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ABSTRACT
In an evolving software system, components must be able
to change independently while remaining compatible with
their peers. One obstacle to independent evolution is the
brittle parameter problem: the ability of two components to
communicate can depend on a number of inessential details
of the types, structure, and/or contents of the values com-
municated. If these details change, then the components
can no longer communicate, even if the essential parts of
the message remain unaffected.

We present HydroJ, an extension of Java that addresses
this problem. In HydroJ, components communicate using
self-describing, semi-structured messages, and programmers
use pattern matching to define the handling of messages.
This design stems from two central ideas: first, that self-
describing messages reduce dependence on inessential mes-
sage format details; and second, that object-oriented pattern
matching naturally focuses on the essential information in a
message and is insensitive to inessential information.

We have developed these ideas in the context of Rain, a
distributed, heterogeneous messaging system for ubiquitous
computing. To evaluate the design, we have constructed
a prototype HydroJ compiler, implemented some Rain ser-
vices in HydroJ, studied the evolution of an existing Rain
service over time, and formalized HydroJ’s key features in a
core language.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language Con-
structs and Features; D.1.5 [Software]: Programming Tech-
niques—Object-Oriented Programming ; D.2.12 [Software]:
Software Engineering—Interoperability

General Terms
Languages
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1. INTRODUCTION
Distributed or persistent systems built from heterogeneous

components are growing in importance — today’s software
systems often run on multiple nodes that differ widely in
their underlying implementation technology, and that com-
municate across the boundaries of space, time, or adminis-
trative domains. Examples of such systems include web ser-
vices [57] and ubiquitous computing [54] systems, as well as
systems that process persistent semi-structured data stored
in databases [52].

The combination of object-oriented languages and semi-
structured data exchange formats are often touted as a good
substrate for these kinds of systems (for example, SOAP [7]
messaging combines these technologies). In particular, semi-
structured data — of which XML [56] is currently the most
popular species — has several strengths for this domain.
First, the simple and transparent encoding of semi-structured
data has enabled widespread cross-platform support, in the
form of parsers and other tools.

Second, and perhaps more importantly, semi-structured
data mitigates what we call the brittle parameter problem.
The brittle parameter problem is caused by unnecessary de-
pendence on low-level details of the types, structure, and/or
contents of communicated data values. When components
depend on these details, they cannot remain compatible in
the face of changes to these details as the system evolves. For
example, in a typical C-based remote procedure call (RPC)
system [5], any change to a procedure’s argument or return
types requires that both endpoints be recompiled and re-
linked at once — even if only one endpoint depends on the
changes. For example, if a component A originally sent a
structure of type τ to component B, but then is upgraded
to send a structure τ ′ which is just τ plus some additional
fields, then replacement of A with its upgraded version will
generally require that B be modified, recompiled, relinked,
and restarted — even if B doesn’t care about the extra fields
in τ ′. The reverse situation will happen if B is upgraded to
return additional information that A doesn’t care about.
To take another example, in Java remote method invoca-
tion [51], the object serialization format embeds a hash of
the structure of each serialized object’s class. This hash
serves effectively as a unique identifier — therefore, even
the tiniest difference in the implementation or interface of



an object sent as a parameter can render two communicating
components incompatible.

We call essential those parts of the information commu-
nicated to a component that the component actually uses;
all other parts of the information, format, and type are
inessential. The brittle parameter problem occurs whenever
the information sent from one component changes in a way
that affects only features that are inessential to the receiv-
ing component, but the two components are still rendered
incompatible.

Unlike more rigid data encodings (e.g., XDR [49], which
is used in standard RPC), semi-structured data structures
are often processed via libraries that permit variation in the
exact format and contents of a message. For example, the
existence of a subtree of data that the client program does
not use can usually be ignored. Therefore, programs that
communicate using XML data can be relatively indifferent
to “inessential” details.

However, existing techniques for processing semi-structured
data still leave much to be desired. Typically, program-
mers rely on libraries that either provide a cumbersome
tree-traversal interface, or map semi-structured data to the
types in the host language. The former approach sacrifices
the convenience of the native programming system, and the
latter sacrifices the flexibility of semi-structured data (we
discuss these alternatives in more detail in Sections 3.2-3.3).

To address these problems, we propose HydroJ, a lan-
guage that preserves much of the flexibility of semi-structured
data exchange, but also provides compact and natural con-
structs for processing this data. HydroJ is based on two
key ideas: first, software components should communicate
via self-describing, semi-structured messages; and second,
receiving components should define how to behave upon re-
ceipt of such a message via handler methods, whose inter-
faces are defined declaratively through patterns over mes-
sages rather than the usual method name and argument pro-
file. Patterns naturally characterize the essential features of
messages and ignore the inessential features.

We believe that this communication foundation will make
HydroJ components significantly less brittle in the face of
independent evolution of components in distributed or per-
sistent systems. It will also provide a context in which other
mechanisms that enable software evolution — such as sup-
port for dynamic updates to program code and state [25], ex-
ternal composition languages [1], and implicit or late-bound
invocation [22, 2, 14, 30] — have more opportunities to up-
date components without introducing incompatibilities.

Our specific technical contributions, relative to previous
languages with similar features (e.g., XDuce [28, 27], which
we discuss in Section 4, along with other related languages),
are as follows:

• an “object-oriented” dispatch semantics in which mes-
sage values dispatch to the most specific matching case
in a set of patterns;

• the combination of ordered (“list-like”) and unordered
(“record-like”) patterns in a single pattern language
for semi-structured data with structural subtyping; and

• integration of these features into a mainstream pro-
gramming language (Java), and an initial evaluation
of their utility in the context of an experimental ubiq-
uitous computing system.

Of course, even when two components exchange syntacti-
cally compatible data, many other factors may render them
semantically incompatible. This holds true even for the
most brittle communication mechanisms, such as RPC or
RMI. For example, previous work by Deline [16], Garlan et
al. [20], and Walker and Murphy [53] has catalogued various
kinds of structural incompatibility beyond those we describe
here. Our work strives to maximize the potential for syntac-
tic compatibility in message data, leaving deeper semantic
compatibility checking to separate mechanisms more appro-
priate to that task.

The rest of this paper is organized as follows. In the fol-
lowing section, we informally introduce HydroJ’s syntax and
semantics through a series of concrete examples. In Sec-
tion 3, we describe an implementation and evaluation of
HydroJ in the context of the Rain distributed messaging
system [31]. Finally, in sections 4, 5, and 6, we describe
related and future work and conclude.

2. HYDROJ LANGUAGE DESIGN
In this section, we describe the key features of HydroJ

informally through a series of examples. At a high level,
HydroJ is a Java extension that adds four principal features:

Semi-structured data To the Java roster of primitive, ar-
ray, and class types, HydroJ adds a new kind of type
for semi-structured, self-describing data. Informally,
these data are arbitrary-arity trees whose non-leaf nodes
are tagged with symbols (“tag names”). HydroJ semi-
structured types abstract the salient features of XML.
They are described further in Section 2.1.

Patterns and handlers HydroJ defines a special pattern
language for describing semi-structured data. Pat-
terns are principally used to specify the set of semi-
structured messages accepted and returned by special
handler methods. They also are used to specify the
types of semi-structured values. The pattern sublan-
guage comprises HydroJ’s most important extension
to Java. We describe patterns, types, and handlers in
Section 2.2.

Service classes Service classes1 define the types of compo-
nents of a HydroJ distributed system. Service classes
are Java classes marked with an additional keyword
service; classes so marked may define handlers. In-
stances of service classes — henceforth called services
— dispatch incoming semi-structured messages using
their handlers, rather than their ordinary methods. A
simple example service is shown in Fig. 1. We describe
service classes in Section 2.3.

Type-based discovery At runtime, service class instances
publish their interface types with a public discovery
service. Services connect to each other by sending
queries to the discovery service; a query describes a
service class interface, and the result consists of a list of
currently published service class instances that match
the requested type. We describe this discovery service
in Section 2.4.

1The term “service” was chosen for historical reasons; see
Section 3.1.



handler
definition { handler #fetchData(#temp[]) returns

return{

public service class

argument pattern

}

semi−structured data value

Sensor {

#temp[Integer]

return type

#temp[this.tempVal]

Integer tempVal;

};

Figure 1: A simple service class, with one handler. The handler takes a message matching the pattern
#fetchData(#temp[]), and returns a value of type #temp[Integer].

In Sections 2.1-2.4, we present each of the above features
in turn. In Section 2.5, we discuss pragmatic issues specific
to the integration of HydroJ with its host language, Java.
Finally, in Section 2.6, we briefly describe Core Hydro, a
formalization of HydroJ.

In addition to the above features, HydroJ also has some
constructs to support concurrency and distributed messag-
ing. These constructs are non-novel and orthogonal to our
central ideas, so we do not discuss them further.

In earlier work, we developed a “pure” Hydro language
as a simplified vehicle for experimenting with the present
ideas. Pure Hydro closely resembles the Core Hydro formal-
ization; the only data types in Core Hydro are services and
semi-structured data. HydroJ is therefore the embedding of
(Pure) Hydro in Java. We believe Hydro’s pattern language
could be embedded in any statically typed general-purpose
language, but we chose Java because its portability and rich
libraries enabled us to rewrite actual Rain ubiquitous com-
puting services in HydroJ, as discussed in Section 3.

