we show how such bounding func-
tions f̂ can be constructed for different choices of f .

3. Application I: Localization of non-rigid ob-
jects using a bag of visual words kernel

We begin by demonstrating ESS in the situation of
generic object class localization. We make use of a bag
of visual words (bovw) image representation: for each im-
age in a given set of training images I1, . . . , IN , we extract
local image descriptors such as SIFT [17]. The resulting
descriptors are vector quantized using a K-entry codebook
of visual word prototypes. As result, we obtain keypoint
locations xi

j with discrete cluster indices cij ∈ {1, . . . ,K}.
We represent images or regions within images by their

cluster histograms, i.e. by histograms that count how many

Algorithm 1 Efficient Subwindow Search
Require: image I ∈ Rn×m

Require: quality bounding function f̂ (see text)
Ensure: (tmax, bmax, lmax, rmax) = argmaxR⊂I f(R)

initialize P as empty priority queue
set [T,B,L,R] = [0, n]× [0, n]× [0,m]× [0,m]
repeat

split [T,B,L,R]→ [T1, B1, L1, R1] ∪̇ [T2, B2, L2, R2]
push ( [T1, B1, L1, R1], f̂([T1, B1, L1, R1] ) into P
push ( [T2, B2, L2, R2], f̂([T2, B2, L2, R2] ) into P
retrieve top state [T,B,L,R] from P

until [T,B,L,R] consists of only one rectangle
set (tmax, bmax, lmax, rmax) = [T,B,L,R]

feature points of each cluster index occur. The histograms
of the training images are used to train a support-vector
machine (SVM) [20]. To classify whether a new image I
contains an object or not, we build its cluster histogram h
and decide based on the value of the SVM decision func-
tion. Despite the simplicity, variants of this method have
proven very successful for object classification in recent
years [2, 8, 16, 21, 24].

3.1. Construction of a Quality Bound

To perform localization, we first assume a linear kernel
over the histograms. In its canonical form, the correspond-
ing SVM decision function is f(I) = β +

∑
i αi〈h, hi〉,

where 〈. , .〉 denotes the scalar product in RK . hi are the
histograms of the training examples and αi and β are the
weight vectors and bias that were learned during SVM train-
ing. Because of the linearity of the scalar product, we can
rewrite this expression as a sum over per-point contribution
with weights wj =

∑
i αih

i
j :

f(I) = β +
∑n

j=1
wcj

. (2)

Here cj is the cluster index belonging to the feature point xj

and n is the total number of feature points in I . This form
allows one to evaluate f over subimagesR ⊂ I by summing
only over the feature points that lie within R. When we are
only interested in the argmax of f over all R ⊂ I –as in
Equation (1)– we can drop the bias term β.

It is now straightforward to construct a function f̂ that
bounds f over sets of rectangles: set f=f++f−, where f+

contains only the positive summands of Equation (2) and
f− only the negative ones. If we denote byRmax the largest
rectangle and by Rmin the smallest rectangle contained in a
parameter regionR, then

f̂(R) := f+(Rmax) + f−(Rmin) (3)

has the desired properties i) and ii). At the same time, our
parametrization of the rectangle sets allows efficient calcu-



lation of Rmax and Rmin from the minima and maxima of
the individual coordinate intervals (see Figure 1). Using
integral images we can make the evaluations of f+ and f−

O(1) operations, thus making the evaluation of f̂ a constant
time operation. That the evaluation time of f̂ is independent
of the number of rectangles contained in R is a crucial fac-
tor in why ESS is fast.

3.2. Experiments

The bovw representation disregards all spatial relations
between feature points in an image. This total invariance to
changes in the object geometry, the pose and the viewpoint
make the bovw classifier especially eligible for the detec-
tion of object classes that show a large amount of variance
in their visual appearance as is the case, e.g., for many ani-
mals. The case where we can make use of geometric infor-
mation such as a predominant pose will be treated in Sec-
tion 4.

3.2.1 PASCAL VOC 2006 dataset

In a first set of experiments, we tested the bovw based local-
ization on the cat and dog categories of the publicly avail-
able PASCAL VOC 2006 dataset1. It consists of 5,304 re-
alistic images containing 9,507 object from 10 categories in
total. The dataset is split into a trainval part, on which all
algorithm development is performed, and a test part that is
reserved for the final evaluation.

