
Automatic Staged Compilation

Matthai Philipose

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Washington

2005

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Matthai Philipose

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Craig Chambers

Reading Committee:

Craig Chambers

Susan Eggers

Daniel Grossman

Date:_________________________

In presenting this dissertation in partial fulfillment of the requirements for the doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of the dissertation is

allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred

to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,

to whom the author has granted “the right to reproduce and sell (a) copies of the manu-

script in microform and/or (b) printed copies of the manuscript made from microform.”

Signature________________________

Date____________________________

University of Washington

Abstract

Automatic Staged Compilation

Matthai Philipose

Chair of the Supervisory Committee:

Professor Craig Chambers

Computer Science and Engineering

The ability to optimize programs while they execute has become increasingly important in

recent years. The primary challenge in such optimization is to keep the run-time overhead

of optimization down while maximizing its effectiveness. The widely used solution of

Just-In-Time (JIT) compilation keeps run-time overhead low, at considerable engineering

cost, by sacrificing performance.

The past few years have seen the emergence of staged optimization, which produces

run-time optimizations that often have much lower run-time overhead than traditional

optimizers, yet do not sacrifice any of their functionality. The key to the technique is a

method, called staging, to transfer optimization overhead to static compile time from run

time. Unfortunately, developing staged variants of individual optimizations has been

highly specialized, labor-intensive work; staging pipelines of optimizations even more so.

This dissertation presents a system called the Staged Compilation Framework (SCF),

which automatically stages entire pipelines of compiler optimizations at arguably little

additional engineering cost beyond building the slower traditional version of the pipeline.

SCF harnesses two powerful but traditionally difficult-to-use techniques, partial evalua-

tion and dead-store elimination, to achieve staging. An implementation of SCF shows that

staged compilation can speed up pipelines of classical compiler optimizations by up to an

order of magnitude, and more commonly by a factor of 4.5 to 5.

Table of Contents

List of Figures .. iv
List of Tables ... viii

1. Introduction..1

2. Motivation and Background ..6
2.1 A Simple Model of a Modern Compiler ..6
2.2 Compilation Stages ..10
2.3 Staged Compilation..14
2.4 Staging via Procrastination ..15
2.5 Staging via Pessimism ...16
2.6 Staging via Preplanning ...18

2.6.1 Summarization as Preplanning ..19
2.6.2 Preplanning for Pipelines of Optimizations...................................21

2.7 Summary..32

3. Overview and Example..33
3.1 High-Level Description of SCF...33
3.2 The Interface to the Stager ...35

3.2.1 SCF-ML: The Language for Specifying Optimizations35
3.2.2 Augmented Regular Tree Expressions...44
3.2.3 How the Stager is Invoked...51

3.3 Internal Structure and Interfaces of the Stager...55
3.4 Summary..60

4. The Partial Evaluator ...61
4.1 Signatures of Some Key Data Structures...62
4.2 Core SCF-ML and Notational Conventions ..65
4.3 Initialization and Fixpointing...66
4.4 Partial Evaluation of Individual Functions ..69

4.4.1 Literals ...70
4.4.2 Variables...70
4.4.3 Tuples and Constructors ..72
4.4.4 Primitive Operations ..72
4.4.5 Case Expressions ...74
4.4.6 Function Calls ..77
4.4.7 Special Forms for Manipulating Maps ..77

4.5 Summary..83

5. Implementing Abstract Values...84
i

5.1 Interface ...85
5.2 Internal Representation ..87
5.3 Implementing Operations on Abstract Values ...91

5.3.1 meet..93
5.3.2 mustBeEqual ..96
5.3.3 isSingleton ...97
5.3.4 isScalar...97
5.3.5 mkTuple ...97
5.3.6 mkTagVal ...98
5.3.7 evalPrimop ...98
5.3.8 match..106
5.3.9 mapMap ...111
5.3.10 mapUnionWith...111
5.3.11 collapseMap ...114
5.3.12 findLiveKeys ...114

5.4 Summary ..115

6. Strategies for Accurate and Effective Partial Evaluation.....................................116
6.1 Improvement Strategies at Work: A Detailed Example...........................117

6.1.1 Partial Evaluation With No Improvement Strategies...................117
6.1.2 Adding Function Specialization as an Improvement Strategy.....119
6.1.3 Adding Rematerialization as an Improvement Strategy121
6.1.4 Adding Expression Specialization as an Improvement Strategy .122
6.1.5 Ensuring Termination in the Face of Improvement Strategies123

6.2 Specialization Strategies ..126
6.2.1 Function Specialization..126
6.2.2 Expression Specialization ..146

6.3 Widening Strategy..157
6.3.1 Motivating Example: Widening and Constant Propagation158
6.3.2 Reducing Information Loss While Widening161
6.3.3 Widening in SCF..162

6.4 Rematerialization Strategy...164
6.5 Summary and Related Work ..169

6.5.1 Specialization...169
6.5.2 Widening..171
6.5.3 Rematerialization ...171

7. Dead-Store Elimination ...173
7.1 Liveness Patterns: The Domain of Abstract Interpretation174

7.1.1 Field Projectors ..176
7.1.2 Liveness Patterns: Syntax and Semantics177
ii

7.1.3 The Lattice of Liveness Patterns..179
7.1.4 Helper Functions..180

7.2 The Abstract Interpreter...184
7.2.1 Dead Expressions...186
7.2.2 Variables...188
7.2.3 Tuples...188
7.2.4 Constructors ...188
7.2.5 Primitive Operations ..189
7.2.6 Case Expressions ...193
7.2.7 Constants..197
7.2.8 Curried Functions ..197

7.3 Summary..200

8. Evaluation ..202
8.1 Evaluation Framework...203

8.1.1 System Configuration and Parameters Used in Measurements ...203
8.1.2 Inputs to the Optimization Pipeline ...208

8.2 Overall Effectiveness of SCF...210
8.2.1 Staged Optimization Speedup..211
8.2.2 Asymptotic Speedup ..213

8.3 Contributions of Staging Techniques to Compiler Speedup....................214
8.3.1 Contributions from Abstract Value Implementation Techniques.215
8.3.2 Contributions from Improvement Strategies220
8.3.3 Contributions from Dead-Store Elimination................................226

8.4 Summary..227

9. Conclusions..229
9.1 Contributions ...229
9.2 Critique ..232
9.3 Future Work ...238
iii

List of Figures

2.1 A Simple View of a Modern Compiler...6
2.2 Compilation Stages ...10
2.3 Staged Compilation: A Schematic View ..13
2.4 Staging Analyses by Summarization ..20
2.5 Example Pipeline to Demonstrate Preplanning on Pipelines of Optimizations....21
2.6 Inputs to the Example Pipeline ...22
2.7 Manual Staging by Compiler Users..23
2.8 Manual Staging by Compiler Writers ...26
2.9 Using an Automatic Optimization Specializer ...30
3.1 High-Level View of SCF ...34
3.2 Signature of the Stager ...35
3.3 Concrete Syntax for SCF-ML Programs ..36
3.4 SCF-ML Program for Reversing a Linked List of Integers..................................37
3.5 Map Operations in SCF-ML ...38
3.6 Defining an Intermediate Representation for a Subset of C in SCF-ML..............39
3.7 Specifying Dead Assignment Elimination in SCF-ML ..41
3.8 Concrete Values That May Be Defined in SCF-ML Programs44
3.9 Examples of Some Abstract Values and the Sets they Represent49
3.10 Representing Input Functions as Abstract Values ..50
3.11 Staging a Three-Phase Compiler Pipeline ..52
3.12 Invoking the Stager at Static Compile Time...52
3.13 Abstract Values Input and Output by the Stager at Compile Time53
3.14 Stub Function Providing Run-Time Interface to Staged Optimizers....................54
3.15 Internal Structure of the Stager ...55
3.16 Inputs To, and Output From, the Partial Evaluator...57
3.17 Partially Evaluated Dead-Assignment Elimination ..58
3.18 Analysis and Transformation Functions After Partial Evaluation........................59
3.19 Analysis and Transformation Functions After Dead-Store Elimination60
4.1 Signature of the Partial Evaluator ...61
4.2 Signatures of Primary Data Structures Used by the Partial Evaluator62
4.3 Abstract Syntax for SCF-ML Programs ...65
4.4 Initialization and Fixpoint Loop for Partially Evaluating Programs.67
4.5 Partial Evaluation of Functions and Expressions in SCF.71
4.6 Three Special Cases of PEe of Primitive Operations ...73
4.7 Partially Evaluating Pattern Matching..74
4.8 Partially Evaluating Case Expressions: An Example ...75
4.9 Partial Evaluation of Map Iterators in SCF ..78
4.10 Partial Evaluation of Map Iterators in SCF ..79
iv

4.11 Partial Evaluation of Map Iterators in SCF ..81
5.1 Signature of the AbstractValue Module ...84
5.2 The Abstract Value Datatype ...87
5.3 Rewrite Rules for Normalizing Abstract Values ..88
5.4 The meet Function ...92
5.6 Example Showing How the meetMaps Function Works......................................94
5.5 The meetMaps Function ...95
5.7 The mustBeEqual Function ...96
5.8 The isScalar Function ...97
5.9 The mkTuple Function ...97
5.10 The mkTagVal Function ...98
5.11 The evalPrimop Function ...99
5.12 The execMapInsert Function ...101
5.13 The execMapFind Function ...103
5.14 The find Function on Abstract Maps ..103
5.15 The execMapEqual Function ...105
5.16 The match Function ...107
5.17 Helper Functions for the match Function ...108
5.18 The mapMap Function ...111
5.19 The mapUnionWith Function ...112
5.20 The collapseMap Function ...113
5.21 The findLiveKeys Function ...114
6.1 Function to Be Partially Evaluated On Input vs = [2|3]......................................117
6.2 Partially Evaluating the inc() Function With No Improvement Strategies.........118
6.3 Residual Function Resulting From Partial Evaluation Without Improvement...119
6.4 Partial Evaluation With Function Specialization..120
6.5 Residual Function Resulting From Function Specialization121
6.6 Rematerializing Non-Scalars ...121
6.7 Expression Specialization ...122
6.8 Challenges of Function Specialization. ..124
6.9 Finiteness Patterns ...127
6.10 A Fragment of Dead-Assignment Elimination ...129
6.11 Finiteness Analysis ...134
6.12 Example Function to Be Optimized..138
6.13 A Problem With Not Specializing Non-Finite Functions.138
6.14 Specializing Non-Finite Functions Using the Context Key of Their Callers139
6.15 Modified Example Function to Be Optimized..140
6.16 A Problem With Maintaining One Contour Key Per Finite Argument141
6.17 Using Chains of Finite Arguments as Contour Keys..144
6.18 Module Implementing Contour Keys ...145
6.19 Expression Specialization Applied to Dead-Assignment Elimination147
v

6.20 Invoking the expression specializer from the partial evaluator148
6.21 The discriminate Function for Specializing Case Expressions...........................149
6.22 The findPossibleMatches Function...149
6.23 The discriminateMatch Function for Generating Discriminating Matches150
6.24 Data Representation Assumed by SCF ...151
6.25 Counting the Number of Operations to Implement a Pattern Match152
6.26 Computing Minimal Discriminating Matches Via Generate and Test153
6.27 Example: Computing Minimal Discriminating Matches....................................154
6.28 Motivating Example for Widening ...158
6.29 Argument and Return Values Produced While Evaluating analyzeCmd4159
6.30 Widening in SCF ...163
6.31 Signature Required of the Rematerialization Strategy Module165
6.32 Scalar Rematerialization ...166
6.33 Non-Scalar Rematerialization...167
6.34 Example: SCF-Style Non-Scalar Rematerialization...168
7.1 Analysis and Transformation Functions After Partial Evaluation......................173
7.2 Scalar vs. Non-Scalar Dead-Store Elimination...175
7.3 Syntax and Semantics of Field Projectors ..177
7.4 Syntax and Semantics of Liveness Patterns (LP’s) ..178
7.5 The Lattice of Liveness Patterns...180
7.6 The Liveness Pattern Module ...181
7.7 The makeLPFromPattern Helper Function...183
7.8 The makeLPFromAbstValue Helper Function ...184
7.9 Interprocedural Analysis Example..185
7.10 The Function DSEe for Dead Store Elimination on SCF-ML Expressions187
7.11 The Function DSEprimop for Optimizing Primops, Including Map Operations190
7.12 DSE of Case Expressions. ...194
7.13 The Function DSEm for Optimizing Case Expression Matches195
7.14 The Merge Function DSEms for Optimizing Case Expression Matches196
7.15 DSE of Curried Expressions ...197
7.16 The Function DSEcf for Optimizing Curried Function Applications.................199
8.1 Staged Dynamic Compilation Using SCF ..204
8.2 Baseline Configurations for Evaluating SCF..205
8.3 Configurations Used in this Evaluation ..207
8.4 Speedup of Staged Optimizer Relative to Unstaged Optimizer211
8.5 Pipeline Expansion Factor and Input Function Size ...212
8.6 Asymptotic Speedup of Compiled Functions ...213
8.7 Contributions from Variants of the Abstract Value Representation...................215
8.8 Contributions from Abstract Value ID’s ..218
8.9 Contributions from must and may Lists in Abstract Maps219
8.10 Contributions from Context-Sensitivity Strategy ...221
vi

vii

8.11 Contributions from Expression Specialization ...222
8.12 Contributions from Widening Strategy...224
8.13 Contributions from Non-Scalar Rematerialization and Hoisting225
8.14 Contributions from Dead-Store Elimination...226

viii

List of Tables

1 Augmented Regular Tree Expressions (Abstract Values): Syntax and Semantics 46
2 Conservative Specifications for Functions of the AbstractValue Interface86
3 Inputs to Staged Pipeline ...208

Acknowledgements

First and foremost, I would like to thank my advisor Craig Chambers. The work described

in this dissertation posed challenges every step of the way. Craig gave me the freedom to

work these challenges out at my own pace, a process that transformed me from graduate

student to professional researcher. On the other hand, Craig’s clarity of thought, mastery

of material from the big ideas to the details and his instinct for identifying the central

problem ensured that the freedom didn’t become an impossible burden. Finally, Craig’s

obvious love for research has always been an inspiration for me: I don’t know of many

advisors who routinely check in large quantities of code with no paper deadline in sight,

especially after tenure!

For the first few years of graduate school, I was co-advised by Susan Eggers. Susan

has been a great mentor, calming influence and reality check. From Susan, I learnt how to

break down systems into their components and understand them through rigorous mea-

surement. I am especially grateful to her for supporting me while I cast about for the cor-

rect way to formulate the work of this dissertation.

I am grateful to my other committee members, Dan Grossman and Jean-Loup Baer.

Dan agreed on short notice to serve on my reading committee and actually read through

and vetted the whole dissertation, for which I am especially grateful. Jean-Loup also

served on my general exam committee. Thanks to David MacDonald for agreeing to the

thankless task of Graduate School Representative.

The work in this dissertation describes the third in a series of dynamic compilation

systems I was involved in building at the University of Washington, and is strongly influ-

enced by its predecessors. Joel Auslander was my partner in crime in building the first sys-

tem. Although Joel and I were classmates, his knowledge of compilers and his

mathematical intuition far exceeded mine, and I learned much from him. Brian Grant and

Markus Mock were co-creators of the DyC system that was the direct predecessor of the

system presented in this dissertation. We spent a couple of years beating the Multiflow

compiler into submission: a bonding experience, if any! The Cecil group, under Craig’s
ix

leadership, provided a wonderful environment for doing research. Thanks to Jonathan,

Keunwoo, Sorin, Todd and Vass for all the good times, and for the excellent reading

groups, discussion sessions and group meetings. Thanks especially to Sorin and Keunwoo

for helping with practicing my defense talk.

Lindsay Michimoto, Melody Kadenko and Frankye Jones have been invaluable in

dealing with the university. Lindsay in particular has been infinitely patient while I mean-

dered leisurely through the dissertation writing and defense process. I would also like to

thank the computing support staff for the tireless and excellent service during my stay.

I committed the cardinal sin of joining work before I wrote up my dissertation. I am

grateful to my managers and colleagues at Intel for having been extremely supportive of

me during the three years it took me to finish. I would especially like to thank my manag-

ers Gaetano Borriello and James Landay for their support and understanding.

Friendships with my fellow graduate students put things in perspective, even when

the pressures of work were intense. Thanks to Joel Auslander, Anhai Doan, Marc Fiuczyn-

ski, Brian Grant, E Lewis, Jack Lo, Evan McLain, Omid Madani, Todd Millstein, Sujay

Parekh, Tapan Parikh, Kurt Partridge, Don Patterson, Josh Redstone and Zasha Weinberg.

Thanks to Amma and Appa for their unconditional love, support and belief in me all

these years. You have been my most influential teachers. Finally, my wife Kerry has held a

job, given birth to two children and completed her own doctoral studies while I was buried

in my thesis work and dissertation. Through it all, she has showered me with love and

affection. Thank you Kerry. Every man should be so lucky.
x

DEDICATION

To Amma and Appa who made me

and Kerry who completed me
xi

1

1. Introduction

Information relevant to program compilation becomes known at different stages during

program compilation and execution. These stages include:

1. traditional separate compile time, when each single-file piece of a program becomes

available,

2. library assembly time, which offers new interprocedural analysis opportunities,

3. program link time, which offers more interprocedural analysis opportunities and possi-

bly closed-world analysis opportunities as well,

4. initial program load time, when details of the execution platform become known,

5. dynamic load time, when knowledge of run-time extensions or changes to the program

can be exploited, and

6. run time, which offers opportunities to customize the compiled code to the application’s

actual run-time behavior.

Exploiting the information available in later stages can lead to much better optimiza-

tion, in practice as well as theory. For example, link-time compilers can perform interpro-

cedural and whole-program analysis, and run-time compilers can optimize based on

dynamic program behavior or target platform characteristics, all with substantial perfor-

mance gains.

Optimizing on the basis of late-stage information comes with a challenge. The later

the stage, the faster (in terms of time per instruction optimized) the optimizer run at that

stage needs to be. One reason for this requirement is that information relevant to optimiza-

tion typically changes more frequently at later stages. Consider the dynamic-loading and

the run-time stages, for instance. Typically, each time a module is dynamically loaded, it is

run a large number of times. Since the cost of each instance of load-time optimization is

amortized over a larger period than that of run time optimization, we are typically willing

to incur a higher overhead at load time.

A commonly used technique to achieve fast late-stage optimization is to explicitly

design versions of optimizers for the late stage that are “leaner”. These optimizers have a

carefully chosen subset of the functionality of their early-stage counterparts. For instance,

2

just-in-time compilers have a smaller set of optimizations than typical static optimizing

compilers, and the optimizations themselves are often non-iterative and local. Also, link-

time optimizers are often flow-insensitive, whereas separate compile time optimizations

are flow-sensitive. This technique of sacrificing optimization quality to speed up optimi-

zation has proven to be effective in many cases.

A complementary approach to speeding up late stages, called staged optimization,

uses early-stage computation for pre-planning and partially executing late-stage optimiza-

tion. The intention is that by thus increasing the effective amount of time available to the

late-stage optimization (while hopefully not overly burdening the early stage), late-stage

optimizations don’t have to be as lean as, and can therefore be more effective than, optimi-

zations that run wholly in the late stage.

Staged optimization exploits the fact that for many programs, although precise input

values to an optimization may not be available until a late stage, some approximate knowl-

edge of these inputs is available at an early stage. For example, it may be known, at sepa-

rate compilation time, which variables and data structures are likely to have invariant

values, which methods are the likely targets of particular dynamic dispatches, and which

branches are likely to be biased, but the actual values, methods, or branch paths may be

unknown until link time, load time, or run time. It is possible to exploit this early knowl-

edge by designing the optimization so that it executes over many stages. The part that exe-

cutes at an earlier stage could exploit early knowledge by pre-computing the possible

calculations and outcomes of the later-stage parts, and generating a customized version of

the later-stage parts that performs only the computations needed to resolve what was

unknown in the earlier stage. Since the customized late-stage part needs only to complete

the optimization, late-stage optimization costs are lowered. Further, since a given piece of

early-stage information may approximate many later-stage instances, the overhead of

building a customized optimizer at an early stage can be recouped over many later-stage

uses.

Staged optimization has been shown to be both fast and effective for run-time compi-

lation of non-trivial programs [24, 14, 39, 48]. However, although these systems have val-

idated the idea of staging, the complexity of engineering them to stage arbitrary

optimizations is a barrier to their widespread adoption. In fact, all but one of these systems

3

only stage only a single optimization: partial evaluation. Anecdotal evidence suggests that

despite of a vast literature on staging partial evaluation, building systems that staged effec-

tively even this single optimization was quite challenging.

A predecessor of the staged compilation system presented in this thesis, called DyC

[24], demonstrated staged versions of two optimizations beyond partial-evaluation: copy

propagation and dead-assignment elimination. However, writing staged compilers based

on these algorithms for staging individual optimizations is substantially more difficult and

error-prone than writing their unstaged counterparts. The primary difficulty is that where

traditional optimizations reason about the behavior of the program to be optimized, a

staged optimization has to reason about the behavior of the optimization itself when

applied to that program. In effect, the early stage has to perform a kind of case analysis of

all the ways that optimizations might proceed at a later stage, and then pre-compute for

each case as much of the final result as possible. Reasoning at this “meta” level is a signif-

icant burden on the compiler writer. A secondary difficulty is that an algorithm for staging

an individual optimization may not work well when the optimization is part of a pipeline.

In particular, the DyC algorithms for staging individual optimizations were hardwired to

assume that a particular set of optimizations would precede them in the pipeline, thus

destroying the compiler designer’s ability to modularly re-arrange the optimizations in dif-

ferent orders in the pipeline.

