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MultiJava allows users to express desired programming idioms in a way that is declarative and
supports static typechecking, in contrast to the tedious and type-unsafe workarounds required
in Java. MultiJava also provides opportunities for new kinds of extensibility that are not easily
available in Java.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.2 [Programming Languages]: Language Classifications—Object-oriented lan-
guages; D.3.3 [Programming Languages]: Language Constructs and Features—Abstract data
types, classes and objects, control structures, inheritance, modules, packages, patterns, procedures,
functions, and subroutines; D.3.4 [Programming Languages]: Processors—Compilers; D.3.m
[Programming Languages]: Miscellaneous

General Terms: Languages, Design

Additional Key Words and Phrases: Open classes, open objects, extensible classes, extensible exter-
nal methods, external methods, multimethods, method families, generic functions, object-oriented
programming languages, single dispatch, multiple dispatch, encapsulation, modularity, static type-
checking, subtyping, inheritance, Java language, MultiJava language, separate compilation, ex-
pression problem, binary method problem, augmenting method problem

1. INTRODUCTION

In this article we describe the design and implementation of MultiJava [Clifton
et al. 2000; Clifton 2001] and the ways in which the language has been used
by others [Millstein 2003]. MultiJava is a backward-compatible extension to
the Java programming language [Gosling et al. 2000] that supports symmetric
multiple dispatch and open classes. MultiJava is backward compatible with
Java in two ways. First, existing Java programs are legal MultiJava programs
and have the same meaning. Second, code using MultiJava’s new language
features interoperates with existing Java source and bytecode. Our MultiJava
compiler is available online from www.multijava.org.

1.1 The Problem

We begin by describing two problems that arise with mainstream object-
oriented programming languages like C++ and Java [Stroustrup 1997; Arnold
et al. 2000; Gosling et al. 2000]. These problems are examples of a general ex-
tensibilty problem that arises from not being able to dynamically dispatch on
a class except by editing the class in place.

1.1.1 The Binary Method Problem. A well-known problem in mainstream
object-oriented programming languages concerns expressing the behavior of
methods when that behavior should vary with the dynamic types of more than
one argument. Traditionally, the problem is considered in terms of binary meth-
ods, two-argument methods where the argument types should vary together. In
the Shape class shown in Figure 1, the method for calculating the intersection
of two shapes—the receiver object this and the argument object s—is a binary
method. Suppose that one wishes to create a class Rectangle as a subclass of
Shape. When intersecting two rectangles, one can use a more efficient algorithm
than for arbitrary shapes. We would like to implement this more efficient al-
gorithm for rectangles, without having to modify existing code, in either the
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Fig. 1. A simple class with a binary method, intersect.

Shape class or its clients. Further, we would like to do this in a way that can be
statically typechecked for safety.

Unfortunately there is no straightforward way to do this, because main-
stream object-oriented languages cannot safely use subtypes in the argument
positions of overriding methods. Doing so would violate the standard restriction
against covariant subtyping for function parameter types [Cardelli 1988]. Thus,
such languages cannot easily specify overriding binary methods for cases where
both the receiver and nonreceiver arguments are subtypes of the original types.
This difficulty in specifying specialized behavior for overriding binary methods
is known as the binary method problem [Bruce et al. 1995; Castagna 1995].1

In Section 2.1 we demonstrate several partial solutions to the binary method
problem in Java and show how the problem can be solved with multiple dispatch
in MultiJava.

1.1.2 The Augmenting Method Problem. Another well-known challenge in
programming language design is to simultaneously support both the easy addi-
tion of new types and the easy addition of new operations to an existing type hi-
erarchy [Reynolds 1975; Cook 1991; Odersky and Wadler 1997; Krishnamurthi
et al. 1998; Findler and Flatt 1999; Garrigue 2000; Zenger and Odersky 2001].
For example, suppose we have a program with a collection of types represent-
ing various shapes—like Shape, Rectangle, and Triangle—and a collection of
operations on these types, like area and intersect. We would like to easily add
both new shape types and new shape operations to the program. Furthermore,
both of these forms of extension should be expressible without having to modify
the existing types or their existing clients.

In traditional functional and procedural languages, each operation is imple-
mented separately from its associated type hierarchy. Thus, it is easy to add
new operations to an existing type or type hierarchy. But there is no support
for subclassing, so the addition of new types requires all existing operations
on the associated type hierarchy to be updated in place. Conversely, in tradi-
tional object-oriented languages it is easy to modularly add new types to an
existing type hierarchy via subclassing, and overriding methods allow existing
operations on that hierarchy to be easily updated. However, each method must
be declared inside its associated class, so there is no support for the modular

1Another part of the binary method problem is that, in some languages, a receiver object of a binary
method cannot easily take advantage of the private representation of the nonreceiver argument.
This part of the problem does not arise in Java, because in Java’s encapsulation model all instances
of a class have access to the private representation of all other instances of the class.
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addition of new operations; each existing class must be updated in place to
contain a new method.

These problems of adding new types in functional or procedural languages
and new operations in object-oriented languages are dual cases of what Wadler
termed the expression problem.2 We focus on object-oriented programming and
its traditional data-centric encapsulation. We call the need for nonmodular
editing to add new operations in object-oriented languages the augmenting
method problem.

In Section 2.2 we demonstrate attempts to solve the augmenting method
problem in Java and a solution using MultiJava’s open classes.

1.1.3 Object-Oriented Extensibility. The problems described above are ex-
amples of a more general problem with current mainstream object-oriented
programming languages. In these languages it is impossible to dynamically
dispatch on a class externally, that is without modifying the class in place. This
restriction makes it awkward at best, and error-prone at worst, to extend an
existing class in commonly desired ways. As we demonstrate, in current object-
oriented languages such class extensions are often impossible without advance
planning by the original programmer.

In MultiJava we lift this restriction of mainstream object-oriented program-
ming languages, allowing new methods to dynamically dispatch on existing
classes without modifying existing code. Multiple dispatch allows new meth-
ods to dispatch on existing classes at argument positions other than the re-
ceiver, and open classes allow new methods to dispatch on existing classes at
the receiver position. MultiJava is the first full-scale programming language to
provide these features while including modular, static typechecking and com-
pilation.

The design of MultiJava satisfies the following goals and constraints:

—MultiJava provides complete backward compatibility with the extant Java
language. Code written in Java has the same semantics when compiled with
a Java compiler or a MultiJava compiler, including code that relies on Java’s
static overloading. It is possible to extend existing classes and override ex-
isting methods using MultiJava’s new features.

—MultiJava retains Java’s encapsulation properties.
—The modular static typechecking and compilation properties of Java are

maintained.
—To allow for wide use of code written in MultiJava, output of the MultiJava

compiler targets the standard Java Virtual Machine.
—For regular Java code the bytecode produced by the MultiJava compiler is no

less efficient than that generated by a standard Java compiler. For source code
using MultiJava’s multiple dispatch or open classes, the bytecode produced
by the MultiJava compiler has efficiency comparable to that produced by a
standard Java compiler for Java code that simulates these features.

2Wadler coined this term in a 1998 discussion on the Java Generics mailing list.
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1.2 Outline

Section 2 introduces and motivates the design of MultiJava. The language is
a small syntactic extension of Java, but it provides significant new opportu-
nities for code organization and reuse. Section 3 describes MultiJava’s static
type system, which safely augments Java’s modular (per-compilation-unit)
typechecking. Section 4 sketches the translation of MultiJava source code
into standard Java bytecode, again on a per-compilation-unit basis as in Java.
MultiJava is being used by others in a variety of application domains; Section 5
describes the applications and programming idioms in which MultiJava’s
features have been successfully employed. Section 6 describes an extension to
MultiJava that was sparked in part by user feedback. Finally, Section 7
compares MultiJava to related work and Section 8 concludes with a discussion
of future work.

2. LANGUAGE DESIGN AND MOTIVATION

In this section we describe the two main language features—multiple dis-
patch and open classes—that allow MultiJava to solve the binary method
and augmenting method problems, and the more general extensibility prob-
lem, introduced in Section 1.1. For each language feature we present a con-
crete example of the problem. We motivate our design by demonstrating how a
Java-based approach is inadequate. Then we show how MultiJava provides a
solution.

2.1 Multiple Dispatch

In Java [Arnold et al. 2000; Gosling et al. 2000], the method invoked by a call
depends on the runtime type of the receiver argument, but it does not depend
on the runtime types of any other arguments. This method selection scheme is
known as single dispatch. Single dispatch is also found in Smalltalk, C++, and
C# [Goldberg 1984; Stroustrup 1997; Troelsen 2003]. In constrast, multiple dis-
patch—found in Common Lisp, Dylan, and Cecil—selects the method invoked
by a call based on the runtime types of any specified subset of the arguments
[Steele 1990; Paepcke 1993; Shalit 1997; Feinberg et al. 1997; Chambers 1992,
1997]. A method that takes advantage of the multiple dispatch mechanism is
called a multimethod. The generalization of receiver-based dispatch to multiple
dispatch provides a number of advantages. For example, multimethods support
safe covariant overriding in the face of subtype polymorphism, providing a nat-
ural solution to the binary method problem [Bruce et al. 1995; Castagna 1995].
More generally, multimethods are useful whenever multiple class hierarchies
must cooperate to implement a method’s functionality. For example, the code
for handling an event in an event-based system depends on both which event
occurs and which component is handling the event.

To motivate the addition of multiple dispatch in MultiJava, we consider
the binary method problem in more detail. We revisit the Shape example from
Figure 1 and consider extending its intersect method to handle pairs of rect-
angles. First we describe the shortcomings of several approaches to performing
this task in Java; then we illustrate MultiJava’s solution.
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Fig. 2. An attempt at implementing Rectangle using static overloading.

2.1.1 Binary Methods in Java. There are several ways in Java by which
one might attempt to implement an intersect method for pairs of rectangles.

2.1.1.1 Static Overloading. The first way one might attempt to add Rect-
angle’s intersect functionality in a Java program is shown in Figure 2. Unfor-
tunately, this approach does not provide the desired semantics. In particular,
the new intersection method cannot safely override the original intersection
method; the type of the nonreceiver argument cannot safely be changed from
Shape to the subtype Rectangle in the overriding method [Cardelli 1988]. There-
fore, Java instead considers Rectangle’s intersect method to statically over-
load Shape’s method. Each method can be thought of as belonging to a distinct
method family, as if they had completely different names. A method family3

consists of a (possibly abstract) top method, which overrides no other meth-
ods, and all of the methods that override the top method. Java uses the name,
number of arguments, and static argument types of a method to determine the
family to which it belongs. In our example, the two intersect methods belong
to different method families because they have different static argument types.

Each method call expression in a Java program can invoke methods of only
a single method family. The method family invoked by a method call is deter-
mined statically based on the call’s name, number of arguments, and the static
types of the actual arguments. The method invoked within that method fam-
ily is determined at run time based on the dynamic type of the call’s receiver
object. For example, consider the client code shown in Figure 3. Although the
objects passed as arguments in the four intersect calls are identical, these
calls do not all invoke the same method. In fact, only the first call will invoke
Rectangle’s intersection method. The other three calls will invoke Shape’s in-
tersection method, because the static types of these arguments cause Java to
bind the calls to the method family introduced by Shape’s intersect method.
Likewise, the first call is statically bound to the method family introduced by
Rectangle’s intersect method. Therefore, new clients must choose statically
which of the two method families they wish to invoke, and existing clients of
Shape will never invoke the more efficient algorithm for two rectangles (unless
they are modified to do so).

3In much of the literature on multiple dispatch languages, what we call a method family is referred
to as a generic function. We are using the term method family to avoid confusion with generic types
in Java 1.5.
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Fig. 3. Client code of the intersect method family.

Fig. 4. An implementation of Rectangle using a typecase.

2.1.1.2 Explicit Type Tests. In Java, one can solve this problem by per-
forming explicit runtime type tests with associated casts; we call this coding
pattern a typecase. For example, one could implement the Rectangle intersec-
tion method as shown in Figure 4.

This version of the Rectangle intersection method has the desired semantics.
In addition, since it takes an argument of type Shape, this method can safely
override Shape’s intersect method and is part of the same method family. All
calls in the example client code shown in Figure 3 will now invoke Rectangle’s
intersect method. However, this code has several disadvantages. First, the
programmer is explicitly coding the selection of the appropriate intersection
algorithm, a process that can be tedious and errorprone. In addition, such code
is not easily extensible. For example, suppose a Triangle subclass of Shape is
added to the program. If special intersection behavior is required of a Rectan-
gle and a Triangle, the above method must be modified to add the new case.
Further, the case for such a new subclass must be carefully added in the appro-
priate place within the if expression, so that it will not be superseded by an
earlier case. Finally, this solution loses static type safety. As a simple example, if
the instanceof test in Figure 4 accidentally tested whether s were an instance
of Shape instead of Rectangle, the method would still typecheck properly but
would cause a runtime ClassCastException to occur if a Shape instance were
ever passed as the argument.
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Fig. 5. Implementing binary methods using double dispatching.

2.1.1.3 Double Dispatch. Another potential Java-based solution to the bi-
nary method problem is to use double dispatching [Ingalls 1986]. Figure 5
shows an implementation of the intersect methods for Shape and Rectan-
gle using double dispatching. With this technique, instead of using an explicit
instanceof test to determine the runtime type of the argument s, as in the
typecase solution, this information is obtained by performing a second call.
This call is sent to the argument s, but with the name of the call encoding
the dynamic class of the original receiver. Double dispatching reuses the lan-
guage’s built-in method dispatching mechanism, thereby retaining static type
safety. However, double dispatching is even more tedious to implement by hand
than typecases. Further, double dispatching requires at least the root class of
the hierarchy to be modified whenever a new subclass is written. For example,
the introduction of Rectangle in our example required Shape to be augmented
with an intersectRectangle method. This modification is necessary even
though there is no special intersect behavior desired for one shape and one
rectangle.