For the bovw representation we extract SURF fea-
tures [2] from keypoint locations and from a regular grid
and quantize them using a 1000 entry codebook that was
created by K-means clustering a random subset of 50,000
descriptors. As positive training examples for the SVM we
use the ground truth bounding boxes that are provided with
the dataset. As negative examples we sample box regions
from images with negative class label and from locations
outside of the object region in positively labeled images.

To measure the system’s performance on a pure localiza-
tion task, we apply ESS to only the test images that actually
contain objects to be localized (i.e. cats or dogs). For each
image we return the best object location and evaluate the re-
sult by the usual VOC method of scoring: a detected bound-
ing box is counted as a correct match if its area overlap with
the corresponding ground truth box is at least 50%. To each
detection a confidence score is assigned that we set to the
value of the quality function on the whole image. Figure 2
contains precision–recall plots of the results. The curves’
rightmost points correspond to returning exactly one object
per image. At this point of operation, approximately 55% of
all cats bounding boxes returned are correct and 47% of all
dog boxes. At the same time, we correctly localize 50% of

1www.pascal-network.org/challenges/VOC/voc2006/
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Figure 2. Recall–Precision curves of ESS bovw localization for
classes cat and dog of the VOC 2006 dataset. Training was per-
formed either on VOC 2006 (solid line) or VOC 2007 (dashed).

method \ data set cat dog
ESS w/ bag-of-visual-words kernel 0.223 0.148
Viitaniemi/Laaksonen [23] 0.179 0.131
Shotton/Winn [9] 0.151 0.118

Table 1. Average Precision (AP) scores on the PASCAL VOC 2006
dataset. ESS outperforms the best previously published results.

all cats in the dataset and 42% of all dogs. Moving along the
curve to the left, only objects are included into the evalua-
tion which have higher confidence scores assigned to them.
This generally improves the localization precision.

As no other results on pure localization on the PAS-
CAL VOC datasets have been published so far, we also
performed the more common evaluation scenario of com-
bined localization and retrieval. For this, the method is ap-
plied to all images of the test set, no matter if they con-
tain the object to be searched for or not. It is the task of
the algorithm to avoid false positives e.g. by assigning them
a low confidence score. The performance is measured us-
ing the evaluation software provided in the PASCAL VOC
challenges: from the precision–recall curves, the average
precision (AP) measure is calculated, which is the average
of the maximal precision within different intervals of recall,
see [9] for details. Table 1 contains the results, showing that
ESS improves over the best results that have been achieved
in the VOC 2006 competition or in later publications. Note
that the AP values in Table 1 are not comparable to the ones
in Figure 2, since the experiments use different test sets.

3.2.2 PASCAL VOC 2007 challenge

An even larger and more challenging dataset than PASCAL
VOC 2006 is the recently released VOC 20072. It consists
of 9,963 images with 24,640 object instances. We trained
a system analogous to the one described above, now using
the 2007 training and validation set, and let the system par-
ticipate in the PASCAL VOC challenge 2007 on multi-view
object localization. In this challenge, the participants did

2www.pascal-network.org/challenges/VOC/voc2007/
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Figure 3. Speed of ESS compared to a sliding window classifier
(SWC). The number of classifier evaluations required by ESS on
the VOC 2006 dog images (red dots) are plotted against the image
size. SWC needs to be restricted to a grid of 20×20 pixel cells
(green line) to achieve performance comparable with ESS. 10×10
pixel cells are not enough (blue line).

not have access to the ground truth of the test data, but had
to submit their localization results, which were then evalu-
ated by the organizers. This form of evaluation allows the
comparison different methods on a fair basis, making it less
likely that the algorithms are tuned to the specific datasets.

With AP scores of 0.240 for cats and 0.162 for dogs, ESS
clearly outperformed the other participants on these classes,
with the runner-up scores being 0.132 for cats and 0.126 for
dogs. By adopting a better image-based ranking algorithm,
we were able improve the results to 0.331 and 0.177 re-
spectively. The latter results are part of the ongoing second
round of the competition.

In addition, we used the system that had been trained
on the 2007 trainval data, and evaluated its performance
on the 2006 test set. The results are included in Figure 2.
The combination achieves higher recall and precision than
the one trained on the 2006 data, showing that ESS with a
bag-of-visual-words kernel generalizes well and is able to
make positive use of the larger number of training images
available in the 2007 dataset.