To address these difficulties, we present in this thesis a system called the Staged Com-

pilation Framework (SCF) that can automatically and mechanically construct a staged

compiler, given an ordinary single-stage compiler. The compiler writer simply writes pro-

gram optimizations (that typically input a function and output a transformed version of the

function), and composes them in an arbitrary sequence, just they would with a traditional,

unstaged compiler. The optimizations are written in a first-order, side-effect-free subset of

ML called SCF-ML. Beyond using this language, the compiler writer need not, in princ-

ple, be aware that the optimization is to be staged.1 At any stage, given approximate infor-

mation about the inputs to the compiler, a compiler user (who usually is distinct from the

1. Although in practice, the SCF infrastructure is tuned to perform best when optimizations are written in a specific
(arguably natural) “compositional” style.

4

compiler writer) may feed the compiler and the information to SCF, which will automati-

cally produce a version of the compiler specialized for the approximate information.

The design of the system is based on two key insights. First, the approximate informa-

tion, describing both inputs to and results of any staged optimization in the compiler pipe-

line, may be viewed uniformly (and independently of the optimizations preceding the

optimization in the pipeline) as the set of possible values assumed at later stages by the

formal parameters and the return value of the optimization function. Later stages have

access to “less approximate” information in the precise sense that the set of possible inputs

at the later stage is a subset of that at the earlier stage.

Second, the effect of a hand-written staged optimization on its approximate input is

similar to that of systematically specializing an ordinary, unstaged version of the optimi-

zation with respect to the approximate input. In our current design, the specializer (which

we call the stager) consists of a forward pass which performs a specialization step called

online partial evaluation, followed by a reverse pass which eliminates dead store opera-

tions. Although both partial evaluation and dead-store elimination are techniques that have

been studied extensively, it is notoriously difficult to design online partial evaluators [56]

or dead-store eliminators [53] that are both effective and terminate in a reasonable amount

of time. Showing how to effectively harness these techniques towards the task of staging

programs is at the heart of this thesis.

This thesis makes the following contributions:

1. It motivates and formulates the problem of automatically deriving a staged version of a

compiler from an unstaged one.

2. It shows how to represent possible inputs and outputs to all optimizations in a uniform

way, and how to use the uniform representation to enable staging of a pipeline of opti-

mizations given techniques to stage an individual optimization.

3. It describes a set of techniques for automatically specializing individual optimizations

so as to make them substantially faster. Novel contributions include:

• a simple first-order side-effect free functional language called SCF-ML for specifying

optimizations,

5

• an expressive domain for the online partial evaluator,

• a simple but effective analysis to determine what functions to specialize and on what

arguments,

• a context-sensitivity strategy which specializes call-chains of functions and is tailored

to the concrete behavior of the input program,

• an “eager” specialization scheme to keep track of correlations when analyzing sets of

values, and

• a dead store elimination algorithm that cooperates with the partial evaluator to enable

effective dead assignment elimination through commonly used data structures.

4. It evaluates an implementation of the design, targeted at staged compilation of C pro-

grams. The evaluation shows that our techniques can produce staged compilers that are

several times faster than their unstaged versions, and also analyzes the contribution of

the techniques mentioned above to overall speedup.

The rest of the thesis is structured as follows. Chapter 2 places the goals and techniques of

SCF in the context of other efforts to achieve fast late-stage compilation. Chapter 3 pre-

sents an overview of the design of SCF followed by an example detailing inputs and out-

puts to various parts of SCF. Chapters 4 through 8 describe how the core components of

SCF work. Chapter 9 presents measurements that evaluate both the overall effectiveness

of SCF, and the contributions of particular SCF techniques to the overall picture. Chapter

10 presents conclusions and discusses future work.

6

2. Motivation and Background

Staged compilation is essentially a method for making compilers faster. Automatic staged

compilation, as advocated in this dissertation, is a way for making it easier to create faster

compilers. In this chapter, we discuss why creating faster compilers is useful, how staging

compares to other methods for speeding up compilers, and how automated staging com-

pares to other methods for staging.

We present a simple view of a modern compiler in section 2.1. We discuss traditional

approaches to fast compilation when a compiler is used according to this simple view. In

section 2.2 we introduce the notion of compilation stages, which are distinct points in time

when parts of inputs to the compilers are introduced, possibly by different principals (such

as kernel function writers, library writers and whole-program writers). We explain how the

staged availability of information may demand even faster compilers. In sections 2.3, we

introduce an approach, called staged compilation, that allows us to exploit the compilation

stages themselves to speed up compilation. In sections 2.4 through 2.6, we discuss three

techniques, procrastination, pessimism and preplanning, for implementing staged compi-

lation. The first two techniques are routinely used in existing compilers. The third tech-

nique, preplanning, is more powerful in important ways but less developed. We examine

three techniques for preplanning-based staging, in order of increasing automation, ending

with the highly automated approach proposed in this dissertation.

2.1 A Simple Model of a Modern Compiler

Figure 2.1 is a schematic for a modern compiler [2]. The compiler consists of a sequence,

called a pipeline, of optimization phases O1 through On. In what follows, we refer to the

Oi as optimizations or as phases. Common optimizations include constant propagation,

FIGURE 2.1: A Simple View of a Modern Compiler.

O1 O2 O3 On

functions
constants
class hierarchy
branch biases
execution frequencies
machine description

executable

optimizations

pipeline

7

dead assignment elimination, function inlining, register allocation, scheduling and linking.

Optimizations can be interprocedural, in which case many functions are optimized simul-

taneously, or intraprocedural, where functions are analyzed one at a time. The pipeline

takes as input the functions that comprise the program to be compiled, along with a variety

of auxiliary information that helps in compiling the program. We will call the functions

input functions and the program the input program in what follows. The auxiliary infor-

mation may include, for instance, values of constants in the program, class hierarchies

(when the input program is object oriented), the probabilities of various branches in the

programs being taken, the execution frequency of input functions and a description of the

machine on which the program is intended to be executed. Each optimization takes the set

of functions and relevant auxiliary information and produces a transformed version of the

functions and sometimes, auxiliary information about the transformed functions. The out-

put of the entire pipeline is an executable program, i.e., a fully compiled version of the

input program.

In the simplest usage model for the compiler,1 a programmer (a compiler user) first

writes the program to be compiled, gathers all the source code and auxiliary information

for the program, and invokes the compiler (typically written by a separate compiler writer)

to produce the program to be executed. We call this usage model the “single-stage” model,

since the compiler is invoked exactly once, when all inputs to it are available. A program

user may later execute the resulting program. The implicit contract between these three

principals is that the compiler writer produces a compiler that does not take too long to

compile, but produces binaries that deliver good performance (measured in execution

speed, memory footprint, compliance with security policies, etc.). The compiler user

selects the features of the compiler (typically through command line flags), invokes it, and

waits for as long as necessary to produce sufficiently high quality code for their clients.

The program user runs the program with assurance of maximum performance. At the heart

of the contract is the capability of compilers to produce binaries of sufficiently high qual-

ity within a reasonably small amount of time.

1.Although for reasons of efficiency and practicality this simple model where all source code is submitted at once to the
compiler is somewhat simpler than that used by most traditional compilers, it is the one used implicitly to describe many
whole-program optimizations.

8

The difficulty in living up to this contract is that the analyses that underlie optimiza-

tions are typically polynomial (traditionally O(n3) or worse) in their input size. When the

input programs are analyzed one input function at a time, as most compilers still do, this

cost is bearable. However, if as many modern optimizations do, the whole program needs

to be analyzed at once, improving compilation speed becomes an important research topic.

Existing techniques to improve speed fall into three main classes, approximation, summa-

rization and selective optimization, which we describe below.

1.Approximation. As per the widely used abstract interpretation [15] view of program

analysis, conventional optimizations adopt an abstract view of the set of possible traces

(i.e., the sequence of concrete stores) of the program they are optimizing, and interpret

the operations of the program as computations on the abstract trace. The challenge of

designing an effective optimization lies in picking an abstract view that is precise

enough that it preserves relevant features of the traces of the program being

approximated, but approximate enough that the interpretation of the program over this

abstract domain terminates in a timely fashion. Some common approximations, which

may be applied to the abstractions selected for most optimizations, and which are

designed to speed up program analyses include flow insensitivity [5,69], where the

optimization conflates trace values from different program points, context insensitivity

[12,57], where the optimization conflates trace values entering a function from

different calling program points, heap insensitivity [22, 59] where the optimization

conflates heap-allocated store locations and bidirectional assignments [64], where the

optimization conflates the store locations on two sides of assignment statements.

2.Summarization. As mentioned above, a typical optimization interprets with respect to

an abstract domain each operation in the program being optimized. The interpretation

function for each operation is sometimes called a flow function. The action of an

optimization on a program fragment (such as a basic block, function or module) can be

viewed as the application of a sequence of flow functions to the abstract store at the

entries to the fragment.

9

In some cases, it is possible to replace the sequence of flow function with a single

summary flow function which is simpler than the compound one obtained by

sequentially invoking the original flow functions. In these cases, the optimization

proceeds in two passes. The first pass generates the summaries, and the second pass

uses them. When the optimization needs to analyze the summarized program fragment,

it can simply consult the summary of the fragment to obtain (in general) a much

quicker estimate of the effect of the fragment than re-analyzing the entire fragment.

Reps [52], for instance, has shown how to mechanically construct fast summary

functions for interprocedural optimizations whose abstract domains meet a particular

set of criteria. The T1-T2 analysis of Tarjan [2] is another method for constructing fast

summary functions for certain intraprocedural optimizations. Finally, the componential

analysis of Flanagan and Felleisen [21] shows how to construct summary-based

versions of a broadly useful class of analyses called set-based analyses. Many other

analyses, such as synchronization analysis [58] and points-to analysis [17] have

benefited from a summary-based formulation.

3.Selective optimization. The simplest, and most common, technique for lowering

optimization costs is to provide the compiler user with the option of disabling certain

optimizations in the pipeline, of applying lean versions of optimizations when

desirable, or of enabling optimization only on certain parts of the incoming program,

e.g., parts which are executed heavily as per an execution profile.

The above techniques are effective enough that the single-stage model of compilation is

quite acceptable in many traditional compiler-use scenarios. In particular, since this model

places responsibility for compilation of the whole program on a single compiler user, as

long as the user accepts this responsibility, she will presumably be willing to “pay a rea-

sonable price” (where “reasonable” is, say, between linear and quadratic time in input pro-

gram size) to optimize the whole program. Especially with programs written in “low-

level” languages such as C and C++ that benefit relatively little from heavyweight whole-

program analyses, and that are not designed to be used as mobile code (where the proces-

10
sor on which they are executed is determined only at run time), the single-stage model is

adequate.

When a single compiler user is unwilling to accept compilation overhead for the

whole program, when heavyweight whole-program analysis can be profitable (as for pro-

grams written in high-level languages such as Java, C#, Lisp and ML), or when all inputs

required by the compiler are unavailable (as in programs using dynamic linking and

mobile code), the single-stage model breaks down. Given recent software engineering

trends towards high-level languages with mobile, dynamically updated programs, and

given that programs have long been created by multiple compiler users, it is useful to

examine a compilation model that goes beyond a single stage.

2.2 Compilation Stages

The single-stage model assumed that the compiler is invoked exactly once, when all its

inputs are available. We now recognize that the inputs to the compilers may be made

available in multiple stages (i.e., distinct points in time). Correspondingly, there may be

more than one compiler user providing this input. We call this model the multi-stage usage

model.

Figure 2.2 is a pictorial representation of the multi-stage model. The figure focuses

less on the compiler pipeline (on the right of the figure) than on the stages and inputs to

FIGURE 2.2: Compilation Stages.

O1 On

functions

constants

class hierarchy

branch biases

exec. frequencies

machine desc.

lib.
separate
comp. load run

F1 F2 F3 F5

C1 C2 C3 C5

H1 H2 H3 H5

B2 B3 B5

E2 E3 E5

D1 D4 D5

stages

static
link

11
the compiler (on the left). The inputs and stages form a table, with inputs as rows and

stages as columns. Inputs range from functions to machine descriptions, as in the single-

stage model. Stages range from separate compilation (labeled “separate comp.”) to pro-

gram execution (“run”). Each column (highlighted in gray) in the table, represents the

additional information for compilation introduced in the stage labeling the column. An

entry in the table (such as F2) designates the part of a particular kind of input available at

a particular stage (F2 represents the functions available in the second stage, i.e., the library

assembly stage). We step through the five stages in turn and discuss the kinds of informa-

tion that may be available at each. The particular stages, inputs and incremental informa-

tion portrayed in the figure are not meant to rule out others: they are meant to serve only as

a realistic example.

1.The separate compile time stage, when individual functions are available. The

functions themselves are denoted by label F1 in the figure. With each function, we

often know the values of certain constants (C1) used in these functions, a partial class

hierarchy for classes used in the function (H1), and sometimes, a description (D1) of

the machine on which the function is intended to be executed on. Note that branch

biases and execution frequencies of a function are typically not known until link time,

when it is possible to run a version of the program and gain profile information.

2.The library assembly stage, when a set of functions is assembled into a library. Having

these functions makes library wide constants (C2) and class-hierarchy extensions (H2)

available. Further, if the library has been tested with “representative” clients, many of

the branch biases (B2) and execution frequencies (E2) may also be available. It may

seem that in order to “test out” the library with a client, it is necessary to execute the

library, so that it is dubious to claim that profile information is available before the

execution stage. However, note that it is often possible to run the library on a few

representative programs to get profile information, and to use the profiles so collected

as the input profile when compiling most other programs. For most programs that use

the library, therefore, it may be unnecessary to execute the program to get profile

information. The same is true of the separate compilation stage, of course. However, it

12
is unusual to collect profile information for individual functions, although for large

very heavily used kernels, it is not inconceivable to do so.

3.The static link stage, when sets of functions and libraries are grouped into whole

programs, is very similar to library execution, except that we often have an additional

guarantee at this point that no more functions will be added to the program (or to

certain parts of the program), so that the compiler can make a strong closed-world

assumption.

4.The load stage, when programs are loaded from disk into memory for execution.

Details (D4) of the machine on which the program is to be run may be provided only at

this point. For instance, a program may be compiled for a particular architecture, but it

may be possible to optimize it further for an implementation of the architecture.

5.The execution stage, when the program is run. Based on values computed during

execution of the program, additional functions may be dynamically linked and loaded,

yielding a more complete view of the program (F5 and H5), the values of variables that

are quasi-static (remain fixed for long periods during execution) may be revealed (C5),

more accurate execution profiles (E5) and branch biases (B5) may be available, and (in

the case of dynamically loaded and mobile code) details of the underlying machine

(D5) may be revealed.

The staged availability of information as illustrated above presents two challenges in com-

piler design. The first challenge is that because we now have multiple compiler users (typ-

ically, one at each stage), each user may be willing to pay only for compiling “their part of

the program”. For instance, if a user links in large libraries produced by other users into a

relatively small program that they have written, they may be unwilling to accept the large

compilation overhead to optimize the program as a whole. Using a single-stage compila-

tion strategy would likely be unacceptable in this scenario because the final compiler user

would have to pay the cost of optimizing the whole program.

The second challenge is that since the final stage may well be during program execu-

tion, the strategy of waiting until all inputs are available before compiling can potentially

result in a slowdown of the program to be optimized. Specifically, the overhead of compi-

13
FIGURE 2.3: Staged Compilation: A Schematic View.

O1 On

functions

constants

class hierarchy

branch biases

exec. frequencies

machine desc.

separate
comp.

F1

C1

H1

D1

O1 On

functions

constants

class hierarchy

branch biases

exec. frequencies

machine desc.

lib..

F2

C2

H2

B2

E2

O1 On

functions

constants

class hierarchy

branch biases

exec. frequencies

machine desc.

run

F5

C5

H5

B5

E5

D5

...

ICR1

ICR2

ICRn-1

14
lation at the execution stage may overwhelm any benefits from optimization, especially

given the high overhead of heavyweight optimization techniques.

2.3 Staged Compilation

Careful use of the techniques from the previous section for speeding up optimizations

could help in addressing the above two challenges. Interestingly, however, the staged

availability of inputs itself presents a powerful additional opportunity for addressing the

challenges. In particular, both the above challenges can be viewed essentially as due to

deferring “too much” work to later stages, especially the final stage. Time spent compiling

in the final stage may be “disproportionate” to the information added in the final stage. If

we could shift some of the compilation burden away from the final stage to the previous

stages (by “partially executing” it somehow), and in particular make the work done in

each stage correlated with the amount of new information added in that stage, we have the

possibility of reducing the amount of work done in later stages.

Figure 2.3 provides a schematic view of how staged compilation may work. The com-

piler is partially executed on the partial inputs available at each stage before the final

stage, and fully executed at the final stage. A single partial execution is a row in the figure;

rows are separated by dotted horizontal lines. Partial execution of the compiler is denoted

by drawing the compiler pipeline with rounded corners, as for the separate compilation

and library assembly stages. Concrete execution is denoted by drawing the pipeline with

square corners, as in the run time stage.

The result of partial execution is an intermediate compilation result, denoted ICR in

the figure. For instance, partially executing the compiler on information available at the

first (separate compilation) stage results in the intermediate result ICR1. All later compiler

executions (whether partial or concrete) take as input the ICR from the previous stage. The

intention is that the current stage can use the ICR from the previous stage so as to avoid

repeating the work done by the previous stages. Each stage will therefore hopefully do less

work than if it had to process the information gathered over all previous stages. Figure 2.3

represents the diminished load on each step by replacing the full gray squares comprising

the optimizations of the pipeline with gray rectangular slivers. If staged compilation works

15
well, for instance, each optimization in the final stage will only have to do a very small

sliver of the work it would have to do in the unstaged model.

We assumed in this section that there is some way of partially executing the compiler

pipeline, and of communicating the result as an ICR. In the next three sections, we exam-

ine some concrete approaches for doing so.

2.4 Staging via Procrastination

A common technique for staging is based on the observation that not all optimizations in

the pipeline require all inputs. Further, optimizations early in the pipeline often require

only information that is available in early stages of compilation. For instance, early phases

in a pipeline rarely perform either whole program optimization or machine-specific opti-

mizations, and can do with single functions with inputs. At each stage, some prefix of the

pipeline may have all the inputs it needs.

A possible implementation for partial execution, therefore, is to identify the sub-

sequence of optimizations in the pipeline for which all inputs are available at a given

stage, but not in the previous stage, and to concretely execute only that sub-sequence. Exe-

cution of the rest of the pipeline would be deferred to later stages, a strategy we call pro-

crastination. The input for execution would be the ICR from the previous stage, the result

of all phases preceding the current sub-sequence. The execution will produce results to be

passed on to the first optimization after the sub-sequence; of course, this optimization does

not have all its inputs in the current stage. These results would therefore constitute the ICR

fed into the next stage.

Procrastination clearly has the potential to move some compilation overhead to early

stages. In fact, in most modern compilers, functions are parsed and many local optimiza-

tions performed at the separate compilation stage. Even in just-in-time (JIT) compilers

[65, 1], which are optimized to exploit information available at the run-time stage, it is

common to compile functions down to the bytecode level in a separate compilation stage

that happens well before the program is executed. Compilers that perform whole program

optimizations normally also perform parsing and local optimizations before whole pro-

gram optimizations. If the compiler consists purely of intraprocedural optimizations, then

16
almost the entire pipeline (other than simple “gathering” steps such as archiving and link-

ing) can be moved to the separate compilation stage.

The drawback of procrastination is equally clear. Many lucrative optimizations, for

instance whole-program analyses that perform function devirtualization, representation

optimizations (such as inlining of fields) and machine-specific optimizations (such as reg-

ister allocation and scheduling), often require inputs (such as the whole program, execu-

tion profiles and machine descriptions) that are often only available at very late stages.

Thus, compiler users at late stages, such as link time, may still be saddled with very high

overheads of heavyweight program analysis, and exploiting run-time information may still

require an excessive overhead.

2.5 Staging via Pessimism

A compilation system based purely on procrastination has the disadvantage that if an opti-

mization has incomplete inputs, the compiler user has no choice but to defer the optimiza-

tion to a later stage. Pessimism is a technique for partial execution that, unlike pure

procrastination, allows an optimization to execute to completion with partially defined

inputs. The basic idea behind the technique is simple: where input information is neces-

sary but missing, assume it to be the most conservative possible information. The trick to

making pessimism effective is to fall back on missing information sparingly.

Examples of how conventional optimizations may use pessimism to counter lack of

information follow.

1.To understand as precisely as possible whether a particular function call side effects a

particular local variable, it is in general necessary to analyze the whole program.

Potential definitions due to side effects are important to identify in optimizations such

as dead assignment elimination and register allocation. In the absence of the whole

program, the most pessimistic assumption would be that all local variables may be

side-effected at every function call. Intuitively, however, we know that a variable can

be side-effected only if its address has escaped, i.e., has been passed to a callee, either

directly as a parameter or indirectly through the heap. When only a single function or a

library of functions is known at a particular stage, it is conventional to perform an

17
escape analysis [11, 49], and pessimistically assume that only escaped variables are

possibly side effected.