2.1.2 Multiple Dispatch in MultiJava. MultiJava allows programmers to
write multimethods, which are methods that can dynamically dispatch on other
arguments in addition to the receiver object. Multimethods provide a simple so-
lution to the binary method problem that does not suffer from the problems of
the approaches described above. Multimethods also find more general appli-
cations. Section 5 demonstrates that they are useful whenever multiple argu-
ments must cooperate to implement some functionality.
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Fig. 6. Syntax extensions for MultiJava multimethods.

Fig. 7. Multimethod version of Rectangle.

The syntax of our multimethod extension is specified in Figure 6.4 Using
multimethods, the definition of the Rectangle class can be changed to the one
shown in Figure 7. This code is identical to the first solution attempt pre-
sented in Figure 2, except that the type declaration of the formal parameter r
is Shape@Rectangle instead of simply Rectangle. The “Shape” denotes the static
type of the argument r. Thus, Rectangle’s revised intersect method belongs to
the same method family as Shape’s intersectmethod from Figure 1—the name,
number of arguments, and static argument types match. The “@Rectangle” in-
dicates that, in addition to the receiver, we wish to dynamically dispatch on the
formal parameter r.5 We call Rectangle the specializer of parameter r and say
that r is specialized. (We refer to a method without any specialized parameters
as an unspecialized method.) As with standard Java, the receiver is always
dispatched upon. So Rectangle’s intersect method will be invoked only if the
dynamic class of the receiver is Rectangle or a subclass—as with Java—and
the dynamic class of the argument r is Rectangle or a subclass. In all other
cases, the intersect method from Shape will be invoked.

Any subset of a method’s arguments can be specialized. A class can declare
several methods with the same name and static argument types, with different
argument specializers. For example, a Circle class could be defined with a
selection of intersect methods as shown in Figure 8. All these methods have
static argument type Shape, so they all are in the same method family: the
one introduced by the intersect method in the Shape class. However, they
have different combinations of specializers, causing them to apply in different
runtime circumstances.

4The grammar given in Figure 6 extends the Java syntax given in the first 17 chapters of The
Java Language Specification [Gosling et al. 2000]. For standard Java nonterminals we just list the
new productions for MultiJava and indicate the existence of the other productions with an ellipsis
( . . . ). Existing Java nonterminals bear superscript annotations giving the pertinent section num-
bers from the Java specification.
5An alternative syntax would be to omit the Shape@ part and just infer dynamic dispatch based on
Rectangle being a subclass of Shape [Dutchyn et al. 2001]. However, this would conflict with static
overloading in Java. We rejected this approach in favor of retaining backward compatibility.
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Fig. 8. Another example of multimethods in MultiJava.

MultiJava’s multimethods have several advantages over the approaches
described in Section 2.1.1. First, the dispatch on nonreceiver arguments is ex-
pressed simply and declaratively. The various multimethods in a class can ap-
pear in any order, and the language does the work of choosing the appropriate
method based on the runtime types of the arguments. Second, static type safety
is retained. As will be described in Section 3, this includes checking for com-
mon errors including incompleteness and ambiguities among methods. Third,
multimethods have all the properties of regular methods. For example, a later
subclass Square of Rectangle can inherit Rectangle’s intersect multimethod,
can optionally override that method, and can add new multimethods to handle
other shapes specially.

2.1.3 Multimethod Dispatch Semantics. MultiJava’s method invocation
semantics, like Java’s, can be broken down into two phases. The first, compile-
time selection of the appropriate method family, is the same in both languages.
For a method call E0.I (E1, . . . , En), the method family being invoked is the
unique method family named I that is in scope and is most appropriate for
the static types of the Ei expressions [Gosling et al. 2000, pp. 346–355]. It is a
compile-time error if there is not exactly one such method family. By using the
same algorithm for compile-time selection of the appropriate method family,
MultiJava retains Java’s static overloading semantics.6

The second phase of method invocation is the dynamic selection of the ap-
propriate method from the statically determined method family. MultiJava’s
semantics is a natural generalization of Java’s second phase to handle dispatch
on multiple arguments. Invocations to a method family whose methods do not
use specializers will dispatch exactly as in Java. In MultiJava, dynamic dis-
patch for a method call E0.I (E1, . . . , En):

(1) evaluates each Ei to some value vi,
(2) within the methods of the method family being invoked, finds the most-

specific applicable method, M , for the argument tuple (v0, . . . , vn), and
(3) invokes M if it exists, or else signals an error.

6In a language with multiple dispatch, static overloading becomes less necessary. Nevertheless,
MultiJava must retain static overloading for backward compatibility with Java.
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The notion of a most-specific applicable method relies on a number of auxil-
iary definitions:

—First we define the natural subtyping relation for types. We say that a refer-
ence type D is a direct subtype of a reference type C if D extends or implements
C. The subtyping relation is then the reflexive, transitive closure of the direct
subtyping relationship on reference types, unioned with the identity relation
on primitive types.

—Next we lift the notion of subtyping to tuples of types: a type tuple (S0, . . . , Sn)
subtypes another type tuple (T0, . . . , Tn) if for all 0 ≤ i ≤ n, it is the case that
Si subtypes Ti.

—Each argument tuple (v0, . . . , vn) has an associated argument type tuple
(D0, . . . , Dn), where for all 0 ≤ i ≤ n, Di is the dynamic type of vi.

—Each method also has an associated method type tuple formed from its re-
ceiver type and the specializers of its parameters, or their static types if
unspecialized. Formally, a method with n parameters, I(P1 x1, . . . , Pn xn),
and a receiver type T0 has the method type tuple (T0, T1, . . . , Tn), where for
i ∈ {1..n}:
—Ti = Pi if parameter i is unspecialized, and
—Ti = Di if Pi = Si@Di.
For example, the first method shown in Figure 8 has the method type tu-
ple (Circle, Shape), while the second method has the method type tuple
(Circle, Rectangle).

Now we define an argument tuple’s most-specific applicable method. This
definition relies on two notions. First, we say that a method M is applicable to
an argument tuple, (v0, . . . , vn), if the arguments’ type tuple is a subtype of M ’s
method type tuple. For example, for the method call

new Rectangle( . . . ).intersect(new Rectangle( . . . )),

the argument type tuple is (Rectangle, Rectangle) and both the intersect
method in Shape (Figure 1) and the one in Rectangle (Figure 7) are applica-
ble. Second, we say that a method M1 is more specific than a method M2 if M1’s
method type tuple is a subtype of M2’s. For example, the intersect method in
Rectangle is more specific than the one in Shape.

Finally, the most-specific applicable method for a tuple of argument values
is the unique applicable method that is more specific than all other applicable
methods. If there are no applicable methods for a call, a message-not-understood
error occurs. If there are applicable methods but no unique most-specific one, a
message-ambiguous error occurs. (Static typechecking, discussed in Section 3,
will detect and reject method families that could potentially cause either sort
of runtime error.)

As an example we consider the intersectmethod family introduced by Shape
in Figure 1, and extended by Rectangle and Circle (in Figures 7 and 8, respec-
tively). Figure 9 shows the partial order on this method family that is induced
by the subtyping relationship on method type tuples. Each node in the fig-
ure is the type tuple for a method in the method family. Using this figure,

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.



528 • C. Clifton et al.

Fig. 9. Partial order on method type tuples for the intersect method family.

we demonstrate MultiJava’s dynamic dispatch semantics by considering the
method call shape1.intersect(shape2) with varying runtime types for the ar-
guments shape1 and shape2.

—If both shape1 and shape2 are Rectangles at run time, then the method with
type tuple (Rectangle,Rectangle), defined in the Rectangle class, is the
most-specific applicable one.

—If shape1 is a Circle and shape2 is a Shape, then the method with type
tuple (Circle,Shape), the first method defined in Circle, is the most-specific
applicable one.

—Finally, if shape1 is a Rectangle and shape2 is a Circle, then the top method,
with type tuple (Shape,Shape), is the most-specific applicable one.

2.1.3.1 Symmetric Versus Asymmetric Dispatch. Multiple dispatch is
called symmetric if the rules for dynamic method lookup treat all dispatched ar-
guments identically. Asymmetric multiple dispatch typically uses lexicographic
ordering, where earlier arguments are treated as more important, to select
between equally specific methods; a variant of this approach selects methods
based partly on the textual ordering of their declarations. Symmetric multiple
dispatch is used in Cecil, Dylan, Kea [Mugridge et al. 1991], the λ&-calculus
[Castagna et al. 1995; Castagna 1997], ML≤ [Bourdoncle and Merz 1997], Tuple
[Leavens and Millstein 1998], and Extensible ML [Millstein et al. 2002]. The
asymmetric semantics is used in Common Lisp [Steele 1990; Paepcke 1993],
Polyglot [Agrawal et al. 1991], Parasitic Methods [Boyland and Castagna 1997],
and Half & Half [Baumgartner et al. 2002].

MultiJava employs the symmetric semantics. This is seen in the definition
of subtyping for type tuples, which treats all argument positions uniformly. We
are of the opinion that symmetric multiple dispatch is more intuitive and less
errorprone, reporting all possible ambiguities rather than silently resolving
them in potentially unexpected ways.

2.1.3.2 Handling null Arguments. Method calls in Java have an inherent
asymmetry in that null may be passed in a nonreceiver argument position, but
a null value in the receiver position results in the familiar NullPointerExcep-
tion. We considered throwing a similar exception in MultiJava if a null value
appeared in any specialized argument position. This would arguably be the
most symmetric treatment of the null value; however, this treatment would
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not be compatible with existing Java code that allows null values as argu-
ments. For compatibility, MultiJava instead treats a null argument as having
a specific runtime type: the static type of the corresponding parameter of the
method family. For example, consider the following code fragment:

Shape shape1 = new Circle( . . . );
Shape shape2 = null;
Shape result = shape1.intersect(shape2);

Because shape2 is null, the argument type tuple for the intersect method
call is (Circle,Shape). Thus, the first intersect method of Circle is invoked.
This semantics for null is consistent with what happens if a Java programmer
uses runtime type tests to manually dispatch on argument types, since null
instanceof T is false for all types T.

One consequence of MultiJava’s treatment of null is that unspecialized
methods must be concerned with possible null values for actual arguments.
In his thesis, Clifton discussed an extension to MultiJava that would allow
null as a specializer [Clifton 2001, §6.1.6]. Such an extension would permit the
declarative specification of methods to handle null arguments.

2.1.4 Other Dispatch-Related Language Features. Experience using mul-
tiple dispatch in MultiJava prompted us to add two additional dispatch-related
language features. The first, resends, is analogous to super method calls in
Java. The second feature, value dispatching, extends the declarative benefits
of multimethods from the type domain to the value domain.

2.1.4.1 Resends. Inspired by a related construct in Cecil [Chambers 1997],
MultiJava augments Java with a resend expression, which is similar to Java’s
super construct [Gosling et al. 2000, §15.12] but walks up the multimethod
specificity ordering. An invocation of resend from a (multi)method invokes the
unique most-specific (multi)method that is overridden by the resending method.
(It is a compile-time error if such a method does not exist.) For example, a call
this.resend(r) from Rectangle’s intersect method shown in Figure 7 would
invoke Shape’s intersect method from Figure 1. Referring to Figure 9, the
resend follows the arrow from the pair of Rectangles to the pair of Shapes.

In this example, the resend has the same semantics as super.intersect(r),
but that is not always the case. A super send will always invoke a method
whose receiver is a strict superclass of the current receiver (hence the super
keyword appears in the receiver position of the call). But with a resend the
invoked method may be less specific in some nonreceiver argument position.
For example, a this.resend(r) call from Circle’s second intersect method
shown in Figure 8 invokes the first method in that figure—following the arrow
shown in Figure 9 from (Circle,Rectangle) to (Circle,Shape). On the other
hand, a super.intersect(r) call from the same method will invoke Shape’s
intersect method.

To ensure that the unique most-specific method that is overridden by the
resending one will be applicable to the resend’s arguments, MultiJava requires
that the receiver of a resend be this and that the ith argument to the resend
be the ith formal parameter of the enclosing method. Further, these formals
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Fig. 10. Example of value dispatching.

Fig. 11. Syntax extensions for MultiJava value dispatching.

must be declared final in the enclosing method, to guarantee that they are not
modified before the call to resend. As a syntactic sugar, the target this may be
omitted from a resend invocation. That syntax is also used for a resend from a
static method.

An alternative design for resends would be to modify the semantics of su-
per method calls instead of introducing a new keyword. An earlier version of
MultiJava did exactly that. That design is still backward compatible with Java,
differing from the semantics of super only where MultiJava’s explicit special-
izers are present. However, that design has several drawbacks compared with
the use of resend. First, some users were confused by the generalized semantics
for super, expecting it to always invoke a method of the current receiver’s su-
perclass. Second, the original design could cause encapsulation problems when
super was used with open classes to invoke a method of a different method fam-
ily than the caller [Clifton 2001, p. 32]. The resend syntax solves this encap-
sulation problem by simply disallowing invocations of other method families.
Finally, retaining Java’s semantics for super aids the migration of a program
from Java to MultiJava. For example, in the version of MultiJava with a modi-
fied super semantics, the target method of a super send in a Java method could
unexpectedly change if the calling method were later converted into a set of
multimethods.7

2.1.4.2 Value Dispatching. Multimethods are useful whenever a method
family’s behavior depends upon the particular runtime type of an argument.
However, a method family’s behavior sometimes depends upon an actual argu-
ment’s value rather than its class. MultiJava’s multimethods generalize natu-
rally to support a common case of dispatch on values, in which the depended-
upon values are compile-time constants.