3.3. Localization Speed

Since we optimize the same quality function as a slid-
ing window approach, the same scores could have been
achieved by exhaustively evaluating the quality function
over all rectangles in the images. However, this is only a
theoretical possibility, since it would be much too slow in
practice. With the majority of images being sized between
500×333 and 640×480 pixels, an exhaustive sliding window
localizer would on average require over 10 billion classifier
evaluations per image. In contrast to this, ESS on average
required less than 20,000 evaluations of the quality bound
per image, less than 0.1 evaluations per pixel. This resulted
in an average search time of below 40ms per image on a
2.4 GHz PC. Building a sliding window classifier of com-
parable speed would require reducing the spatial accuracy
to blocks of at least 20×20 pixels, see Figure 3.

4. Application II: Localization of rigid objects
using a Spatial Pyramid Kernel

For rigid and typically man-made object classes like cars
or buildings, better representations exist than the bag-of-
visual-words used in the previous section. In particular hier-
archical spatial pyramids of features have recently proven
very successful. These are formed by overlaying the im-
age with rectangular grids of different sizes and calculating
bovw histograms for each of the grid cells, see e.g. [14] for
the exact construction.

Spatial pyramids have successfully been used for local-
ization, but they were restricted to a small number of pyra-
mid levels (typically 2 or 3). Additionally, heuristic pruning
techniques were necessary to keep the complexity at an ac-
ceptable level [6]. In the following we show that ESS over-
comes this limitation and allows efficient localization with
pyramids as fine-grained as 10 levels and more without the
risk of missing promising object locations.

4.1. Classification with a Spatial Pyramid Kernel

We make use of an SVM classifier with linear kernel on
hierarchical spatial pyramid histograms. The decision func-
tion f on a new image I is calculated as

f(I) = β +
L∑

l=1

∑
i=1,... l
j=1,..., l

N∑
k=1

α
l,(i,j)
k 〈hl,(i,j), h

k
l,(i,j)〉, (4)

where hl,(i,j) is the histogram of all features of the image I
that fall into the spatial grid cell with index (i, j) of an l×l
spatial pyramid. αl,(i,j)

k are the coefficients learned by the
SVM when trained with training histograms hk

l,(i,j).
Using the linearity of the scalar products, we can trans-

form this into a sum of per-point contributions and evaluate
it on subimages:

f(R) = β +
∑n

m=1

L∑
l=1

∑
i=1,... l
j=1,..., l

wl,(i,j)
cm

, (5)

wherewl,(i,j)
c =

∑
k α

l,(i,j)
k hk

l,(i,j);c, if the feature point xm

has cluster label c and falls into the (i, j)-th cell of the l-th
pyramid level of R. Otherwise, we set wl,(i,j)

c = 0. As
before, we can ignore the bias term β for the maximization.

A comparison with Equation (2) shows that Equation (5)
is a sum of bovw contributions, one for each level and cell
index (l, i, j). We bound each of these as explained in the
previous section: for a given rectangle set R, we calculate
the largest and the smallest possible extent that a grid cell
R(l,i,j) can have. Calling these R(l,i,j)

max and R(l,i,j)
min , we ob-

tain an upper bound for the cell’s contribution by adding all
weights of the feature points with positive weights wl,(i,j)

c



Figure 4. Spatial Pyramid Weights. Top row: Example of a train-
ing image with its pyramid sectors for levels 2, 4 and 6. Bot-
tom row: the energy of corresponding pyramid sector weights
as learned by the SVM (normalized per level). Feature points in
brighter regions in general have higher discriminative power.

that fall intoR(l,i,j)
max and the weight of all feature points with

negative weights that fall intoR(l,i,j)
min . An upper bound for f

is obtained by summing the bounds for all levels and cells.
If we make use of two integral images per triplet (l, i, j),
evaluating f(R) becomes an O(1) operation. This shows
that also for the spatial pyramid representation, an efficient
branch-and-bound search is possible.

4.2. UIUC Car dataset

We test our setup on the UIUC Car database3, which is
an example of a dataset with rigid object images (cars) from
a single viewpoint. In total there are 1050 training images
of fixed size 100×40 pixels. 550 of these show a car in side-
view, the rest shows other scenes or parts of objects. There
are two test sets of images with varying resolution. The first
consists of 170 images containing 200 cars from a side view
of size 100×40. The other test set consists of 107 images
containing 139 cars in sizes between 89×36 and 212×85.
We use the dataset in its original setup [1] where the task is
pure localization. Ground truth annotation and evaluation
software is provided by the creators of the dataset.