2.When optimizing object-oriented programs, it is necessary to determine the possible

set of classes that a particular variable use may assume at run time. Identifying the

classes can help in eliminating expensive virtual method calls, for example. As with

side-effect analysis, the complication is that if the reference escapes some fragment of

code (or if its value flows from outside the fragment), there is a possibility that it will

be assigned an arbitrary legal value by the code it escapes to (or that its value flows

from). Ideally, if all the code the fragment may reference is available, conventional

whole program analyses could determine its possible classes. However, if only a

function or some libraries of the eventual program are available, it is common to make

pessimistic assumptions. The naive pessimistic assumption would be to assume that the

variable will be some subclass of its declared class at run time; given that classes may

be added at later stages to the program, the set of possible classes cannot be bounded at

the early stage. A more sophisticated pessimistic approach (called extant analysis [63])

is to identify those variables that escape the currently available fragment of code (or to

which there is may be value flow from outside), and make the pessimistic assumptions

for these. Those variables that do not escape the fragment can be analyzed with the

assumption of full knowledge.

3.When performing constant propagation or partial evaluation, it is necessary to have the

values for all constants to be propagated, including constants represented by symbols.

For instance, a variable may be annotated final in a Java program, or a symbol may

denote an address to be resolved to a fixed value by the loader or dynamic linker. At a

particular stage (such as library assembly time or load time), some subset of such

constants may be resolved, and not others. A pessimistic analysis could handle this

situation simply by systematically setting the not-as-yet-resolved constants to “non-

constant” value and then performing the optimization.

4.When performing backend optimizations such as scheduling and register allocation, it

is useful to have as detailed a model of the machine on which the code will be

18
executing on as possible. However, before the code is executed, it may be the case that

the architecture of the processor to be executed is known, but not the implementation.

For instance, it may be known that the target is an X86 processor, but not which

generation, what multimedia instructions it will support, etc. A pessimistic solution

may be to select a conservative machine representation that is guaranteed to execute

correctly on all instances of the architecture, albeit at some performance cost.

To enable pessimistic compilation over an entire pipeline, a compiler writer may provide

both regular (optimistic) and pessimistic versions of optimizations in a pipeline. At a

given stage, in the presence of incomplete information, a compiler user may choose

between procrastination and pessimism. If he chooses the former, he would simply pass on

the ICR input of the current stage to the next stage. If he chooses the latter, he would exe-

cute the pessimistic version of the optimization on the incoming ICR and pass on the

results to the next phase. More commonly, the compiler writer would just provide either a

pessimistic or an optimistic version of the entire pipeline; in the former case, the compiler

user defers no work to the next stage, in the latter he would defer all work.

Pessimism has the advantage that it allows optimizations to be executed at early

stages in spite of partial availability of inputs, thus avoiding overly burdening later stages.

Its disadvantage is that the late stage speed comes at the expense of lost optimization

opportunities.

2.6 Staging via Preplanning

Procrastination and pessimism are less than ideal solutions for the absence of complete

information about an input required by an optimization. A compiler user can either com-

pletely defer an optimization (adding corresponding overhead to later stages), or com-

pletely execute it pessimistically (with accompanying performance loss in compiled

code). Essentially, we achieve partial execution of the pipeline as a whole in the face of

partial inputs at a stage by concretely executing individual optimizations whose inputs are

completely defined (albeit perhaps only after a pessimizing step). A third option, which

we will call preplanning, allows partial execution of an individual optimization given only

partial information about its inputs. “Partial execution” in this case means a kind of pre-

19
planning, rather than execution in the conventional sense, since conventional execution is

impossible without complete inputs. The result of partial execution at a stage can be

thought of as a plan for completing the optimization at a later stage, when more informa-

tion about the optimization’s inputs is available, without repeating much of the work from

the earlier stage. The advantage of this approach is that it reduces the burden on the late

stage(s) without necessarily compromising on accuracy.

Below we discuss two ways in which preplanning-based staging may work. Section

2.6.1 shows how, if only summarizable analyses are to be staged and the only information

to be exploited in stages is the set of functions in the program, the summarization tech-

nique of section 2.1 may be adapted to achieve partial evaluation of the analysis. Section

2.6.2 discusses ways of staging complete optimizations (which typically comprise both

analyses and transformations), as well as pipelines of optimizations on arbitrary kinds of

staged inputs.

2.6.1 Summarization as Preplanning

Recall from section 2.1 that one of the ways to speed up an analysis with no loss of quality

in the result was summarization. Summarization essentially structures the analysis as a

two-step process. The summarization step processes various fragments of the program

(basic blocks, functions, libraries, etc.) separately from the rest of the program to compute

a compact, analysis-specific summary for the fragments. The propagation step performs

the analysis using the fast summaries in place of the original program fragments whenever

possible.

The extension to staging is obvious and has been proposed by various researchers [21,

58, 17]: the two steps can be performed in different stages if the summaries from the early

stages are treated as the ICR’s. For example, given just a library at the library assembly

stage, we could construct a summary for the library that captures only its interactions with

its clients. At link-time, we could do whole-program analysis across the pre-computed

summaries that accompany the fragments of the program being linked together. Once the

system reaches fixed point, we could propagate results locally within summaries. In both

cases (global and local analysis), summarization allows the number of nodes being ana-

lyzed simultaneously to be much smaller than without summarization.

20
Figure 2.4 shows the benefits and the limitations of staging by summarization. Sup-

pose the first optimization O1 in the compiler pipeline is an optimization comprised of a

summary-based analysis A1 and a transformation T1. Let F2 be the subset of input func-

tions known at the library assembly stage, and F3 the subset at the later link stage (the

remaining arguments in each stage are collectively labelled *2 and *3 respectively).

Assume for this example that all inputs are known at the link stage. Then the summariza-

tion step of A1 may be executed on inputs F2, and the summary saved (as intermediate

compilation result ICR2 for the link stage). The link stage will summarize the remaining

functions in F3, and perform propagation on all the summaries. Since summarization of all

functions available at library assembly time occurs at that stage, the time taken summariz-

ing (and therefore analyzing) in the link stage can be much less than if the whole program

had to be summarized.

On the other hand, although the analysis itself can be partially executed at the early

stage, the transformation it feeds into and all subsequent optimizations typically cannot.

This is because, as figure 2.4 indicates by a question mark between A1 and T1, it is unclear

what “partial results” A1 may pass to T1. In particular, we need to somehow “partially exe-

cute” the propagation step at A1 in addition to the summarization step, so that T1 may have

some “partial knowledge” of possible analysis results. In fact, even though summaries for

FIGURE 2.4: Staging Analyses by Summarization.

functions

...

functions

...
A1 On

lib.

F2

*2 T1

A1 On

link

F3

*3 T1

?

ICR2

21
analyses are stored in files along with program intermediate representations for processing

at the later stage, no existing summary-based system stages the optimization phases down-

stream of the analysis. The applicability of summary-based staging to speeding up late

stage optimizations (or pipelines of them) is therefore restricted.

Another limitation of the summary-based approach to staging is that it is designed to

exploit the staged arrival of program fragments (functions, libraries, etc.), but not other

inputs such as constant values and machine models.

2.6.2 Preplanning for Pipelines of Optimizations

We now discuss three methods for preplanning individual optimizations and complete

optimization pipelines. The methods differ most importantly in the amount of effort they

require from the principals involved in the compilation process and in the speed of the

later stages. The first technique (manual preplanning by compiler users), requires great

incremental effort from compiler users per new program and less so from compiler writ-

ers, but can give the fastest late-stage compilers. The second method (manual preplanning

by compiler writers), requires great incremental effort from compiler writers and much

less from compiler users per optimization to be staged. The third method, (automatic pre-

planning), requires relatively little incremental effort from both compiler writers and com-

FIGURE 2.5: Example Pipeline to Demonstrate Preplanning on Pipelines of Optimizations.
The pipeline to be staged consists of the three optimizations constant propagation (CnP), copy propagation (CoP) and

dead-assignment elimination (DAE) over two stages, the separate compilation stage and the run time stage.

functions

constants

functions

constants
DAE

separate

F1

C1

run

F2

C2

ICR1

compile

CnP CyP

DAECnP CyP

22
piler users, given a one-time investment in a staged compiler framework of the kind

described in this dissertation.

Figure 2.5 shows the configuration we will use as a running example in this section.

Compilation is staged across two stages, the separate compile time stage and the run time

stage. The compiler pipeline consists of the three optimizations constant propagation,

copy propagation and dead assignment elimination. The pipeline takes two inputs, the

function to be optimized and a record that maps each parameter and global variable used

in the function to either the value NON_CONSTANT or a value of the form CON-

STANT(v). The former value indicates that the variable will not have a fixed value at run

time; the latter indicates that it will have the fixed value v. We assume that the function is

fully known at both stages (so that F1 and F2 are identical). For our example, we assume

that F1 and F2 are both the function mul_add specified in figure 2.6(a). On the other

hand, we assume that for some of the parameters or globals in the function, we know at the

early stage only that they are constants, without knowing the value of the constant (input

C1 in figure 2.5); we assume that the actual values are revealed only at the run-time stage

(input C2 in figure 2.5). Figure 2.6(b) shows the value of C1 we use in our example. We

know at the early stage that parameters x and y of function mul_add are not constants

(and will not be at run-time either). On the other hand, we know that a is a constant, but

we do not its value at this stage. Figure 2.6(b) shows the value of C2 we use in our exam-

ple: at the late stage, the fixed value of a is revealed to be zero.

FIGURE 2.6: Inputs to the Example Pipeline.
(a) Input function F1 (same as F2) (b) Input record C1, specifying early-stage values for constants. The question mark
indicates that the actual constant value is unknown at this stage. (c) Input record C2, specifying late-stage values for

constants.

int mul_add(int x,int y, int a){
int u = x * a; //command 1
int v = u + y; //command 2
return v; //command 3

}

{ x = NON_CONSTANT, y = NON_CONSTANT, a = CONSTANT (?)}

{ x = NON_CONSTANT, y = NON_CONSTANT, a = CONSTANT (0)}

(a)

(b)

(c)

23
We are now ready to discuss the three staging techniques based on preplanning.

2.6.2.1 Manual Staging by Compiler Users

Figure 2.7(a) shows one way in which staging could be achieved through preplanning.

Essentially, instead of writing a function F which provides whatever functionality the

application user may be interested in, the compiler (who writes the function and compiles

it) instead writes both a compiler for F which when given late-stage information will pro-

duce a version of F optimized to that information, and a driver which invokes this com-

piled version of F [33, 51, 66, 62, 32].

Figure 2.7(c) shows what a compiler custom-written for the F1 and C1 of our exam-

ple would look like. Essentially, the compiler user reasons about the effect of executing

(a)

F’ andarguments for F
F, and a compiler for F

F(a)

AST mul_add_Compile(a: int){

switch (a) {

case 0 : return |mul_add(x,y,a){ return y;}|;

case 1 : return |mul_add(x,y,a){ v = x * y; return v;}|;

case k : return |mul_add(x,y,a){u = x * ‘k; v = u * y; return v;}|;}}

(c)

int mul_add(x, y, a){

static code *mul_add_Opt = NULL;

if (mul_add_Opt == NULL) {mul_add_Opt = compile(mul_add_Compile(a));}

return (*mul_add_Opt)(x,y);}

(b)

1

2

3

4

1

2

3

4

5

FIGURE 2.7: Manual Staging by Compiler Users.
(a) Schematic for manual staging by compiler users (b) Version of mul_add function that optimizes before executing (c) A

hand-written compiler pipeline customized to process F1 given C1.

24
the compiler pipeline of figure 2.5 on the function mul_add of figure 2.6(a). When a has

value 0, the three optimizations combine to leave only the return command in the function.

When a has value 1, they combine to eliminate the first command in mul_add. Finally,

in the case that a has some other value k, the returned function is the same as the input

function, except that all uses of a may be replaced by the constant expression k.

The mul_add_Compile function in figure 2.7(c) has two constructs that are not

part of conventional C code: fragments of code are surrounded by vertical bars |…|, and

the reference to k is preceded by a backquote character ‘. These two features are standard

constructs in meta-programming systems, which are designed to allow programmers to

manipulate fragments of code from within programs. The vertical bars can be regarded as

on operator which, given the code fragment they surround, generate AST’s for that frag-

ment, and the ‘ is an escape character, such that the expression ‘k evaluates to the value

of the variable k in the scope immediately enclosing the bars surrounding the expression.

For readers familiar with the Scheme [32] programming language || and ‘ are intended

to have the same effect as quasiquote and comma and respectively.

When invoked at run time with a particular value of a, the mul_add_Compile

function returns an AST that represents an optimized version of the function mul_add. In

the process, it would have done much less work than a traditional compiler pipeline, since

it just executes a single conditional before producing the appropriate version of code. Fig-

ure 2.7(b) shows the driver an application writer would write to invoke the custom optimi-

zation pipeline just described. A special function compile (called on line 3) first

converts the resulting AST into binary format. The application then jumps to the binary

code generated (line 4). In all subsequent calls to the mul_add function, the conditional

ensures that no compilation will be performed, and control will pass directly to the opti-

mized version of the function.

This example illustrates both the strong and weak points of the staging by compiler

users. On the positive side, the custom compilers can be extremely fast, since the flow of

control and data within them can be optimized by hand. They can also be very effective,

since the hand-written compiler may exploit knowledge about the program no generic

compiler can deduce. On the negative side, writing custom compilers using meta-pro-

gramming support is extremely complicated and error prone. Having to reason about the

25
possible behavior of pipelines of optimizations on a function is beyond the abilities of

most compiler users (or compiler writers, for that matter), especially under the time con-

straints of building a typical application. The fully manual approach is therefore most suit-

able when a small, performance-critical part of an important program needs to be

optimized using late-stage information.

2.6.2.2 Manual Staging by Compiler Writers

An alternative to the compiler user having to write a custom compiler each time she writes

a program is to have the compiler writer write a custom optimization generator each time

she writes a compiler optimization. An optimization generator for a particular optimiza-

tion would take as input partial information about the program fragment to be optimized

and generate a version of the optimization customized to that partial information.

Figure 2.8(a) illustrates how an optimization generator works. Above the dotted line,

in the rounded boxes is a sequence of optimization generators, one for each optimization

we want to customize. The first optimization generator in sequence is for the constant

propagation optimization. It takes as input the partial inputs to constant propagation avail-

able in the early stage, and produces two outputs. One output, sent downwards in the fig-

ure, is the constant propagator customized to F1 and C1 . The second, labeled F{CnP} and

sent to the right, is a partial description of the possible actions performed by the custom-

ized constant propagator on the incoming function F.

The downward arrows that represent customized optimizations are dotted. We use

dotted arrows between two boxes to indicate that one of the boxes either produces or con-

sumes the other. A solid arrow between two boxes indicates that the box at the tail pro-

duces a value that is consumed by the box at the head. In this case, the rounded

optimization-generator boxes above the dotted line generate the small rectangular boxes

that comprise the late-stage compiler.

Figure 2.8(b) shows what the customized constant propagator may look like, using

the meta-programming notation introduced in the previous section. The customized opti-

mization consists of a fragment of code for each command of the incoming function. Each

fragment conditionally produces a transformed version of the command it corresponds to,

and optionally sets a variable (such as u) to an analysis value (such as NON_CONSTANT

26
to indicate that the corresponding variable is not a constant). Analysis variables set for one

command are consulted to determine the actions for downstream commands, much as a

conventional optimization writes and reads fields of the abstract store when executing the

flow function of a command.

FIGURE 2.8: Manual Staging by Compiler Writers.

(a) Generating specialized optimizers with hand-written optimization specializers (b) Specialized constant
propagator (c) Action annotated functions representing inputs to optimizations.

(a)

functions

constants

functions

constants

separate

F1

C1

run

F2

C2

compile

custom CnP
generator

custom CpP
generator

custom DAE
generator

F{CnP} F{CpP}

custom CnP custom CpP custom DAE

(b)

AST mul_add_ConstantPropagator(int a){

//Custom code for optimizing command 1

if (a == 0) {u = 0; c1 = |u = 0;|;}

else {u = NON_CONSTANT; c1 = |u = x * ‘a|;}

//Custom code for optimizing command 2

if (u == 0) c2 = |v = y;|)

else c2 = |v = u + y;|);

//Custom code for optimizing command 3

c3 = |return v;|;

return |mul_add(x,y,z){ ‘c1 ‘c2 ‘c3 }|;

}

mul_add
(xDYN, yDYN, aSTATIC){
u = x * a;
v = u + y;
return v;

}

mul_add
(xDYN, yDYN, aSTATIC){
u = x *FOLD*(a) aFILL(a);
v = u +FOLD+(u) y;
return v;

}

mul_add
(xDYN, yDYN, aSTATIC){
u = x *FOLD*(a) aFILL(a);
v = uREPLACE(u) +FOLD+(u) y;
return vREPLACE(v);

}
F1

F{CnP} F{CpP}

(c)

1

2

3

4

5

6

7

8

9

10

11

27
The customized optimization thus obtained has a significantly lower overhead than an

uncustomized optimization that achieves the same results. The uncustomized version

would, for each command, have additional decode-and-dispatch code which branched on

various fields of the command to determine which flow and transformation function to

execute, followed by an update of a map data structure (instead of a single variable) repre-

senting the store, followed by a sequence of accesses to fields of the command that need to

be reproduced in the transformed command. Replicating a flow function per command

avoids all this overhead. However, comparing the automatically generated customized

code for a single optimization phase of figure 2.8 with the hand-written custom code for

the whole pipeline of figure 2.7, we see that hand customization can potentially produce

still faster custom compilers than automatically customized versions.

We have described the process of customization as essentially that of stamping out, in

the early stage, a specialized optimization function for each command in the input func-

tion. However, customization cannot require that all commands in the input function are

fully known at the early stage. In our example, the customizer for constant propagation

does indeed have a fully known input function F. However, this is not the case with the

customizers for copy propagation and dead assignment elimination. In fact, the input func-

tions to these phases will be generated only at the run-time stage, by executing the custom-

ized constant propagation of figure 2.8(c). Instead of the particular input function (which

will only be known at run time), all these customizers can hope to have at the early stage is

a description of the possible functions that may result from the execution of the custom

optimizations produced by generators before them in the pipeline.

Staging pipelines of optimizations is not a topic much studied before this dissertation.

Figure 2.8(c) shows the only method investigated previous to SCF [24] for describing at

the early stage the potential results of executing customized optimizers. F{CnP} describes

the potential results of the constant propagation phase (which will be input to the copy

propagator), whereas F{CpP} describes the potential results of the constant and copy prop-

agator in sequence, which will be input to the dead code eliminator. For completeness, F1

shows how the early inputs to the constant propagator are described in this scheme.

28
The basic technique used to indicate the effect of an optimization is to annotate the

incoming function with action annotations specific to that optimization which indicated

what actions the optimization could take on the function. In figure 2.8(c), for instance, the

function F{CnP} is annotated with three annotations, FILL(a), FOLD*(a) and

FOLD+(u). The first annotation is intended to indicate that if the variable a has a suitable

value, it may be replaced in the later stage by its value. The second annotation indicates

that given a suitable value of a, the multiply operation may be folded away. The third

annotation indicates that the addition operation may be folded away if the value of u is

suitable (specifically, zero).

The customizer for the copy propagation optimization, given an annotated input, rea-

sons about the possible functions that could result if these incoming annotations were exe-

cuted, simulates the action of copy propagation on these possible results, and adds its own

annotations to the function to indicate the possible additional effects of copy propagation.

The annotations added by copy propagation are underlined in the function labelled F{CpP}

in figure 2.8(c). The annotations REPLACE(v) and REPLACE(u) are intended to indi-

cate that if v (resp. u) are copies at the late stage, they will be replaced by the variables

they are copies of. The customizer for dead-assignment elimination now has to contend

with the function annotated with action-annotations from both upstream customizers.

Downstream customizers thus have to be aware of the semantics of the annotations

placed by each upstream customizer, and need to reason about the interaction of the effects

of these annotations. The burden on the downstream customizer increases rapidly, to the

point that engineers designing downstream customizers need to make conservative esti-

mates of the interaction of effects. In fact, with just three phases, the implementation of

the action-annotation based pipeline described above sacrificed opportunities for optimi-

zations in the second and third phases of the pipeline. The coupling between optimizations

leads to a system that does not scale very well beyond two or three optimizations. Given

that modern compilers can easily have more than ten optimization phases, this limited

scaling is a serious problem.

Writing generators for customized optimizations, as described in this section, does

help in making staged compilation more suitable for widespread use compared to the com-

29
pletely manual approach described in the previous section. The application writer (or com-

piler user) can now stick to writing applications rather than writing additional custom

compilers for applications. The optimization writer, who presumably also writes the cus-

tomized optimization generator, only needs to do so once for each optimization he writes,

an event that happens far less frequently than writing an application to be compiled on the

compiler.1

Unfortunately, writing generators in this manner is enough of a black art that each

generator written until now has merited a research paper [68, 38, 14, 8, 24]. In practice,

writing each optimization generator has taken one or more man years of work by dedi-

cated and highly specialized engineers. Our experience (and informally, that of others)

indicates that without substantial progress both in understanding their nature, and auto-

mating the process of generating them, generating custom optimizations will remain

impractical for mainstream compilers.

In summary, at least based on the state of the art preceding this dissertation, writing

one optimization generator per optimization in the compiler was impractical for most

compilers. Further, pipelining optimization generators was even less feasible. The one pre-

vious proposal of using action annotations, which was work leading to this dissertation,

does not scale to conventional compiler pipelines.

2.6.2.3 Automatic Staging

This dissertation presents a system (called the Staged Compilation Framework, SCF)

which produces customized versions of pipelines of optimizations while allowing com-

piler writers to stick to writing optimizations, and compiler users to writing applications.

They neither have to write optimization generators, nor have to reason about the effect of

previous optimization phases as methods in the previous section did. By showing how

custom optimizations can be generated automatically and composed modularly, the disser-

tation also casts light on the essence of generating custom optimizers. An optimization

writer who wishes to write an optimization generator can hopefully benefit from learning

how an automatic optimization generator works.