2.1 Semi-structured data
The basic semi-structured data type in HydroJ is the

tagged tree. A tagged tree can be constructed in HydroJ
using the following syntax:

#tagName[child1, ..., childN]

where tagName is the root node’s tag name, and [child1,

..., childN] are expressions evaluating to the children of
this node. A tree with zero children is written as #tagName[].
As expected, a child of a tagged tree node can be another
tagged tree. In addition, we assume that there is a fixed
set of base types serializable into XML, such as String and
Integer, whose values can be children of a tagged tree node.
So, for example, one might represent a temperature sensor
reading with the following tree:

#reading[#temperature[68], #humidity[1000]]

The children of a tagged node are ordered, so the above tree
value is distinct from the tree

#reading[#humidity[1000], #temperature[68]]

Naturally, a programmer may wish to write code that is
indifferent to the above distinction; we describe how HydroJ
supports this in Section 2.2.3.

Sometimes it is useful to manipulate references to a semi-
structured list directly; such values are constructed by using
brackets without a tag name:

#[child1, ..., childN]

We store the child list of a tree node as a collection of
object references, so all elements of a semistructured value
must be of object type. Therefore, unboxed Java primitive
values (int, boolean, etc.) cannot be directly stored in semi-
structured types. However, we provide automatic boxing on
tree construction and some syntactic sugars for unboxing
during pattern matching.

All semi-structured values are immutable, to simplify typ-
ing of references to these values.

2.2 Patterns, types, and handlers
Pattern matching is a powerful language mechanism that

compactly specifies both how a value should be structured
and how pieces of that value should be extracted and bound
to names. In HydroJ, a pattern is used to define the “profile”
of a handler method, which is responsible for processing
semi-structured messages. A handler’s pattern is analogous
to a regular method’s name and formal parameter list.

Handlers in HydroJ have the following syntax:

handler ::= handler P returns τ { stmt ∗ }

The pattern P defines the set of values to which this handler
is applicable, i.e., its argument type. The type τ gives the
handler’s return type.

The syntax of semi-structured types and patterns is given
by Fig. 2. A type describes a set of values. The pattern
syntax corresponds exactly to the type syntax, augmented
with optional name binding constructs. A pattern matches
a value if and only if its corresponding type (i.e., the type
derived by erasing all name binding constructs) includes that
value.

Each feature in the pattern language has a practical moti-
vation; the combination of these features in a single language
is one of the key technical contributions of this work. In the
rest of this section, we motivate and describe patterns in
more detail using examples.

2.2.1 Simple types and patterns
The any type describes the set of all values, making it

the equivalent of Object for semi-structured types. At the
opposite extreme, the type void describes the empty set of
values. It may appear only as the return type of handlers
that do not return values.

A base type baseType describes the set of values of that
type. The current HydroJ implementation supports String



Types
τ ::= any | void any value, no value

| baseType value of base type
| baseValue particular value
| tagName Λ tree with tag tagName

and children of type Λ
| Λ bare list

Λ ::= [ρ1, . . . , ρn] list (ordered)
| (ρ1, . . . , ρn) bag (“unordered list”)

ρ ::= τ | *τ single and repeated child

Patterns
P ::= any any value

| baseType value of base type
| baseValue particular value
| tagName L tree with tag tagName

and children matching L
| L bare list
| id=P match P and

bind to name id

L ::= [Q1, . . . ,Qn] ordered list
| [Q1, . . . ,Qn,id=..] ordered list, binding rest
| (Q1, . . . ,Qn) bag (“unordered list”))
| (Q1, . . . ,Qn,id=..) bag, binding rest

Q ::= P | *P | id=*P single and repeated child

Tag and type names

tagName ::= #id

baseType ::= id
| packageName.baseType

Figure 2: Syntax of HydroJ semi-structured data
types and patterns

and Integer (as well as int, which is an Integer that’s
automatically unboxed), although there is in principle no
obstacle to supporting more. A literal value of a base type
can also be used as a type, describing the singleton set of
just that value.

Recall that a pattern matches a value iff the value is a
member of the type corresponding to the pattern. Thus,
the any pattern matches any value, the baseType pattern
matches any value of that base type, and a literal value
pattern matches only that value.

2.2.2 Trees and ordered lists
A tree type #id Λ describes the set of all trees with tag id

whose children are of list type Λ. One kind of list type, the
ordered list type, [τ1,...,τk], describes the set of all semi-
structured lists of length ≥ k whose first k children have
types τ1,...,τk. Lists matching a pattern of this form can
have more than k elements; any extra elements are ignored.
This feature, width subtyping for ordered list types, is one
important way that HydroJ’s patterns avoid dependence on
inessential information: a sender can evolve by adding addi-
tional trailing “parameters” to a tree of information, without
affecting communication with unchanged receivers.

For example, a service might have the following handler
to handle polling requests:

handler #poll[] returns #ack[] { ... }

The #poll[] pattern matches any message that’s a tagged
tree whose root tag is poll. The child list pattern [] matches
any list with ≥ 0 children, i.e., any list at all. Therefore,
a message #poll[#timestamp[123456]] would match this
pattern as well. An alternate, more specific handler:

handler #poll[#timestamp[int]] returns #ack[]

{ ... }

would also match the following messages:

#poll[#timestamp[123456]]

#poll[#timestamp[123456,any],#sender[String]]

(width subtyping is used twice, at different tree levels, in
the second tree), but not the following:

#poll[]

#timestamp[123456]

#poll[#sender[String],#timestamp[123456]]

(in the last tree, the #timestamp[123456] subtree is not the
first child, so it doesn’t match the ordered list pattern).

2.2.3 Bags (unordered lists)
The order of children in a list may not be important to the

receiver of a message. This is particularly true if all essen-
tial elements of the list are distinctly tagged trees, as in the
examples above. For example, a handler may wish to match
any #poll[...] message that has a #timestamp[int] sub-
tree as any child, not just as the first subtree. Intuitively,
#poll may be a “record-like” tree, in which the child order
does not matter, just their “field names”, i.e., tags.

To meet this need, HydroJ provides unordered list types,
called bag types, written with round parentheses (...) in-
stead of square brackets [...]. A bag type of the form
(τ1,...,τk) describes the set of all semi-structured lists of
length ≥ k that have children with types τ1,...,τk in any



order, not necessarily consecutively. As with ordered list
patterns, list values matching a bag pattern of this form can
have more than k elements; any extra elements are ignored.
This more flexible kind of width subtyping for bag types is
a second important way that HydroJ’s patterns avoid de-
pendence on inessential information: a sender can evolve
by inserting parameters or reordering parameters, without
affecting communication with unchanged receivers.

For example, a more flexible polling handler could be writ-
ten as follows:

handler #poll(#timestamp[int]) returns #ack[]

{ ... }

This handler would accept the following messages:

#poll[#timestamp[123456]]

#poll[#timestamp[123456],#sender[String]]

#poll[#sender[String],#timestamp[123456]]

but not the following:

#poll[]

#timestamp[123456]

#poll[#info[#timestamp[123456]]]

Both ordered list and (unordered) bag patterns can match
against the same underlying lists (whose elements always ap-
pear in some order). Therefore, when constructing a value,
a programmer need not decide a priori whether to view the
lists within it as ordered or unordered. It is only a pattern’s
view of data that is ordered or unordered.

To ensure non-ambiguity of pattern matching for bag pat-
terns, we require that the child patterns in a bag pattern be
disjoint, i.e., that each child pattern match a non-overlapping
set of values from every other child pattern. Intuitively, this
captures the fact that bag patterns are “record-like:” in a
conventional language, the fields of a record are disjoint by
virtue of having distinct field names. Our requirement gen-
eralizes this notion. In the common case (including all the
examples above), child patterns will have disjoint root tags.
However, our disjointness rule also makes patterns like fol-
lowing legal:

#data(#reading[#humidity[int],

#reading[#temp[int]]])

The two subpatterns above, #reading[#humidity[int] and

#reading[#temp[int]], cannot match the same value, even
though they have the same root tag #reading. Therefore,
they are permitted. We can statically check whether a bag
pattern has disjoint child patterns. At runtime, we can im-
plement pattern matching against a bag pattern in a single
left-to-right pass through the list value’s children, without
backtracking.

2.2.4 Repetition (“star”) types and patterns
The list types above are analogous to tuple or record types

in a traditional language: they have a fixed number of (es-
sential) elements, each with its own type. It is also impor-
tant to describe the analogue to a traditional array type: a
variable-length list of elements, all of which have the same
type. In keeping with previous work in XML processing lan-
guages, such as XDuce [28], we support this notion not with
a new kind of list type, but rather with a new form of list
child: the repetition type.

Repetition types have the syntactic form *τ , and they
can appear only in place of a child in a list (ordered or
unordered). The type *τ describes a sequence of zero or
more children, all of type τ . The syntax echoes the Kleene
star operator of regular languages, and we will informally
call these star types. We will call the type τ beneath a star
type *τ its base type.