Figure 10 illustrates how value dispatching is used to compute the Fibonacci
numbers. Value dispatch is denoted using @@ instead of @ on a specialized argu-
ment. Figure 11 gives the formal syntax. The first method shown in Figure 10 is
only applicable dynamically if the argument i has the value 0, and similarly for

7A third alternative, which we have not explored extensively, is to overload Java’s super() syntax
for invoking superclass constructors. This would avoid introducing a new keyword and, because
the super() form can only appear in Java constructors, overloading it for resends would be unam-
biguous. On the other hand, we suspect the use of a new keyword is less confusing.
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Fig. 12. Adding new operations by subclassing.

the second method. The existing multimethod dispatch semantics generalizes
seamlessly to handle value dispatching by viewing each dispatched-upon value
as a singleton concrete subclass of its associated type. For example, the first fib
method overrides the third one because 0 is a “subclass” of int. Value dispatch-
ing is supported for the literals of all of Java’s primitive types, as well as for
literals of type java.lang.String. Further, any compile-time constant expres-
sion as defined by Java can be used as a value specializer, in addition to simple
literals. Examples that make use of this ability are described in Section 5.

Value dispatching as shown in the example is similar to Java’s existing
switch statement, but value dispatching has a number of advantages. First, any
subset of a method’s arguments can employ value dispatching, and a method
can employ value dispatching on some arguments and ordinary class dispatch-
ing on others. Second, value dispatching is supported for all of Java’s primitive
types, instead of just the integral ones, as well as for java.lang.String. Finally,
methods that employ value dispatching are inherited by subclasses, providing
more extensibility than switch. For example, a subclass of Fib can inherit some
of the fib methods, override others, and add new multimethods handling other
interesting integer values.

2.2 Open Classes

In addition to multimethods, MultiJava also supports open classes. An open
class is one to which new methods can be added without editing the class directly
[Chambers 1998; Millstein and Chambers 2002]. An open class allows a client
to easily customize the class’s interface to the needs of an application, without
modifying existing code. Open classes can be used to organize “crosscutting”
operations separately from the classes to which they belong, a key feature of
subject-oriented and aspect-oriented programming [Harrison and Ossher 1993;
Kiczales et al. 1997]. With open classes, object-oriented languages can support
the addition of both new subclasses and new methods to existing classes, solving
the augmenting method problem described in Section 1.1.2.

Similar to Section 2.1, we motivate the inclusion of open classes in MultiJava
by first considering Java-based solutions to the augmenting method problem.

2.2.1 Approaches to Solving the Augmenting Method Problem in Java. One
solution to the augmenting method problem is to add the new operation by
writing new subclasses for each of the existing classes. For example, Figure 12
illustrates how a circumference method is added to Shape. There are several
drawbacks of this approach. First, the new method does not update any ex-
isting Shape instances, for example from a persistent store. Second, in general
existing clients of Shape must still be modified: any code that constructs Shape
instances must be updated to construct CircumferenceShape instances. Third,
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Fig. 13. Shape hierarchy with Visitor infrastructure.

if CircumferenceShape instances are passed to and later returned from exist-
ing code, their static type upon return will be Shape (unless the existing code
is modified), requiring runtime casts to regain access to the circumference op-
eration. Finally, this technique is tedious and awkward when an entire class
hierarchy must be updated with a new operation. For example, we must also
declare a CircumferenceRectangle subclass of Rectangle. CircumferenceRect-
angle must subclass from CircumferenceShape in addition to Rectangle, in
order for the new class’s circumference method to override that of Circumfer-
enceShape. Therefore, implementing CircumferenceRectangle requires multi-
ple inheritance of classes, which is not available in Java.

A second approach is to use the Visitor design pattern [Gamma et al. 1995,
pp. 331–344], which directly addresses the problem of adding new functionality
to existing classes in a modular way. The basic idea is to reify each operation into
a class, thereby allowing operations to be structured in their own hierarchy. For
example, consider the version of the Shape class hierarchy shown in Figure 13;
here the classes are augmented with an accept method according to the Visitor
pattern. Operations on shapes are structured in their own class hierarchy, each
operation becoming a subclass of an abstract ShapeVisitor class as shown in
Figure 14. The client of an operation on shapes invokes the accept method of a
shape, passing a ShapeVisitor instance representing the operation to perform:

someShape.accept(new CircumferenceVisitor( . . . ));

The accept method of each kind of shape uses double dispatching to invoke the
method of the visitor that is appropriate for that shape.

The main advantage of the Visitor pattern is that new operations can be
added modularly, without needing to edit any of the Shape subclasses: the pro-
grammer simply defines a new ShapeVisitor subclass containing methods for
visiting each class in the Shape hierarchy. However, use of the Visitor pattern
brings several drawbacks, including the following, listed in order of increasing
importance:

—The stylized double-dispatching code is tedious to write and prone to error.
—The need for the Visitor pattern must be anticipated ahead of time, when

the Shape class is implemented. For example, had the Shape hierarchy not
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Fig. 14. Operation on Shapes implemented with Visitor.

been written with an accept method, which allows visits from the Shape-
Visitor hierarchy, it would not have been possible to add the circumference
functionality in a modular way.

—Even with the accept method included, only visitors that require no addi-
tional arguments and that return no results can be programmed in a natural
way; for example, CircumferenceVisitor must use the result field and the
getResult accessor method to store and return the new operation’s result.

—Although the Visitor pattern allows the addition of new operations modu-
larly, in so doing it gives up the ability to add new subclasses to existing
Shape classes in a modular way. For example, if a Circle subclass were intro-
duced, the ShapeVisitor class and all subclasses would have to be modified to
contain a visitCircle method. Thus, Visitor trades the nonmodularity of the
object-oriented approach for the nonmodularity of the procedural approach.
Proposals have been advanced for dealing with this well-known limitation
[Krishnamurthi et al. 1998; Martin 1998; Palsberg and Jay 1998; Nordberg
1998; Vlissides 1999; Zenger and Odersky 2001; Grothoff 2003; Torgersen
2004]. However, most of these proposals suffer from additional complexity
(in the form of hand-coded typecases, more complex class hierarchies, and
factory methods) that make them even more difficult and errorprone to use.
Further, some of the proposals require a loss of static type safety in the form
of runtime casts or reflection in order to resolve Visitor’s limitation. All of
the proposals require advance planning by the developer of the code to be
extended.

2.2.2 Open Classes in MultiJava. The open class feature of MultiJava
allows a programmer to add new methods to existing classes without modify-
ing existing code and without breaking the encapsulation properties of Java.
Contrary to the Visitor pattern, it does this in a way that still allows new
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Fig. 15. (a) Syntax for MultiJava external methods, and (b) syntax extensions to declare external
methods outside of class declarations.

Fig. 16. Circumference-calculating method family using external methods.

subclasses to be introduced modularly. Thus MultiJava’s open classes solve
the augmenting method problem.

2.2.2.1 Declaring and Invoking External Methods. The key new language
feature involved in open classes is the external method declaration, whose syn-
tax is specified in Figure 15. Using external methods, the functionality of the
circumference-calculating visitor from Figure 14 can be written as in Figure 16.
The two external methods in the figure belong to a new method family added
to the shape hierarchy. We call that method family external because its top
method (the first one in the figure) is an external method. Method families
whose top method is not external, including regular Java method families, are
called internal.

As in Java methods, the bodies of external methods may use the key-
word “this” to reference the receiver argument. Similarly, field references
and method calls can implicitly target the receiver, for example, in the calls
to width() and height() shown in Figure 16. Finally, external methods may
also be multimethods, by employing MultiJava’s syntax for declaring argument
specializers.
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Clients invoke external method families exactly as they would the class’s
original methods. For example, the circumference method of a Shape instance,
someShape, is invoked by someShape.circumference(). This is allowed even if
the instance referred to by someShape was retrieved from a persistent database,
or was created by code that did not have access to the circumference methods.
Code can create and manipulate instances of classes without being aware of all
external method families that may have been added to the classes; only code
wishing to invoke or extend a particular external method family needs to be
aware of its declaration.

2.2.2.2 Scoping of External Method Families. To invoke or override an ex-
ternal method family, client code first imports it using an extension of Java’s
existing import mechanism. For example,

import examples.circumference;

will import the method family circumference from the package examples.
Similarly

import examples.*;

will implicitly import all the compilation units in the package examples, which
will make all accessible (e.g., public) types and method families in that pack-
age available for use. Each compilation unit implicitly imports all the method
families in its package.

We call the set of methods and fields in a class the signature of that class.
The apparent signature of a class for a given client is the set of method families
and fields available to that client. The explicit importation of external method
families enables client code to manage the apparent signatures of the classes it
manipulates. Only clients that import the circumferencemethod family will see
the circumference operation in the apparent signature of Shape. Other clients
will not have their apparent signatures for Shape polluted with this method
family. Furthermore, a compilation unit that did not import the existing cir-
cumference method family could declare its own circumference method family
without conflict. (As in Java, a MultiJava compiler will signal a compile-time
error if multiple applicable method families are in scope at a call site.) The
scoping of external method families is one of the ways that MultiJava’s open
classes are more modular than open classes in AspectJ [AspectJ Team 2004].

Java allows at most one public type (class or interface) declaration in a com-
pilation unit.8 This concession allows an implementation to find the file con-
taining the source code or bytecode for a type based on its name. In MultiJava
we extend this restriction in a natural way: each file may contain either one
public type with associated methods, or a collection of external methods of the
same name. Typically these methods will all belong to a single method family,
as shown in Figure 16, but we also allow the methods to belong to multiple,
statically overloaded method families.

8Java’s restriction is actually somewhat more complex to account for its default access modifier,
which gives access to all other classes in the package [Gosling et al. 2000, §7.6]
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Fig. 17. Example of modularly adding a new subtype to an existing type hierarchy.

2.2.2.3 Inheritance of External Methods. Unlike the Visitor design pat-
tern, open classes still allow a new subclass of Shape to be added without chang-
ing any existing code. This capability arises from two important features of
inheritance in MultiJava. We use the Parallelogram class shown in Figure 17
to explain these features.

First, in MultiJava a subclass can override any method in the apparent sig-
nature of its superclass. That is, a new subclass can

—import an external method family that augments the superclass, and
—add an overriding method to the method family.

The compilation unit for Parallelogram does this by importing circumference
and declaring its own circumference method.

The second inheritance feature for external method families applies to clients
of a new subclass. A client of a new subclass can

—import an external method family that augments the superclass and
—invoke that method family on a subclass instance, regardless of whether the

method family was visible from the subclass’s declaration.

For example, suppose that a client program imported the area method family
from Figure 18. Even though the area method was not in the apparent signa-
ture of Shape from Parallelogram’s perspective, the client can still execute the
following code:

Parallelogram par = new Parallelogram( . . . );
double area = par.area();

Because the client imports the area method family and thus adds it to Shape’s
apparent signature, Parallelogram implicity inherits the Shape.area()method
from Figure 18, so that method is invoked by the above code.

2.2.2.4 Encapsulation. MultiJava retains the same encapsulation proper-
ties as Java [Gosling et al. 2000, §6.6]. An external method may access:

—public members of its receiver class, and
—nonprivate members of its receiver class if the external method is in the same

package as that class.

All other access to receiver class members is prohibited. Therefore, an exter-
nal method does not typically have access to the private members of its receiver
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Fig. 18. Example used to show method inheritance for open classes.

Fig. 19. Noninvasive visitor using multimethods.

class. This does limit the expressiveness of external methods as compared with
the ordinary methods of a class, but it allows us to retain Java’s strong encap-
sulation properties. Providing private access to the receiver from an external
method would allow any client to access a class’s implementation simply by
declaring an external method for the class.

An external method may be declared with any one of the Java access modi-
fiers. For example, a helper method for a public external method may be declared
private and included in the same compilation unit as the public method. An ex-
ternal method’s modifier is defined relative to the current compilation unit. For
example:

—A private external method may only be invoked or overridden from within
the compilation unit in which it is declared.

—A protected external method may only be invoked or overridden by a class
in the same package in which the method is declared or by a class that is a
subtype of the method’s receiver.

2.3 Why Both?

It might seem that open classes are unnecessary given that MultiJava includes
multimethods. For example, one might construct a method family for calculat-
ing the circumference of shapes using multimethods instead of open classes, as
shown in Figure 19. With this definition a client can find the circumference of
a shape with

double c = new CircumferenceCalculator().
circumferenceFor( someShape );

effectively adding an operation to the Shape hierarchy without using open
classes.

We say that a method family coded in this fashion is a noninvasive vis-
itor [Millstein 2003]. The term visitor comes from the obvious similarity of
this code to the usual Visitor pattern. The code is noninvasive because it does
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not require any changes to the shape classes (for example, to declare accept
methods).

There are two problems with the noninvasive visitor approach, which are
not shared by MultiJava’s open classes. First, the invocation syntax for the
circumferenceFor method family is different from the invocation syntax for
method families declared inside the original shape classes. The second prob-
lem is more onerous. As with the Visitor pattern, noninvasive visitors lose the
ability to add new Shape subclasses in a modular way. New subclasses would
require either a nonmodular editing of the CircumferenceCalculator class or
the creation of a subclass of CircumferenceCalculator, which has the same
problems as described for the subclassing solution to the augmenting method
problem (see Section 2.2.1). Therefore, noninvasive visitors do not fully solve
the augmenting method problem.