1.Unless the compiler is a research compiler!

30

{
{

Figure 2.9 shows how SCF works. It is useful to compare figure 2.9(a) with figure

2.8(a) of the previous section. They key differences between the figures are all above the

dotted line separating the compile-time stage from the run-time stage. For one, instead of

having a distinct rounded box for each optimization (each of which generated a custom

FIGURE 2.9: Using an Automatic Optimization Specializer.
(a) Steps in using an automatic specializer (b) Functions and auxiliary information used and produced.

mul_add
(x, y, a){
u = 0;
v = y;
return v;
}

mul_add
(x, y, a){
u = x;
v = u + y;
return v;}

,,

mul_add
(x, y, a){
u = x * -2;
v = u + y;
return v;} },, ,...

mul_add
(x, y, a){
u = x * -1;
v = u + y;
return v;}

mul_add
(x, y, a){
u = x * 2;
v = u + y;
return v;}

(F1, {x = NON_CONSTANT, y = NON_CONSTANT, a = CONSTANT (0)})

(F1, {x = NON_CONSTANT, y = NON_CONSTANT, a = CONSTANT (1)})

(F1, {x = NON_CONSTANT, y = NON_CONSTANT, a = CONSTANT (-1)})}mul_add
(x, y, a){
u = x * a;
v = u + y;
return v;
}

F{CnP}

F1

{ ,

mul_add
(x, y, a){
u = x;
v = x + y;
return v;}

,,

mul_add
(x, y, a){
u = x * -2;
v = u + y;
return v;} },,

F{CpP}

,...

...

(F, C)

,
,

mul_add
(x, y, a){
u = 0;
v = y;
return y;
}

mul_add
(x, y, a){
u = x * -1;
v = u + y;
return v;}

mul_add
(x, y, a){
u = x * 2;
v = u + y;
return v;}

(b)

functions

constants

functions

constants

separate

F1

C1

run

F2

C2

compile

F{CpP} F{CpP}

specialized CnP

CnP CpP DAE

stager stager stager

specialized CpP specialized DAE

(a)

(F, C)

31
version of an optimization), we now have three instances of a single rounded box, labelled

stager, which can generate all the customized optimizations. The stager takes two inputs.

The first, which enters the stager from above in figure 2.9(a), is an ordinary optimization,

and is all an optimization writer has to write. The second, which enters from the left, is an

early-stage description of the possible late-stage inputs to the optimization. The stager

produces two outputs. The first, the customized version of the optimization is carried

downwards by the dotted arrow as in the previous section. We will not further discuss the

structure of the specialized compiler in this section, although it is similar to that of figure

2.8(c) of the previous section, and it will discussed in great detail in the next chapter.

The second output, which goes to the right (and is the input to the next invocation of

the stager), captures the possible versions of the input function that can result from the

optimization at run time. The crucial difference is the representation of these potential

results. In the previous section, the effect of an optimization was represented at the early

stage by action annotations that (in an optimization-specific way) indicated the action with

which each syntactic phrase of the input function may be transformed. As shown in figure

2.9(b), SCF represents the effect by the set of values which may result from the execution

of optimization at the later stage. These early-stage descriptions of potential later inputs to

the phases are labelled F{CnP} and F{CpP} respectively in the figure.

(F,C) is the early-stage description of the possible later inputs to the entire pipeline. F

is the function mul_add as before. (F,C) is the set of pairs such that the first element of

the pair is the function F and the second is a record with fields x and y bound to

NON_CONSTANT and field a bound to value CONSTANT(i), for all integer i. Similarly,

when constant propagation is performed on some pair (F,c) from (F,C), it will yield a func-

tion which is in the set labelled F{CnP}. One of these functions will in turn be input to the

copy propagator at the late stage, so that the output from the constant propagator will be a

member of the set F{CpP}.

The sets of possible outputs and inputs are represented explicitly as shown in figure

2.9(b) instead of implicitly via action annotations. Dropping the optimization-specific

action annotations of the previous section in favor of sets of values frees the stager from

reasoning about the semantics of, and interactions between, annotations inserted upstream.

32
As long as the stager is able to take an optimization and a set of possible arguments to that

optimization, and produce the set of possible result values for the optimization, instances

of stagers can be chained as shown in the figure with each stager in the chain having no

knowledge of what phase precedes it, and what succeeds it.

In the rest of the dissertation, we will describe in detail the structure and functioning

of the stager.

2.7 Summary

Staged compilation has the advantage over unstaged compilation in that it can shift some

of the overhead of compilation from the late stages to the early stages. As a result, it can

potentially complement the benefit from traditional optimization-speeding techniques

such as approximation, summarization and selective optimization. Procrastination-based

staged compilation allows the early execution of all optimizations in a pipeline if all inputs

to these optimizations are available, and defers the rest for later stages. Pessimism-based

staging sacrifices optimization opportunities to allow early execution of even those opti-

mizations whose inputs may not be all available. Preplanning-based staging has the poten-

tial advantage of allowing early stage partial execution of optimizations whose inputs are

not available without necessarily losing optimization opportunities. It does so by produc-

ing a plan for fast completion of optimizations in later stages, when more information is

available. Summarization can be viewed as a staging technique that applies to analyses,

but not pipelines of optimizations. Proposed techniques for preplanning-based staging of

whole pipelines of optimizations have suffered from unacceptable engineering complex-

ity. The automatic technique presented in this dissertation is aimed at signficantly lower-

ing the complexity of preplanning-based staging.

33
3. Overview and Example

This chapter presents a high-level view of SCF. First, we see via a schematic how the

framework may be used for staging an arbitrary pipeline of compiler optimizations. The

schematic emphasizes the role of the stager (introduced in the previous chapter) as the

engine which stages optimizations and is therefore the heart of SCF. Second, we continue

the running example of the previous chapter by first describing the form of inputs to the

stager, and then showing concretely how the stager is invoked on these inputs. Third, we

examine the internal structure of the stager. Internally, the stager consists of two main

parts, a partial evaluator and a dead-store eliminator. We use our example to show the

effect a basic version of each of these parts has on its inputs, and to show what the output

of the stager as a whole is, on our running example. Succeeding chapters show how the

stager produces these outputs, and how they can be improved.

3.1 High-Level Description of SCF

Figure 3.1(a) illustrates the compiler writer’s view of SCF. He writes a set of optimiza-

tions Oi, some subset of which may be sequenced to form a conventional optimizing com-

piler pipeline O1…On that takes in a function f to produce an optimized program fopt. Each

optimization Oi is a function transformer that takes in an arbitrary data structure fi (typi-

cally a tree representation of the function to be optimized and possibly additional context

information about the properties of the function’s formal parameters or the characteristics

of the target machine onto which the function is to be compiled) and produces a trans-

formed data structure fi+1. Writing these optimizations should be the same amount and

kind of work as writing an optimization pipeline in a regular unstaged compiler.

Figure 3.1(b) illustrates the compiler user’s view of staging an initial pipeline of opti-

mizations O1…On with respect to a partial description F of its eventual inputs f, to pro-

duce a specialized pipeline O’1…O’n. The partial description F defines the set of possible

inputs (i.e., functions and context information) on which the specialized pipeline might be

invoked. The specialized pipeline can then be run on any input f that is a member of the set

described by F, to produce a corresponding optimized function fopt.

34
Each specialized optimization O’i is what is left of the original optimization Oi after

all the parts of its work that can be precomputed based solely on information in Fi have

been performed; the work that remains will finish the optimization when it is finally given

the complete function and context information fi. When staging a whole pipeline, a pipe-

line of specialized optimizations is produced. The specialized pipeline O’1…O’n can be

run just like the original pipeline O1…On, with exactly the same result fopt, as long as its

input f is a member of the set of expected inputs described by F.

The stager does not run its input optimization, but rather takes as input the source code of

the optimization Oi and the partial description Fi of the optimization’s possible inputs to

produce the source code of the specialized optimizer O’i and a partial description Fi+1 of

the optimization’s possible outputs. In the second stage, the specialized optimization pipe-

line O’1…O’n can be run on an input function f to produce an optimized function fopt.

O’1 O’nO’2

O1 On
O2

stager stager stager
F = F1 F2 Fn

fnf2f = f1 fn+1 = fopt

early stage

late stage

(a) The Compiler Writer’s View of SCF

O1 On
O2

f = f1 f2 fn fn+1 = fopt

FIGURE 3.1: High-Level View of SCF.
Solid arrows represent producer-consumer relationships between boxes. Dotted arrows represent input-consumer and

producer-product relationships: the stager consumes optimizations Oi and produces optimizations O’i.

(b) The Compiler User’s View of SCF

...

...

...

...

35
3.2 The Interface to the Stager

Figure 3.2 shows the interface to the stager discussed in the previous section in more

detail. O and O’ are the optimization to be specialized and its specialized version, respec-

tively, and F and F’ are the partial descriptions of the possible late-stage inputs and out-

puts, respectively, of O’. So far, we have left the precise format of the Os and the Fs

unspecified. In this section, we specify precisely the format of these values and illustrate

them with examples.

When we need to use a specific optimization pipeline as an example, we will pick the

pipeline of figure 2.9(a), i.e., O1, O2 and O3 are constant propagation, copy propagation

and dead-assignment elimination, respectively. For input information I, we will use vari-

ants of the mul_add function and associated constant propagation information of figure

2.9(b).

3.2.1 SCF-ML: The Language for Specifying Optimizations

Optimizations are specified in a first-order, purely functional subset of ML called SCF-

ML. SCF-ML provides no support for exceptions. Figure 3.3 specifies the concrete syntax

for this language. All valid SCF-ML programs are valid Standard ML [43] programs, with

identical semantics.

stager

O: SCF-ML Program

O’: SCF-ML Program

F: AbsValue F’: AbsValue

FIGURE 3.2: Signature of the Stager.
The AbsValue datatype is defined in table 1, and the SCF-ML Program datatype is defined in figure 3.3.

36
Briefly, programs (line 1) consist of a set of module definitions; in the style of ML,

modules are called structures in SCF-ML. Structures (line 2) consist of a sequence of

(type and module) definitions followed by a sequence of function declarations. Type defi-

nitions (line 5) include definitions of datatypes (line 5) and the definitions of type syn-

onyms (line 6). Datatype definitions define possibly recursive sum types (analogous to

union types in C). Type synonyms may be associated with product types (line 13; these are

analogous to struct types in C), base types (line 11; note the two special base types set

FIGURE 3.3: Concrete Syntax for SCF-ML Programs.

P ∈ program ::= M1...Mn
M ∈ moduleDef ::= structure id = struct d1...dm g1...gn end

//Type and module definitions
d ∈ definition ::= datatype dtn and ... and dtn

| type id = t
| structure id = MapFn(type key = t1 type value = t2)
| structure id = SetFn(type value = t)
| open id

dt ∈ datatype ::= id = id1 [of t1]|...| idn [of tn]
t ∈ type ::= int | bool | char | string | [id.]set | [id.]map | tn

| (p)
p ∈ prodType ::= t1 *...* tn
tn ∈ typeName ::= id | id.tn

//Function declarations
g ∈ funcGroup ::= fun fd1 and ... and fdn
fd ∈ funcDef ::= id pt = e
e ∈ expr ::= x | k | (e1,...,en)

| case e of m1 | m2 | ... |mn
| let b1...bn in e end
| if e1 then e2 else e3
| SOME e | f e | pr e | e pr e | cf (fn pt => e1) e2

//Value bindings
b ∈ Bindings ::= val pt = e

//Pattern matching
m ∈ match ::= pt => e
pt ∈ pattern ::= _ | id | k | f pt | (pt1,...,ptn) | id as pt

//Primitive domains
pr ∈ Primop ::= [id.]insert | [id.]find | [id.]remove | [id.]equal

| [id.]union | [id.]delete | [id.]add | [id.]member
| + | - | * | ...

cf ∈ CurriedFun ::= [id.]unionWith | [id.]map
k ∈ Constants ::= [id.]empty | NONE | c
f,x∈ QualifiedId::= id | id.x
c ∈ BaseConst = Int ∪ Bool ∪ String ∪ Char
id ∈ Identifier

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

37
and map that are pre-provided by SCF) and other type names. In general, types may be

prefixed by the names of modules where they are defined (lines 11 and 14). For instance,

the type ArrayList.list would refer to the list type defined in the ArrayList

module. SCF-ML restricts the definition of modules within a module to those representing

map data structures, obtained by applying the predefined MapFn functor (line 7), and

those representing sets, obtained by applying SetFn (line 8). For instance, structure

IntBoolMap = MapFn(type key = int type value = bool), defines a

map from integers to booleans. Finally, SCF-ML allows modules to be opened (line 9), so

that their contents are visible within the current module.

Function definitions bind function names to expressions that constitute the body of

the functions. Expressions are variables, constants, constructor applications (which create

a value of a datatype with a particular tag), tuple constructors (which create a value of a

product type), case expressions, let expressions, conditionals, function calls, primitive

operation calls, and a special form for applying map and union operations on map data

structures (lines 23 and 35). As in ML, case expressions in SCF-ML perform pattern

matching and binding of variables. For instance, given a pair x of integers, case x of

(1,y) => y | (-1, y)=> -y| _ => 0 evaluates to the second element of the

pair, its negation, or to zero, when the first element is 1, -1 and 0 respectively. SCF-ML

also provides built-in primitives (lines 33 and 34) for manipulating map and set data struc-

tures in addition to the usual primitive operations such as addition and subtraction. The

built-in constructor SOME and the constant NONE represent values resulting from map

datatype int_list = (* Declare a sum-type with two variants *)
Empty (* A zero-ary variant i.e. scalar *)

| Cons of int * int_list (* A binary variant *)

fun reverse l = reverseHelper(l,Empty)

and reverseHelper(lInput, lResult) =
case lInput of
Empty => lResult

| Cons(i, lInput’) =>
let val lResult’ = Cons(i,lResult)
in reverseHelper(lInput’,lResult’) end

1
2
3
4
5
6
7
8
9
10
11
12

FIGURE 3.4: SCF-ML Program for Reversing a Linked List of Integers

38
operations. A map lookup for an key not in the map will evaluate to NONE, whereas if the

key maps to value v, it will evaluate to SOME v.1

For the benefit of those unfamiliar with ML, figure 3.4 shows how a program to

reverse a linked list of integers is written in SCF-ML. Comment syntax is similar to that of

C, except that the delimiters (* and *) are used instead of /* and */ respectively. It is legal

to have apostrophes in SCF-ML identifiers. Thus, instead of variables named

lResult_1 and lResult_2, we have lResult and lResult’.

Built-in support for the map and set data structures is an important feature of SCF-

ML. Built-in maps and sets currently have the limitation that they assume that the equality

function on map keys and set elements respectively is structural equality. Otherwise, the

semantics of the map data structure operations are standard. In particular, the operations

and values have the same meaning as those of the ORD_MAP and ORD_SET interfaces of

the SML/NJ Utility Library [7]. Figure 3.5 illustrates the semantics of the built-in map

1.The two constructors are identical to those of the Option.option type in the Standard ML Basis Library. They are built-
in here because maps themselves are built-in.

- structure IntMap = MapFn(type key = int type value = int)
structure IntMap : sig (* signature for SCF-ML maps here*) end

- IntMap.empty
<>

- val m = IntMap.insert(1,19, IntMap.insert(2,14,IntMap.empty))
val m = <1->19, 2->14>

- IntMap.find(m,2);
SOME 14

- IntMap.find(m,3);
NONE

- IntMap.equal(m, IntMap.empty);
false

- val m’ = IntMap.map (fn x => x * x) m
val m’ = <1->361, 2->196>

- val m’’ = IntMap.unionWith (fn (x,y) => if (x > 200) then x else y) (m,m’)
val m’’ = <1->19, 2->196>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

FIGURE 3.5: Map Operations in SCF-ML.

39
operations. The figure shows the results printed by a (hypothetical) SCF-ML interpreter

when various map operations are typed in at the prompt (-).

Line 1 shows how a map from integers to integers may be defined using the MapFn

functor. As is conventional with Standard ML map lookups, on a find operation, if the

key to be looked up maps to some value v in the map, the operation returns the value

SOME v, otherwise it returns the value NONE (lines 11 and 14 respectively in the figure).

The map operation (line 19) takes an anonymous function f as first argument, and returns

the map that results from applying f to each value in the range of the map. The union-

With operation (line 22) also takes an input function f in addition to the maps to merge.

The operation returns the union of its argument maps: if some key k is in only one of the

maps being operated upon, and it maps to value v, the mapping (k, v) is transferred to the

result map. If some key k maps to values v and v’ in the two input maps, the mapping (k,

f(v,v’)) is transferred to the result map.

We now turn to how SCF-ML may be used to specify optimizations. We choose to use

abstract syntax trees (AST’s) as our internal representation for programs. Figure 3.6 shows

part of the datatype definition for AST’s (intended to represent C functions) used in SCF.

A possibly puzzling detail is that every AST node has an integer label attached to it. The

FIGURE 3.6: Defining an Intermediate Representation for a Subset of C in SCF-ML.

structure AST = struct
type label = int

datatype prog = prog of id * funs * label

and funs = funs_empty
| funs of func * funs * label

and func = func of func_signature * id * vars * cmd * label

and cmd = skip of label
| seq of cmd * cmd * label
| assign of var * expr * label
| decl_cmd of decls * cmd * label
| if_else of expr * cmd * cmd * label
| switch of expr * cases * label
| while_do of expr * cmd * label
...

and ...

end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

40
label for each node is intended to be used as a handle for associating dataflow facts with

that node. Although we expect that most compiler writers will use this pre-defined AST

definition, there is nothing to prevent them from defining their own intermediate represen-

tation (perhaps because they are representing a language other than C, or they want to use

a different internal representation than AST’s).

In our example three-optimization pipeline, the compiler writer must write the three

optimizations in the pipeline in the SCF-ML language. Figure 3.7 shows how dead-assign-

ment elimination may be written in SCF-ML.

Line 1 of the figure indicates that the code for dead-assignment elimination is being

encapsulated in a module named DAE. Line 2 opens the AST module (defined partially in

figure 3.6) to read in the type definitions for the input program abstract syntax tree. Types

such as var, label, func, cmd and expr used at line 14, 21 and 39 respectively are

defined in this module. Lines and 7 and 11 define modules by instantiating parameterized

modules (called functors in Standard ML). Line 7 defines a module LiveSet represent-

ing the set of live variables maintained by the analysis. Line 12 defines the module

AssignMap, which is a map from labels on commands in the input AST to a lattice value

live or dead. Lines 12 and 26 illustrate how components of modules can be accessed

from other modules: AssignMap.map refers to the type named map defined in the

AssignMap module, and LiveSet.delete is the set delete function in the LiveSet

module.

The entry point to the optimization is the function optimize. Note that the figure

deviates slightly from the SCF-ML syntax specified in figure 3.3 in that it allows function

definitions to be decorated with optional input and return types. As per line 14, for

instance, the optimize function takes an input of type func and evaluates to a value of

the same type. The optimization itself is divided into an analysis pass (function analyze-

Fun) followed by a transformation pass (function transformFun).

The analysis pass is a backwards dataflow analysis that computes, using a threaded

set (lSet) of live variables, and a map (aMap) which indicates whether each assignment in

the incoming AST is live or dead. Consider, for instance, lines 24-28 of the figure, which

show how the analysis processes an assignment statement of the form v = e with label

41
lbl (written assign(v,e,lbl) in the figure). In line 25, the analysis checks if v is in

the set of downstream live variables computed by the analysis so far. If so, the analysis

FIGURE 3.7: Specifying Dead Assignment Elimination in SCF-ML.

structure DAE = struct
open AST (* Import declarations of input program representation*)

datatype liveness = dead | live

(* LiveSet holds the set of live variables at a program point *)
structure LiveSet = SetFn(type value=var)
type live_set = LiveSet.set

(* AssignMap records whether each assignment is live or dead at a program point *)
structure AssignMap = MapFn(type key=label type value=liveness)
type assign_map = AssignMap.map

fun optimize(f:func):func =
transformFun(f, analyzeFun(f))

and analyzeFun(func(_,_,c,_):fun):assign_map =
let val (_, aMap) = analyzeCmd(c, LiveSet.empty, AssignMap.empty)
in aMap end

and analyzeCmd(c:cmd, lSet:live_set, aMap:assign_map)
:(liveSet * assign_map) =

case c of
assign(v, e, lbl) =>
let val lv = if LiveSet.member(lSet, v) then live else dead
in (analyzeExpr(e, LiveSet.delete(lSet, v)),

AssignMap.insert(aMap, lbl, lv))
end

| seq(c,c’,_) =>
let val (lSet,aMap) = analyzeCmd(c’,lSet,aMap)
in analyzeCmd(c,lSet,aMap) end

| return(e,_) =>
(analyzeExpr(e, lSet), aMap)

| while_do(e, c, _) =>
analyzeWhile(lSet, lSet, aMap, e, c)

| ... other cmd cases here...

and analyzeExpr(e:expr, lSet:live_set):live_set =
case e of
var_ref(v, _) => LiveSet.add(lSet, v)

| primop(op,es) => analyzeExprs(es, lSet)
| const _ => lSet
| ... other expr cases here...

and analyzeExprs(es:exprs, lSet:live_set):live_set=
case es of
 exprs(e,es) => analyzeExprs(es,analyzeExpr(e,lSet))
| exprs_none => lSet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

42
deduces that the assignment is live (and sets lv to liveness value live), otherwise it

deduces the assignment is dead (and sets lv to dead). In line 26, it removes v from the

set of live variables and then checks the right hand side of the assignment (via the call to

analyzeExpr) to add all variables used there to the set of live variables; this set is

returned as the set of variables live before the assignment. Finally in line 27, the analysis

updates (in the functional sense) aMap to record that the statement labelled lbl has

liveness value lv.