For example, a handler could match against a sequence of
reading values that contain a temperature value by using
the following pattern:

handler #data[#timestamp[int],

*#reading[#temp[int]],

#sender[String]] returns void

{ ... }

This handler accepts all of the following messages:

#data[#timestamp[1234],

#sender["sensor3"]]

#data[#timestamp[1234],

#reading[#temp[12]],

#sender["sensor3"]]

#data[#timestamp[1234],

#reading[#temp[12]],

#reading[#temp[23]],

#reading[#temp[34]],

#sender["sensor3"]]

Star types are permitted as children of bag types and pat-
terns as well. In a bag pattern, a star pattern matches all
children that match its base pattern, regardless of the order
of those values. For example, consider the following handler:

handler #data(#timestamp[int],

*#reading[#temp[int]],

#sender[String]) returns void

{ ... }

This handler accepts of all the messages above, plus the
following:

#data[#sender["sensor3"],

#timestamp[1234]]

#data[#reading[#temp[12]],

#timestamp[1234],

#sender["sensor3"]]

#data[#sender["sensor3"],

#reading[#temp[12]],

#reading[#temp[23]],

#timestamp[1234],

#reading[#temp[34]]]

A single list pattern may contain several star patterns,
each of which matches disjoint subsequences of children. For
example, the following handler accepts sequences of temper-
ature and humidity readings, in any order:

handler #data(#timestamp[int],

*#reading[#temp[int]],

*#reading[#humidity[int]],

#sender[String]) returns void

{ ... }

This handler accepts of all the messages above, plus the
following:



#data[#reading[#humidity[65]],

#sender["sensor3"],

#reading[#temp[12]],

#reading[#humidity[87]],

#reading[#temp[23]],

#reading[#humidity[98]],

#reading[#humidity[76]],

#timestamp[1234],

#reading[#temp[34]]]

As with bag patterns, unrestricted star patterns can in-
troduce ambiguities in pattern matching. To ensure non-
ambiguity of pattern matching in the face of star patterns,
and to enable matching to be implemented by a single left-
to-right non-backtracking pass through the list value’s chil-
dren, we impose some disjointness restrictions. In ordered
list patterns, we require that each star pattern child be dis-
joint with the following child pattern (if any); this ensures
that it is unambiguous when the subsequence of children
matching the star pattern ends and the next child pattern
(which might itself be another star pattern) begins. In bag
patterns, the stricter rule that all children are disjoint suf-
fices even in the face of star patterns.

For example, the pattern

#readings[*#info(#temp[int]),

*#info(#humidity[int])]

is not legal, because the children of #readings overlap on
values of type

#info(#temp[int],#humidity[int])

In other words, if the #readings tree begins with a child
with the above type, it is unclear whether this child should
be matched against *#info(#id[int]), or instead against
#info(#temp[int]).

In contrast, the slightly different pattern

#readings(*#info[#temp[int]],

*#info[#humidity[int]])

is legal, because the two subpatterns #info[#temp[int]]

and #info[#humidity[int]] do not overlap (since the #info
tags use ordered list rather than bag patterns). At run-
time, it is always clear which if any of #info[#temp[int]]

or #info[#humidity[int]] a child value matches.

2.2.5 Name binding
When matching a semi-structured value against a han-

dler’s pattern, names can be bound to parts of the value for
later reference in the handler body; these bound names play
the role of formal parameters for handlers. For example, a
pattern of the form id=P matches the same values that P
matches, but also binds the identifier id to the value that
matched P . Name binding patterns can occur anywhere
within a larger pattern. A given identifier can be bound at
most once in a handler’s pattern.

For example, suppose the programmer wished to use the
timestamp value in the #poll[] message, rather than merely
matching against it. The programmer could then write the
following:

handler #poll[#timestamp[ts=int]] returns #ack[]

{ ... ts ... }

The ts=int subpattern specifies that the value matching
int should be bound to the name ts for use in the handler
body.

We can also bind the result of a star pattern to a name:

handler #data[#timestamp[ts=int],

infos=*#reading[#temp[int]],

#sender[sender=String]] returns void

{ ... ts ... infos ... sender ... }

In the above code, infos will be bound to the entire se-
quence of consecutive values matching the star pattern. The
type of infos will be *#reading(#temp[int]). Accessor
operations are provided on sequences to get individual ele-
ments (e.g., infos.getFirst()) and to iterate through the
sequence (see Section 2.5.2).

Binding a name beneath a star pattern requires special
treatment. Consider the following:

handler #data[#timestamp[ts=int],

infos=*#reading[#temp[t=int]],

#sender[sender=String]] returns void

{ ... }

In this pattern, t should be bound not just once, but once for
each element of the enclosing infos sequence. To store these
bindings, HydroJ augments each element of infos with a
field named t of type int. These fields can be accessed in
the body of the handler, for instance:

int firstTemp = infos.getFirst().t;

2.2.6 Rest patterns
Through width subtyping, list patterns can match list val-

ues with additional children beyond those explicitly listed in
the pattern. To enable the programmer to conveniently ac-
cess these additional children, HydroJ allows list patterns
to optionally end with a special “rest pattern” id=.. (two
dots). If present, a rest pattern binds a name to all values
in the list not matched by any previous child pattern.

For example, consider the following handler:

handler #poll[#timestamp[t=int], rest=..]

returns #ack[] { ... t ... rest ... }

When matched against the value

#poll[#timestamp[1234],

#auditKey[3456], #timeout[5678]]

the name rest would be bound to the list value

#[#auditKey[3456], #timeout[5678]]

Rest patterns may be used in bag patterns as well; they
match any children not matched by explicit child patterns.
For example, consider the following handler:

handler #poll(#timestamp[t=int], rest=..)

returns #ack[] { ... t ... rest ... }

When matched against the (reordered) value

#poll[#auditKey[3456],

#timestamp[1234],

#timeout[5678]]

the name rest would be bound to the list value

#[#auditKey[3456], #timeout[5678]]

The rest pattern affects name binding only; its presence or
absence in a list pattern does not affect the set of values
that the list pattern matches.



2.3 Service classes
HydroJ service classes are Java classes marked with the

keyword service. Instances of service classes, called ser-
vices, are prepared to send and receive semi-structured mes-
sages from other services. A service class may contain han-
dler methods, which define the set of semi-structured mes-
sages the service is prepared to receive (i.e., the service’s
service type) and how incoming semi-structured messages
should be dispatched to handler bodies. A simple service
was shown in Fig. 1; some extended examples are given in
Section 3.

2.3.1 Message dispatch
When a semi-structured message is received by a service,

the service attempts to match the incoming message against
each of its handlers’ patterns. Of the handlers that matched
successfully (called the applicable handlers), the most spe-
cific handler is chosen for execution. One handler is more
specific than another if its pattern is more specific, meaning
that it matches a strict subset of values (the corresponding
type is a strict subtype).

In general, two handlers may be incomparable, neither
being more specific than the other. As a result, there may
not be a single applicable handler that is more specific than
all other applicable handlers. (These issue are analogous
to those found in languages with multiple inheritance or
multiple dispatching.) Likewise, there may be no applicable
handler for an incoming message. It is the task of static
type checking of service classes to ensure that neither of
these eventualities can occur, discussed below.2

Once a unique, most-specific applicable handler has been
chosen, its body is executed in an environment where all the
names bound by the selected handler’s pattern are available.

2.3.2 Service types and type checking
The type of a service class consists of two parts: its Java

type and its service type. The Java type includes the class’s
regular Java methods and fields. The service type is the
set of handler types, each of the form argumentType ->

returnType, for all of the service’s handler methods. The
argument type of a handler’s handler type is just the type
corresponding to the handler’s argument pattern. The ser-
vice type defines the interface to the service, i.e., the set
of semi-structured messages that the service is prepared to
receive and the result messages that will be returned in re-
sponse.

A key component of type checking of a service verifies that
the service’s handler types are unambiguous and conform-
ing. This checking ensures that, for every message that may
legally be sent to a service, there will exist a unique most-
specific handler, and moreover that the message returned
by this handler conforms to the return type expected by the
sender. The set of legal messages and their corresponding
expected return types are given by the service’s service type.

To verify non-ambiguity among handlers, it is sufficient
to compare each pairwise combination of handler argument
types. In each pair, if one argument type is strictly more
specific than the other, then this pair is unambiguous. Oth-

2In fact, when a message is received, handlers are concep-
tually checked for applicability in order of most-specific to
least-specific. As soon as an applicable handler is found,
it can be chosen for execution, since static type checking
guarantees that this handler will be the most-specific one.

erwise, the intersection of the types is computed. If this
intersection is empty, then the types are disjoint and hence
unambiguous. Alternatively, if one or more other handlers
have argument types that both cover this intersection and
are more specific than at least one of the ambiguous argu-
ment types, then the ambiguity is resolved by these other
“overriding” handlers. Otherwise, the intersection repre-
sents a potential ambiguity, and an error is reported stati-
cally.

To verify that return type declarations conform to the
sender’s expectations, we verify that, whenever one handler
is more specific than another (i.e., that overrides the other),
the more-specific handler’s return type is equal to or a sub-
type of the less-specific handler’s.

The following is an example of a class that triggers an
ambiguity error during type checking:

service class Amb {

handler #a(#b[]) returns void { ... }

handler #a(#c[]) returns void { ... }

}

The intersection of these two handlers’ argument types is
#a(#b[],#c[]); any tree of this type will be matched by
both handlers, but neither handler is more specific than the
other. To fix this error, the programmer must add an over-
riding handler that resolves the ambiguity:

handler #a(#b[], #c[]) returns void { ... }

The following is an example of a class that has a confor-
mance error:

service class Amb {

handler #a() returns #ack[] { ... }

handler #a(#b[]) returns void { ... }

}

The second handler overrides the first, but its return type is
not a subtype of the first’s. This could cause an error for a
client that sent a message of static type #a() (which might
at runtime be the value #a[#b[]]) and expected a value of
type #ack[] back. The second handler’s return type should
be changed to #ack[] or any subtype of #ack[].

This “implementation-side type checking” is similar to al-
gorithms used to check non-ambiguity of a set of multiply
dispatched methods [8] or patterns in object-oriented exten-
sions of functional languages such as EML [39]. More details
are presented in our accompanying technical report [32].