3. STATIC TYPECHECKING

MultiJava extends Java’s static type system to accommodate multimethods
and external methods. This involves enhancements to the typechecking of
method families. Importantly, MultiJava’s type system remains modular, obey-
ing Java’s file-by-file typechecking strategy. After more specifically defining the
notion of modular typechecking, we describe client- and implementation-side
typechecking [Chambers and Leavens 1995] of method families in MultiJava.

3.1 Modular Typechecking

We say that a type system is modular if the typechecking of each compilation
unit obeys the following two properties.

—First, each compilation unit can be typechecked given only the interfaces of
other compilation units, without requiring knowledge of their implementa-
tion details. Informally, in Java a type’s interface information consists of the
names of its superclass and superinterfaces, the types of its accessible fields,
and the headers, but not bodies, of its accessible methods. Formal definitions
have been provided by others [Drossopoulou et al. 1999; Ancona et al. 2002].
For MultiJava, the interface information of a compilation unit also includes
the headers, but not bodies, of the accessible external methods.

—Second, each compilation unit U can be typechecked given access only to the
interface information of compilation units that U explicitly depends upon.
These are the interfaces that define types and method families referenced by
U , as well as the interfaces that define types and method families referenced
by U ’s depended-upon interfaces (recursively). Intuitively, the depended-
upon interfaces are those whose compilation units must exist in the program,
in order for U to be well formed. For example, Rectangle shown in Figure 7
depends upon the interface of Shape shown in Figure 1, because Rectangle
refers to Shape. However, Rectangle does not depend upon Circle shown in
Figure 8 and so should not have to access Circle’s interface during type-
checking. Indeed, Circle may not even exist at the time that Rectangle is
typechecked. We say that the classes that are in interfaces upon which U
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depends are visible during U ’s typechecking. We use a similar definition for
the visibility of methods and method families.

3.2 Client-Side Typechecking

Client-side typechecking ensures the type correctness of each method call. Mul-
tiJava performs the same client-side typechecking as does Java, and the check
is naturally modular. Given a method call of the form E0.I (E1, . . . , En), the
receiver and arguments are typechecked, and their static types are used to find
the unique method family being invoked (among the many that may be stati-
cally overloaded). If such a method family is found, then the method call is well
typed and is assigned the return type of the method family. Otherwise, an error
occurs.

3.3 Implementation-Side Typechecking

Implementation-side typechecking ensures the type correctness of the set of
methods belonging to each method family. (We ignore value dispatching here;
it is addressed in Section 3.4 below.)

3.3.1 Local Checks. First, there are checks on individual methods. As in
Java, a method must have modifiers that are compatible with those of the
methods it overrides, and the method’s body must match the declared return
type. MultiJava uses additional information in performing the latter check:
when typechecking a method body in MultiJava, we can safely assume that the
arguments have the types of their specializers, rather than simply their static
types. Indeed, this is a major part of the convenience of MultiJava. MultiJava
also checks that each specializer is a proper subtype of its static type. Because
all of these checks are local to individual methods, they are naturally modular.

3.3.2 Checks that Method Families are Properly Implemented. The remain-
ing part of implementation-side typechecking is responsible for ensuring that
each method family is properly implemented: for each valid type tuple to the
method family there must be a most-specific applicable method. A tuple of
classes (C0, . . . , Cn) is a valid type tuple for a method family with argument
types (including the receiver) (T0, . . . , Tn) if each Ci is a concrete class that is a
subtype of the associated Ti. If a method family is properly implemented, then
method lookup on that family always succeeds at run time, with no message-
not-understood or message-ambiguous errors. For example, consider checking
that the intersect method family is properly implemented in the context of
Figures 1, 7, and 8. There are nine valid type tuples to check—all possible pairs
of Shapes, Rectangles, and Circles. Each of the nine argument tuples has a
most-specific applicable method, so the check succeeds.

Java’s type system already ensures that each method family is properly im-
plemented, in the absence of external methods and multimethods. For example,
if an abstract class C declares an abstract method m, then a concrete subclass
of C must provide a concrete overriding method of m, or else the typechecker
signals an error. Without such a concrete method, a NoSuchMethodException ex-
ception (the equivalent of our message-not-understood error) could occur at run
time. Java’s check that method families are properly implemented is completely
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modular: typechecking on each class ensures that the class has a most-specific
method for each method family to which it can be passed as a receiver argument.
On the other hand, MultiJava’s check as described so far is global: checking a
method family f requires access to all of f ’s methods and all valid type tuples.

To make MultiJava’s check modular, we divide it into checks on individual
compilation units. The typechecking on a compilation unit U must ensure that
all visible method families are properly implemented when considering visible
types. That is, all visible valid type tuples must have a visible most-specific
applicable method to invoke. Consider again checking that intersect is prop-
erly implemented in Figures 1, 7, and 8. Checks on the Shape class ensure that
intersect has a most-specific applicable method for a pair of Shapes, as Shape
is the only visible class. Checks on the Rectangle class ensure that intersect
properly handles all pairs of Shapes and Rectangles, but not Circles; the Circle
class is not visible. Checks on the Circle class ensure that intersect properly
handles all pairs of Shapes, Rectangles, and Circles.

Unfortunately, this natural scheme for making the check modular is insuf-
ficient: there can be message-not-understood and message-ambiguous errors
that elude modular static detection [Cook 1991]. To address this problem, we
impose some requirements that, together with the modular check described
above, are enough to ensure that each method family is in fact properly imple-
mented. These requirements are adapted from our previous theoretical work
on modular typechecking for multimethods and open classes [Millstein and
Chambers 2002; Millstein et al. 2002; Millstein 2003]. Below we briefly illus-
trate the challenges for modularly ensuring that method families are properly
implemented and show how the additional requirements resolve the problems.
More details on the requirements can be found in the earlier articles, including
a type soundness proof that validates their sufficiency. The requirements are
partitioned into those that ensure a method family is complete (i.e., no message-
not-understood errors) and those that ensure a method family is unambiguous
(i.e., no message-ambiguous errors); we discuss each kind in turn.

3.3.2.1 Ensuring Completeness. Internal and external method families
are subject to different completeness requirements. Figure 20 illustrates a com-
pleteness problem for internal method families. Unlike our previous examples,
in this figure Shape is declared abstract. Checks that intersect is properly
implemented from Shape’s compilation unit succeed vacuously: because Shape
is abstract, there are no valid visible type tuples to check. The checks from
Rectangle’s compilation unit succeed because the single valid visible tuple,
(Rectangle, Rectangle), has a most-specific applicable method, and similarly
for the checks from Circle’s compilation unit. However, at run time a message-
not-understood error will occur if intersect is invoked on a pair of one Rect-
angle and one Circle, or vice versa.

To solve the problem, we require Rectangle to declare an unspecialized
method (i.e., a regular Java method) for intersect. This method ensures that
Rectangle implements intersect for any potentially unseen shape arguments,
thereby handling the incompleteness for a pair of one Rectangle and one
Circle. Similarly, Circle must declare an unspecialized method for
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Fig. 20. A completeness problem for multimethods.

Fig. 21. A completeness problem for open classes.

intersect, thereby handling the incompleteness for a pair of one Circle and
one Rectangle. In general, the requirement is as follows:

R1. If a concrete class C declares or inherits an internal method fam-
ily f , then C must declare or inherit a concrete unspecialized method
for f . Also, a method with specialized arguments (a multimethod)
may not be declared abstract.

Requiring a concrete unspecialized method is no extra burden on Java program-
mers, as it is exactly the requirement that Java already enforces to ensure com-
pleteness of internal method families. In our example, Java would require both
Rectangle and Circle to contain a concrete intersect method, because the one
in Shape is abstract. Requirement R1 also forbids multimethods from being ab-
stract. This is necessary to ensure that the required unspecialized method will
be applicable for all valid type tuples.9

Figure 21 illustrates a completeness problem for external method families.
Suppose again that Shape is declared abstract. Because the compilation unit in

9In Java, a concrete method is not applicable to a method call if there is an overriding abstract
method that is also applicable.
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Fig. 22. An ambiguity problem.

Figure 21 only depends upon the compilation units of Shape and Rectangle, cir-
cumference appears complete: the single valid visible type tuple, (Rectangle),
has a most-specific applicable method. However, if Circle from Figure 8 is also
linked into the program, we will get a message-not-understood error at run
time if circumference is ever invoked on a Circle instance.

Unlike the situation of internal method families, circumference is not visible
from Circle’s compilation unit (indeed, circumference may not even have been
written yet), so Circle cannot be required to declare a circumference method.
Instead, we require the compilation unit declaring circumference to declare a
concrete default method, which is a method that accepts any argument tuple of
the appropriate type. The requirement can be satisfied in Figure 21 by making
the first method concrete; that method then handles the unseen Circle class.
In general, the requirement is as follows:

R2. The compilation unit that introduces an external method family
f must declare a concrete default method for f . Also, an external
method may not be declared abstract.

Requirement R2 has the effect of treating abstract classes as if they were con-
crete for the purposes of external method families. The requirement therefore
does limit the expressiveness of external method families, sometimes requiring
default methods that are unnecessary or unnatural. Of course, the requirement
still allows MultiJava to be strictly more expressive than Java, which lacks ex-
ternal methods altogether. Analogous with requirement R1, external methods
are forbidden from being abstract to ensure that the required default method
is always applicable.

3.3.2.2 Ensuring the Absence of Ambiguity. Figure 22 illustrates an am-
biguity problem for multimethods. Both methods in the figure belong to the
intersect method family defined by the top method shown in Figure 1. Be-
cause neither the “Rectangle” nor “intersect” compilation unit depends upon
the other, each unit successfully typechecks. In particular, intersect appears
to be properly implemented from each compilation unit. However, at run time
a message-ambiguous error will occur if intersect is invoked on a pair of one
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Fig. 23. An ambiguity problem from multiple inheritance.

Rectangle and one Circle: both methods in the figure are applicable, but nei-
ther is more specific than the other.

To handle this problem we impose a requirement that disallows the second
intersect method shown in Figure 22 from being written, thereby resolving
the potential ambiguity. The requirement is as follows:

R3. An external method must be declared in the same compilation
unit as any methods that it overrides, and those methods must also
be external.

The second intersectmethod in our example violates the requirement, because
intersect’s top method is declared in Shape’s compilation unit.

Requirement R3 is no burden on the traditional Java style, since it only af-
fects external methods. Ordinary Java-style overriding is allowed, as illustrated
by the first intersect method shown in Figure 22, and regular methods may
still belong to external method families, as shown in Figure 17. The require-
ment does restrict the external methods that may be written. First, an external
method must belong to an external method family. Second, all external meth-
ods of a given method family must be declared in the same compilation unit.
The requirement ensures that if two methods are in compilation units such
that neither unit depends upon the other, then the two methods will be appli-
cable to disjoint sets of valid type tuples. Therefore, the two methods cannot be
ambiguous with one another.

Finally, Figure 23 illustrates an ambiguity problem in the presence of Java’s
interfaces, which support multiple inheritance. For this example, suppose that
Shape is an interface, as are its subinterfaces Rectangle and Rhombus. Because
neither of the two compilation units in the figure depends upon the other, the
ambiguity of circumference for Square eludes modular static detection. To han-
dle this problem, we disallow dynamic dispatch on interfaces, either as the
receiver or as an argument:
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R4. If an external method’s receiver is an interface, then the method
must be its method family’s top method. Also, an interface may not
be used as a specializer.

In Figure 23, the first circumference method is allowed by the requirement
because it is the top method, while the other two methods are disallowed. The
top method may safely have an interface for a receiver because in that case the
receiver is not being dynamically dispatched upon: the top method is only in-
voked if there is no applicable, more-specific method. Requirement R4 naturally
generalizes Java’s requirement that an interface contain no concrete methods,
which prevents interface types from affecting dynamic dispatch.10

3.4 Implementation-Side Typechecking for Value Dispatching

We generalize implementation-side typechecking to support value dispatching.
The local checks on individual methods, as described in Section 3.3.1, are aug-
mented to check that each value specializer is a compile-time constant expres-
sion that has the argument’s associated static type. The checks that a method
family is properly implemented are augmented by treating each value used as a
specializer as a singleton concrete subclass of its associated type. For example,
during checks on fib in Figure 10, the values 0 and 1 are checked to have a
most-specific applicable method. This checking ensures, among other things,
that an ambiguity will be signaled statically if multiple fib methods dispatch
on 0.

4. MODULAR COMPILATION

The compilation strategy for MultiJava generates standard Java bytecode and
retains the modular compilation and efficient single dispatch of existing Java
code. Additional runtime cost for MultiJava’s new features is incurred only
where they are used; code that does not make use of multiple dispatch or open
classes compiles and runs exactly as in Java.

We have implemented our modular compilation strategy (as well as the mod-
ular typechecking strategy described in the previous section) in mjc, a compiler
for MultiJava. The mjc compiler is built as an extension to the Kopi compiler,
an open-source Java compiler [Kopi 2004].

The next subsection describes the compilation strategy for multimethods,
focusing on just internal method families. Section 4.2 describes the translation
and invocation of external method families. Section 4.3 describes the compi-
lation of super calls and resends. Finally, Section 4.4 discusses some miscel-
laneous compilation issues. Although mjc outputs Java bytecode, to simplify
discussion we will describe compilation as if translating to Java source code.

10The original design of MultiJava did not permit any external methods whose receiver was of an
interface type. This restriction was relaxed to that of R4 based on user feedback as discussed in
Section 5.2.1.
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Fig. 24. Example showing (a) multimethods in MultiJava, and (b) their translation to Java.