Lines 75 through 79 perform the actual pruning of dead assignments. Given assign-

ment assign(v,e,lbl) the optimization looks up the liveness value associated with

label lbl in the assignment map (line 77). If the assignment has been deemed dead by

FIGURE 3.7 (continued): Specifying Dead Assignment Elimination in SCF-ML

and analyzeWhile(live_fix:live_set, live_exit:live_set, assigns:assign_map,
test:expr, body:cmd)

:(live_set * assign_map) =
let val live_head = analyzeExpr(test, live_fix)

val (live_taken, assigns’)= analyzeCmd(body, live_head, assigns)
val live_fix’ = meet(live_taken, live_exit)

in
if LiveSet.equal(live_fix, live_fix’) then
(live_head, assigns’)

else
analyzeWhile(live_fix’, live_exit, assigns’, test, body)

end

and meet(live1:live_set, live2:live_set):live_set =
LiveSet.union(live1, live2)

and transformFun(func(fname, formals, c, lbl):func,
aMap:assign_map):func =

func(fname, formals, transformCmd(c, aMap), lbl)

and transformCmd(c:cmd, assigns:assign_map):cmd =
case c of
assign(v, e, lbl) =>
case AssignMap.find(assigns, lbl) of
SOME dead => skip(lbl) (* replace with empty cmd *)

| SOME _ => c (* leave unoptimized *)
| seq(c, c’, lbl) =>

seq(transformCmd(c,aMap),transformCmd(c’,aMap),lbl)
| while_do(e, c, lbl) =>

while_do(e, transformCmd(c), lbl)
| return _ => c
| ... other cmd cases here ...

end (* structure DAE *)

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

43
the analysis, it is replaced by a no-op (the skip command of 78), otherwise the command

is left unchanged (line 79).

The example illustrates some important points. First, optimizations are typically

divided into analysis and transformation functions. Second, the analysis function typically

computes a map from program labels to properties that hold at that label. This map is then

consulted by the transformation. This map, and related ones, are propagated throughout

the program. Third, two classes of recursive functions are prominent in optimizations. The

functions that analyze individual commands and expressions often call each other recur-

sively. In this case, the recursive call has as its argument a sub-command/expression of the

command/expression that was the argument to the original call. On the other hand, com-

mands that cause iteration (such as the while_do command) are processed by recursive

fixpoint functions (such as the analyzeWhile function of the figure) where the recur-

sive call to the fixpoint function is on the same command as the initial call. SCF contains

machinery to handle accurately these two kinds of recursive calls. Finally, the optimiza-

tion is specified quite naturally using SCF-ML. This has been our experience with other

intraprocedural analyses we have implemented in SCF-ML.

We end this section with a few details on the other two optimizations in the pipeline.

These details will be useful in understanding how exactly the stager is invoked at the early

stage. In line with the example of chapter 2 (see figure 2.3 for instance), we assume that

the constant propagation optimization (implemented, say, in module CnP) has a slightly

non-traditional interface. The optimization uses the traditional constant-propagation lat-

tice with elements that belong to the data type lattice_val = NON_CONSTANT |

CONSTANT of int | UNDEFINED. However, in addition to the body of the function

f to be optimized, the entry function CnP.optimize of the constant propagator takes as

argument a list of bindings providing the constant-propagation lattice values to which the

formals of f should be bound at the beginning of constant propagation on f, i.e.,

CnP.optimize: AST.fun * (CnP.lattice_val list) -> AST.fun.

Finally, we assume the copy propagation pass is implemented as a conventional function-

to-function transformer in module CpP, i.e., CpP.optimize: AST.fun->

AST.fun.

44
3.2.2 Augmented Regular Tree Expressions

In the previous section, we discussed how one of the inputs to the stager, the optimization

program, is represented using the SCF-ML language. In this section, we specify how the

other input, the abstract value that captures possible late-stage inputs, is represented.

As discussed in section 2.9, the abstract value represents the set of possible values

that may be input to the optimizer at the late stage. A representation for the abstract value

must therefore be able to represent sets containing any input to an optimization program.

Now since an optimization may be an arbitrary SCF-ML program, its input may be any

value (called a concrete value) an SCF-ML program may manipulate. To understand the

requirements on abstract values, we must therefore first understand the structure of con-

crete values in SCF-ML.

We can use the structure of SCF-ML types (as specified in figure 3.3) as a guide to the

structure of SCF-ML values. Since the type of an expression in SCF-ML is either a primi-

tive constant (integer, boolean or string), a sum-type, or a product type, all values manipu-

lated by SCF-ML are either primitive constants, values tagged by constructor names, or

tuples of values. Figure 3.8 illustrates the kinds of concrete values manipulated by SCF-

ML. The figure is intended to convey the fact that a combination of tuples, tagged variants

An integer:
1

The empty list []:
nil

The list [12]:
cons(12, nil)

A tuple with three elements, the second of which is a tree:
(1, tree(13, empty_tree), false)

An association list-based implementation of the map [1 -> 19, 2 -> 14]:
cons((1,19), cons((2,14), nil))

A representation of the command x = y + z:
assign(var(“x”),primop(op_add,exprs(var(“y”), exprs(var(“z”), expr_none))))

FIGURE 3.8: Concrete Values That May Be Defined in SCF-ML Programs.

45
and atomic types is sufficient to encode most data structures including lists, maps, trees

and program fragments in a straightforward fashion.

3.2.2.1 The Concrete Domain

Intuitively, the concrete values manipulated by SCF-ML programs are primitives, tuples

and tagged values. Formally, the concrete value domain is the Herbrand Universe H, given

by the smallest set satisfying the equation:1

H = {c(t1,...,tarity(c))| c ∈ Constructor ∧ ti ∈ H}∪ {(t1,...,tn)| n > 1 ∧ ti ∈ H}

Integer, boolean, character and string constants are viewed as constructors with arity 0.

For concreteness, assume that built-in maps have an association list-based implemen-

tation2. In ML, one may write:

type (‘‘a,‘b) map = (‘‘a * ‘b) list

Sets may be implemented by maps representing their membership function, and will not

be discussed explicitly below:

type ‘‘a set = (‘‘a, bool) map

Built-in maps and sets therefore have a concrete representation in H. In what follows, we

will always print concrete maps as association lists, although in practice SCF uses a more

efficient internal representation for maps.

3.2.2.2 Syntax and Semantics of Abstract Values

Given that we are trying to represent sets of possible concrete values using abstract values,

an abstract value represents a member of the set AbsValue = 2H, the powerset of the above

concrete domain. Much prior work in abstract interpretation and set-based program analy-

sis [54, 31, 4, 26] has gone into formalisms for representing this domain. We choose as our

representation a modified version of the Regular Tree Expression (RTE) representation of

1.This is a slightly augmented form of the traditional Herbrand Universe since the latter does not contain untagged tuples.
2.Those familiar with ML will notice that the type parameter ‘‘a is an equality type, i.e., equality on these values is

given by structural equality. In fact, built-in maps assume the equality testing criterion between two concrete values that
are map keys is structural equality. The user cannot define his own equality function over keys. We have not found this
restriction to be too onerous. On the other hand, the precision of abstract map operations in SCF depends crucially on
this restriction.

46
Aiken and Murphy [3]. The syntax and semantics of our augmented version of RTE’s,

simply called “abstract values” below, is in table 1.

On the left of the table is the syntax of abstract values v. These may include a special

“variable” named rec.1 Further, some abstract values v are tagged with integers i as

denoted by the notation v#i. We will call these integers abstract value identity tags or sim-

Table 1: Augmented Regular Tree Expressions (Abstract Values): Syntax and Semantics
The set v of concrete values represented by a closed abstract value v is ∪γ∈I × HΨ(v, [], γ); [] is the empty substitution.

v ∈ AbsValue ::=
Set represented by v under substitutions σ, γ:

Ψ(v, σ, γ) ∈ 2H

no values 0 {}

all values 1 # i {t | t = γ[i] ∧ t ∈H}

tuples (v1,...,vn) # i {t = (t1,....,tn) | t =γ[i] ∧ ∀j∈1...n . tj ∈ Ψ(vj,σ,γ)}

constants c ∈ 0-ary Constructors {c}

tagged
values

(c v’)# i {t = c t’ | t = γ[i] ∧ t’ ∈ Ψ(v’, σ, γ)}

alternative
values

(v1|...| vn)# i {t | t = γ[i] ∧ t ∈ Ψ(v1, σ, γ) ∪ ... ∪ Ψ(vn, σ, γ)}

recursively
defined
values

(fix. v’) # i {t | t = γ[i] ∧
 t ∈least fixpoint of

T = ∪γ’ ∈I × H Ψ(v’, σ[rec→T], γ’)}

rec # i {t | t = γ[i] ∧ t ∈ σ[rec]}

maps map (
must[(u1,u1’)...(un,un’)],
may[(v1,v1’)...(v1,vm’)]) # i

{t = [(t1, t1’) ... (tp, tp’)] |
t = γ[i] ∧
(∀k∈1...n .

sk = Ψ(uk, σ, γ) ∧
sk’ = Ψ(uk’,σ, γ) ∧
∃j∈1...p .

{tj} = sk ∧ tj’ ∈ sk’) ∧
(∀ j∈1...p s.t. tj ∉ ∪i = 1...nΨ(ui, σ , γ).

∃ k∈1...m.
sk = Ψ(vi, σ , γ) ∧
sk’= Ψ(vi’, σ , γ) ∧
tj ∈ sk ∧ tj’ ∈ sk’)

}

47
ply ID’s in what follows. On the right of the table is the set, written Ψ(v, σ, γ), of concrete

values represented by v under substitutions γ from ID’s to concrete values (i.e., elements

of H), and σ which may contain a binding from rec to a set of concrete values (i.e., to an

element of 2H). We say that an occurrence of rec is bound if it is enclosed in a fix value,

otherwise we say it is free. If abstract value v has no free occurrences of variable rec, we

say that v is closed. In the rest of the dissertation, we assume that all abstract values we

deal with are closed. For closed v, we say that concrete value t conforms to v iff t ∈ ∪γ∈I ×

HΨ(v, [], γ), where [] is the empty substitution. As a convenience, in what follows we will

write the set of conforming concrete values of abstract value v as v.

3.2.2.3 Abstract Value Identity Tags

Abstract value identity tags (ID’s) are an innovation particular to SCF. To gain some intu-

ition on their role, recall that abstract values encode at the early stage a set of values such

that the corresponding late stage value will be an element of this set. The basic idea behind

ID’s is that if two abstract values are tagged with the same ID at the early stage, it is guar-

anteed that the late stage value corresponding to the one will be the same as that for the

other, i.e., the abstract values are “correlated.” If, at the early stage, we needed to evaluate

an equality test on two such values, we could therefore determine that the values will def-

initely be equal at the late stage. Since equality testing is commonly used in the optimiza-

tions being staged (in order to check if the dataflow analysis has reached fixpoint),

accurate early equality testing is important.

The mapping γ enforces that if two abstract values v and v’ have the same ID i, and

are not nested in different fix values, then they are guaranteed to represent the same con-

crete value γ[i]. The ID tags therefore correlate concrete values that conform to different

abstract values. As a simple example, if v = (1 | 2) # 31 and v’ = (1 | 2) # 31, then the pos-

sible concrete values represented by (v, v’)#734 are (1, 1) (in which case γ is the map {31-

>1, 734 -> (1,1)}) and (2, 2) (γ = {31->2, 734 -> (2,2)}), but not (1, 2) or (2, 1).

1.In fact, since the variable always has the name rec, we may as well call it a keyword. However, traditional presentations
of RTE’s allow variables of arbitrary names, a feature not included in abstract values. We choose to preserve the name
in order to highlight the parallel.

48
Although table 1 seems to consider arbitrary mappings γ from ID’s to values, since

the semantics of a given value v are specified in terms of the union over the value of Ψ(v,

[], γ) under all values of γ ∈ I × H, the rules of table 1 implicitly impose a set of consis-

tency requirements on γ. For instance, the rule for tagged values implies that an abstract

value (cons 1)#21 has no valid interpretation under a γ that maps ID 21 to nil. Again, in the

example of the previous paragraph, γ may only map tag 31 to the integer 1 or 2 (as per the

rule in the table for processing alternates v1|...|vn) and not, for instance, to an arbitrary

343. As a final example, the rule for tuples in the tables prohibits the mapping {31->1, 734

-> (2,2)}.

The rule for processing fix abstract values has a subtlety that deserves explanation.

First, consider how fix values work in conventional RTE’s (i.e., those without ID’s). The

fix form could be used to represent the set of all lists that contain the integers 1 or 2 by

writing fix(nil | cons(1| 2, rec)). This expression expands to the set {nil, cons(1, nil),

cons(2, nil), cons(1, cons(1, nil)), ...}. The set corresponding to the expression fix. v would

be the least fixpoint of T = Ψ(v, σ[rec -> T]). Intuitively, we generate values in the set by

recursively replacing all occurrences of rec in v by the fix expression itself.

When we now add ID’s to the abstract value, we are faced with the question of what

value of γ to use when processing these recursively substituted values. We could use the γ

we were using for the original fix expression, so that Ψ(fix. v, σ, γ) = Ψ(v, σ[rec -> T], γ).
Consider a version of the above example with ID’s: (fix(nil | (cons((1| 2)#11, rec#12)#13

)#14)#15)#16. A consistent value for γ is {16->cons(1, nil), 14->cons(1, nil), 11->1, 12-

>nil}. Note, however that using these semantics, we cannot specify a γ where the ID 16 is

mapped to value cons(1, cons(2, nil)), since this would entail ID 11 being mapped to both

1 and 2. In order to allow different versions of “alternates” (such as 1|2 above) to be cho-

sen in different recursive instantiations of a fix expression, we remove the restriction that

the recursively instantiated fix expression is evaluated with the same γ as the original, and

instead allow the recursive instantiations to be evaluated with arbitrary γ, leading to the

rule of table 1 for Ψ(fix. v, σ, γ).
Figure 3.9 gives further examples of abstract values and the set of concrete values that

each abstract value represents. In particular, the figure demonstrates that ID’s increase

49
fundamentally the expressiveness of abstract values relative to the RTE’s on which they

are based: RTE’s are known to be equivalent to context-free grammars (CFG’s) [13] in

expressivity. It is known further that CFG’s cannot encode the set of strings 4n04n04n [29].

The fourth example of figure 3.9, on the other hand, shows how to encode this set of

strings using abstract values. ID’s therefore add a form of context sensitivity to abstract

values.

To ease reading and writing abstract values, in the rest of this dissertation if the ID of

an abstract value is irrelevant to the discussion, we will simply drop it. The first abstract

value of figure 3.9 would thus be written simply as (1 | 2 | 17). We will also use italics

when we write abstract values.

3.2.2.4 Abstract Maps

A second distinctive feature (relative to conventional Regular Tree Expressions) of our

abstract values is the special representation for sets of possible map data structures. This

representation consists of two association lists. Both map abstract values to abstract val-

ues. The first list, tagged must in the figure, is used for keys that are required to be in any

conforming concrete map and that are known exactly, i.e., that are singleton abstract val-

ues. If an abstract value pair (v,v’) is in the must list of abstract map m, then every concrete

(1 | 2 | 17)#23

(cons((1|2)#7, 1#234)#717)#22

(1#212, 1 # 212)#765

((fix.((4,rec#12)#34|4)#27)#3, 0,
(fix.((4,rec#13)#35|4)#28)#3, 0, (fix.((4,rec)#14|4)#29)#3
)#1171

(fix. ((tree(“a” , rec#1)#2)#3 | empty_tree)#4)#5

map(must [(1,(7|19)#1)], may [((2|14)#2, 9)])#113

FIGURE 3.9: Examples of Some Abstract Values and the Sets they Represent.

{1, 2, 17}

{cons(i, j) | i ∈ {1,2}, j ∈ H}

{(i,i) | i∈ H}

{ (4,(4,...(4,4))), 0, (4,(4,...(4,4))), 0, (4,(4,...(4,4)))| n > 0}

{empty_tree, tree(“a”, empty_tree), tree(“a”, tree(“a”,
empty_tree)), ...}

{[(1,7)], [(1,7), (2,9)], [(1,7), (14,9)], [(1 ,7), (2,9),
(14,9)], [(1,19)], [(1,19), (2,9)], [(1,19), (14,9)], [(1,19),
(2,9), (14,9)]}

}

Abstract Value, v Conforming Concrete Values, v

}n 4’s }

50
map that conforms to m must map the single member of v to a member of v’. The second

list, tagged may, records more approximate key/value bindings. For every entry (t,t’) in a

conforming concrete map such that t is not in the domain of the must list, there must exist

a pair (v,v’) in the may list such t is in v and t’ is in v’. Thus, any key in a conforming map

that is not in the must list is required to be in the may list, but not all keys in the may list

need be in a conforming map.

The last row of figure 3.9 gives an example of how sets of maps are encoded. On the

left side of the row is an abstract map, and on the right is the set of maps represented by

that map. Because 1 is a key in the must list, all the maps on the right are required to have

1 as a key. On the other hand, since 2|14 is only a may key, the maps on the right may have

one, both or neither of 2 and 14 as keys.

{u = x * i | i∈ Int} ∪ {u = y * i | i∈ Int}

assign(“u”,
primop(op_times,

exprs(var(“x”, (label 23))| var(“y”, (label 24)),
exprs(const(int(1), (label 77)),

exprs_none,
(label 76)),

(label 75)),

(label 78)),
(label 79)

u = (x | y) * ‘Int

mul_add (x, y, a){
u = (0 | x | (x * ‘Int));
v = (y | ((u|x) + y));
return (v | y);}

(a) Set of Input Commands to be Represented

(c) Compact Notation for the Above Abstract Value

(d) Compact Notation for the Set F{CpP} of Figure 2.9(b)

(b) Abstract Value Representing the Above Set

FIGURE 3.10: Representing Input Functions as Abstract Values.

51
3.2.2.5 Some Conventions for Writing Abstract Values

One class of abstract values that will come up often in the rest of the thesis is that of

abstract values representing sets of AST fragments (such as expressions, commands and

functions). As figures 3.10(a) and 3.10(b) illustrate, these abstract values can get very

tedious to write. Figure 3.10(a) shows a set of commands to be represented by an abstract

value. Figure 3.10(b) is an abstract value representing this set of commands, and is diffi-

cult to read because of the profusion of identity tags and labels. Figure 3.10(c) introduces

a compact notation for writing abstract values that represent sets of input (AST) functions

or their fragments. The basic idea is to omit writing the tags for the non-scalar abstract val-

ues, to omit labels on the incoming instructions, and to write all operations infix as the

concrete syntax of the input language would dictate. In addition to the vertical bar separat-

ing variables x and y (which parallels that in the abstract value), the compact notation

uses a special terminal ‘Int to represent the set of all integers. In future uses of this nota-

tion, we use terminals ‘String and ‘Bool to represent the universal sets of all strings

and booleans respectively. In keeping with our previously established convention, we use

italic font to write the abstract value, except that we denote that it is a an abstract value

denoting input code by using courier font in addition: the result is the courier italic

font.

As a further illustration of the notation, figure 3.10(d) shows an abstract value repre-

senting the set of functions F{CpP} of figure 2.9 written in the compact notation. In what

follows, when tag numbers of abstract values and label numbers of input program frag-

ments are unimportant, we will use the compact notation to represent the fragments.

3.2.3 How the Stager is Invoked

Having defined precisely the format of inputs to SCF, we now turn to how the compiler

user stages a pipeline containing the three example optimizations. The user is interested in

compiling and running a C program, of which the mul_add function of figure 2.3 is a

part. Typically, at static compile time, the user would have determined via profiling that

the function is heavily used by their C program, and is therefore worth dynamically opti-

mizing. Further, value profiling may have revealed that the variable a changes infre-

52
quently and is therefore a good candidate to be designated as a run-time constant. At this

point, the user might want to use the SCF framework to stage the optimization pipeline

O1…On and thereby produce a version of this pipeline specialized to optimize the

mul_add function under the assumption that its third argument a is some integer con-

stant, whose value will be revealed at run time.

Figure 3.11 (which is essentially the same as figure 2.9(a) from the previous chapter)

illustrates the steps involved in staging our example compiler pipeline. At compile time

(above the dotted line in the figure), the user invokes the stager in a sequential manner to

generate the specialized optimization phases CnP’, CpP’ and DAE’. At run time (below

the dotted line in the figure), the specialized pipeline is invoked to produce the optimized

program Fopt.