4.3. Experiments

From the UIUC Car training images, we extract SURF
descriptors at different scales on a dense pixel grid and
quantize them using a 1000 entry codebook that was gener-
ated from 50,000 randomly sampled descriptors. Since the
training images already either exactly show a car or not at
all, we do not require additional bounding box information
and train the SVM with hierarchical spatial pyramid kernel
on the full training images. We vary the number of pyramid
levels between L = 1 (i.e. a bovw without pyramid struc-
ture) and L = 10. The most fine-grain pyramid therefore
uses all grids from 1×1 to 10×10, resulting in a total of 385
local histograms. Figure 4 shows an example image from
training set and the learned classifier weights from different
pyramid levels, visualized by their total energy over the his-
togram bins. On the coarser levels, more weight is assigned
to the lower half of the car region than to the upper half. On

3http://l2r.cs.uiuc.edu/c̃ogcomp/Data/Car/
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Figure 5. Results on UIUC Cars Dataset (best viewed in color):
1−precision vs recall curves for bag-of-features and different
size spatial pyramids. The curves for single-scale detection (left)
become nearly identical when the number of levels increases to
4 × 4 or higher. For the multi scale detection the curves do not
saturate even up to a 10× 10 grid.

method \data set single scale multi scale
ESS w/ 10× 10 pyramid 1.5 % 1.4 %
ESS w/ 4× 4 pyramid 1.5 % 7.9 %
ESS w/ bag-of-visual-words 10.0 % 71.2 %
Agarwal et al. [1] 23.5 % 60.4 %
Fergus et al. [10] 11.5 % —
Leibe et al. [15] 2.5 % 5.0%
Fritz et al. [12] 11.4 % 12.2%
Mutch/Lowe [18] 0.04 % 9.4%

Table 2. Error rates on UIUC Cars dataset at the point of equal
precision and recall.

the finer pyramid levels, regions of specific characteristics
form, e.g. the wheels becomes very discriminative whereas
the top row and the bottom corners can safely be ignored.

At test time, we search for the best three car subimages
in every test image as described in Section 2.1, and for each
detection we use its quality score as confidence value. As
it is common for the UIUC Car dataset, we evaluate the
system’s performance by a 1−precision vs. recall curve.
Figure 5 shows the curves for several different pyramid lev-
els. Table 2 contains error rates at the point where preci-
sion equals recall, comparing the results of ESS with the
currently best published results. Note that the same dataset
has also been used in many other setups, e.g. using differ-
ent training sets or evaluation methods. Since the results of
these are not comparable, we do not include them.

The table shows that localization with a flat bovw-kernel
works acceptably for the single scale test set but poorly for
multi scale. Using ESS with a finer spatial grid improves
the error rates strongly, up to the level where the method



clearly outperforms all previously published approaches on
the multi scale dataset and all but one on the single scale
dataset.

Note that for the single scale test set, a direct sliding win-
dow approach with fixed window size 100×40, would be
computationally feasible as well. However, there is no ad-
vantage of this over ESS, as the latter requires even fewer
classifier evaluations on average, and at the same time al-
lows the application of the same learned model to the multi-
scale situation without retraining.

5. Application III: Image Part Retrieval using
a χ2-Distance Measure

ESS can be applied in more areas than only object local-
ization. In the following, we give a short description how to
use ESS for image part retrieval i.e. to retrieve images from
a database based on queries that only have to match a part of
the target image. This allows one not only to search for ob-
jects or persons, but also e.g. to find trademarked symbols
on Internet image collections or in video archives.

5.1. χ2-kernel for image similarity

We adopt a query-by-example framework similar to [22],
where the query is a part of an image, and we are interested
in all frames or scenes in a video that contain the same ob-
ject. For this, we use ESS to do a complete nearest-neighbor
comparison between the query and all boxes in all database
images. In contrast to previous approaches, this allows the
system to rely on arbitrary similarity measures between re-
gions, not just on the number of co-occurring features. In
our example, we choose the χ2-distance that has shown
good performance for histogram-based retrieval and clas-
sification tasks [5].