2.3.3 Inheritance
A service class may extend another service class, in which

case it inherits its superclass’s handlers. The semantics of
handler inheritance are mostly straightforward. The only
complication is that handlers dispatch on a non-receiver ar-
gument — the message — whereas ordinary Java methods
dispatch on the receiver only. This means that HydroJ ser-
vices implement a form of multiple dispatch, which intro-
duces additional opportunities for method ambiguity. Con-
sider the following two service classes:

service class A {

handler #a[#b[]] returns void {}

}

service class B extends A {

handler #a[] returns void {}

}



If a B instance receives a message #a[#b[]], should it dis-
patch to the handler defined in B or the one defined in A?
We solve this problem by considering such cases to be static
ambiguities. We require that the user define overriding han-
dlers for the ambiguous cases, just as with ambiguously de-
fined handlers within a single class. For example, the user
could add the following method to the class B:

handler #a[#b[]] returns void {}

Since this handler is at least as specific on the argument
type, and strictly more specific on the receiver type, it strictly
overrides the handler defined in A.

2.4 Channels and the discovery service
The previous subsections described how services define

the receipt of semi-structured messages. Services also need a
mechanism to connect to each other and send semi-structured
messages. The main way a service finds out about other
services is through a type-based discovery service. When a
service is created, it is automatically registered with the dis-
covery service, indexed by its service type. A service can find
out about other registered services using a discovery expres-
sion of the form discover serviceType, where serviceType
is written as a semicolon-separated list of handler types en-
closed in curly braces. For example, the following is a legal
discovery expression:

discover { #ping[] -> #ack[]; #pong -> #back[] }

The result of evaluating a discovery expression is a sequence
of channels to all registered services whose service types are
equal to or subtypes of the specified service type. (Subtyping
between service types follows the usual rules for record and
function subtyping: the order of handler types within a ser-
vice type doesn’t matter, the service subtype can have more
handler types than the service supertype, and one handler
type is a subtype of another if the subtype’s argument type
is at least as general as the supertype’s and the subtype’s
result type is at least as specific as the supertype’s.)

To send a message to a service, a program selects one of
the channels returned by a discovery expression and uses the
semi-structured send operator, <-:

(discover { #ping[] -> #ack[] }).getFirst()

<- #ping[];

This sends the #ping[] message to the first service returned
by the given discovery query.

The type of the channels returned by a discovery expres-
sion is the service type used in the discovery query. This
type enables static checking of the semi-structured send. A
semi-structured send is type-correct as long as there is at
least one handler type in the receiving channel’s type whose
argument type covers (i.e., is a supertype of) the message
being sent. This check justifies the assumption when type
checking service classes that only legal messages will be re-
ceived. The type of the result of a semi-structured send
is the return type corresponding to the covering argument
type.3 (Type checking of service classes ensures that this
assumption about the type of the result is valid.)

3It is possible for more than one handler type to cover a
given message send, in which case the send’s result type
is return type of the most specific matching handler. We
apply the same ambiguity rules to channel types as to service
types, so there can be at most one most-specific handler.

2.5 Java integration
Up to this point, our presentation of HydroJ’s features

has been fairly insulated from the Java host language. In
this section, we describe the portion of HydroJ that deals
specifically with Java. The main issues are (a) what Java
types are used to manipulate semi-structured values, (b)
what operations are supported on those types, and (c) how
uses of these types are statically type checked.

2.5.1 Java types for semi-structured values
The pattern of a handler can bind names to parts of the

received semi-structured message. These names are to be
used in the body of the handler, which is written in regu-
lar Java code (augmented with the constructs for discovery,
semi-structured sends, and semi-structured value creation
described above). But to refer to these bound names, they
need to have proper Java types. These Java types will define
the operations that can be performed within handler bodies.
Handlers should also be able to pass semi-structured values
to any other Java code, including the Java standard library.

Accordingly, there is a bidirectional mapping between non-
void Hydro types and a set of Java types. Each kind of
semi-structured Hydro type has a corresponding class in
the package hydroj.lang: trees belong to the class XTree,
lists belong to the class XList, sequences (star types) to
XSequence, and so on.

However, we do not wish to lump all different kinds of
e.g. trees into a single Java type, because this would lose
the static type information in the Hydro type about the
structure of the tree. Such a loss would not allow differently
structured values to be kept distinct through Java code, and
it would prevent static type checking of the semi-structured
value returned by a handler. Therefore, we parameterize
each of the Java classes for semi-structured data by the cor-
responding Hydro type. This enables us to statically track
the Hydro types through Java code and then recover the Hy-
dro types when returning semi-structured values from han-
dlers.

The following table gives the relationships between the
Hydro and Java forms of each kind of type:

Hydro type corresponding Java type
any hydroj.lang.XValue

baseType baseType
baseValue Java type of baseValue
tagName Λ hydroj.lang.XTree<tagName Λ>
Λ hydroj.lang.XList<Λ>
*τ hydroj.lang.XSequence<*τ>
{handlerType;...} hydroj.lang.XChannel<

{handlerType;...}>
Parameterized types may appear in HydroJ code any-

where that a regular Java type may appear. For example:

XTree<#foo[String]> t = #foo["hi"];

The parameterized type is optional, and users can (implicitly
or explicitly) cast away the type parameter:

XTree u = #foo["hi"];

Because all HydroJ values are self-describing, we can also
allow runtime casts to recover the type parameter:

XTree<#foo[String]> v = (XTree<#foo[String]>)u;



This is semantically equivalent to matching the value against
the requested type. Any Hydro type can be used as the
parameter, and the cast will succeed as long as the semi-
structured value is a member of the given type. If the match
fails, a runtime cast exception is thrown.

To reduce the burden of writing type parameters, a simple
form of local type inference is provided: when assigning to
a final reference from a semi-structured value with more
specific type, the type of the initializer is propagated to the
reference. For example, in the code fragment

String s = ...;

final XTree t = #foo[s];

the second line is equivalent to

final XTree<#foo[String]> t = #foo[s];

2.5.2 Operations on semi-structured values
Each of the hydroj.lang.* classes described above pro-

vides a set of operations for manipulating semi-structured
values of that type. For example:

• XTree provides two accessor methods, getTag() and
getChildren(); the former returns a String, and the
latter returns an XList instance of appropriately pa-
rameterized type.

• XSequence provides an xiterator() method, which
returns an instance of the special class hydroj.lang.

XIterator. XIterator instances are parameterized
by the Hydro type of the sequence’s underlying base
type, and allow type safe extraction of elements of a
sequence:

handler #temperatures[ts=*#temp[Integer]] {

// ts is of type XSequence<*#temp[Integer]>

XIterator<#temp[Integer]> i = ts.xiterator();

while (i.hasNext()) {

XTree<#temp[Integer]> nextT = i.next();

... // code dealing with #temp[Integer]

}

}

Note the absence of a cast when assigning to nextT in
the loop body.

• XList provides an accessor, iterator(), which returns
a java.util.Iterator over the list. Because XList

classes can be heterogeneous, it is not possible to pro-
vide more specific type information about values re-
turned by this iterator than that they are Object.

2.6 Formalization: Core Hydro
In order to gain confidence in our design, and to guide our

implementation, we have formalized the interesting features
of HydroJ’s pattern matching and type system in a core lan-
guage, Core Hydro. Although we do not yet have proofs of
soundness, simply stating the language semantics precisely
and formally has already yielded considerable benefits for
our understanding. For space reasons, we omit the formal-
ization from this paper; a complete presentation appears in
our accompanying technical report [32].

3. IMPLEMENTATION AND EVALUATION
The HydroJ language is implemented via source-to-source

translation into Java using the Polyglot extensible compiler
infrastructure [43]. The current HydroJ implementation,
including the compiler extension and runtime libraries, adds
about 16,000 lines of code (written mostly in MultiJava [9])
to Polyglot’s 45,000 lines of Java code.

In the remainder of this section, we describe the use of Hy-
droJ in the context of the Rain distributed system. First,
in Section 3.1, we briefly describe Rain itself. Next, in Sec-
tions 3.2 and 3.3, we describe two Rain services, LightControl
and FusionService, originally written in Java. Adapted
from ubiquitous computing applications developed by our
colleagues at Intel Research and the University of Wash-
ington, these services’ Java implementations use two alter-
native approaches to handling semi-structured messaging,
which we call manual disassembly and host type mapping,
respectively. We explain the drawbacks of these approaches,
and contrast them with hypothetical implementations in Hy-
droJ.

These services’ interfaces are relatively simple, and they
do not exercise all the flexibility of HydroJ’s type system;
we present them here primarily to provide some assurance
that the features of HydroJ would yield real benefits when
writing components in a system like Rain.

In Section 3.4, we describe the evolution of SqlService,
a third Rain service whose development history we exam-
ined in order to understand whether the HydroJ’s flexibility
would actually yield benefits in realistic evolution scenarios.

Finally, in Section 3.5, we briefly discuss the performance
of HydroJ dispatch.

3.1 Context: Rain
Rain is a messaging infrastructure originally developed

for ubiquitous computing research [31]. Participants in a
Rain system are called services; this is the origin of our
term “service class”. Rain services communicate using mes-
sages encoded in XML and sent over HTTP [29]. Because
of this lowest-common-denominator data encoding and net-
work transport, Rain services may be written in any lan-
guage; in this sense, the Rain message transport resem-
bles XMLRPC [55], SOAP [7], and .NET messaging [38].
Nonetheless, most Rain services to date have been written
in Java.