The stager in SCF is implemented in Standard ML. Figure 3.12 shows the Standard

ML expression that implements figure 3.11. We assume that the modules CnP, CpP and

CnP’

CnP DAE

stager stager stager
F = F1 F2 F3

f2f = f1 fopt

compile time

run time

CpP

CpP’ DAE’f3

FIGURE 3.11: Staging a Three-Phase Compiler Pipeline.

let val f: AST.func = AST.parse “mul_add.c”
val args =

[“CnP.NON_CONSTANT”, “CnP.NON_CONSTANT”, “CnP.CONSTANT(‘Int)”]
val F1: AbsValue = toAbsValue (f, args)
val O1: SCF_ML.Program = SCF_ML.parse “const_prop.scf-ml”
val O2 = SCF_ML.parse “copy_prop.scf-ml”
val O3 = SCF_ML.parse “dae.scf-ml”
val (O1’, F2) = stager (O1, F1)
val (O2’, F3) = stager (O2, F2)
val (O3’, _) = stager (O3, F3)

in (SCF_ML.print(O1’, “const_prop.staged.scf-ml”);
 SCF_ML.print(O2’, “copy_prop.staged.scf-ml”);
 SCF_ML.print(O3’, “dae.staged.scf-ml”))

end

FIGURE 3.12: Invoking the Stager at Static Compile Time.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

53
DAE are defined in files const_prop.scf-ml, copy_prop.scf-ml and dae.scf-

ml, respectively. In lines 2-4, the expression constructs, using a call to the function

toAbsVal, an abstract value F1 representing the early-stage input to the first optimiza-

tion in the pipeline, i.e., constant propagation. toAbsVal is a function that takes an AST

representing an input function, and a list of strings (each string encoding as an abstract

value an argument to the function), and returns an AbsValue that represents the set of

tuples with the function as the first component and a list of concrete arguments as the sec-

ond. In lines 5-7, the ML expression reads in the SCF-ML programs corresponding to the

three optimizations. In lines 8-10, it invokes the stager on the optimizations Oi in a

sequential manner to produced specialized optimizations Oi’. The values F2 and F3,

which represent the possible results of executing optimizations O1 and O2, are used as

inputs to stage the next optimization in the pipeline. Finally (lines 11-13), the expression

writes the specialized optimization programs to disk.

FIGURE 3.13: Abstract Values Input and Output by the Stager at Compile Time.

(int mul_add(int x, int y, int a) {
int u = x * a; //command 1
int w = u + y; //command 2
return w;} , //command 3

(NON_CONSTANT, NON_CONSTANT, CONSTANT(1)))

int mul_add(int x, int y, int a) {
int u = (0 | x | (x * ‘Int));
int v = (y | (u + y));
return v; }

int mul_add(int x, int y, int a) {
int u = (0 | x | (x * ‘Int));
int v = (y | ((u | x) + y));
return (v | y); }

(a) F1: The Abstract Value Input to Constant Propagation

(b) F2: After Staged Constant Propagation on F1. Version (i) assumes a more aggressive optimization,

version (ii) a less aggressive one.

(c) F3: After Staged Copy Propagation on F2. Versions (i) and (ii) correspond to inputs (i) and (ii) respec-

tively from figure 3.13(b).

(i)

int mul_add(int x, int y, int a) {
int u = (x | (x * ‘Int));
int v = ((u | x) + y);
return v; }

(ii)

int mul_add(int x, int y, int a) {
int u = (x | (x * ‘Int));
int v = ((u | x) + y);
return v; }

(ii)(i)

54
The variables F1, F2 and F3 denote the early stage abstract inputs to constant propa-

gation, copy propagation and dead-assignment elimination, respectively. We saw the sets

of values represented by these abstract values (called FA, F{CnP} and F{CnP,CpP}) in figure

2.9 of the previous chapter. Figure 3.13(a), (b)(i) and (c)(i) respectively show how these

abstract inputs may be represented as abstract values, using the compact notation for

abstract values discussed previously. For future reference, we also show in figure

3.13(b)(ii) and (c)(ii) the corresponding output abstract values if we assume that the con-

stant propagator does not replace a multiply-by-zero with the constant expression 0.

We have thus far discussed what the user of SCF needs to do at compile time. We now

describe how the results of the compile-time stage are used at run time. At run time, when

the C program containing mul_add is about to invoke it with some concrete value of

argument a for the first time, it first invokes the specialized optimizers (written to the files

suffixed “.staged.scf-ml” in figure 3.12) by calling the stub function of figure 3.14

with the value of a as argument, and then jumps to the array of machine code returned by

this function call. The stub function is generated (at static compile time) specifically to

allow its caller to optimize function mul_add with respect to the late-stage value of a

and the pipeline discussed above. The stub is typically generated as part of the expression

in figure 3.12. The step generating the stub is omitted from that figure for clarity.

The run-time optimizer of figure 3.14 is not as efficient as it could be. Although for

simplicity we show (in line 2) the optimizer as parsing the mul_add function from disk,

since mul_add was known at static compile time, it could have been parsed at that stage,

and its resulting AST stored in the text segment of the C program (or the specialized opti-

mizer) so that run-time parsing could be avoided.

The last action of the stub is to generate (line 7) machine code for the optimized

mul_add function via the codegen function. This illustrates a useful level of flexibil-

fun optimize_mul_add_on_arg_a(a:int): code array =
let val f1 = AST.parse “mul_add.c”

val f2 = CnP_Staged.optimize
(P1,[CnP.NON_CONSTANT,CnP.NON_CONSTANT, CnP.CONSTANT a])

val f3 = CpP_Staged.optimize f2
val fopt = DAE_Staged.optimize f3

in CGen.codegen fopt end

FIGURE 3.14: Stub Function Providing Run-Time Interface to Staged Optimizers.

1
2
3
4
5
6
7

55
ity provided by our framework: a staged pipeline may be succeeded by unstaged optimiza-

tions.

3.3 Internal Structure and Interfaces of the Stager

We have so far specified the input and output formats of the stager. In particular, the stager

takes two inputs (a SCF-ML program and an abstract value) and produces two outputs (a

specialized SCF-ML program and an output abstract value). In figure 3.7, we gave an

example of an input SCF-ML program. In figure 3.13, we showed examples of input and

output abstract values. We have so far not described in any detail the specialized SCF-ML

optimization produced by the stager. In this section, we examine the structure of these

optimizations (the modules CnP’, CpP’ and DAE’ of figure 3.11), and show how these

specialized optimizations relate to their unspecialized variants. We explain the net special-

ization effect as a combination of the individual effects of the two main constituents of the

stager, the partial evaluator and the dead-store eliminator.

Figure 3.15 shows the internal structure of the stager. The incoming abstract value F

and optimization program O are fed into the partial evaluator, which produces the output

abstract value F’ (which represents the possible results of executing O on values in the set

O: SCF-ML Program

O’: SCF-ML Program

F: AbsValue F’: AbsValue
Partial Evaluator

Dead-Store

Eliminator

O’’:

SCF-ML Program +

Auxiliary information

FIGURE 3.15: Internal Structure of the Stager.

56
represented by F), a partially evaluated version O’’ of O, and some auxiliary information

related to O’’. The dead-store eliminator takes as input these two values and produces opti-

mization program O’, which is the specialized program output by the stager.

In what follows, we will assume that the abstract value F is the value F3 of figure

3.13(c)(ii), i.e., the early stage input to dead assignment elimination in our example pipe-

line. Further, we will assume that the optimization O is the dead-assignment elimination

(DAE) module defined in figure 3.7.

Figure 3.16 illustrates the effect of the partial evaluator on its inputs. On the left of the

figure are the inputs to the partial evaluator, presented in a format different from those

used so far. Figure 3.16(a) is the call-graph of the optimization O. Each node in the graph

corresponds to a function in the module, and is labelled by an abbreviation of the name of

the function (function names analyze[Fun|Cmd|Expr|Exprs] are abbreviated to

a[F|C|E|Es] respectively, and transform[Fun|Cmd] to t[F|C]). We draw an

edge between two nodes labelled f and f ’ iff a call exists from function f to function f’ in

the definition of the module.

Figure 3.16(b) is a graphical representation of the abstract input value F. The tree is

simply a parse tree for F with respect to the abstract syntax of table 1. Some of the nodes

are labelled with numbers 1 through 7 using the notation (:0, :1 through :7). We use these

numbers simply as a way to name the different nodes in what follows.

Figure 3.16(c) shows the callgraph for O’’, the result of partially evaluating the opti-

mization O with respect to F. The figure may be understood as the “unrolling” of the graph

of figure 3.16(a) over the tree of figure 3.16(b) in the following sense. For each AST node

in F, the partial evaluator produces a corresponding specialized version of the analysis and

transformation functions for that node. For example, for the AST node numbered 0 (which

happens to represent a command), the partial evaluator produces the functions

analyzeCmd0 (written aC0()) and transformCmd0 (tC0()) respectively.

Each specialized function thus corresponds to a node in the input AST. The body of

the specialized function is specialized to the argument node in two primary ways. First,

whenever there is a call in an analysis/transformation function specialized to node i to ana-

lyze/transform a node j that is the child of i, then we specialize the callee to node j. For

example, since commands 1 and 2 are children of the sequence command 0, the recursive

57
analyzeCmd calls to analyze the first and second commands in the sequence are

replaced by calls to analyzeCmd1 and analyzeCmd2 respectively. Note that in figure

3.16(c), nodes labelled aC1() and aC2() are children of the node labelled aC0().

Figure 3.17 shows the second way in which analysis and transformation functions are

specialized to their argument nodes. The basic functionality can be thought of as a form of

constant folding. Whenever an expression evaluates to a constant value, it is replaced by a

optimize()

aEs()

aF()

aC()

aE()

meet()

aW()

tC()

tF()

fun

“mul_add” ; :0

u

= :1

| :5

x

; :2

+

= :3 return :4

v

x

|

u

y

+ 6

v :7

x y

optimize’()

aF’()

tF’()

aC1()

tC0()

tC1()

aE5()

aC0()

tC2()

aE7()

aC4()

aE6()

aC2()

tC3()

aC3()

tC4()

(a): Callgraph for Input DAE Module (O)

(b) Input Abstract Value (F)

FIGURE 3.16(c): Callgraph for Partially

Evaluated Dead-Assignment Elimination

Module (O’’)

FIGURE 3.16: Inputs To, and Output From, the Partial Evaluator.

58
simpler expression that evaluates to that value. In the figure, these simpler expressions are

indicated in bold italics.

The figure shows the bodies of the analysis and transformation functions for com-

mand 3. Recall that command 3 is the assignment v = (u|x) + y. Since, in the func-

tion mul_add being analyzed, command 3 is followed by command 4, i.e., return v,

the variable v is guaranteed to be live at command 3, so that the membership test

(LiveSet.member(...)) on the live-variables set on line 5 is guaranteed to evaluate

to true, and the whole expression is guaranteed to evaluate to the constant value live. The

if-expression on line 5 can therefore be folded away (as indicated by the strike-through)

and replaced with the expression live. Also, since analyzeCmd3 is the analysis func-

tion for command 3, the value of variable lbl is guaranteed to be 3, as indicated by the

replacement on line 7 (where the variable lv is also replaced by its constant value).

Finally, c is guaranteed to be an assignment statement (of the form

assign(v,e,lbl)), as tested in line 4. All other options on the form of c can also

therefore be folded away, as in line 9.

The transformation function for command 3 (beginning at line 12) also benefits from

constant folding. Since the analysis command for command 3 associated the constant

value live with label 3 in the assignment map (line 7), the lookup on the assignment map

...
and analyzeCmd3 (c, lSet, aMap) =
case c of
assign(v, e, lbl) =>

let val lv = if LiveSet.member(lSet, v) then live else dead live
in (analyzeExpr6(e, LiveSet.delete(lSet, v)),

AssignMap.insert(aMap, lbl 3, lv live))
end

| seq(c’,c’’,_) ...
...

and transformCmd3 (c, aMap) =
case c of
assign(v, e, lbl) =>
case AssignMap.find(assigns, lbl) of
SOME dead => skip(lbl)

| SOME _ => c
| ...

}c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

FIGURE 3.17: Partially Evaluated Dead-Assignment Elimination .

59
(at line 15) is guaranteed to return value SOME(live), so that (as per the case on line 17)

the entire case statement may be replaced by the expression c.

A final point to note is that as a result of folding, certain variables that were bound in

pattern matches now become dead. Variable lbl of line 4 and variables e, v and lbl of

line 13 all fall into this category. Since these variables are dead, we can avoid binding

them in the patterns, and thereby avoid a potential load operation for each of them.

Figure 3.18 shows the versions of functions analyzeCmd3 and transformCmd3

that result from these transformations. The figure illustrates the benefits of partial evalua-

tion, but reveals opportunities for eliminating a few dead operations. First, the dead bind-

ing of lbl on line 4 can be avoided. Instead we indicate that we “don’t care” what the

value in this place is by inserting a wild card match _. Second, consider the binding of

variable lv on line 5. Since lv is not used downstream, the binding is dead and can be

eliminated. Third, consider the case statement of lines 12-14. Since variables v, e and

lbl are not used downstream, and the sole purpose of the case statement is to bind these

variables, the entire case statement may be folded away and replaced its body, the expres-

sion c1. These two transformations are fairly routine instances of dead-store elimination.

The map insertion at line 7 is a more subtle, and very important, instance of a dead

store. The insertion associates the value live with the label 3. The intention is that the

1.Unlike Standard ML, SCF-ML has undefined behavior when input values are unexpected variants of expected types. In
particular, where traditional ML would raise a “non-exhaustive match failure” if transformCmd3 were invoked with
the wrong variant of command as argument, the SCF-ML program could (as a result of the current optimization) simply
return the argument command.

...
and analyzeCmd3 (c, lSet, aMap) =
case c of
assign(v, e, lbl) =>

let val lv = live
in (analyzeExpr6(e, LiveSet.delete(lSet, v)),

AssignMap.insert(aMap, 3, live))
end

...

and transformCmd3 (c, aMap) =
case c of
assign(v, e, lbl) =>
c

1
2
3
4
5
6
7
8
9
10
11
12
13
14

FIGURE 3.18: Analysis and Transformation Functions After Partial Evaluation.

60
downstream transformation function for command 3 can refer to the liveness value for

label 3 in the assignment map aMap, when deciding whether command 3 is live or dead.

For command 3, this lookup in the map happens in line 15 of figure 3.17. However, since

that read is folded away, it turns out that the binding inserted into the map has no readers,

and can be omitted. The map insertion into map aMap is simply replaced by an expression

that returns aMap unchanged.

We have so far not discussed at all the nature of the “auxiliary information” returned

by the partial evaluator as per figure 3.15. At this point, we will just mention that this

information is used for eliminating dead map accesses such as those described in the pre-

vious paragraph. The format and use of this map will be specified precisely in the next

chapter.

Figure 3.19 shows the analysis and transformation functions for command 3 after par-

tial evaluation and dead-store elimination. Comparing with figure 3.17, it is clear that the

staged version of the optimization executes significantly fewer instructions than the un-

staged version.

3.4 Summary

In this chapter, we have specified the format of inputs and outputs of the stager, and

described the two major components of the stager in terms of their desired effect on an

example. In the next three chapters, we will describe how these components achieve these

effects, beginning with the partial evaluator.

...
and analyzeCmd3 (c, lSet, aMap) =
case c of
assign(v, e, _) =>
(analyzeExpr(e, LiveSet.delete(lSet, v)), aMap)

...

and transformCmd3 (c, aMap) = c

1
2
3
4
5
6
7
8

FIGURE 3.19: Analysis and Transformation Functions After Dead-Store Elimination.

61
4. The Partial Evaluator

In the previous chapter, we explained that the stager is composed of a partial evaluator and

a dead-code eliminator. We described the partial evaluator only by its desired effect. In

this chapter, we describe in detail the structure of the partial evaluator.

The partial evaluator in SCF is an online partial evaluator. An online partial evaluator

may be understood as a program interpreter with two differences. First, instead of evaluat-

ing program fragments (such as functions and expressions) to get their concrete values,

the partial evaluator performs a form of abstract interpretation where program fragments

evaluate to abstract values which represent sets of concrete values. Correspondingly,

while interpreting the fragment, instead of maintaining a concrete environment mapping

variables to concrete values, partial evaluators maintain an abstract environment mapping

variables to abstract values. Each abstract environment E represents a set of concrete envi-

ronments E. We say that the concrete environments in E conform to E. Second, for each

fragment it evaluates in a given abstract environment, the partial evaluator produces, in

addition to the abstract value of the fragment, a version of the fragment (called a residual-

ized version) specialized to the abstract environment.

Figure 4.1 shows the signature for the partial evaluator module using Standard ML

(SML) syntax. In what follows, we write all code that is part of the definition of the stager

in italics. All SML keywords are in bold italics. In all examples that follow, modules that

will be precisely defined later in the chapter are underlined the first time they are men-

tioned.

The signature specifies that all modules that conform to it are required to provide a

single function PEp (the subscript p stands for “program” to indicate that the SCF-ML

fragment to be partially evaluated is the incoming program), which given an incoming

SCF-ML optimization program and input abstract value returns a residual optimization

signature PARTIAL_EVALUATOR = sig
val PEp : SCF_ML.program * AbstractValue.value ->

SCF_ML.program * AbstractValue.value * LabelAbstractValueMap.map

end

FIGURE 4.1: Signature of the Partial Evaluator

62
program, the abstract value that the input program evaluates to given the abstract input,

and a map from labels to abstract values which will be explained later in this chapter and

in chapter 7. The last data structure is the same as the “auxiliary information” of figure

3.15.

4.1 Signatures of Some Key Data Structures

The conventional design [56] of an online partial evaluator is as a worklist algorithm over

the functions in the program being evaluated. As is typical with these algorithms, our par-

datatype ‘a option = SOME ‘a | NONE
datatype ‘a choice = MUST ‘a | MAY ‘a | NOT

signature ABSTRACT_ENVIRONMENT = sig
type env
val empty: env
val find: env * SCF_ML.var -> AbstractValue.value
val insert: env * SCF_ML.var * AbstractValue.value -> env
val meet: env * env -> env
val shadow: env * env -> env

end

signature CACHE = sig
type cache
type contour_key
type cache_info =

{argVal:AbstractValue.value, retVal:AbstractValue.value, resExp:SCF_ML.exp, numEvals: int}
val empty: cache
val find: cache * contour_key -> cache_info option
val insert: cache * contour_key * cache_info -> cache
val flush: cache -> SCF_ML.fun list

end

signature WORKLIST = sig
type worklist
type contour_key
type worklist_info = {key: contour_key, value: AbstractValue.value} choice
val empty: worklist
val add: worklist * worklist_info -> worklist
val take: worklist -> (worklist * worklist_info) option

end

structure AbstractEnvironment : ABSTRACT_ENVIRONMENT
structure Cache : CACHE
structure WL : WORKLIST

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

FIGURE 4.2: Signatures of Primary Data Structures Used by the Partial Evaluator

63
tial evaluator maintains three primary data structures, which we will call abstract environ-

ment, cache and worklist. Figure 4.2 specifies the signatures, named

ABSTRACT_ENVIRONMENT, CACHE and WORKLIST respectively, for these modules.

Since these data structures are standard, we will only define formally their signature and

not their implementation, and summarize informally their required behavior.

Lines 1 and 2 define two types that will be used frequently in what follows. The first

is the parameterized type option. It has two variants, the unary variant SOME and the zero-

ary NONE. The type is intended to describe expressions that either return a value in some

domain or no value at all (such as a map lookup that either succeeds with some value or

fails with none). The second type, choice, is similar to option, but has three variants. It is

intended to be used in situations where a value represents one of a variety of actions,

which must, may and should not be performed (represented by the MUST, MAY and NOT

constructors respectively). We will see examples of both types below.

Lines 4 through 11 of the figure delimit the signature ABSTRACT_ENVIRONMENT

that must be satisfied by the abstract environment module. As per line 5, the module must

provide a type named env, which will correspond to the variable-to-abstract-value map

that constitutes the environment. In addition (line 6), the module is required to provide a

value named empty (which is intended to stand for the empty map) of type env. Line 7

requires an accessor function find, which given an environment and a variable returns the

value corresponding to the variable in the environment. It is undefined what happens if the

variable is not in the environment. Line 8 requires an insert function which, given an envi-

ronment, variable and value, returns the result of updating the environment with the vari-

able-value binding. Line 9 requires a meet function, which given two abstract

environments, each representing a set of concrete environments, returns a third abstract

environment that represents (possibly a superset of) the set of environments comprising

the union of the incoming two sets. Finally, line 10 requires a function shadow, which

given two environments E and E’ as arguments, returns the result of replacing any key-

value pair (k, v) in E with the pair (k, v’) if k is bound to v’ in E’. In what follows, we will

assume a module AbstractEnvironment (line 33) that conforms to this signature.

The cache is essentially a map from function names to a pair of abstract values repre-

senting the inputs and outputs calculated thus far by the partial evaluator for each function.

64
It is standard [46, 60, 58, 25] to implement interprocedural analyses using partial transfer

functions represented by caches of this kind. Lines 13 through 22 delimit the definition of

the CACHE signature which defines the abstract interface of the cache. Lines 15 through

17 define the domain and range of the map underlying the cache. The domain is repre-

sented by an opaque type contour_key (line 15). The contour key type is typically a tuple

consisting of the name of a function in addition to other information that distinguishes

invocations of the function made in different contexts. We will see an example contour

key later in this section. The range of the map is a record type cache_info (lines 16-18),

which has four fields: argVal and retVal, the argument and return abstract values respec-

tively computed for the current contour, resExp, the residualized version of the expression

constituting the body of the function represented by the contour key, and numEvals, an

integer counting the number of times the cache entry for this contour key has been modi-

fied.

The find function (line 19) on the cache returns a value of type cache_info option.

This is an instantiation of the parameterized type ’a option discussed above. The intention

is that if the find fails in the map, it returns NONE, otherwise it returns value SOME ci,

assuming ci is the cache information found. The final function in the signature for the

cache is the flush function which essentially returns the list of all the residualized func-

tions in the cache. In what follows, we will assume a module Cache (line 34) that con-

forms to this signature.

The worklist (lines 23-30) is typically either a stack or queue of elements of type

worklist_info. Each element contains a choice of a contour (which in turn, as mentioned

above, typically contains a function name) and the argument value with which to partially

evaluate the function named by the contour. The add function adds an element to the

worklist. As indicated by the option in the return type of the take function, invoking this

function on worklist wl optionally returns NONE if the worklist is empty, and SOME(wl’,

wli) where wli is an element of wl and wl’ is the result of removing wli from wl. In what

follows, we will assume a module WL (line 35) that conforms to this signature.