4.1 Compiling Multimethods

Multimethods in MultiJava are compiled in the style of encapsulated multi-
methods [Bruce et al. 1995], though the complexity of this style is hidden from
the programmer.

All the multimethods of a given internal method family within a single class
are grouped in a dispatcher method. Consider the set of intersect method
shown in Figure 24(a). For such a set of multimethods, the MultiJava compiler
produces a dispatcher method, as shown in Figure 24(b), that selects the ap-
propriate multimethod at run time. The dispatcher method internally does the
necessary checks on the specialized arguments, using cascaded sequences of
instanceof tests (or equality comparisons, for value dispatching). The multi-
method bodies are translated into a set of private methods.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.



546 • C. Clifton et al.

For the set of multimethods compiled into a dispatcher method, the dynamic
dispatch tests are ordered to ensure that the most-specific multimethod is
found. If one of the multimethods in the set is applicable to some argument
tuple, then the typechecking restrictions ensure that there will always be a
single most-specific check which succeeds. Moreover, the multimethod body se-
lected by this check will be more specific than any applicable superclass method:
the subclass method is always more specific in the receiver position than any
superclass method.

If every multimethod compiled into a dispatcher method has a specializer on
some argument position, then it is possible that none of the checks will match
the runtime arguments. In this case, a final clause passes the dispatch on to the
superclass, as shown in Figure 24(b). Eventually a class must be reached that
includes an unspecialized method, as required by typechecking requirement
R1.

Compiling Java single dispatch methods is just a special case of these rules.
Such a method does not dispatch on any arguments and has no other local
multimethods overriding it, and so its body performs no runtime type dispatch
on any arguments; it reduces to just the original method body.

An invocation of an internal method family is compiled exactly as in
Java. Clients are insensitive to whether or not the invoked method fam-
ily performs any multiple dispatch. Thus, the set of arguments on which a
method dispatches can be changed without needing to retypecheck or recompile
clients.

There is no efficiency penalty for Java code compiled with the MultiJava
compiler. Only methods that dispatch on multiple arguments get compiled with
typecases. A Java program would likely use typecases whenever a MultiJava
program would use multimethods anyway. If a Java program used double dis-
patching to simulate multimethods, then it might be possible to generate more
efficient code than MultiJava (two constant-time dispatches), but double dis-
patching in Java sacrifices the ability to add new subclasses modularly.

4.2 Compiling External Method Families

The external method families introduced by MultiJava’s open class mechanism
are compiled using anchor classes, generated classes that represent the exter-
nal method family. The anchor classes allow external methods to be compiled
apart from the types that they augment. An anchor class has a single static
field, function, that contains a dispatcher object. During an invocation of the
external method family, the dispatcher object is responsible for invoking one of
the method family’s methods based on MultiJava’s dynamic dispatch seman-
tics. The dispatcher object is a Java implementation of a first-class function; it
allows the method family’s methods to be stored in a field. We will see below
how this helps in implementing overriding methods.

As an example, Figure 25(a) introduces the rotate external method fam-
ily. Figure 25(b) shows the anchor class generated by our compiler. The
anchor class’s access level is based on the declared access modifier of the ex-
ternal method family. The anchor class declares nested types representing the
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Fig. 25. Example showing (a) an external method family in MultiJava, and (b) its translation to
Java.

dispatcher object and its interface. As with internal method families, dispatch-
ing is performed using cascaded instanceof tests. Since the methods do not
appear in the same class as their logical receivers, the receiver argument of the
call is passed as an extra argument.

To invoke an external method family, the compiled code for a client loads the
dispatcher object from the anchor class’s function field and invokes its apply
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method. So the MultiJava code

Shape shape1 = new Rectangle();
shape1.rotate(90.0);

is translated to

Shape shape1 = new Rectangle();
rotate$anchor.function.apply(shape1, 90.0);

By typechecking requirement R3, all external methods will be declared in
the same compilation unit as their top method. However, as described earlier,
MultiJava allows a class declaration to contain regular Java-style methods that
belong to external method families. This idiom allows a new subclass to be given
appropriate overriding methods for any existing external method families. To
compile these methods, MultiJava uses the Chain of Responsibility pattern
[Gamma et al. 1995, pp. 223–232].

For example, Figure 26(a) shows a class, Oval, containing a method that
belongs to the external method family rotate. Figure 26(b) shows the results
of compiling Oval. A new nested dispatcher class, Oval.dispatcher, is created
that implements the same interface as does the original dispatcher in rotate’s
anchor class. The new dispatcher’s apply method checks whether the runtime
arguments should dispatch to the local rotate method. If there were other
rotatemethods declared in Oval, they would be compiled into this applymethod
as well. If no local method is applicable, the apply method of the dispatcher’s
oldFunction field is invoked.

For this compilation strategy to work properly, the new dispatcher’s old-
Function field must point to the original dispatcher object, and the function
field of rotate’s anchor class must be mutated to point to the new dispatcher
object. Both of these tasks are accomplished during static initialization of Oval,
as shown in the figure. These links from the function field to the new dis-
patcher object and from the oldFunction field to the original dispatcher object
form the chain of responsibility. When the method family is invoked, the apply
method of the new dispatcher object is called. It checks if any of its methods
are applicable. If none are, it calls the apply method of the original dispatcher
object.

This chain-of-responsibility compilation strategy works when a single sub-
class adds methods to the external method family, or when several subclasses
do so. Each dispatcher object checks for the applicability of its methods and,
if no applicable methods are found, passes control on to the next dispatcher
in the chain. Eventually dispatching either finds a dispatcher object with an
applicable method, or the search ends at the initial dispatcher object installed
when the method family was created. Typechecking requirement R2 ensures
that this last dispatcher object on the chain includes a default method that
handles all arguments, guaranteeing that dispatching terminates successfully.

Java ensures that superclasses are initialized before subclasses [Gosling
et al. 2000, §12.4], so dispatcher objects for superclasses will always be put
onto the chain earlier than subclass dispatchers. Therefore, subclass dispatch-
ers will be invoked before superclass dispatchers, as desired. Two unrelated
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Fig. 26. Example showing (a) a class extending an external method family, and (b) its translation
to Java.

classes might have their dispatchers put onto the chain in either order, but this
is fine because the dispatching semantics ensures that the methods of such
unrelated classes are applicable to disjoint sets of valid type tuples, so at most
one class’s methods could apply to a given invocation.

There is a degenerate case in which a constructor makes a self call—a call
where the target object is this—to an external method family. In our running
example, this would correspond to a constructor for Shape including code like
this.rotate(90.0). Suppose the actual object being initialized is a subclass,
like Oval in our example. Because of Java’s initialization sequence, the target
object of the self call will not be fully initialized.11 In particular, when the
subclass extends the external method family, like Oval does, then the family’s
chain of responsibility will not be fully initialized when the self call is made.

11This problem with objects being available for dispatch before they are fully initialized is related
to the problem of enforcing nonnull values for fields of “raw” objects [Fähndrich and Leino 2003].
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The method to be added by the subclass will not yet be available. Although we
have never seen this situation in practice, mjc will issue a warning if a self call
to an external method family appears within a constructor or initializer.

A similar problem can arise with calls from static initializers, for example if
the static initializer for Shape included the code new Oval(...).rotate(90.0).
To avoid this static initializer problem, the actual implementation updates the
chain of responsibility at the beginning of each of Oval’s constructors (with ap-
propriate guards against multiple updates). For clarity, we omit these details
from the figures above. Also omitted for clarity are locking mechanisms to en-
sure thread safety for updates and accesses of the chain of responsibility. For
example, all accesses to a function field are synchronized on the Class object of
the anchor class.

4.3 Compiling Super and Resend

The compilation of super calls and resends presents interesting challenges.
Because of the various compilation tactics for method definitions, the compiled
super call or resend may originate in

—a nested class of an anchor class (for external methods of an external method
family),

—a nested class of a regular Java class (for Java-style methods of an external
method family), or

—in a regular Java class (for Java-style methods of an internal method family).

The target method of the invocation may appear in the same variety of lo-
cations. Thus there are a number of permutations of caller and target method
locations. When the target method belongs to an internal method family we use
the Java virtual machine’s invokespecial bytecode, just as is done to compile
super calls in Java [Lindholm and Yellin 2000, §6]. When the target method
belongs to an external method family we use the functions stored in the chain
of responsibility. In some cases the generated code must use synthetic methods
that direct execution to the appropriate nested dispatcher class or must skip
functions in the chain of responsibility. These corner cases are quite mundane;
the details are available in Clifton’s thesis [Clifton 2001, §3.4].

4.4 Other Compilation Issues

We conclude our discussion of the compilation strategy for MultiJava by ad-
dressing three additional interesting issues.

4.4.1 Pleomorphic Methods. In Java, it is possible for a method to simul-
taneously belong to more than one method family. For example, as shown in
Figure 27, a concrete method may both override a superclass method and im-
plement an interface method. We say that such a method is pleomorphic.12

Because of Java’s single inheritance, only one of the method families to which a

12The term pleomorphic comes from crystalography, where it means “having more than one lattice
structure.”
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Fig. 27. A pleomorphic method, belonging to more than one method family.

pleomorphic method belongs will have a concrete top method. The other method
families must be declared in interfaces.

It is possible that a particular client only sees one of the method families
containing a pleomorphic method. For example, in the code

MetallicAppearance ma;
. . .
ma.brush();

the client can only see the method family declared in the interface MetallicAp-
pearance. In Java, an invokeinterface instruction is used if the client-visible
method family is declared in an interface; otherwise, an invokevirtual instruc-
tion is used. Except for the instruction used, the calling convention is the same
for either sort of method family, and either sort of call can resolve to the same
pleomorphic method at run time [Lindholm and Yellin 2000, §6].

In MultiJava, pleomorphic methods are slightly more complicated. Multi-
Java’s type system, like Java’s, ensures that only one of the method families
to which a pleomorphic method belongs will have a concrete top method; the
other method families must be declared in interfaces. However, in MultiJava
the concrete top method may be an external method. As we have discussed,
external method families use a different calling convention than do inter-
nal method families. For a client that only sees the external method family,
the pleomorphic method must appear in the external method family’s chain
of responsibility. But for a client that only sees the method family declared
in an interface, the pleomorphic method must be defined inside the receiver
class.

Our solution to this dilemma is to compile the pleomorphic method according
to the strategy for external method families. Additionally, we create a redirec-
tor method within the receiver class that directs an invocation of the internal
method family on that class into the external method family. Clifton’s thesis
describes this technique in more detail [Clifton 2001, §3.3].

4.4.2 Private External Methods. A second issue that arose during the im-
plementation of mjc was the handling of private external methods. MultiJava
allows a compilation unit declaring a public external method family to also de-
clare private helper methods. A sample of a compilation unit with a private
external method is given in Figure 28. Our compilation strategy is to make the
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Fig. 28. Compilation unit with a private external method.

anchor class of the private external method be a nested class of the regular
anchor class. For the code in the figure a swap$anchor nested class is created
inside the sort$anchor class. This enforces the access semantics for the private
external method and avoids a name clash should a nonprivate external method
family named swap be declared in the same package.

4.4.3 Multimethod and External Method Signatures in Bytecode. A third
issue that arose during our implementation was the need to read MultiJava-
specific features from bytecode. This is necessary to allow compilation units to
be safely compiled given only the bytecode, but not the source, of other com-
pilation units that are depended upon. Our solution to this problem is to use
the capability of adding custom attributes to bytecode [Lindholm and Yellin
2000, §4.7.1]. We use attributes to encode the signatures of all the local meth-
ods of an external method family in the bytecode for the method family’s anchor
class. Similarly, we use attributes to encode the signatures of all multimethods
(that are not also external methods) in their receiver class’s bytecode. These
attribute values are easily read from bytecode, allowing a MultiJava compiler
to efficiently retrieve this information. Using these attributes does not cause
any incompatibilities with existing virtual machine implementations; such im-
plementations must ignore attributes that are not recognized.

5. APPLICATIONS

MultiJava has been used by others in the implementation of several appli-
cations. This section illustrates the ways in which MultiJava’s features have
been employed and reports on user feedback about the benefits and limitations
of the language. The applications span several domains. First, MultiJava has
been used to implement reliable ubiquitous computing systems. Versions of the
following systems have been implemented at least in part using MultiJava:

—Guide [Philipose et al. 2004] is a system for inferring the presence and nature
of human activities in indoor spaces.

—Labscape [Arnstein et al. 2002] is a ubiquitous computing environment for
cell biology laboratories.
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Fig. 29. (a) Binary methods in Java, and (b) in MultiJava.

—The Location Stack [Hightower et al. 2002] is a framework for combining and
representing measurements from a heterogeneous network of sensors that
track the locations of objects in an environment.

Second, MultiJava has been used to implement two compilers. Hydro is a
domain-specific language for XML data processing, and HydroJ [Lee et al. 2003]
is an extension to Java supporting Hydro’s features.

Finally, MultiJava was used to implement a graphical user interface (GUI)
for manipulating a reconfigurable chip that performs machine learning tasks
[Bridges et al. 2003].

5.1 Multimethods

Our users employ multimethods in several ways. As expected, multimethods are
used to solve the binary method problem. Multimethods have also proven useful
in implementing event handlers, performing tree traversals, and in finite-state
machines. The following sections detail these uses.