Rain services “publish” their existence by registering with
a unique shared discovery service.4 Rain services find other
services by sending a query to this discovery service, which
returns a list of registered services that match the query.
The details of Rain’s discovery service are unimportant to
our work; we note only that services are registered and
queried by name, and that (unlike in HydroJ) a service’s
advertisement is not checked against its interface type.5

Incidentally, message sends in Rain are asynchronous, and
return immediately rather than waiting for a result. In order
to expose this control over concurrency to the programmer,
HydroJ message sends are also asynchronous, and evaluate
to a future object [18] that, when touched, blocks waiting

4The discovery service is conceptually a single entity, but
there exist well-known algorithms for reliable distributed
lookup services, e.g., INS [2] and Chord [50].
5More precisely, services register an advertisement encoded
as an XML tree. Queries return all services whose adver-
tisements match a given XPath expression [58].



public class LightControl

extends com.intel.research.rain.Service

{

public void process(Message m) {

Element el = m.getElement("Light");

if (el == null) return;

Element el2 = el.getElement("Location");

if (el2 == null) return;

String location = el2.getText();

Element el3 = el.getElement("Operation");

if (el3 == null) return;

String op = el3.getText();

if (op.equals("ON")) {

... // handle ON messages

} else if (op.equals("OFF")) {

... // handle OFF messages

} else if (op.equals("FLASH")) {

... // handle FLASH messages

} else {

... // (raise error)

}

}

}

Figure 3: Java version of the LightControl Rain ser-
vice. The code extracts components of the received
message using Rain’s XML library, then performs
different operations based on the extracted op value.

for the reply to arrive. In this paper, we have omitted this
detail from the discussion of HydroJ, because futures are a
well-studied language mechanism that is orthogonal to the
present work.

3.2 LightControl and Manual Disassembly
Our first example is LightControl, a service responsible

for remotely controlling light switches in a house. Despite
its simplicity, this example was part of an actual application
(a demo of an “assisted living” system for the mentally or
physically impaired), and it illustrates a common strategy
for processing semi-structured data.

When the Rain runtime system delivers a message ad-
dressed to a service written in Java, it invokes that ser-
vice’s process method. A fragment of LightControl, in-
cluding its process method, is shown in Fig. 3. Element

is the class that represents a tagged tree in Rain’s XML li-
brary. Element corresponds roughly to HydroJ’s XTree. The
getElement method of Element takes a string, and returns
the first child whose tag name equals the string; if no such
child exists, it returns null. The getText() method returns
the tree’s first child of class String.

We call the message processing technique employed here
— i.e., ad hoc library calls — the manual disassembly style.
Note this style is quite flexible with respect to independent
extensibility: a component implemented this way requires
nothing of its peers except that they include the proper tags
in the proper structure. The user gets subtyping “for free”
— if peers include more information than this component
needs to do its work, it will not break.

public service class LightControl {

handler #Light[ #Location[loc=String],

#Operation["ON"] ] {

... // handle ON messages

}

handler #Light[ #Location[loc=String],

#Operation["OFF"] ] {

... // handle OFF messages

}

handler #Light[ #Location[loc=String],

#Operation["FLASH"] ] {

... // handle FLASH messages

}

}

Figure 4: A HydroJ approximation of code in Fig. 3.
The single process method has been replaced by
three handlers, which declaratively specify the mes-
sage formats understood by this service.

However, this flexibility comes at great cost. Writing such
code is tedious and error-prone. The programmer must ex-
pend extraordinary effort programming defensively: branches
must be inserted to check that all message components are
present, and to manually dispatch the message to behav-
ior depending on the message content. To understand what
message structure is expected, one must reason about com-
plex imperative control flow. These problems would grow
far worse in a service with more complex message dispatch
needs.

The HydroJ code for LightControl is shown in Fig. 4.
This code retains most of the flexibility of the prior code,
and the explicit message disassembly and dispatching code
has been eliminated.

On the other hand, the code in Fig. 4 does not preserve all
the flexibility of the code in Fig. 3. In Fig. 4, the #Location

and #Operation trees must be the first two children respec-
tively of the #Light tree, whereas in Fig. 3 these children
may occur anywhere in the child list of #Light. This ob-
servation gives us an opportunity to demonstrate one of the
features of HydroJ. Suppose we alter the handlers to use bag
patterns instead of list patterns (we show only the ON and
OFF cases):

handler #Light( #Location[loc=String],

#Operation["ON"] ) { ... }

handler #Light( #Location[loc=String],

#Operation["OFF"] ) { ... }

Now, the #Location and #Operation tags will match any-
where in the child list of #Light. However, a problem arises.
Recall that the children of a tagged tree value are an ordered
list. The data in a child list are not guaranteed to be unique.
What if more than one child matches #Operation — in par-
ticular, what if both #Operation["ON"] and #Operation["OFF"]

are present? This message would match both handlers, and
it is unclear which to invoke; and, in fact, HydroJ will flag
the above handlers ambiguous on argument type:

#Light( #Location[String],

#Operation["ON"], #Operation["OFF"] )

In HydroJ, the absence of this case is an ambiguity error.
The programmer will be forced to write a handler to cover



public abstract class LocationMsg {}

public class MeasurementMsg extends LocationMsg {

protected long timestamp;

protected String objectData;

protected String sensorName;

}

public class ObjectNameQuery extends LocationMsg {

protected String typeName;

}

Figure 5: Java code for Location Stack message
classes: The abstract class LocationMessage, and two
subclasses.

this case — this handler might log an error and do noth-
ing, or it might signal the sender and request that it dis-
ambiguate between the two requests. In any case, the pro-
grammer is forced to consider this case. By contrast, in
the original code from Fig. 3, the service would silently exe-
cute whichever #Operation child came first, because of the
semantics of the getElement() method. This ambiguity —
probably a programming error — could have gone unnoticed
indefinitely.

On the other hand, rather than requiring that the imple-
mentor provide the covering case above, one might prefer
to require that clients never send both the "ON" and "OFF"

operations in the same message. HydroJ’s type system does
not currently allow the user to express this restriction. One
approach to providing this expressiveness would be to en-
able the implementor to state that some tag name must be
unique in a child list. We discuss this further, as possible
future work, in Section 5.

3.3 FusionService and Host Type Mapping
FusionService is part of the Location Stack abstraction

layer, which integrates physical location information from
multiple data sources [26]. We present it here because its
Java implementation illustrates dynamic host type mapping,
a library-based alternative to HydroJ’s language constructs.

The Location Stack handles XML messages by using a
generic XML-to-Java serialization library. Figs. 5 and 6
show the classes that implement FusionService. The code
has been simplified for presentation purposes, but retains
its essential character.6 In Fig. 5, the program defines sev-
eral simple classes that serve purely as message data — they
have no methods, only fields. In Fig. 6, we show a fragment
of FusionService, the main class responsible for integrating
sensor data from various sources.
FusionService must deal with a wide array of sensor

sources, often refining its behavior based on small differ-
ences between various kinds of messages. Unlike the process
method of LightControl, FusionService’s process method
does not use ad hoc calls on the Message object and its

6In addition to more general simplifications, we have trans-
lated this code, which was originally written in MultiJava,
into plain Java. We expect that readers will be more famil-
iar with the latter. MultiJava does not solve the problems
with host type mapping that we discuss in this section, but
it does allow the programmer to define message handlers in
a more declarative fashion.

public class FusionService

extends com.intel.research.rain.Service {

public void process(Message m) {

// Deserialize XML

XMLReader reader = new XMLReader(m.getXML());

Object msg = reader.readObject();

// Process this message

if (msg instanceof ObjectNameQuery) {

ObjectNameQuery q = (ObjectNameQuery)msg;

List results;

if (q.typeName == null) {

results = this.queryAll();

} else {

results = this.queryType(q.typeName);

}

... // code to return results

} else if (msg instanceof MeasurementMsg) {

MeasurementMsg m = (MeasurementMsg)msg;

... // code to store this measurement

} else {

System.err.println("Unexpected: "+msg);

}

}

}

Figure 6: Java code, adapted from original Location
Stack FusionService.

Element components to dispatch this message to its behav-
ior. Instead, it passes the message to an XMLReader instance;
the XMLReader class belongs to a third-party library that
uses Java reflection to find an appropriate class instance,
instantiate an object of that class, and initialize the object’s
fields based on the message data. In this approach, mes-
sages are mapped at runtime to locally available classes in
the host language, which is why we call it dynamic host type
mapping.

After deserializing the message object, FusionService uses
instanceof tests and casts to dispatch various classes of re-
ceived LocationMessage objects to some appropriate han-
dler. Although the interface is still encoded in hand-coded
control flow, the programmer no longer needs to reason man-
ually about traversing the tree of message data. It is rela-
tively simple to refine cases to handle more specialized data
— if the programmer defines a subclass of MeasurementMsg
named TempMeasurementMsg, for example, it is easy to add
another instanceof test:

} else if (msg instanceof TempMeasurementMsg) {

TempMeasurementMsg t = (TempMeasurementMsg)msg;

... // handle this message

3.3.1 Drawbacks of dynamic host type mapping
The safety and flexibility of dynamic host type mapping

is somewhat deceptive. First, dynamic host type mapping
does not really provide static safe typing — like any library,
it throws a runtime error when it receives a value for which
it can find no matching host type. HydroJ provides that, for



those components written in HydroJ7, messages will only be
sent to services that understand them.

Second, host type mapping may reintroduce brittle depen-
dencies on the host type system. In particular, for languages
like Java, the type system employs by-name subtyping. The
library must decide how to map this subtyping relationship
into XML; fundamentally, it must make certain generic de-
cisions on how to encode class and field names, and whether
to encode inheritance links. For example, consider the fol-
lowing Java classes:

class Point { float x, y; }

class ColoredPoint extends Point { String color; }

Should the ColoredPoint class be encoded as a tree with
tag #Point, or with #ColoredPoint? Whichever choice the
library makes, some clients will be rendered incompatible.
If the library chooses to use #ColoredPoint as the serialized
tag name, then clients that possess only the Point class
definition will be unable to interpret the data as an instance
of a Point subtype. On the other hand, if the library chooses
to use #Point, the resulting serialization of ColoredPoint

will be incompatible with clients that define a ColoredPoint

class directly:

class ColoredPoint { float x, y; Color c; }

In dynamic host type mapping, therefore, the system must
either forego subtype extensibility entirely, or force all clients
in the network to share the same by-name subtyping hierar-
chy. Either choice renders the system brittle in the face of
evolution.