65
4.2 Core SCF-ML and Notational Conventions

We discuss below the abstract syntax of SCF-ML (in which optimizations are written),

followed by some notational conventions for abbreviating Standard ML (in which SCF

itself is written).

SCF desugars the concrete SCF-ML syntax of figure 3.3 into the abstract syntax of

figure 4.3. Modules are eliminated by inlining. The let and if special forms are desug-

ared into the more general case form. All operations on set data structures are replaced

by their implementation using map operations; the abstract syntax has only built-in map

operations.

In what follows, we will be specifying various parts of SCF itself. SCF is written in

Standard ML. We write all Standard ML code comprising SCF in italics with keywords

additionally in bold. We use certain abbreviations throughout. We will uniformly omit the

val keyword in let bindings. The Standard ML expression let val x = g 3 in f x end will

instead be written let x = g 3 in f x end. Further, when we wish to perform an assignment

as part of a sequence of let bindings, instead of using the notation let ... _ = (x := ...) ... in

... end, we will write let ... x := in ... end. Finally, we use vertical bars |...| to delimit

either patterns or constructor applications written in concrete syntax, possibly omitting

uninteresting parts. For instance, instead of writing SCF_ML.constructor(c, e), we will

write |c e|, and instead of AbsValue.tuple(vs, id), we write |(vs)|. By omitting explicit con-

P ∈ program ::= d1,...,dm g1,...,gn
d ∈ typeDec ::= tn = k1 of t1, ..., kn of tn
t ∈ type ::= int | bool | string | char | tn | p
p ∈ prodType ::= t1 * ... * tn

g ∈ funDef ::= f x = e
e ∈ expr ::= x | c | c e | (e1,...,en) | case e of m1 m2 ... mn| f e |

pr e | cf (fn x => e1) e2
m ∈ match ::= pt => e
pt ∈ pattern ::= _ | x | c | c pt | (pt1,...,ptn) | x as pt

pr ∈ primop ::= map_insert | map_find | map_equal | map_remove
| + | - | ...

cf ∈ curriedFuns::= map_unionWith | map_map
c ∈ constructors = Identifiers ∪ Int ∪ Bool ∪ String ∪ Char
f, x, tn ∈ Identifiers

FIGURE 4.3: Abstract Syntax for SCF-ML Programs

66
structors, the notation potentially confuses different entities that share the same concrete

syntax. When the context does not resolve the ambiguity, we use explicit constructors.

4.3 Initialization and Fixpointing

In this section, we specify the fixpoint loop that iterates over the functions in the incoming

SCF-ML program. The underlying structure of the loop is common to many interproce-

dural analyses, and this structure has been proposed for online partial evaluators as well

[56]. However, the partial evaluator in SCF provides more aggressive versions of tradi-

tional modules used by the fixpoint loop, and performs pre-processing steps not common

to conventional fixpoint-based online partial evaluators. We use the precise specification

of the fixpoint loop to highlight both similarities with, and differences from, existing

schemes. Where the differences are important, we will go into them in more detail later in

the chapter.

Figure 4.4 specifies the entry function and the fixpoint loop of the partial evaluator

module. Lines 1-5 of the figure define global variables which (as indicated by the ref key-

word) may be side-effected. In this section, we will focus on the first three definitions

(lines 1-3), which define the cache c, worklist wl and program p to be partially evaluated

as described above. These data structures are represented as global variables that are side-

effected so as to avoid having to thread them throughout the partial evaluator as done in

conventional presentations. Lines 4 and 5 define variables that store the pre-processing

and analysis results, and will be discussed later in this chapter.

Lines 8-15 define the entry function PEP. On line 8, we use pattern-matching to split

the incoming program into type-declarations ds and function declarations which are

delimited by the vertical bars ||, as discussed in the previous section. We digress briefly to

elaborate on the notation using line 8 as example. Pattern |g1,...,gn| would match against a

list of n elements with g1 and gn matching the first and last elements. |f x = e,...,gn|

requires that the first element in this list be a function whose name is matched against vari-

able f, formal against x and body against e. Similarly, if variables f, x and e are bound to

function name, formal name and SCF-ML expression respectively, we will often write |f x

67
val c = ref Cache.empty
val wl = ref WorkList.empty
val p = ref Program.empty
val lvm = ref LabelAbstractValueMap.empty
val fm = ref FinitenessAnalysis.emptyFinitenessMap (*FinitenessAnalysis written as FA below*)

(* See figure 4.1 for signature of function PEP *)
fun PEP (p as program(ds, | f x = e,...,gn|),v) =

let fm := FA.analyze p
_ = RematStrategy.reset();
ck = ContourKey.mkContourKey (f, !fm, v, ContourKey.empty)
wl := WorkList.add(WorkList.empty, MUST(ck, v))
_ = fixpoint ()
gs’ = Cache.flush !c

in (RematStrategy.postProcess(program(ds, gs’)), !lvm) end

(* fixpoint: unit -> unit *)
and fixpoint () =

case WorkList.take !wl of (*ContourKey written as CK below*)
 NONE => ()
| SOME(wl’, MAY(ck, v)) => (wl := wl’; processFun(ck, v, false, Map.find(!fm,CK.func ck))
| SOME(wl’, MUST(ck,v)) => (wl := wl’; processFun(ck, v, true, Map.find(!fm,CK.func ck))

(* processFun: ContourKey.contour_key * AbstractValue.value * boolean * FA.FP -> unit *)
and processFun(ck, v, mustExec, fp) =

let (vArgold, vRetold, e, i) = case Cache.find(!c, ck) of
SOME ci => (ci#argVal, ci#retVal, ci#resExp, ci#numEvals)

| NONE => (v, AbstractValue.top, |()|, 1)
c := Cache.insert(!c, ck, {argVal = vArgold, retVal =vRetold,

resExp = e, numEvals = i})
vArg’ = AbstractValue.meet(v,vArgold)
vArg = Widening.widen(vArg’, i, fp)

in if (not mustExec) andalso AbstractValue.mustBeEqual(vArg, vArgold) then
fixpoint ()

else let (e’, vRet) = PEf (ck, vArg)
newInfo = {argVal = vArg, retVal = Widening.widen(vRet,i,fp),

resExp = e’,numEvals = i+1}
 c := Cache.insert(!c, ck, newInfo)

in if not AbstractValue.mustBeEqual(meet(vRetold,vRet),vRetold) then
(addClrs ck;
 fixpoint ())

else fixpoint ()
end

end

and addClrs (ck:ContourKey.countour_key):unit =
...add calling contours of ck to worklist !wl...

FIGURE 4.4: Initialization and Fixpoint Loop for Partially Evaluating Programs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

68
= e| (instead of SCF_ML.funDef(f,x,e)) for the SML expression constructing an SCF-ML

function.

The body of PEP essentially does some pre-processing before performing the fixpoint

analysis at the heart of the partial evaluator. In particular, it performs a pre-processing

analysis to be discussed later (line 9), resets a persistent data structure (line 10), constructs

a contour key containing the name of the entry function of the incoming SCF-ML program

(line 11), pushes a pair containing this contour key and the incoming abstract value v on

the worklist (line 12), performs the fixpoint computation which side-effects its results into

cache c (line 13), and extracts (line 14) and returns (line 15) the results of the fixpoint

computation. Before returning the program, it performs (on line 15, via the RematStrat-

egy.postProcess call) some post-processing to be described later.

The fixpoint computation pops a task off the worklist (lines 18-22) and processes it

(lines 25-44). Each task is a choice (MAY or MUST) of a contour key and an abstract

value. Given a contour key, we first (lines 26-28) check in the cache to see if the key has

been processed before, and if so what the cache information corresponding to the key was.

In particular, we are interested in the abstract argument value (argVal), result value (res-

Val) and the number of times this contour has been evaluated (numEvals), and therefore

read these fields off the cache-info record ci (the notation r#f reads field f of record r). If

no entry exists in the cache for the key (line 28), we construct suitable default cache infor-

mation. Before analyzing the contour, we record (lines 29-30) in the cache that we are

about to analyze it; this step is necessary so that if no entry existed in the cache for the

contour, we will now have an entry mapping its return value to top, thus avoiding

unbounded recursive analysis of the contour. Given the previous abstract argument vArgold

with which the contour was processed, we (line 31) add in the current argument v by

invoking the lattice meet function on values v and vArgold. The abstract value is next (lines

32) widened as necessary. Widening enables abstract interpreters to terminate when their

domains are infinitely tall.

Apart from the particular meet function and widening strategy used (which will be

discussed later), all other steps are standard. The abstract interpretation performed by the

partial evaluator has as its domain the power set of the (infinite) Herbrand Universe of

69
section 3.2.2.1, with set containment as the lattice ordering relation. The interpretation lat-

tice is therefore infinitely tall, necessitating a widening-based abstract interpretation. The

meet operation on this lattice is simply set union. In chapter 6, we will discuss how to

widen while preserving sufficient accuracy, and also how to compute meets on abstract

values efficiently. The Widening module invoked as a pre-processor in the figure aids in

the former task, whereas the AbstractValue module aids in the latter.

Lines 33-38 complete the processing of the worklist task. In the case that the widened

abstract value is one that was previously processed and the task is not a MUST task, there

is nothing more to be done; we just ignore the task and revert to the fixpoint loop to get the

next task (line 34). Alternately (lines 35-43), we perform partial evaluation of the individ-

ual function (line 35) with a call to PEf, and record the result in the cache (lines 36-38).

Finally, if the return value for the contour just analyzed changed, we place on the

worklist for re-analysis all contours whose analysis depended on the return value of the

contour just analyzed, and return to the fixpoint loop (lines 39-41). The helper function

that adds contour keys ck for re-analysis, defined only with a brief comment on line 47,

first determines the argument value v recorded for ck in the cache and places the task

MUST(ck,v) on the worklist. As described above, the MUST task forces re-evaluation of

the corresponding function even if the argument of the function has not changed since the

last time it was processed, to account for the fact that the return value for one of its callees

may nevertheless have changed. If the return value is unchanged, we omit placing callers

on the worklist and directly return to the fixpoint loop (line 42).

Again, these steps for processing worklist tasks are standard, although for our particu-

lar representation of abstract values (Augmented Regular Tree Expressions), implement-

ing the mustBeEqual test in an efficient, conservative but sufficiently effective way

requires careful design.

4.4 Partial Evaluation of Individual Functions

In the previous subsection, we described a fixpoint loop that processes (contour keys cor-

responding to) individual functions. Each function was processed by a call to the unde-

70
fined function PEf. In this section, we specify PEf, as usual paying particular attention to

how it differs from standard versions.

Figure 4.5 defines PEf and its main helper functions, in particular the function PEe,

which is responsible for partially evaluating expressions. Given, in PEf, a contour key ck

corresponding to the function f x = e to be specialized and the abstract value v of the func-

tion argument, we simply invoke PEe to partially evaluate e in an environment where vari-

able x is bound to value v (lines 1-7).

Lines 11-47 define the function PEe. Given an expression to be partially evaluated, an

abstract environment in which to evaluate this expression and a contour key defining the

context in which to evaluate, it returns a pair consisting of the residualized version of the

expression and the abstract value of the expression. In the rest of this section, we discuss

how each type of expression is processed, going into detail where we deviate from typical

online partial evaluators.

4.4.1 Literals

Line 11 shows how scalar literal expressions are handled. Recall that the residualized ver-

sion of an expression is just a simpler (in terms of number of steps needed to evaluate it)

version of the expression that nevertheless computes the same values as the expression.

Scalar literals are already in the simplest possible form, and the residual expression is the

same as input expression e. The abstract value of a scalar expression c is simply the single-

ton abstract value c.

4.4.2 Variables

Lines 13-15 handle variables. If v is the value of a variable x in abstract environment E,

the abstract value of the expression is simply v.

The residualized expression replacing variable x is determined by the rematerializa-

tion strategy, encapsulated in the RematStrategy module referenced on line 50. The mod-

ule decides how to replace a given expression by a simpler one. When value v is a

singleton scalar (by scalar, we mean integers, characters, booleans and strings), for

instance, it replaces the variable x with the literal expression ev, the literal that evaluates to

71
(* PEf: ContourKey.contour_key * SCF_ML.val -> SCF_ML.exp* SCF_ML.val *)
and PEf (ck , v)=

let |f x = e| = findFun ck
(e’, v’) = PEe (e, AbstractEnvironment.insert(AbstractEnvironment.empty,x,v), ck)

in (e’, v’) end

and findFun (ck: ContourKey.contour_key): AST.fun = ... find the function definition for key ck...

(* PEe: SCF_ML.expr * AbstractEnvironment.env * ContourKey.contour_key ->
 SCF_ML.expr * AbstractValue.value *)

and PEe (e as |c|, _, ck) = (e, |c|)

| PEe (e as |x|, E, ck) =
let v = AbstractEnvironment.find(E, x)
in rematerialize(e,v) end

| PEe (|(es)|, E, ck) =
let evs = List.map (fn e => PEe(e, E, ck)) es

(es’, vs) = List.unzip evs
in (|(es’)|, |(vs)|) end

| PEe (|c e|, E, ck) =
let (e’,v) = PEe (e, E, ck)
in (|c e’|, |c v|) end

| PEe (|map_ insert e|, E, ck) = ... defined in figure 4.6 ...
| PEe (|map_ find e|, E, ck) = ... defined in figure 4.6 ...
|PEe (|map_ equal e|, E, ck) = ... defined in figure 4.6 ...
| PEe (|p eArg|, E, ck) =

let (eArg’, vArg) = PEe (eArg, E, ck)
v = AbstractValue.evalPrimop(p, vArg)

in rematerialize (|p eArg’|, v) end

| PEe (|case e of ms|, E, ck) =
let (e’,v) = PEe (e, E, ck)

(ms’, v’) = PEms (ms, v, E, ck) (* PEms defined in figure 4.7 *)
in rematerialize (|case e’ of ms’|, v’) end

| PEe (|f e|, E, ck) =
let (e’, v) = PEe (e, E, ck)

 ck’ = ContourKey.mkContour(f, !fm, v, ck)
vret = case Cache.find(!C, ck’) of

SOME ci => ci#retVal
| NONE => AbstractValue.top

wl := WorkList.add(!wl, MAY(ck’, v))
f’ = ContourKey.getSpecializedFName ck’

in rematerialize (|f’ e’|, vret) end

(* When v is singleton, return a simpler version of e equivalent to e under all feasible contexts *)
and rematerialize(e: expr, v: value): (expr * value) = (RematStrategy.rematerialize(e,v), v)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

FIGURE 4.5: Partial Evaluation of Functions and Expressions in SCF.

72
the lone element of |v|. This replacement satisfies the requirement that the new expression

is simpler to evaluate than the first. Rematerialization is more complex in other cases, and

section 6.4 discusses the matter further.

4.4.3 Tuples and Constructors

Partially evaluating tuples and applications of constructors (17-24) is a straightforward

matter of partially evaluating sub-expressions and composing the results. For instance,

partially evaluating a tuple of expressions (lines 17-20) consists in first partially evaluat-

ing the component expressions to obtain a list of residual expression-result value pairs (via

the map functional of line 18), and reconstituting this list of pairs into a pair of lists (of

expressions and values) via the unzip functional of line 19. These lists are packed into a

tuple expression and a tuple abstract value respectively in line 20.

4.4.4 Primitive Operations

Expressions representing arguments of primitive operations are first evaluated abstractly

to get their value vArg. The abstract application of the primitive operation is performed by

the evalPrimop function of the AbstractValue module (line 31). As with variables, if the

resulting abstract value v is a singleton scalar, we return as the residualized version the

corresponding literal expression, otherwise we return an application of the primitive oper-

ator. We return v as abstract value of the expression. This conventional sequence of steps

is detailed on lines 31-32 of figure 4.5.

As shown in figure 4.6, the map operations map_insert, map_find and map_equal are

treated specially, in anticipation of the dead-code elimination pass that follows the partial

evaluator in SCF. In particular, while these primitive operations are abstractly evaluated

and residualized just as other operations, we also record for each of them an abstract value

representing the set of map keys that will, in the later stage, be necessary for performing

the operation on the incoming map (or maps). We call this set of keys the live keys.

In the case of the map_insert and the map_find operations, the live keys are exactly

the incoming abstract key vkey being inserted and found respectively. In the case of

map_equal, however, we use the special function findLiveKeys of the AbstractValue mod-

73
ule to return an abstract value that represents the set of keys whose equality (or lack

thereof) is not fully determined at the early stage. For instance, if the incoming abstract

maps are map(must[(1, 2), (3, (7|19))], may[23, 12]) and map(must[(1, 2), (3, (7|19))],

may[23, 27]), findLiveKeys should return the value 3|23, since we can determine at the

early stage that the value corresponding to key 1 will be equal for the two maps, and this

key therefore does not have to be compared later on.

Recall from figure 4.1 that the partial evaluator returns a map from SCM-ML labels

to abstract values. This map is implemented as a global variable lvm and initialized as a

reference to an empty map in figure 4.4, line 4. We are now ready to explain what the map

contains: it records, for each residualized map operation map_insert, map_find and

map_equal, the live keys for that operation. The operations are identified by their SCF-

ML labels. As shown in lines 6, 14 and 22, we side-effect the gloal variable lvm1 to add a

new mapping from the label of the residual operation created to the abstract value repre-

1.The variable name lvm is an abbreviation for “live variable map”.

FIGURE 4.6: Three Special Cases of PEe of Primitive Operations

| PEe (e as |map_insert eArg|, E, ck) =
let (eArg’, vArg) = PEe (eArg, E, ck)

vkey = AbstractValue.match(|(_,x,_)|, vArg)).find(|x|)
v = AbstractValue.evalPrimop(|map_insert|, vArg)
e’ = |map_insert eArg’|
lvm := LabelAbstractValueMap.insert(!lvm, labelOf e’, vkey)

in rematerialize (e’, v) end

| PEe (e as |map_find eArg|, E, ck) =
let (eArg’, vArg) = PEe (eArg, E, ck)

vkey = AbstractValue.match(|(_,x)|, vArg)).find(|x|)
v = AbstractValue.evalPrimop(|map_find|, vArg)
e’ = |map_find eArg’|
lvm := LabelAbstractValueMap.insert(!lvm, labelOf e’, vkey)

in rematerialize (e’, v) end

| PEe (e as |map_equal eArg|, E, ck) =
let (eArg’, vArg) = PEe (eArg, E, ck)

vkeys = AbstractValue.findLiveKeys vArg
vbool = AbstractValue.evalPrimop(|map_equal|, vArg)
e’ = |map_equal eArg’|
lvm := LabelAbstractValueMap.insert(!lvm, labelOf e’, vkeys)

in rematerialize (e’, vbool) end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16
18
19
20
21
22
23

74
senting the live keys. The next chapter shows how we use the live keys for a map opera-

tion (in conjunction with other information) to determine whether the operation can be

declared dead and removed altogether from the residualized optimization program.

4.4.5 Case Expressions

Lines 34-37 of figure 4.5 process case expressions. The partial evaluator first computes

(on line 35) the abstract value v of the controlling expression e of the case expression.

Function PEms partially evaluates the sequence of matches in the case expression using v

as the incoming abstract value to match against (line 36).

Figure 4.7 defines PEms. It shows how a sequence ms of matches is partially evalu-

ated. The incoming value v is partially evaluated with respect the first match m in

sequence m via a call to PEm (line 10). Recall that matches m are of the form p => e,

where p is the pattern guarding execution of expression e.

•If it is certain that no concrete value in v matches the pattern guarding m (line 13), we

discard m and continue matching against the remaining matches in ms.

(* PEms : SCF_ML.match list * AbstractValue.value * AbstractEnvironment.env *
ContourKey.contour_key -> SCF_ML.match list * AbstractValue.value *)

and PEms([], v, E, ck) =
([], AbstractValue.top)

| PEms(_, AbstractValue.top, _, _) =
([] , AbstractValue.top)

| PEms(m::ms, v, E, ck) =
case PEm(m, v, E, ck) of

SOME (m’, vval, vrem) => let (ms’, vval’) = PEms(ms, vrem, E, ck)
in (m’::ms’, AbstractValue.meet(vval,vval’)) end

| NONE => PEms(ms, v, E, ck)

(* PEm : SCF_ML.match * AbstractValue.value * AbstractEnvironment.env * CK.contour_key ->
(SCF_ML.match * AbstractValue.value * AbstractValue.value) option*)

and PEm(|p => e|, v, E, ck) =
case AbstractValue.match(p,v) of

NONE => NONE
| SOME (E’, vrem) => let (e’, v’) = PEe (e, AbstractEnvironment.shadow(E, E’), ck)

in SOME (|p => e’|, vrem, v’) end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

FIGURE 4.7: Partially Evaluating Pattern Matching

75
•If m is a possible match (line 11), PEm returns the residualized match m’, the abstract

value vval of expression e and a value vrem which is (possibly a superset of) the part of v

that did not match p. We use vrem as the value to match against the remaining matches in

ms (line 11). If vval’ is the abstract value resulting from partially evaluating the remaining

matches in the sequence, the abstract value for whole sequence is the meet of vval and

vval’ (line 12). Similarly, if ms’ represents the residualized version of the remaining

matches, we get the residualized version of the entire sequence by prepending m’ onto

ms’.