5.1.1 Binary Methods. One of the simplest uses of multimethods is in the
implementation of binary methods. In Java, all classes have at least one bi-
nary operation, the equals method family inherited from java.lang.Object.
Figure 29(a) shows a common idiom for implementing equals methods in Java,
and Figure 29(b) shows the MultiJava equivalent. Measurement is the base class
for sensor measurements in the Location Stack. Multimethods are used in this
way to implement equals in this and many other classes of the Location Stack,
as well as in the implementations of the Hydro and HydroJ compilers. Hydro
and HydroJ also include an expressive sublanguage for pattern matching on
XML data. A variant of the MultiJava style shown in Figure 29(b) is used in
the Hydro and HydroJ compilers to implement binary methods on patterns,
including pattern specificity checking and pattern intersection.

Even on the small example in the figure, the MultiJava version enjoys sev-
eral advantages. The method in the MultiJava version declaratively expresses
its dispatching behavior in its header. This allows programmers to more easily
understand the functionality and allows MultiJava to check statically for in-
completeness and ambiguities. The MultiJava version also allows functionality
to be more easily inherited. For example, the else case shown in Figure 29(a)
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Fig. 30. Base class of components in an event-based system.

is not needed in the MultiJava version. Instead, MultiJava’s dispatching se-
mantics ensures that the equals method in java.lang.Object will be invoked
whenever the receiver is a Measurement instance (or a subclass) but the argu-
ment is not. Because Object’s equals method implements pointer equality, the
simplified code has the same semantics as the original. In contrast, the Java
version of Measurement’s equals method must always include an else case to
ensure completeness.

5.1.2 Event Dispatching. Many kinds of applications are naturally struc-
tured in an event-based style. In this style, components do not communicate
by directly sending messages to one another. Instead, each component is able
to announce a set of events. Separately, other components can register to re-
ceive notification whenever a certain event is announced by providing a handler
procedure for the event. When an event is announced, the system invokes all
the handlers that are associated with that event. The canonical example of an
event-based system is a GUI. Events are announced in response to user ac-
tions (e.g., clicking a button), and these events trigger the appropriate actions
of components (e.g., updating the display). Java’s Abstract Windowing Toolkit
(AWT) is a library for building GUIs that employs the event-based style.

Several of the projects in our user community employ event-based architec-
tures. The GUI for the reconfigurable chip is built on top of AWT. The event-
based style is also used by all of the ubiquitous systems described earlier. Each
of those systems is built on top of either one.world [Grimm et al. 2001] or
Rain [Rain 2004], which are event-based libraries for facilitating the creation
of ubiquitous computing applications in Java. In the ubiquitous systems, exten-
sibility is at a premium: it must be possible for new components to easily join
and leave the system dynamically. The event-based style facilitates this exten-
sibility by keeping components loosely coupled, since components communicate
only indirectly through events.

5.1.2.1 Basic Event Dispatching. In the context of an object-oriented lan-
guage like Java, an event-based system typically includes an abstract class or
interface that defines the required functionality of all components, as shown in
Figure 30. Each component is a concrete subclass of Component, and each event
is similarly a subclass of an abstract Event class. A component’s handleEvent
method is its event handler: when an event occurs, the system notifies those
components that have registered for the event by calling their handleEvent
methods. The object representing the event is passed as an argument. This
structure is used by both the one.world and Rain libraries.

The handleEvent operation is a natural application for multiple dispatch
in MultiJava. The functionality for handling an event depends both on which
component is handling the event and on which event has been announced, but
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Fig. 31. (a) Event handling in Java, and (b) in MultiJava.

Java only allows one of these hierarchies to be dispatched upon. Therefore, pro-
grammers must manually dispatch on the other hierarchy, usually via runtime
type tests and casts. An example of Java and MultiJava event handlers in a
hypothetical GUI for a text editor is shown in Figure 31.

The benefits of MultiJava illustrated for binary methods are accrued to an
even greater extent for event handling. MultiJava allows each conceptual han-
dler to be encapsulated as its own method, rather than buried in an if case
of one monolithic method. Users report that this style of implementing han-
dlers exactly matches their high-level view of a component as containing a
set of handlers, each handling a particular event. The header of each multi-
method characterizes the conditions under which that handler will be invoked,
and static checking ensures that there is a most-specific applicable handler for
each possible event. As a simple example of static checking, the lack of a de-
fault handler accepting any Event would signal a static completeness error in
MultiJava. In contrast, the Java version would compile without error but fail dy-
namically in unexpected ways if the final else case were missing. Users report
such errors to be common, particularly in the ubiquitous computing context,
where the system can easily become misconfigured as components enter and
exit.

The MultiJava style also had the unexpected effect of encouraging program-
mers to write better documentation. For example, “Handles events” is the
typical comment for a monolithic handleEvent method. A user reported that
MultiJava made it natural for him to instead document the actual behavior
of each handler in comments. Such documentation can then be displayed by
mjdoc, an HTML-based documentation tool for MultiJava programs developed
by David Cok, which is similar to Java’s javadoc tool. (The mjdoc tool was de-
veloped based on user requests for such a facility.)
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5.1.2.2 Event Dispatching in Practice. Event handlers are often signifi-
cantly more complicated than the example shown in Figure 31, and MultiJava’s
advantages over Java increase with this complexity. For example, the various
Event subclasses may form a deep hierarchy, with subclasses of Event having
their own subclasses. This scenario occurs in the Location Stack. In the text
editor example above, suppose that Save has a subclass SaveAs for saving to
a new file. If special behavior for SaveAs is required for EditorGUI shown in
Figure 31, the Java version must be updated carefully with a new if case. The
programmer must ensure that that the SaveAs case comes before the case for
Save, or else the new case will never be invoked. In general, the programmer
must always ensure that a class is tested before any of its superclasses. In
the MultiJava version, a new handleEvent multimethod specializing on SaveAs
can be added anywhere in EditorGUI, and MultiJava’s symmetric dispatching
semantics ensures that it will be invoked properly.

Code for deep hierarchies can also naturally take advantage of resends. For
example, suppose that EditorGUI on SaveAs should do everything that it does
for Save, preceded by some extra statements s1, . . . , sn (e.g., initializing the
new file) and followed by some other statements sn+1, . . . , sm. In the MultiJava
version, the handleEvent method for SaveAs simply performs s1, . . . , sn, uses
resend to invoke EditorGUI’s handler for Save, and then performs sn+1, . . . , sm.
The Location Stack employs this style to reuse code across handlers. In contrast,
in the Java version one must either duplicate the code for Save in the case
for SaveAs, or one must create a helper method that both cases invoke, which
requires that the case for Save be modified.

Another common source of complexity in practice is when a handler depends
upon more than just the kind of event announced in order to determine what
action to take. For example, events in the one.world library have a closure
field of type Object. The closure is used in request-response interactions to dis-
tinguish among several response events processed by the same event handler.
Many handlers dispatch based on both which event is passed and what kind of
closure that event contains. MultiJava generalizes naturally to handle this sce-
nario, via dispatch on multiple arguments. Instead of defining handleEvent by a
set of multimethods, a single handleEvent method now invokes a helper method
handleWithClosure, passing both the announced event and the event’s closure
field. The handleWithClosure method then performs the desired dispatching:

void handleWithClosure(Event@Event1 e1,
Object@LocalClosure closure) { . . . }

void handleWithClosure(Event@Event2 e2,
Object@RemoteClosure closure) { . . . }

· · ·
Each handleWithClosure method cleanly documents the conditions under
which it will be invoked, and static typechecking ensures a most-specific ap-
plicable handler for each (event, closure) pair. The only disadvantage is the
need to create this helper method, in order to dispatch on the closure field.
Aside from being more verbose, the helper method also breaks the bond be-
tween the event and the closure: there is nothing in the handleWithClosure
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operation documenting the fact that the closure argument should be the value
of the closure field of the event argument. Using the helper method also makes
it hard to inherit handlers from superclasses (as described below), unless those
superclasses also use handleWithClosure helper methods.

Despite these disadvantages, the MultiJava solution is much more elegant
than an equivalent solution in Java. To handle dispatch on closure fields in
Java, the event-handling code must be further obfuscated with additional type
tests and casts. Dispatch on closure fields was typically implemented in Java
using nested ifs: an outer if dispatched on the event, and each case of that if
included code to dispatch on the various kinds of closures. Such an approach is
not just tedious but is asymmetric, making it harder to understand the condi-
tions under which each “handler” triggers. Further, a one.world user reported
that this style made it too easy to omit enforcement of some dispatching re-
quirements in the code. For example, dispatching on the closure could be omit-
ted in outer if cases that didn’t use the closure (or didn’t depend on its runtime
type), even though it was still intended that the closure be of a particular type.
Because of the tedium of the Java style, such errors of omission occurred of-
ten in that user’s Java code. Also, the user reported that on revisiting code
that omitted dispatching on closure types, he was sometimes unsure whether
he had intentionally or inadvertently omitted the closure dispatching. With
MultiJava, there is no advantage to omitting dispatch requirements, be-
cause each handleWithClosure method explicitly mentions both the event
and its closure, and expressing a dispatching requirement is lightweight and
declarative.

5.1.2.3 Component Hierarchies. MultiJava also allows new ways of struc-
turing handlers that were not considered previously by the developers of the
event-based systems. Because multimethods can be inherited, it is possible to
have deep hierarchies of components. Each component inherits all of the han-
dlers of its superclasses, optionally overrides any of these handlers, and adds
new handlers.

Both the reconfigurable chip’s GUI and the Location Stack employ this style.
For example, in the GUI, the abstract Component class represents an arbitrary
GUI element. It has a default method handling any Event that acts as the
“error handler,” freeing subclasses from having to handle unexpected events. An
abstract HighlightedComponent subclass represents a component that is able to
be highlighted. It inherits the error handler and adds a handler that responds
to the act of highlighting by updating the GUI properly. A TerminalComponent
is a subclass of HighlightedComponent representing a wire connection point on
the chip. It inherits the error handler and the highlighting functionality, and it
has additional handlers for events specific to terminals.

Simulating this idiom of fine-grained handlers inheriting functionality from
superclasses is very awkward in the Java version, where each handler is a mono-
lithic if block. Each subclass has to explicitly invoke super in the right places
to manually dispatch to superclass handlers when inheritance is desired. That
style is so unnatural that the developers of these systems did not even consider
handler inheritance to be an option before they started using MultiJava.
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Fig. 32. (a) Dispatching on primitive events in Java, and (b) in MultiJava.

5.1.2.4 Value Dispatching. The event-based style presented so far uses a
hierarchy of Event subclasses to represent the various events in a system. An
alternative approach employs a single Event class with no subclasses, with an
integer or string field signifying which kind of event a particular instance rep-
resents. Although this latter style is less object-oriented and less expressive
(e.g., it does not allow deep hierarchies of events), it is perceived to be a more
lightweight solution and is fairly common. Event-based systems that employ
this style can naturally use MultiJava’s value dispatching to declaratively dis-
patch on the event “tags.”

For example, the Java AWT sometimes uses strings to distinguish events. Its
ActionEvent class has an “action command” string that is set in the constructor
and specifies the event being represented. Figure 32 shows how event handlers
in this style are written in Java and MultiJava, for the hypothetical text editor.
The MultiJava version has the same advantages as described for the code in
Figure 31b. Labscape employs MultiJava in this way to handle events related
to its GUI. Value dispatching allows Labscape to use the existing AWT library
while still enjoying the benefits of the MultiJava style.

There are opportunities for value dispatching even when events are writ-
ten in a class hierarchy. An earlier example illustrated event handlers that
depend upon an event’s closure field in addition to the event’s runtime type.
Some one.world events, subclasses of TypedEvent, contain an integer type field
which is used to distinguish among events of the same general kind. MultiJava
handlers in this case look similar to the handleWithClosure methods presented
above, but with the second argument employing value dispatching on the type
field of the received event.
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5.1.2.5 Limitations. Users did point out some limitations of MultiJava
in the context of event dispatching. First, MultiJava can be more verbose
than equivalent code using ifs, because of the need to repeat the method’s
header for each handler. Second, it is easy to forget the Event@ portion of a for-
mal parameter’s type, thereby accidentally using static overloading instead of
multimethod dispatch. To alleviate this problem, we augmented the mjc com-
piler to signal a warning if static overloading is used where multimethod dis-
patch could be used instead. Third, dispatching on properties of an event other
than its runtime type requires the creation of helper methods, as mentioned
earlier.

Fourth, it is not easy to update a component when a new event type enters the
system. The component must be augmented in place to contain a multimethod
specializing on the new event type. This is still better than the Java version, in
which the programmer must find the right place in the if chain to place a new
case. However, it would be nice to write the new multimethod external to the
component, thereby allowing new events to be incorporated without modifying
existing code. This ability is a step toward allowing a running system to be
updated on the fly with new events, which is important for the ubiquitous
computing applications.

Finally, the need for default methods limits MultiJava’s ability to perform
useful completeness checking. It is impossible for a component to document the
fact that it handles exactly three kinds of events, and no others. Instead, it
must always include a default method, to handle any unexpected events. Some
programmers found it useful for the language to force them to think about
exceptional situations, but others thought it more of a nuisance. An extension
to MultiJava described in Section 6 below, called Relaxed MultiJava, provides
one possible solution to this problem.

5.1.3 Noninvasive Visitors. Section 2.3 illustrated how multimethods can
be used to implement a noninvasive version of the visitor design pattern. The
HydroJ compiler is built on top of the Polyglot extensible compiler framework
[Nystrom et al. 2003], which supports visitors over the hierarchy representing
abstract syntax tree (AST) nodes. HydroJ provides new subclasses of Polyglot’s
visitors and uses multimethods to implement the node dispatch.