HydroJ addresses this problem by encoding all subtyping
as structure, and exposing that encoding directly to the pro-
grammer. Because the programmer controls the encoding,
there are no hidden decisions about encoding tag names;
and because HydroJ supports structural subtyping, it does
not force the programmer to use a new name in order to
define a subtype (as Java does). The “natural” extensibility
of semi-structured data is therefore preserved.

3.3.2 Translation to HydroJ
We give one possible translation of FusionService into

HydroJ in Fig. 7. As in all our previous examples, the mes-
sage handlers are specified declaratively and separately. The
code also happens to be slightly more compact, although this
is not the major benefit. The major benefit is that the Hy-
droJ version remains unencumbered by ties to classes in the
host (Java) type system — it is effectively as flexible as a
manual disassembly approach.

One other notable change, relative to the previous version
of FusionService, is that the ObjectNameQuery handler has
been split two cases — the non-null branch of the impera-
tive null test has been factored into a declarative special-
ization of an overriding handler case. If the #typeName tag
is present, its case will be invoked and its contents will be
used; if not, the less specific empty case will be invoked.

3.4 Message evolution inSqlService
A reader may wonder whether the flexibility of HydroJ is

likely to yield any benefits in practice. In realistic systems,

7HydroJ services can freely interoperate with non-HydroJ
Rain services through the Rain transport layer. However,
sends from foreign language components will not benefit
from HydroJ’s static type checking.

public service class FusionService {

handler #MeasurementMsg(

#timestamp[ts=long],

#objectData[data=String],

#sensorName[name=String] ) {

... // code to store this measurement

}

handler #ObjectNameQuery() {

List results = this.queryAll();

... // code to construct and send reply

}

handler #ObjectNameQuery(#typeName[name=String]) {

List results = this.queryType(name);

... // code to construct and send reply

}

... // other cases, as separate handlers

}

Figure 7: A HydroJ translation of Figs. 5 and 6.
The instanceof tests and message classes and have
been replaced by handlers and patterns.

do components’ interfaces evolve to structural subtypes, i.e.,
by extending the data in subtrees or sublists? In order to
investigate this question, we decided to examine the revision
history of a real application, written independently of Hy-
droJ. By examining the changes occurring “in the wild”, we
hoped to understand how this application’s message formats
evolved, and whether this evolution would be expressible in
ways compatible with HydroJ’s structural subtyping.

For this purpose, we chose Oasis [47], a distributed peer-
to-peer database system developed at Intel Research Seat-
tle.8 The Oasis code was placed under version control (CVS)
starting at an early stage of its development. We studied the
version history of the SqlService class, which was the prin-
cipal class in the implementation of Oasis’s server. Among
the Rain services written to date, SqlService seemed a
promising example because it has a relatively large inter-
face — the current version exposes roughly a dozen distinct
actions to clients.

In the following subsection, we first describe in more de-
tail the methodology we used to examine the evolution of
SqlService. Next, in Section 3.4.2, we summarize the re-
sults and give some concrete examples extracted from the
history of SqlService. Finally, in Section 3.4.3, we draw a
few conclusions about the evolution we observed.

3.4.1 Methodology
Our approach was to inspect the evolution of SqlService

in detail, reviewing the code before and after each revision
to determine whether the message formats sent and received
by SqlService changed between revisions. We examined
both “argument types” (the handling of incoming messages)
and “return types” (replies sent in response to requests).

8Although the second author of the present paper partic-
ipated in the development of Oasis, Oasis was written in
Java, and the other Oasis developers never had contact with
HydroJ. We can reasonably assert that the Oasis code de-
veloped wholly independently of HydroJ.



Where message formats changed, we tried to characterize
those changes by translating only the interface types into a
HydroJ-like pseudocode (we did not use strict HydroJ types,
for reasons we discuss below). Finally, we sorted the changes
into several categories, which we describe in the next section.

This process presented several challenges. First,the code
of SqlService uses the manual disassembly style of XML
processing described in Section 3.2; its interface is defined
implicitly by the branching in its control flow, which spans
many functions. The message formats were undocumented,
and even developers intimately familiar with the code could
not necessarily remember the exact differences between any
two arbitrary versions. Therefore, the “interface type” of
SqlService had to be reverse-engineered by close inspec-
tion of the code itself. Upon examination, certain details
of the implementation could have been either features or
bugs: for example, some versions allowed clients to send
a message with either a subtree tagged #sql_internal (for
“internal” messages, used by the replication algorithm), or a
subtree tagged #sql_statement (for “client” messages, e.g.
database queries), or both. The last of these cases — a mes-
sage with both subtrees — was never intended or required
by the programmer. Therefore, the inspection process in-
herently required the exercise of some subjective judgment.

Second, SqlService uses XML attributes, a feature of
full XML that is not currently supported by HydroJ’s pat-
tern language.9 In full XML, a tag may include an op-
tional set of name/value pairs, distinct from the regular child
list; these are called attributes. The current SqlService

code frequently encodes distinct requests using attributes
when tag names would suffice just as well — for exam-
ple, rather than using distinct tags #sql_internal_acquire
and #sql_internal_release, the code uses a single tag
#sql_internal with two distinct string values "acquire"

and "release" for its internal_type attribute. A transla-
tion of SqlService to HydroJ would have used tag names
instead of attributes. We have assumed this transformation
in our study, and in the following presentation.

Finally, we note the following weakness in this experi-
ment’s input set: versions stored in a developer’s reposi-
tory do not necessarily reflect the character of versions that
would coexist in a deployed system. Presumably, the for-
mer contains many more unstable revisions than the latter,
particularly when one includes revisions occurring early in
the project’s development cycle. Additionally, the version
control repository reflects phases of development — such as
the initial “ramp-up” (during which the code may evolve
more monotonically than in mature development) and the
addition or removal of debugging instrumentation — that
occur with less frequency in deployed systems.

3.4.2 Results and examples
In this subsection, we describe the evolution observed in

SqlService. We first give an overview of the revision his-
tory; then we give specific examples of message type evolu-
tion extracted from the system.

At the time of this writing, SqlService’s revision history
consists of 37 commits, made by 3 different developers and
spanning more than 5 months, from 10 January 2003 to 18
June 2003. The earliest version of the SqlService.java

9In the current HydroJ implementation, the user can access
attribute values, but attributes are not part of the pattern
language. This limitation is not fundamental; see Section 5.

source file comprises 164 lines, and the latest version com-
prises 1433 lines.10

We call changes trivial when they only alter whitespace,
comments, local names (e.g., changing the package to which
a class belongs), purely local debugging statements (e.g.,
adding System.err.println call), or other code that never
affects SqlService itself. Out of 36 revisions (after the ini-
tial commit), 7 were trivial. For revisions containing non-
trivial changes, the size of a Unix diff -B between sub-
sequent versions ranges from 4 lines to 842 lines, with an
arithmetic mean of about 112 altered lines per revision. Of
course, SqlService calls methods in other classes (which
also evolved, but are not included in these counts), so these
numbers only approximate the relative size of changes in
each revision.

We call a non-trivial change a non-messaging change when
it changes the code in a way that affects observable be-
havior, but does not alter the format of messages seen by
other nodes in the distributed system. For example, a non-
messaging change might be a change to the Rain discovery
advertisement, or a Java synchronized block inserted to fix
deadlocks or race conditions. Of the 29 non-trivial revisions,
we categorized 13 as containing only non-messaging changes.

This leaves 16 revisions in which the format of one or
more messages changed; we call these interface evolution
revisions. We discovered that, in all but 4 of these revi-
sions, the changes consisted solely of evolution to structural
subtypes. Space prevents us from describing each of these
evolutionary steps here; instead, we summarize and give ex-
amples of a few interesting cases (more details appear in our
technical report [32]). We group message format changes
into three kinds: additions of new message types, subtype
evolution of existing messages, and non-subtype evolution of
existing messages. More than one kind of logical change
may occur in a single source revision. We explain and give
examples in turn.

Simplifying somewhat, the basic form of a SqlService

message is a #msg root tag with a #db[] tag:

handler #msg(#db[db=String]) returns ... {

... // commands for database named by db

}

The other children of #msg specify what action should be
performed on the named database. One common form of
interface evolution consists of adding a new “type” of mes-
sage — that is, the addition of an entirely new action that,
conceptually, might correspond to a method in a standard
object-oriented language. For example, the fifth version
contained the first implementation of the weighted-voting
replica management algorithm [47]; this entailed adding a
series of new message types:11

handler #msg(#db[db=String], #internal_acquire[])

returns ... { ... }

handler #msg(#db[db=String], #internal_update[])

returns ... { ... }

... // etc.

10For all line counts in this section, we conservatively count a
line of source code or diff result only if it contains a semicolon
or an open curly brace.

11As previously noted, the original message formats use XML
attributes, but the encoding is trivially isomorphic to the
ones we describe here.



Nodes in the database use these new message types to send
internal management messages to each other.12

Addition of wholly new message types, in this fashion, oc-
curs in 8 out of the 16 interface evolution revisions. Aside
from the implementation of the replica management algo-
rithm, other additions include message types that control
debugging and performance profiling, that enable clients to
query lock status (previously, clients could only acquire or
release locks), and that create or delete databases.