To treat the retrieval problem in an optimization frame-
work, we first define the localized similarity between a
query region with bovw-histogram hQ and an image I as

locsim(I,Q) = max
R⊆I

−χ2(hQ, hR) (6)

where hR is the histogram for the subimage R and

χ2(hQ, hR) =
K∑

k=1

(hQ
k − hR

k )2

hQ
k + hR

k

. (7)

The retrieval task is now to identify theN images with high-
est localized similarity to Q as well as the region within
each of them that best matches the query.

Since locsim consists of a maximization over all sub-
regions in an image, we can use ESS to calculate it. To
construct the required bound, we first notice that the value
of each histogram bin over a set of rectangles R can be

bounded from below and from above by the number of key-
points with corresponding cluster index that fall into Rmin

and Rmax respectively. We denote these bounds by h
R

k and
hR

k . Each summand in (7) can now be bounded from below
by

(hQ
k − hR

k )2

hQ
k + hR

k

≥


(hQ

k − h
R
k )2/(hQ

k + hR
k ) for hQ

k < hR
k ,

0 for hR
k ≤ h

Q
k ≤ h

R

k ,

(hQ
k − h

R

k )2/(hQ
k + hR

k ) for hQ
k > h

R

k ,

and their negative sum bounds −χ2(hQ, hR) from above.

5.2. Simultaneous ESS for multiple images

A direct application of ESS would consist of searching
for the best region in each image and afterwards ranking
them according to their score, from which we can deter-
mine the N highest. However, we can achieve a much more
efficient search by combining the maximization over theN -
best scores and the maximization over the regions R into
a single best-first search. This is done by adding the start
states of all images into the priority queue before starting
the search. During the run, the candidate regions of all
images are simultaneously brought into an order according
to how relevant they are to the query. Search states from
images that do not contain promising candidate regions al-
ways stay at the bottom of the queue and might never be ex-
panded. Whenever a best match has been found, the states
corresponding to the image found are removed from the
search queue and the search is continued until N regions
have been detected. In our experiments the combined search
caused a 40 to 70-times speedup compared to the sequential
search when N was set to approximately 1% of the total
number of images in the database.

5.3. Experiments

We show the performance of ESS in localized retrieval
by applying it to 10143 keyframes of the full-feature movie
”Ferris Bueller’s Day Off”. Each frame is 880×416 pixels
large. For a given query, multi-image ESS is used to return
the 100 images containing the most similar regions. Fig-
ure 6 shows a query region and some search results. Since
keyframes within the same scene tend to look very similar,
we show only one image per scene. ESS is able to reliably
identify the Red Wings logo in different scenes regardless
of strong background variations with only 4 falsely reported
frames out of 100. The first error occurred at position 88.
The search required less than 2s per returned image, scal-
ing linearly in the number of output images and effectively
sublinearly in the number of images in the database4.

4Since every image has to be inserted into the search queue, the method
cannot be sublinear in the sense of computation complexity. However, the
observed growth of runtimes is sublinear, and the more images are added,
the fewer operations per image are necessary on average to find the top N .



(a) Red Wings logo used as query. (b) Top results of local search

Figure 6. Image retrieval using a local χ2 distance: the Red Wings
logo (left) is used as a query region. b) shows the top results (one
image per scene). The center image in the bottom row contains a
false positive. The other images are correct detections.

6. Conclusion

We have demonstrated how to perform fast object lo-
calization and localized retrieval with results equivalent to
an exhaustive evaluation of a quality function over all rect-
angular regions in an image down to single pixel resolu-
tion. Sliding window approaches have the same goal, but in
practice they have to resort to subsampling techniques and
approximations to achieve a reasonable speed. In contrast
to this, our method retains global optimally in its search,
which guarantees that no maxima of the quality function
are missed or misplaced.

The gain in speed and robustness allows the use of bet-
ter local classifiers (e.g. SVM with spatial pyramid kernel,
nearest neighbor with χ2-distance), for which we demon-
strated excellent results on the UIUC Cars, the PASCAL
VOC 2006 dataset and in the VOC 2007 challenge. We also
showed how to integrate additional properties, e.g. shape
penalties, and how to search over large image collections in
sublinear time.

In future work, we plan to study the applicability of ESS
to further kernel-based classifiers. We are also working on
extensions to other parametric shapes, like groups of boxes,
circles and ellipses. These are often more desirable in appli-
cations of biological, medical or industrial machine vision,
where high speed and performance guarantees are impor-
tant quality factors as well.
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