As described in Section 2.3, open classes enjoy two key advantages over non-
invasive visitors. However, the noninvasive visitor pattern provides the benefits
of classes, which external methods lack. Helper fields can easily be included in
a visitor class, while these must be simulated through extra parameters in ex-
ternal methods.13 More importantly, visitors can inherit functionality from su-
perclasses, analogous to the inheritance of event handlers described earlier. For
example, Polyglot provides an abstract HaltingVisitor class, which performs
a boilerplate traversal over AST nodes that also supports bypassing certain

13Analogous to external methods, external fields would also fit this purpose. The key obstacles in
implementing external fields are initializing those fields and handling persistence for them. These
issues are discussed in more detail in Clifton’s thesis [Clifton 2001, §6.1.4]. A thorough investigation
of these issues remains as future work.
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nodes during the traversal. Concrete visitors that require the functionality to
bypass nodes simply subclass HaltingVisitor and provide overriding methods
to customize its behavior as necessary. In contrast, each external method family
must implement its own traversal behavior from scratch.

One limitation of MultiJava that arises in the HydroJ compiler is the require-
ment that specializers be classes. Polyglot provides its AST nodes as a hierarchy
of interfaces, with the intent that the associated implementation classes should
remain hidden from clients. The HydroJ compiler must break this abstraction
boundary and dispatch directly on the implementation classes. The Java style
does not suffer from this problem, because instanceof tests are allowed on in-
terfaces. Again, Relaxed MultiJava provides one solution to this problem (see
Section 6).

5.1.4 Finite-State Machines. A common way to implement a finite-state
machine (FSM) in Java is to associate an integer constant with each state. The
FSM’s class has a field recording the current state, and a method in the class
implements the FSM’s transition function: based on the given input and the cur-
rent state, the method performs some actions and transitions to a new state.
This style is error prone and difficult to understand, since the programmer
must manually implement the logic of the transition function as a monolithic
block of code. An alternative approach uses the “state” design pattern [Gamma
et al. 1995]. This pattern uses an explicit class hierarchy to represent states,
and each state class implements its portion of the FSM’s transition function.
However, the state pattern is heavyweight and tedious, requiring the intro-
duction of several new classes and requiring the FSM to explicitly forward
messages to its state field. Further, while the state pattern makes dispatch on
the FSM’s state declarative, dispatch on the FSM’s input must still be manually
implemented.14

In MultiJava, value dispatching provides a natural way to implement FSMs
that are as lightweight as the first style described above and as declarative as
the second style. As a simple example, Figure 33 implements an FSM that keeps
track of the number of consecutive alternations of 0 and 1 that have been input.
There are two states, which respectively track whether a 0 or 1 is expected as
input. The transition function has three transitions, each nicely encapsulated
in its own multimethod. For example, the first transition method “fires” when
the input is 0 and the FSM is in the EXPECT ZERO state. In that case, the FSM
moves to the EXPECT ONE state. The method uses MultiJava’s allowance of
any compile-time constant expression after a @@. The last transition method
is the one required by typechecking requirement R1, to ensure completeness.
It handles the case when unexpected data is input (or an unexpected state is
reached), in which case the FSM resets.

The Location Stack uses this style to implement the FSMs that parse read-
ings from the various location sensors. The developer reports that it is much

14The standard version of the state design pattern uses a separate method for each input, rather
than a single transition function. Using separate methods works well if there is a fixed set of inputs
but makes it difficult to extend this set after the fact.
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Fig. 33. Implementing finite-state machines in MultiJava.

easier to understand the behavior of an FSM written in this way, versus the
typical Java style. The MultiJava version also enjoys all the benefits described
earlier for multimethods. For example, the FSM is easily extensible by sub-
classes, which can add new transitions and optionally override existing ones.

5.2 Open Classes

The Hydro and HydroJ compilers exploit open classes for several purposes,
which are described in this section.

5.2.1 Unavailable Source. A common use of open classes has been to aug-
ment classes whose source is not available (or not easily modified). The Hydro
and HydroJ compilers add several methods to classes in the Java standard li-
brary. For example, a method for removing whitespace from a string is defined
in HydroJ as follows:

public String String.deleteWhitespace() { . . . }
Clients can import the new method family and then invoke it as if it were part of
the original functionality of strings. In Java, this idiom is typically simulated
by a static method in a dummy class, which is a bit more tedious and has a
different call syntax from the original methods of String.

A more interesting example is illustrated in Figure 34, which is a
variant of code from the Hydro compiler. The doEach method augments
java.util.Iterator with closure-based iteration. The closure is defined as a
(typically anonymous) class that implements the Procedure interface. A side
benefit of open classes illustrated in this example is the ability to add methods
to interfaces (like Iterator). Such an ability was absent in the original design
of MultiJava, but was added based on user feedback.
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Fig. 34. Adding closure-based iteration to Java.

The Hydro compiler offers yet another interesting example related to un-
available source. Hydro uses the SableCC parser generator [Gagnon and
Hendren 1998], which builds the AST node hierarchy automatically from a
description of Hydro’s grammar. Modifying the resulting AST classes is unde-
sirable, because any changes will be lost the next time SableCC is run. The
nodes generated by SableCC provide a visitor-like framework so clients can im-
plement external traversals over the AST hierarchy, and the Hydro developer
used these visitors to implement the major passes in the compiler. However, he
preferred using open classes for functionality that is not meant to traverse the
entire AST hierarchy. For example, Hydro includes a rich language for pattern
matching, and open classes make it easy to add new behavior to the pattern
nodes. Using the visitor infrastructure would require that the external opera-
tions for patterns actually be able to handle an arbitrary node, which is more
tedious and loses some static type safety.

A necessary limitation of open classes is the lack of privileged access to the
receiver class. To use open classes successfully, the public functionality of the
receiver must be rich enough to allow clients to implement unanticipated be-
haviors. For example, String has methods that provide access to each character,
and this is enough to allow whitespace to be removed by clients, as shown in
the first example above. This limitation of open classes is necessary to retain
Java’s encapsulation properties, and it is shared by the Java solutions to the
augmenting method problem discussed in Section 2.2.1.

5.2.2 Client-Specific Extensions. It can make sense to make an operation
external even if the source code for its receiver class is available. One such
scenario is when the new functionality is client-specific rather than general-
purpose. With open classes, the new functionality can be implemented without
polluting the view of the original receiver class as seen by other clients. In
general, each client can have his own library of extensions to an existing class
hierarchy. The HydroJ compiler implements client-specific operations in this
way. For example, the compiler maintains an instance of java.util.List con-
taining AST nodes. The compiler extends Java’s List implementation with an
external method for deep copying List’s of AST nodes. Although in this case the
source code for List is actually not available for editing, the developer reports
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Fig. 35. Structuring code by algorithm with open classes.

that he would use external methods for this operation even if he had source-
code access to List. Indeed, an AST-specific operation does not belong in the
view of List as seen by all clients.

5.2.3 Flexible Code Structuring. Open classes also allow code decomposi-
tions other than by receiver class. It is sometimes useful to encapsulate an entire
method family’s methods as a unit, rather than spreading the methods across
the various receiver classes. This can be especially helpful when the methods
implement a single conceptual algorithm. As an example, the code for print-
ing AST nodes in the HydroJ compiler is implemented as an external method
family, a portion of which is illustrated in Figure 35. The developer felt that
this decomposition was more natural than the by-class view. In addition, the
HydroJ compiler contains a few different algorithms for printing AST nodes.
Each is implemented as an external method family, and clients import the one
appropriate to their needs.

6. RELAXED MULTIJAVA

As discussed above, the experience of our user community provides a practi-
cal demonstration of several ways in which MultiJava can be used to improve
code comprehension, extensibility, and correctness. User experience with Mul-
tiJava has also helped to identify useful enhancements to the language. In the
previous section, we mentioned two of these: David Cok’s HTML documenta-
tion utility, mjdoc, and the addition of external methods on interfaces. In this
section we discuss an extension to MultiJava, called Relaxed MultiJava (RMJ)
[Millstein et al. 2003], that relaxes the static typechecking requirements in
order to address other concerns identified by our users.

The key observation behind RMJ is that violations of MultiJava’s typecheck-
ing requirements, discussed in Section 3.3.2, indicate only the potential for a
method family to be incompletely or ambiguously implemented, because Multi-
Java must be conservative given only a modular view of the program. Therefore,
RMJ performs the same modular static typechecking as MultiJava, but RMJ
treats a violation of some requirement as a warning rather than an error. The
programmer can choose to resolve the violation, as he would be forced to do
in MultiJava, thereby obtaining a modular guarantee of type safety. Alterna-
tively, the programmer can choose to violate the MultiJava requirement and
take responsibility for ensuring that the potential error does not arise, in order
to obtain the desired expressiveness. A custom class loader [Liang and Bracha
1998] for RMJ incrementally checks that potentially erroneous method fami-
lies remain complete and unambiguous as classes are loaded, thereby ensuring
that all errors are still detected no later than class load time. Therefore, as
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Fig. 36. Glue methods in RMJ.

in MultiJava, message-not-understood and message-ambiguous errors cannot
occur when messages are sent at run time.

RMJ provides several useful programming idioms that are disallowed in
MultiJava. Treating requirement R2 as a warning instead of an error allows
programmers to implement abstract external methods. For example, when the
compilation unit in Figure 21 is typechecked, RMJ signals a warning but still
allows compilation to complete. The abstract circumferencemethod documents
the fact that each concrete Shape subclass must provide its own circumference
method (or must inherit one). The RMJ class loader ensures this is the case,
incrementally checking concrete Shape subclasses as they are loaded in the
program. In this way, RMJ relieves the burden on the programmer of having
to write default methods when they are deemed unnecessary or unnatural.
In our example, unless the signature of the original Shape class is very rich,
it is unlikely that a reasonable default implementation of circumference can
be provided. In MultiJava, the programmer may therefore have no choice but
to make the default method raise an exception, which is effectively the same
as the message-not-understood error that MultiJava’s restrictions are meant
to prevent. RMJ avoids such awkward default methods, at the cost of some
additional load-time checking.

As another example, consider the Circle class shown in Figure 8. The imple-
menters of the Circle and circumference extensions to the original Shape class
are unaware of one another. Therefore, neither extension provides a method for
computing the circumference of a Circle. Given the circumference methods
shown in Figure 21, RMJ will signal an incompleteness error if circumference
and Circle are ever loaded in the same program. However, in RMJ a client who
wants to include both extensions in a program can make them work together
by implementing the appropriate method, as shown in Figure 36. MultiJava
would disallow this method from being written, since it violates requirement
R3—the external method is not declared in the same compilation unit as its
method family’s top method. In RMJ, the method triggers a compile-time warn-
ing but is allowed, and the RMJ class loader incrementally checks that the
method is not ambiguous with any modularly unseen circumference methods.
We call methods that violate requirement R3 glue methods, because they serve
to integrate two previously independent libraries.

RMJ’s typechecking relaxations are implemented as an option to the mjc com-
piler. We have also implemented RMJClassLoader, a subclass of Java’s default
class loader, in order to perform RMJ’s incremental load-time checks. While the
custom class loader naturally augments Java’s dynamic loading scheme, users

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.



MultiJava • 565

may sometimes desire early feedback about the possibility of load-time errors.
We therefore also provide a “preloader” tool RMJPreLoader, which uses whole-
program information to statically check for the possibility of such errors. If no
errors are found, then the programmer is assured that the RMJClassLoader will
never signal an error, for any possible run of the given program (modulo the
use of reflection to dynamically load classes).

Although RMJ offers strictly greater flexibility than MultiJava, we have
chosen not to make the relaxed version of the language the default. To imple-
ment glue methods in their full generality, the current code generation strategy
for RMJ produces separate dispatcher classes for each method of an external
method family. This strategy results in bytecode that is slower than that cur-
rently produced by the nonrelaxed option, which compiles all external methods
from the same compilation unit into a single dispatcher class. While MultiJava
could be made to use RMJ’s compilation strategy, we have chosen not to impose
the efficiency penalty on the common case of complete, unambiguous method
family implementations.

The introduction of glue methods also requires augmented support for load-
ing and linking external methods into applications. Currently RMJ’s custom
class loader is responsible for explicitly loading all external methods when ap-
propriate, in addition to performing load-time checks on classes. Therefore, in
order for external methods to work properly, all RMJ programs must be run
on top of our custom class loader. Keeping MultiJava, rather than RMJ, as the
default version of the language allows external methods to be loaded as de-
scribed in Section 4, avoiding the need to use the RMJ custom class loader in
the common case. If Java had a whole-program link-time phase in place of its
lazy class-loading scheme, this distinction between MultiJava and RMJ would
not exist.

7. RELATED WORK

This section discusses other multimethod-based languages, other approaches to
the extensibility problem, and languages for advanced separation of concerns.

7.1 Other Multimethod-Based Languages

There are several other languages supporting multimethod dispatch. Cecil
[Chambers 1992, 1997] is a statically typed, prototype-based object-oriented
language supporting multimethods written external to their associated objects.
Cecil requires the whole program to safely perform implementation-side type-
checking [Litvinov 1998]. Dubious [Millstein and Chambers 2002; Millstein
2003] was designed as a distillation of Cecil to its core constructs, for formal
study of the modular typechecking problem. MultiJava’s modular type system
is based on that of Dubious.

Common Lisp [Steele 1990; Paepcke 1993] and Dylan [Shalit 1997; Feinberg
et al. 1997] are both multimethod-based languages. All methods are written
external to their classes. To avoid runtime ambiguities, Common Lisp totally
orders the arguments of a method family; Dylan uses the symmetric semantics,
as in MultiJava. Both Common Lisp and Dylan totally order the inheritance
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hierarchy, eliminating the potential for multiple-inheritance ambiguities. The
languages are dynamically typed, so they do not consider the issue of static
typechecking, modular or otherwise.