The large number of evolution steps of this kind argues
for some support for service subtyping. Surely, for example,
in a peer-to-peer distributed database, it seems desirable to
be able to incrementally deploy nodes that support debug-
ging messages, without updating the whole system; nodes
that support such messages should simply be transparently
substitutable for nodes that do not. Clients that never send
these new message types will simply be unaffected by them.

However, the addition of new message types does not,
by itself, necessarily argue for the flexibility of more general
structural subtyping. To evaluate the need for that, we must
examine message evolution. In 12 out of the 16 revisions
where the interface evolved, existing message types evolved
in some way that affected the format of their messages. Of
these, 8 appear to be instances of solely subtype evolution
— i.e., the addition of data to a subtree of an argument or
return type. Of the remaining four versions, three contain
only non-subtype changes, and one contains a mixture of
both. In the remainder of this section, we describe several
of the subtype cases in detail, as well as two of the non-
subtype cases.

One simple instance of evolution occurred in the fourth
version, when the return value from a query message added
fields describing the number of rows returned and the name
of the table from which they were extracted. In other words,
the query handler’s type evolved roughly from the first to
the second of the following (for clarity, we elide most of the
handler pattern):

handler ..., #queryCmd[String], ...

returns #results(*#row[*column[]]) { ... }

handler ..., #queryCmd[String], ...

returns #results(*#row[*column[]],

#rowcount[Integer],

#tablename[String]) { ... }

The new return type is a subtype of the old one.
A more interesting case of evolution occurred in the 10th

commit, which added support for updating metadata (re-
lated to replica versioning). Metadata updates had the fol-
lowing format:

#metadatas[

*#meta[#db[String], #version[Integer],

... /* data for replication protocol */]]

12Incidentally, had HydroJ been used, the handlers shown
here would have been ambiguous — the user would have
to provide for the case where both #internal acquire and
#internal update tags appeared. This is an annoyance,
but we claim that a HydroJ programmer would have used
slightly different message formats that encoded the same in-
formation in an unambiguous manner. In any case, this fact
is tangential to our aim in this section, which is to investi-
gate how messages tend to evolve, not to demonstrate that
HydroJ would have sufficed to encode exactly the message
formats used in this application.

Metadata update requests could optionally be included with
any query. Therefore, for example, each handler like the
following:

handler #msg(#internal_acquire[], ...)

returns ... { ... }

effectively evolved to the pair of handlers

handler #msg(#internal_acquire[], ...)

returns ... { ... }

handler #msg(#internal_acquire[], ...,

#metadatas[*#meta[...]])

returns ... { ... }

Once again, structural subtyping would render the latter
pair of handlers compatible with the former single handler.

Incidentally, notice that, had the programmer not chosen
to wrap the *#meta[] sequence inside a #metadatas[] tag,
the single hander

handler #msg(#internal_acquire[], ...,

*#meta[...])

returns ... { ... }

would have sufficed. This is an example of how, as previously
mentioned, a programmer in HydroJ might have chosen to
do things differently. On the other hand, one might prefer to
express this idiom using an optional child pattern (having
zero-or-one occurrences, rather than zero-or-more), as the
original developers did. HydroJ does not currently support
this feature, but it might be worth exploring; see Section 5.

The final subtype evolution example we will describe in
this paper occurs in the 28th version. In this revision, the
#acquire lock message was augmented with an optimiza-
tion called “query piggybacking”, wherein the client could
bundle an SQL query in the #internal acquire message;
the message evolved approximately from the first to the sec-
ond of the following:

handler ..., #internal_acquire[], ...

returns #reply(#lock_acquired[])

{ ... }

handler ..., #internal_acquire[],

#piggysql[query=String], ...

returns #reply(#lock_acquired[], #piggyres[...])

{ ... }

This modified message format indicates that the receiver
should first acquire a lock, then execute the “piggybacked”
query, then immediately release the lock and return the re-
sult. For this common usage pattern, query piggybacking
reduces the network overhead to one round-trip. A client
that did not understand query piggybacking could still use
#piggysql-supporting services, oblivious to this extra func-
tionality. Therefore, this evolution step would be supported
by structural subtyping.

We conclude this section by briefly describing two non-
subtype examples, in which SqlService evolved to a type
that was not a structural subtype of its prior version.

A typical case is given by the 35nd revision, which removes
an obsolete type of update database message (this type was
superceded by other types, introduced in earlier revisions).
The removal of a message type does not result in a subtype
of the older type.



A different, and perhaps more interesting, example of non-
subtype evolution occurs in the 32nd revision, which altered
the format of messages that enable performance profiling. In
version 31, the message enabling collection of performance
data was a separate top-level option, roughly the following:

handler #msg(#perf_data[])

returns ... { ... }

In version 32, this tag gets sunk down into a subtag of SQL
messages:

handler #msg(#SqlRequest(#perf_data[]), ...)

returns ... { ... }

In other words, performance monitoring is now only a se-
mantically valid option for #SqlRequest messages, not for
all messages handled by SqlService.

3.4.3 Evaluation
One might be surprised, as the authors were, that such a

large fraction of the evolutionary steps in the development of
SqlService were classifiable as structural subtype evolution.

Intuitively, we believe that this is partly due to the portion
of the development cycle that we studied. Over the course of
the 5 months surveyed, Oasis mostly grew in sophistication,
acquiring improved protocols and debugging functionality.
The developers were primarily “building up” to a certain
level of functionality, rather than “tearing down” obsolete
code or “renovating” existing code. On the other hand, even
some of the evolution steps that occurred late in the devel-
opment process — for example, query piggybacking — were
instances of structural subtype evolution.

Evolution in software systems remains a thorny problem,
and further empirical data would be needed to draw a firm
conclusion. Overall, however, we tentatively conclude that
some meaningful fraction of evolution “in the wild” does
consist of structural subtype evolution.

3.5 Performance
Our current compilation strategy for message dispatch

performs virtually no optimization. To get a sense of the
overhead compared to hand-coded message dispatch (i.e.,
dispatch code hand-written in the manual disassembly style),
we performed the following experiment.

First, we extracted a trace of 5,000 messages from a bench-
mark of the Oasis database. The messages are a represen-
tative sample of real messages sent by the Guide ubiquitous
computing application [24]. The workload includes a variety
of messages, including reads, writes, acquisition and release
of locks, and metadata exchange. Next, in order to iso-
late the dispatching cost only, we manually extracted a sub-
set of SqlService’s “dispatch skeleton” — those statements
that only dispatch and disassemble incoming messages, as
opposed to actually manipulating the database back-end.
Then, we ported this skeleton to HydroJ, transforming the
dispatching implicit in the control flow into HydroJ pat-
terns. Finally, for both the Java and HydroJ versions, we
constructed a test harness that timed the overhead of pro-
cessing all messages in the trace 100 times each, for a to-
tal of 500,000 message dispatches. The test harness passed
pre-constructed message objects directly to the classes’ in-
ternal dispatcher methods, bypassing the Rain runtime sys-
tem; therefore, the timings did not include any overhead
from XML parsing or network communication (which would

be suffered by any messaging substrate that used XML over
HTTP, not just HydroJ).

On an otherwise idle 700 Mhz Pentium 3, using the Sun
JDK 1.4.1, we found that the HydroJ dispatcher took 0.108
ms per message, whereas the hand-written dispatcher took
0.037 ms per message.

Previous experiments with Oasis [47], using the same mes-
sage profile, have measured a mean overhead of 3.5 ms for
sending a message one-way between two machines on the
same segment of 100Mb/s switched Ethernet. Therefore,
we judge that HydroJ’s increased dispatch overhead is rel-
atively insignificant. On the other hand, we believe that
the dispatching overhead could be reduced significantly by
optimization, if necessary.

4. RELATED WORK
In this section, we discuss four principal flavors of related

work: programming language mechanisms for dispatch; XML
processing systems; component-based systems for software
reuse; and, finally, adaptive programming.

4.1 Pattern matching and dynamic dispatch
In the 1970’s, pattern matching as a programming style

was pioneered in the Prolog [11] and ML [41] languages.
Around the same time, object-oriented dynamic dispatch
was developed in Simula [15] and Smalltalk [23]. Various
forms of pattern matching without static type checking have
also seen extensive use in Lisp, scripting languages, and li-
braries.

Both object-oriented dispatch and pattern matching bind
behavior to data based on types. HydroJ builds on past
work in predicate dispatching [17] and Extensible ML [39],
which unify pattern matching with object-oriented dispatch.
HydroJ shares with these languages the key feature that
data dispatches to the most specific matching handler; we
view this as the essence of object-oriented dispatch. Hy-
droJ differs from these languages in that it employs purely
structural subtyping, and its data model is based on semi-
structured XML data.

HydroJ’s pattern language was inspired partly by XDuce [28,
27], which we discuss in more detail below.

4.2 XML processing

4.2.1 Schema languages
XML languages from the database community have fo-

cused primarily on the specific domains of queries [60] and
schema definitions [59, 45] rather than general-purpose pro-
gramming languages. There are some broad similarities
between schema languages and HydroJ’s type system, but
most XML schema languages are more expressive and more
complex to type check than HydroJ types. For example,
the RELAX-NG schema language allows an “interleaving”
type, in which elements of a child list must alternate sequen-
tially between two different types. We believe that this level
of expressiveness, although perhaps desirable for database
schema, entails too much complexity for a programming lan-
guage type system.

4.2.2 Libraries
Many libraries exist for XML processing. Some of these

libraries are essentially generic programmatic interfaces for
tree traversal, and are completely untyped. Use of these



libraries to handle messages is verbose, awkward, and error-
prone, as we showed in Section 3.2.