Polyglot [Agrawal et al. 1991] is a database programming language akin to
Common Lisp with a first-order static type system. There are no abstract meth-
ods, so there is no possibility of message-not-understood errors. Further, the
dispatching semantics uses Common Lisp-style total ordering of multimethod
arguments and inheritance, avoiding all ambiguities. Therefore, only the mono-
tonicity of the result types [Castagna et al. 1995; Reynolds 1980] of multimeth-
ods needs to be checked to ensure modular type safety.

Kea [Mugridge et al. 1991] and Tuple [Leavens and Millstein 1998] are stat-
ically typed, class-based languages with symmetric multimethods. Kea has a
notion of separate compilation, but this requires runtime implementation-side
typechecking of method families. Tuple requires the whole program to be avail-
able in order to perform implementation-side typechecking statically. In Tuple,
all multimethods are written as external methods that dispatch on an explicit
tuple of arguments as the receiver, thereby cleanly separating specialized from
unspecialized argument positions. An early design for MultiJava adapted this
style, but we rejected that in favor of the current design for several reasons.
Tuple requires that all methods of the same method family have identical spe-
cialized and unspecialized argument positions. This means, for example, that a
multimethod cannot override an existing Java method. Further, because the dis-
tinction between specialized and unspecialized arguments is visible to clients
in Tuple, specializing an unspecialized argument, or the converse, requires
modifying all call sites in the program.

Encapsulated multimethods [Castagna 1995; Bruce et al. 1995] are a de-
sign for adding multimethods to an existing single dispatch object-oriented
language. An encapsulated multimethod is written inside of its receiver’s class;
external methods are not supported. Encapsulated multimethods involve two
levels of dispatch. The first level is just like regular single dispatch to the class
of the receiver object. The second level of dispatch is performed within this class
to find the best multimethod applicable to the dynamic classes of the remain-
ing arguments. The encapsulated style can lead to duplication of code, since
multimethods in a class cannot be inherited for use by subclasses.

Several other efforts have extended Java to support multimethod dispatch.
Parasitic methods [Boyland and Castagna 1997] and Half & Half [Baumgartner
et al. 2002] are both extensions to Java that include encapsulated multimeth-
ods. Both augment the encapsulated style with the ability to inherit multi-
methods from superclasses. The resulting expressiveness is comparable to that
of MultiJava’s internal multimethods, but MultiJava additionally retains the
natural symmetric multimethod dispatch semantics. MultiJava also supports
open classes and value dispatching. Both parasitic methods and Half & Half
support the use of interfaces as specializers in multimethods. Because it is dif-
ficult to modularly check multimethod ambiguity in the presence of interface
specializers, parasitic methods modify the multimethod dispatching seman-
tics so that ambiguities cannot exist, employing the textual order of methods to
break ties. Half & Half resolves the problem by performing implementation-side
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typechecking on entire packages at a time, rather than on individual classes. For
such package-level checking to be safe, Half & Half must also limit the visibil-
ity of some interfaces to their associated packages, thereby disallowing outside
clients from employing those interfaces as specializers. In addition to multi-
methods, Half & Half supports a restricted form of retroactive abstraction, the
ability to add new superclasses and superinterfaces to existing classes. Again,
this is possible because of Half & Half ’s package-granularity typechecking. It is
unclear how to simultaneously support Java’s modular static typechecking and
retroactive abstraction, so we have not yet added this feature to MultiJava.

Others have incorporated multimethods into Java without extending the
language’s syntax, instead using a library solution. These solutions have the
advantage that any Java compiler can be used to compile programs that em-
ploy multiple dispatch. However, these solutions are typically not as general as
MultiJava’s multimethods. In addition, because multimethods are not type-
checked specially, incompletenesses and ambiguities are not statically detected.
For example, Forax et al. [2000] provided a MultiMethod class, and multimeth-
ods are declared by invoking MultiMethod.create. Grothoff [2003] provided
an abstract Runabout class; user-defined subclasses of Runabout have a visit
method that employs multiple dispatch. Both of these strategies rely heavily on
Java’s reflection in order to implement multimethod dispatch. By building dis-
patchers dynamically, based on the current set of loaded multimethods, these
solutions can generate more efficient code than that generated by MultiJava’s
modular compilation strategy.

Dutchyn et al. [2001] also employed a library solution for incorporating mul-
timethods into Java. They used a marker interface to indicate classes where
static overloading should instead be treated as dynamic overriding (i.e., multi-
method specialization). A modified virtual machine implemented the changed
semantics for classes bearing the marker interface. They showed that the ap-
proach results in a large speedup over double dispatching, because multimethod
dispatch is done in native code. It would be interesting to consider combining
the modified virtual machine approach with MultiJava. MultiJava’s generated
dispatcher code would be used to achieve the correct semantics when a Multi-
Java class was run on a standard virtual machine. A MultiJava-aware virtual
machine could use native dispatch code, à la Dutchyn et al., to achieve faster
execution, perhaps by using our existing multimethod bytecode attributes de-
scribed in Section 4.4.3.

The Nice programming language [Bonniot and Keller 2003] is a recent object-
oriented programming language that is similar to Java but has its heritage in
ML≤ [Bourdoncle and Merz 1997]. Nice was developed after MultiJava and
it includes multiple dispatch and open classes. Nice also includes a restricted
form of retroactive abstraction based on abstract interfaces [Bonniot 2003].
Nice does not support modular implementation-side typechecking, which is the
key technical contribution of our work. While MultiJava is designed to be a
backward-compatible extension to Java, Nice is a separate language with sig-
nificant differences and incompatibilities. Nice is, however, designed to inter-
operate with Java programs and libraries, and the Nice compiler targets the
standard Java virtual machine.
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Ernst et al. [1998] described a generalization of multimethod dispatch
called predicate dispatch. Each method can be associated with a predicate
guard, which specifies when the method is applicable. An object-oriented-
style dispatching semantics is used, with logical implication of predicates as
the specificity relation among methods. The authors provided a conservative
implementation-side typechecking algorithm for predicate dispatch. The algo-
rithm is nonmodular, requiring access to the entire program to ensure safety.
Follow-on work described efficient implementation techniques for predicate dis-
patch [Chambers and Chen 1999]. These techniques could also be useful for
improving MultiJava’s compilation strategy. JPred [Millstein 2004] is an ex-
tension of Java supporting predicate dispatch. JPred adapts and generalizes
MultiJava’s typechecking requirements to support modular, static typecheck-
ing for predicate dispatch.

7.2 Other Solutions to the Extensibility Problem

Jiazzi [McDirmid et al. 2001] is an extension to Java that adds a module mech-
anism based on units [Flatt and Felleisen 1998; Findler and Flatt 1999], a
powerful form of parameterized module. Jiazzi supports extensibility idioms
not provided by MultiJava, such as the ability to implement a mixin [Bracha
and Cook 1990; Findler and Flatt 1999; Flatt et al. 1998], which is a class pa-
rameterized by its superclass. The authors also showed how to encode an open
class pattern in Jiazzi, whereby a module imports a class and exports a ver-
sion of that class modified to contain a new method or field. Open classes in
MultiJava allow two clients of a class to augment the class in independent
ways, without having to be aware of one another. In contrast, in Jiazzi there
must be a single module that integrates all augmentations, thereby creating
the final version of the class. Module linking in Jiazzi is performed statically, so
it is not possible to dynamically add new methods to existing classes. Dynamic
augmentation is possible in MultiJava, since open classes are integrated with
Java’s regular dynamic loading process.

Zenger and Odersky [2001] described an extensible datatype mechanism in
the context of an object-oriented language. Classes can declare “cases,” which
are similar to ML data variants. Methods of other classes use functional-style
pattern matching to dispatch on the data variants of an existing datatype. The
result is a form of augmenting method similar to our noninvasive visitors. To
ensure completeness in the presence of datatype extension, all methods that
pattern-match on extensible datatypes must include the equivalent of the un-
specialized method required by MultiJava’s requirement R1. As with noninva-
sive visitors, Zenger and Odersky’s functions are not extensible. Therefore, if
new data variants require overriding function cases, a new function must be
created that inherits the existing function cases, and clients must be modified
to invoke the new function.

More recently, Zenger and Odersky [2005] presented two solutions to the aug-
menting method problem written in the Scala programming language. Their
solutions use three unique features of Scala: dependent types, mixin compo-
sition, and explicitly typed self references. Their solutions are dual to each
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other, with one primarily expressed in the object-oriented style and the other
in a procedural style. Unlike the MultiJava solution, where default operations
must be provided to prevent unseen incompleteness, the Scala type system
rules out invocation of operations on datatypes for which the operations are not
defined. The tradeoffs include a more complex type system in Scala and advance
planning for extension of the base datatype or operations. Unlike MultiJava,
which is a simple extension to Java, Scala is a unique programming language.
Thus, it solves a different problem and is not subject to the same constraints
as MultiJava. Scala’s type system is based on the νObj calculus [Odersky et al.
2003]. Zenger and Odersky [2005] also demonstrated a solution to the binary
method problem using Scala. Their solution was based on the double-dispatch
technique and requires the same tedious coding. However, unlike traditional
double dispatch, the use of dependent types allows (with advance planning)
modular extension of the associated method family. Scala is designed to inter-
operate with both the Java Virtual Machine and libraries, and with the .NET
libraries and runtime [Troelsen 2003].

Other work on the extensibility problem has addressed it in the context of
functional languages. Extensible ML (EML) [Millstein et al. 2002] is an ML-like
language that supports hierarchical, extensible datatypes and functions. Such
constructs allow for the easy addition of both new data variants and new op-
erations to existing abstractions. EML retains fully modular typechecking by
adapting MultiJava’s typechecking requirements. Garrigue [2000] showed how
to use polymorphic variants, which are variants defined independently of any
particular datatype, to obtain both modular data-variant and function extensi-
bility in ML. However, unlike in MultiJava, both kinds of extensibliity require
advance planning. Mixin modules [Duggan and Sourelis 1996] allow datatype
and function declarations to be split across multiple modules, thereby providing
a form of extensible datatypes and functions. Mixin modules must be explicitly
combined to form the complete datatypes and functions. Therefore, there must
be a single place in the program where all extensions to a given datatype or
function are known. This contrasts with the “nonlinear” extensibility of Multi-
Java: there need not be a single compilation unit where all of a class’s subclasses
or all of a method family’s methods are visible.

7.3 Advanced Separation of Concerns

Separation of concerns is the well-known software engineering concept that
code for different subdomains, or aspects, of a problem should be made as inde-
pendent as possible to encourage comprehensibility and efficiency (in both reuse
and parallel development) [Parnas 1972, 1975]. Object-oriented languages en-
courage the separation of concerns into code representing individual classes
in a model of the problem domain. However, there are some aspects which
cut across the decomposition of a problem domain into classes [Harrison and
Ossher 1993; Kiczales et al. 1997; Tarr et al. 1999]. The subfield dealing with
this problem is known as advanced separation of concerns, or aspect-oriented
software development.

Recently several languages have emerged that provide direct support for
advanced separation of concerns. For example, AspectJ [Kiczales et al. 2001;
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AspectJ Team 2004] is an aspect-oriented extension to Java, whose aspects can
extend existing classes in powerful ways. Hyper/J [Ossher and Tarr 2001] is a
subject-oriented [Harrison and Ossher 1993] extension to Java that provides
hyperslices, which are partially implemented modules that are composed to
form classes or other modules. Both languages support open classes; for exam-
ple, this ability corresponds to AspectJ’s inter-type declarations. The languages
additionally support many more flexible extensibility mechanisms than Multi-
Java. For example, AspectJ’s before and after advice provide ways of modifying
existing methods externally. To cope with this level of expressiveness, these
languages employ nonmodular typechecking and compilation strategies. For
example, AspectJ’s compiler “weaves” the aspects into their associated classes;
only when all aspects that can possibly affect a class are available for weav-
ing are final typechecking and compilation performed. (In recent versions of
AspectJ, weaving can be performed on bytecode and typechecking is divided
into separate phases, one performed incrementally at compile time and another
whole-program phase performed during bytecode weaving.) Also, because of the
weaving process, all clients of a woven class see the changes introduced by the
aspects, unlike MultiJava’s client-specific open classes.

Binary Component Adaptation (BCA) [Keller and Hölzle 1998] allows
programmers to define adaptation specifications, which are directives for modi-
fying existing classes. Such specifications can include the addition of new meth-
ods to existing classes, thereby supporting a form of open classes. Adaptation
specifications can also include modifications not supported by MultiJava, like
retroactive abstraction. The typechecking and compilation strategy of BCA is
similar to the aspect-weaving approach described above, requiring access to
all adaptation specifications that can affect a given class in order to typecheck
and compile the class. The authors described an on-line implementation of BCA,
whereby the weaving is performed dynamically using a specialized class loader.

8. CONCLUSION

In this article we have described the MultiJava programming language, mo-
tivated the design of the language, and discussed its modular, static type-
checking, and modular compilation strategy. MultiJava adds the ability to dis-
patch on a class externally, that is without modifying the class in place. Among
other things, this allows MultiJava to cleanly solve the binary and augmenting
method problems. It does so, unlike other solutions, without requiring advance
planning by the original implementor of a datatype. We think that MultiJava
represents a sweet spot in the design space: it allows the concise, declarative
expression of multimethod dispatch and augmenting methods; and its type sys-
tem is simple and intuitive.

We have also demonstrated how MultiJava’s conservative extension of Java
has allowed our users to easily adopt the language while creating more readable
and maintainable code. Sample code drawn from our user community illustrates
the benefits afforded by multiple dispatch and open classes and provides at least
anecdotal evidence arguing for the inclusion of these features in mainstream
programming languages.
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