Other libraries provide a form of dynamic typing through
schema — as an XML value is constructed, it is validated
at runtime against an XML schema type. However, library
approaches in general suffer from the problem that the pro-
gramming language does not “understand” the types that
are being constructed. Libraries cannot assure static type
safety; they can only throw runtime errors when type safety
is dynamically violated.

An alternative to explicit XML tree construction is an
XML serialization library, which maps XML trees to values
in the host language type system and vice versa. We called
this the dynamic host type mapping approach, and discussed
its drawbacks in Section 3.3.

A final library-based approach is to generate code for some
general-purpose language automatically, perhaps based on
a schema. For example, the Relaxer library [46] generates
Java classes based on a RELAX-NG schema. We call this
approach static host type mapping, because it maps an XML
schema onto statically generated host type code. Static host
type mapping regains static type checking for message con-
struction — the static types in the generated code can be
defined so as to prevent invalid tree construction statically.
However, this approach is cumbersome — the programmer
must separately generate code from the schema, and then
program using that code. Furthermore, static host type
mapping alone does not solve the problem of dispatching
messages to behavior, as HydroJ does. Finally, static host
type mapping does not allow a single XML value to be
“viewed” at different types by different pieces of code —
the static type of a given XML tree maps to exactly one
host type in any given code base.

4.2.3 XML programming languages
Notable XML-related languages from the programming

languages community include XDuce [28, 27], XMλ [34],
<bigwig> [6], and CDuce [4]. Our technical contribution
relative to these languages is the use of most-specific-match
(rather than first-match) for message dispatch, and a type
system that combines ordered and unordered tree children
with repetition patterns.

The XDuce family of languages merit some further dis-
cussion here, as XDuce directly inspired some of our work,
and some of its successors contain features comparable to
those in HydroJ.

XDuce’s type system and pattern language describe only
ordered child lists. As a result, XDuce’s type system trans-
lates into an elegant formalism based on tree automata [12],
which gives it the full expressive power of regular tree lan-
guages [21]. However, the encoding does not extend natu-
rally to unordered children of a tree.13 On the other hand,
XDuce’s attribute-element constraint extension [27] augments
XDuce’s ordered element children with unordered attribute
children. Since attributes and elements are distinct, but
not orthogonal, mechanisms, attribute-element constraints
do not subsume the functionality of our bag types, which
allow elements to be viewed as unordered.

13A combination of union, wildcard, and difference types can
be used to encode some features of our bag patterns, but the
encoding is cumbersome and incomplete. The type represen-
tation takes factorial space, and certain restrictions cannot
be encoded at all.

Xtatic [19] embeds the XDuce type system in the object-
oriented language C#. Unlike HydroJ, Xtatic does not
target distributed messaging, and retains some of XDuce’s
“functional” flavor. For example, pattern matching in Xtatic
retains XDuce’s “functional-style” dispatch, in which mes-
sages dispatch to the first matching case of a function rather
than the most specific matching case. Xtatic currently exists
as a prototype interpreter for a core language; its creators
are pursuing several extensions to the language and its im-
plementation, including interoperability with full C#.

CDuce [4], another language inspired by XDuce, is a general-
purpose programming language with some features that su-
perficially resemble features of HydroJ. For example, CDuce
contains both a list type (for which child order matters) and
a record type (whose child order does not matter). How-
ever, CDuce record and list types are stamped with their
type at creation, and belong to disjoint kinds. By contrast,
in HydroJ all semi-structured data are ordered (bag types
are statically introduced by matching ordered data against
a bag pattern, but dynamically the underlying data remains
ordered) and ordered types subtype unordered types. Also,
more fundamentally, CDuce is not object-oriented. Unlike
HydroJ, CDuce does not support inheritance, and retains
XDuce’s “functional-style” dispatch semantics.

4.3 Component connection and reuse
Researchers and practitioners have proposed that “com-

ponent-oriented” programming facilitates the construction
of independently extensible software. The precise definition
of “component” is widely debated, but the central feature of
most component systems seems to be a mechanism for exter-
nally composing separately developed software abstractions.

For example, the key feature of the Piccola [1] composi-
tion language is its mapping of component composition to
process composition in the π calculus [40]. In recent work
by Mezini and Ostermann, components declare collabora-
tion interfaces, which are linked together by an external
binding mechanism [37]. ML’s parameterized module sys-
tem [33] uses module-level function application to compose
modules. ArchJava [3] unifies architectural description with
implementation; it augments Java with component classes,
which have interfaces called ports, and provides a connect

construct to bind ports together.
All these mechanisms are mostly orthogonal to HydroJ,

even though they also address aspects of the independent
extensibility problem. HydroJ addresses the question of
which components are compatible — specifically, it tries to
make more components compatible with each other through
a novel form of interface flexibility. This issue is distinct
from the issue of how compatible components should be con-
nected, which is the central concern of component systems.

The one aspect of HydroJ that is not entirely orthogo-
nal to component systems is the typed discovery service.
HydroJ services connect to peers through discovery queries;
discovery therefore serves as the intermediary that enables
separately developed components to cooperate. Type-based
discovery can be viewed as an application of component sig-
nature matching [61], although most past work on signature
matching has focused on searching libraries of static source
or object code, rather than running service instances. Chris-
tiansen et al.’s “type management” concept [10] operates
over running instances, but its type language differs consid-
erably from HydroJ’s.



HydroJ’s choice of connection mechanism does not rule
out the use of other component connection mechanisms. In
fact, HydroJ’s type system might complement such mech-
anisms. For example, by using HydroJ patterns as the in-
terface types of ports, HydroJ’s flexibility could be brought
to an ArchJava-like system. It seems possible to combine
most other component connection mechanisms with HydroJ
types in a similar fashion.

Component systems have seen widespread use in indus-
trial practice; we mention only a few here. CORBA [13] is a
widely used multi-language component system; CORBA in-
terfaces employ a form of by-name subtyping, although some
language mappings may complicate or obscure this subtyp-
ing. In Microsoft’s Component Object Model (COM) [44,
48], components’ interfaces are identified by a globally unique
identifier (GUID), and hence COM cannot accommodate
structural subtyping. Microsoft’s more recent assemblies [35]
component system also uses GUIDs, although programmers
can specify explicitly that assemblies with different GUIDs
may be compatible. HydroJ’s subtype-based interfaces are
therefore more flexible, with less programmer effort, than
the interfaces in CORBA, COM, or assemblies.

4.4 Adaptive programming
Adaptive programming [36] and the HydroJ type system

share a similar motivation: namely, to enable components
to be written in a way that makes them relatively robust
to changes in their peers. Adaptive programming, how-
ever, is considerably more radical than HydroJ: it insulates
clients from changes to the structure of object’s reference
graph, by providing “traversal patterns” that mediate be-
tween clients and graphs of objects. The XPath [58] query
language can be viewed as an XML analogue of adaptive
programming patterns: it also decouples the client from the
details of traversing and extracting parts of an XML value.
HydroJ does not incorporate adaptive programming con-
structs, but combining semi-structured data with expressive
traversal patterns at the programming language level might
yield interesting results.

5. FUTURE WORK
We have noted, in passing, at least three situations in

which one might desire a more expressive type system than
HydroJ currently supports. First, HydroJ does not allow
the programmer to specify that clients may not send more
than one instance of a tag in a given list. The result is
that, as mentioned in Section 3.2, implementors sometimes
have to resolve burdensome ambiguities that might be better
addressed by restrictions on the client.

Second, as mentioned in Section 3.4.1, HydroJ does not
currently support XML attributes, which are name-value
pairs that can be associated with tree nodes. XML at-
tributes are highly non-orthogonal — they overlap in func-
tionality with child tags; only atoms (not arbitrary subtrees)
can be stored as attribute values; and only one occurrence
of a given attribute name may occur for a tree. However,
despite these aesthetic problems, practical factors indicate
that one might like some principled way of specifying at-
tributes in HydroJ patterns.

Third, as mentioned in Section 3.4.2, one would like to
support some form of “zero-or-one occurrences” matching
(in addition to the “zero-or-more occurrences” matching

provided by star patterns). Optional subtrees appear to
be a common idiom in existing semi-structured data.

All three of the above features seem expressible if the
type system allowed finer control over cardinality of child
list members and/or tags, a feature supported by some of
the previous XML processing languages mentioned in Sec-
tion 4.2. Optional children and uniquely named child tags
seem to translate straightforwardly into constraints on car-
dinality. XML attributes could be mapped to (specially
named) tags with exactly-one cardinality — for example,
the constraint that tag has an attribute named foo could be
mapped into a child pattern #attr.foo[] that may appear
only once in a child list.

6. CONCLUSION
The evolvability and independent extensibility of software

are among the most important problems in modern software
engineering. The brittle parameter problem — wherein com-
municating components depend on inessential features of the
data they use to communicate — is a basic obstacle to evolv-
ability. As long as components are sensitive to inessential
changes in their peers’ interfaces, components can only be
independently replaced or upgraded with great difficulty.

In the present work, we attack the brittle parameter prob-
lem through the use of pattern matching over semi-structured
data types. Our central idea is that this combination of lan-
guage features in the HydroJ language encourages program-
mers to express only the essential features of an interface,
i.e. those features that the programmer actually uses. By
doing so, we believe HydroJ broadens the opportunities for
other dimensions of support for system evolvability.

We have studied a few systems that use semi-structured
messaging, and implemented a compiler for the HydroJ lan-
guage design. Our initial evaluation of the HydroJ language
shows promise. As we write larger systems and maintain
them over longer intervals, we hope to gain more experience
with system evolution, and to explore the potential benefits
of integrating our ideas with more flexible type systems and
other forms of software evolution support.
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