Figure 4.8 gives an example of how case expressions are handled, and in particular,

why getting an accurate estimate of the unmatched part vrem is important. Consider invok-

ing PEe with an input expression (call it e0) and environment E as shown in figures 4.8(a)

and (b). We first evaluate the controlling expression (which in this case is simply the vari-

able i) to get its value v = Int(0|1). Next we invoke PEms with a list of matches ms = [m1,

m2] with m1 and m2 as shown in figure 4.8(a), and v = Int(0|1). The first lines of figures

4.8(c) and (d) show two possible results of specializing match m1 to v = Int(0|1) (via a call

to PEm as per line 10 of figure 4.7). The two versions agree on the residual version m’ of

case i of
Int 0 => 0 (* match m1 *)

| Int x => x + 1 (* match m2 *)

{i -> Int (0 |1)}

m’ = Int 0 => 0, vval = 0, vrem = Int 1 (* processing m1 *)
m’ = Int x => 2, vval = 1, vrem = 0 (* processing m2 *)

m’ = Int 0 => 0, vval = 0, vrem = Int 0|1 (* processing m1 *)
m’ = Int x => x + 1, vval = Int 1|2, vrem = 0 (* processing m2 *)

(a) Expression e0 to be Evaluated

(b) Environment E for Evaluating e0

(c) Results of Evaluating Matches m1 and m2

(d) Alternate Results of Evaluating Matches m1 and m2

FIGURE 4.8: Partially Evaluating Case Expressions: An Example

76
the match, and on the value vval of the literal 0 on the right-hand-side of the match, but dif-

fer on vrem, which is supposed to represent the part of Int(0 | 1) that did not match pattern

Int 0 of match m1. In particular, the first version is able to constrain vrem to a smaller set

of values than the latter.

The benefit of the increased accuracy is evident from comparing the second lines of

figure 4.8(c) and (d), which show the results of partially evaluating match m2 with the new

incoming value v set to the vrem of the preceding match. In the former case, the variable x

of pattern Int x is bound to 1 whereas in the latter case, it is bound to 0|1. As a result, in

the former case we are able to replace the expression 1 with the simpler residual expres-

sion 2, whereas in the latter case, we have lost this opportunity.

As line 19 of figure 4.7 specifies, the essential computation of matching an abstract

value against a pattern and determining the remainder value vrem is performed by the

match function of the AbstractValue module. We will discuss this module and function in

more detail in chapter 5. We will discuss an alternate technique based on aggressive spe-

cialization to improve residual case expressions in section 6.2.2.

The scheme described above for pattern matching against abstract values is novel to

the best of our knowledge. It is most similar to the methods used in class hierarchy analy-

sis [18] of object oriented languages. In that case, functions are defined in terms of a

sequence of cases distinguished by the classes of their formals. Given a set of possible val-

ues for the classes of the actuals, the analysis divides the set of classes up into subsets such

that each subset is associated with a case. A value in a subset is associated with a particu-

lar case if that case is the most closely matching. SCF-ML, on the other hand, has a “first-

match” rather than a “closest match” semantics, matches against patterns rather than

classes, and represents sets of values implicitly with abstract values rather than explicitly

as sets of values. SCF-ML also makes different decisions in how to approximate the match

process. In particular, it avoids intersection of sets since intersection is expensive on

abstract values.

77
4.4.6 Function Calls

On encountering a function call |f e| we first partially evaluate expression e (line 40 of fig-

ure 4.5), construct a new contour key for the callee function f given the current context

represented by contour key ck and value v of e (line 41), look up any previously computed

return value (if one exists, otherwise use the abstract value 0) recorded for ck in the cache

(line 43-44), and schedule the function corresponding to ck for re-execution on argument

value v by pushing the tagged pair MAY(ck,v) on the worklist (line 45). As explained in the

previous section, the MAY tag ensures that when the worklist task is processed, if the

cache already has an entry for ck with argument v (or an abstract value lower than v in the

abstract value lattice), the task will not be re-processed. To this end (line 31, figure 4.4),

the partial evaluator meets the new value v with the existing value vArgold in the cache and

optionally widens the result (line 32, figure 4.4); only if the result of meeting and widen-

ing is not different from v does the partial evaluator process the value.

The above steps are, for the most part, standard when processing function callsites in

context-sensitive interprocedural analysis. One deviation is the manner in which the con-

tour key is constructed, i.e., how the mkContour function works. This function is

explained in chapter 6.

A more subtle issue is that of “breadth-first” processing of contours, i.e., the fact that

we place a callee contour on the worklist instead of processing it immediately. We discuss

in section 6.3 an unexpected negative interaction between this order of processing and our

widening strategy, and a workaround for this problem.

4.4.7 Special Forms for Manipulating Maps

Figure 4.9 shows how the two remaining kinds of expression are partially evaluated. In

particular, it shows how the map_map and map_unionWith special forms are evaluated.

Each of these forms contains an anonymous function which needs to be handled with care

to maximize the accuracy of evaluating the form. In what follows, we will focus on the

map_map form. The map_unionWith form has a similar implementation.

Recall the intended concrete semantics of the map_map form. Given, for instance, a

map m equal to [(1, 13), (23,22)], the expression map_map (fn x => x * 2) m

78
evaluates to the map [(1, 26), (23,44)]. The map_map special form is therefore an iterator

to map the range of the incoming map.

| PEe (ein as |map_map (fn x => e) emap|, E, ck) =
let (e’map, vmap) = PEe (emap, E, ck)

(eout, vout) = execMapMapConservatively(ein, E, vmap, e’map, ck)
in if isLeafExp e then

let v’out = AbstractValue.mapMap
(fn v => let E’ = AbstractEnvironment.insert(E, x, v)

(_, v’’) = PEe (e, E’, ck)
in v’’ end)

vmap
in (eout, v’out) end

else (eout, vout)
end

| PEe (ein as |map_unionWith (fn x => e) emaps|, E, ck) =
let (e’maps, vmaps) = PEe (emaps, E, ck)

(eout, vout) = execMapUnionWithConservatively(ein, E, vmaps, e’maps, ck)
in if isLeafExp e then

let v’out = AbstractValue.mapUnionWith
(fn vsTuple => let E’ = AbstractEnvironment.insert(E, x, vsTuple)

(_, v’’) = PEe (e, E’, ck)
in v’’ end)

vmaps
in (eout, v’out) end

else (eout, vout)
end

and execMapMapConservatively(|map_map (fn x => e) emap|, E, vmap, e’map, ck) =
let (_, vrng) = AbstractValue.collapseMap vmap

E’ = AbstractEnvironment.insert(E, x, vrng)
(e’’, v’’) = PEe (e, E’, ck)
vout = AbstractValue.mapMap (fn _=>AbstractValue. freshenIds v’’) vmap

in (|map_map (fn x => e’’) e’map|, vout) end

and execMapUnionWithConservatively(|map_unionWith (fn x => e) emaps|, E, vmaps, e’maps, ck) =
let (vmap,v’map) = let E = AbstractValue.match(|(m1, m2)|, vArg))

in (E.find(|x|), E.find(|y|)) end
(_, vrng) = AbstractValue.collapseMap vmap
(_, v’rng) = AbstractValue.collapseMap v’map
E’ = AbstractEnvironment.insert(E, x, |(vrng,v’rng)|)
(e’’,v’’) = PEe (e, E’, ck)
vout = AbstractValue.mapUnionWith (fn _=> AbstractValue.freshenIds v’’) vmaps

in (|map_unionWith (fn x => e’’) e’maps|, vout) end

and isLeafExp (e: SCF_ML.expr): bool = ... true if e calls no functions, else false...

FIGURE 4.9: Partial Evaluation of Map Iterators in SCF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

79
Given the above example, a traditional ML interpreter for this expression would first

evaluate the anonymous function (to get a closure as its value), evaluate the map m (to [(1,

13), (23,22)]), and then apply the primitive operation map_map to these two argument

values.1 In particular, the primitive operation would iterate through the range of the sec-

ond argument value (the map), replacing each element in the range with the result of

applying the first argument value (the closure) to it. This is a higher-order approach since

it assumes a way to represent functions as values. This approach allows the interpreter to

avoid special rules for the many special ways in which we may use an anonymous func-

tion. In particular, the module for representing concrete values (which presumably per-

forms primitive operations on these values) can provide a single apply function of type

primop * value -> value which evaluates all primitive operations, including ones with

function-valued arguments.

Figure 4.10(a) shows how the map_map primitive operation is handled in the higher-

order case. As the code emphasizes, the map_map operation does not have to be handled

differently from any primitive operation p. The code assumes that the module that repre-

sents concrete values is called Value.

The higher-order approach assumes the ability to represent functions as values. If,

however, an interpreter cannot represent functions as values, it can still handle particular

1.In fact, assuming as we do that map_map is a primitive operation, a traditional ML interpreter would first construct a
closure to represent the curried application of the primitive operation map_map to the anonymous function, and apply
this closure to get the effect we describe. The currying, however, is incidental in our case, and we could just as well write
map_map f e as map_map(f,e).

Ie(|p e|, E) =
let v = Ie(e, E) in Value.apply(p, v) end

Ie(|map_map (fn x => e) e’|, E) =
let vmap = Ie(e’, E)
in Value.apply_mapMap (fn rngVal =>

let E’ = Environment.insert(E, x, rngVal)
in Ie(e, E’) end)

vmap
end

FIGURE 4.10: Partial Evaluation of Map Iterators in SCF

(b) First-Order Approach to Evaluating Primops on Function-Valued Expressions

(a) Higher-Order Approach to Evaluating Primops on Function-Valued Expressions

1
2

1
2
3
4
5
6
7

80
special forms that contain the syntax of anonymous functions on a case-by-case basis. We

will call this the first-order approach to interpreting anonymous functions. Figure 4.10(b)

shows how this approach works.

Suppose the Value module which implements primitive operations on concrete values

has an additional function called apply_mapMap of type (value -> value) * value -> value

which takes a function f and a value vmap (m is required to represent a map), iterates

through vmap and applies f to each value in vmap’s range, and returns the resulting map.

Now the interpreter could, given the form map_map (fn x => e) e’ to evaluate, and envi-

ronment E to evaluate it in, first evaluate e’ to get its value vmap (line 2), and then invoke

apply_mapMap on this map with the appropriate function as argument (lines 3-6). The

closure, which will be applied to every value in the map, first augments the environment

to contain the range value (line 4), and then calls back to the core interpreter to evaluate

the expression e1 in this augmented environment (line 5).

In the last two paragraphs, we have discussed concretely evaluating (SCF-)ML

expressions. For concrete evaluation, representing functions as values is well understood,

and a modern language that featured anonymous functions would likely use the higher-

order approach above. For abstract evaluation, however, the picture is quite different.

There is no standard approach for directly representing sets of functions.1 In particular, the

Regular Tree Expression formalism on which our Abstract Value representation is based

does not represent sets of functions. The partial evaluator in SCF-ML therefore uses a

variant of the first-order approach outlined above. Comparing lines 2 and 5-9 of figure 4.9

with lines 2-6 of figure 4.10(b), we see that except for the use of the AbstractValue and

AbstractEnvironment modules instead of the Value and Environment modules respec-

tively, the partial evaluator uses precisely the first-order approach described in the previ-

ous paragraph.

1.Constraint-based approaches such as set-based analysis [26] and various type-inference algorithms (such as the popular
Hindley-Milner [42] scheme for type inference of ML programs) represent sets of functions implicitly by gathering
constraints on the domain and range of the function. It is unclear, however, how to perform these analyses in a controlled
context-sensitive manner. As we will discuss later in the dissertation, SCF decides whether to analyze a function in a
new context based on the abstract values computed so far for the function argument. The only kind of context-sensitivity
we are aware of that is provided by constraint-based approaches is the parametric polymorphism of the Hindley-Milner
algorithm. At first glance, this kind of context-sensitivity seems insufficient for our purposes.

81
A caveat is that for reasons of efficiency, we use the first-order approach directly only

when the anonymous function involved has no callees, i.e., it is a leaf function (as tested in

line 3 of figure 4.9). The reason for this is that iterators like mapMap evaluate the body of

the anonymous function in a highly context-sensitive way. In particular, for each value v

in the range of the map it is iterating over, it evaluates the body of the anonymous func-

tion with v as the argument value of the anonymous function. If the body of the anony-

mous function called some other function f, then each time the call-site to this function is

evaluated, SCF would place a task on the worklist (as per line 44 of figure 4.5). Further,

each time a task is processed, it is likely that the result of callee f would change (since the

anonymous function calling f was invoked with a different value v from the range of the

map). By line 43 of figure 4.4, a MUST task would then be added to the worklist to re-ana-

lyze the function containing the anonymous function. Given that an abstract map can eas-

ily have dozens of entries, this scheme results in functions that use map operations being

re-analyzed a large number of times.

Such excessive re-analysis of functions hurts in two ways. First, it makes the partial

evaluator slow. Second, because the widening strategy of the partial evaluator is triggered

essentially by the number of times a function (actually the related context key) is re-ana-

lyzed, it is possible that the re-execution will trigger widening. Widening stops re-analy-

sis, but often sacrifices precision drastically in return.

To avoid excessive re-analysis, in the case that the body of the anonymous function

has callees, we merge all the abstract values in the range of the map into one abstract value

(line 28 of figure 4.9), evaluate the anonymous function on the resulting abstract value to

get an “abstract range value” v’’ (lines 29 and 30), and conservatively replace each value

in the range of the map with a fresh version of v’’ (line 31). The fresh version differs from

the original version in that all its IDs are distinct from any previously used by the partial

evaluator. Recall that if values have the same ID, by the semantics of abstract values, they

map(
must [(1,7), [32,12],
may [])

map(
must [(1,8), [32,13],
may [])

map(
must [(1,(8|13)), [32,(8|13)],
may [])

FIGURE 4.11: Partial Evaluation of Map Iterators in SCF

(a) (b) (c)

82
are correlated to represent the same concrete values, a correlation which does not exist

among the elements of the range of the map. By freshening IDs, we avoid the correlation.

Figure 4.11 illustrates the loss of accuracy that results from range merging. Consider

invoking mapMap with function (fn x => x + 1) on the abstract map shown in figure

4.11(a). Figure 4.11(b) shows the map that would result from using the accurate first-order

approach. If, on the other hand, we used the conservative range-merging step of the previ-

ous paragraph (say because the map function was (fn x => inc x) where inc is a user-

defined function that adds one to its input), the abstract map that results is the less accurate

one shown in figure 4.11(c).1

We have focused so far on the abstract value produced when evaluating the special

form, and not on the residual value. The complication here is in deciding what the residual

form of the body of the anonymous function should be. In the case that we use the range-

merging technique described above, we get a single aggregate residualized expression as

the result of partially evaluating the body of the anonymous function (line 32 of figure 4.9)

on the aggregate abstract value we first construct. We simply use this expression as the

body of the residual anonymous function (line 11).

When the range-merging technique is not used, the anonymous function is partially

evaluated separately on each of the abstract values in the range of the map (lines 4-8), giv-

ing rise to many corresponding residual versions of the function. There is no simple and

clearly profitable way to aggregate the many residual versions so generated into a single

residual function. As specified on line 6 of figure 4.9, SCF currently ignores these residual

versions of the function. Instead (line 9), it generates the residual version by using the

range-merging technique. Even when it uses the more precise technique for generating the

resulting abstract values, SCF therefore uses the less precise range-merging technique to

generate the residual anonymous function. An inspection of residualized code reveals that

for current optimizations and their inputs, this decision does not miss any profitable

opportunities for residualization.

1.This example shows that it is possible to reduce the number of circumstances in which the less accurate rule is used by
pre-processing the incoming program. In particular, we can inline away callee functions (call-trees rooted at the callee,
in general).

83
4.5 Summary

In this chapter, we described the structure of the core partial evaluator module. The mod-

ule is structured as a fixpoint loop that partially evaluates individual functions. Partially

evaluating functions requires partially evaluating the expressions that comprise their bod-

ies. Most types of expressions were straightforward to evaluate; case expressions and

forms related to built-in maps were the exception.

The module makes crucial use of helper modules that define abstract values, define

the context-sensitivity strategy, decide what values to rematerialize, and define the widen-

ing strategy. In the next two chapters, we show how these modules are implemented.

84
5. Implementing Abstract Values

The partial evaluator of the previous chapter assumes a module AbstractValue that repre-

sents sets of concrete values. In this chapter, we specify the interface ABSTRACT_VALUE

required of the AbstractValue module, the semantics required of these operations, the

internal representation of abstract values, and the algorithms used in SCF to implement the

operations required of the ABSTRACT_VALUE interface.

As discussed in section 3.2.2, abstract values are based on the Regular Tree Expres-

sion (RTE) representation of Aiken and Murphy [3]. Even though the expressiveness and

complexity of RTEs have been studied elsewhere, the description of this section is of

interest for two reasons. First, SCF augments conventional RTEs with new features that

enable more precise manipulation of abstract values of interest to the partial evaluator. We

motivate and describe precisely the innovations involved. Second, SCF avoids certain tra-

signature ABSTRACT_VALUE = sig
type value

val top : value
val bottom : value

val mkInt : int -> value
val mkBool : bool -> value
val mkString : string -> value
val mkChar : char -> value
val mkEmptyMap : unit -> value

val meet : value * value -> value
val mustBeEqual : value * value -> bool
val isSingleton : value -> bool
val isScalar : value -> bool

val mkTuple : value list -> value
val mkTagval : string * value -> value
val evalPrimop : SCF_ML.primop * value -> value
val match : SCF_ML.pattern * value -> (AbstractEnvironment.env * value) option

val mapMap : (value -> value) * value -> value
val mapUnionWith : (value -> value) * value * value -> value
val collapseMap : value -> value * value
val findLiveKeys : value -> value
val freshenIds : value -> value

end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

FIGURE 5.1: Signature of the AbstractValue Module.

85
ditional features of RTEs and also implements the remaining features in a relatively sim-

ple way. The simpler implementation is nevertheless sufficient to allow effective partial

evaluation. We describe precisely this simple but effective implementation.

5.1 Interface

Figure 5.1 specifies the ABSTRACT_VALUE interface. The types, functions and values are

those referenced by the partial evaluator. Function calls mkTuple vs and mkTagval(c,v) are

written using the syntactic sugars |(vs)| and |c v| respectively in lines 20 and 24 respec-

tively of figure 4.5.

Table 2 specifies the behavior required of the functions in the ABSTRACT_VALUE

interface. Given an invocation of the form specified in the left column of the table, the

right column specifies the set of possible results for the invocation. An implementation of

the AbstractValue module is only required to produce a result value from this set, in order

to be conservative.

The table uses the following notation. Given abstract value v and abstract environ-

ment E, v and E respectively are the corresponding sets of concrete values and concrete

environments under the correspondence Ψ of section 3.2.2.2. If F is a function operating

on abstract values, then F is the set of functions such that if f ∈F maps concrete value t to

t’, then there is some v, v’ such that F(v) = v’ and t, t’ ∈ v, v’ respectively. Finally, match,

mapMap and mapUnionWith are the obvious concrete-domain versions of the correspond-

ing functions on the left-hand column.

Returning conservative results as specified by the right-hand column gives the inter-

face functions considerable leeway. Consider the meet function, for instance. According to

the specification, given abstract values v1 = 1 | 2 | 3, and v2 = 12 | 24 (so that v1 = {1, 2, 3}

v2 = {12, 24}), the result of meet(v1, v2) may be any v such that {1, 2, 3, 12, 24} ⊆ v. Thus

v = 1 | 2 | 3 | 12 | 24 is a correct result, and so is v = 1 (i.e. v is the universal set).

In the case of functions mustBeEqual, isSingleton and isScalar, it is always conserva-

tive to return false as an answer. In other words, if these functions return true as an answer,

we can be sure that the corresponding abstract values represent equal sets, singleton sets

86
and sets of scalars respectively. Otherwise, we have to assume that nothing is known on

these fronts.

In fact, according to table 2, any time one of the functions returns an abstract value, it

is acceptable to return 1 as the result (except for the freshenIds function). Although func-

tions implemented in this manner would be correct, simple and extremely efficient, they

would also lose an unacceptable amount of information. In particular, the partial evaluator

would never be able to profitably residualize an expression evaluated using these func-

tions since the abstract value for the expression would never be singleton. The challenge

Table 2: Conservative Specifications for Functions of the AbstractValue Interface

Function Allowed Results of Function

mkInt i {v | v = {i}}

mkBool b {v | v = {b}}

mkString s {v | v = {s}}

mkChar c {v | v = {c}}

mkEmptyMap() {v | v = {[]}}

meet(v1, v2) {v | v1 ∪ v2 ⊆ v}

mustBeEqual(v1,v2) { b | b ⇒ v1 = v2}

isSingleton v {b | b ⇒ |v| = 1}

isScalar v {b | b => ∀ t ∈v . t ∈ Int ∨ t ∈ Bool ∨ t ∈ String ∨ t ∈ Char}

mkTuple v1,…,vn {v’ | ∀ t1…tn ∈v1,…,vn. (t1,…, tn) ∈v’}

mkTagVal(c, v) {v’ | ∀ t ∈v. c t ∈ v’}

evalPrimop(p,v) {v’ | ∀ t ∈v. p(t) ∈ v’}

match(pt,v) {(E, v’)| ∀ t ∈v. if match(pt,t) = SOME e then e∈ E else t ∈ v’ }

mapMap(F, v) {v’ | ∀ (f, m) ∈ F× v. mapMap(f, m) ∈ v’}

mapUnionWith(F,v1,v2) {v’ | ∀ (f, m1, m2) ∈ F× v1× v2. mapUnionWith(f, m1, m2) ∈ v’}

collapseMap v {(v1, v2)| ∀ m ∈ v . ∀ (t1, t2) ∈ (dom m)× (rng m).
(t1, t2) ∈ v1× v2)}

findLiveKeys v {v’ | ∀ tk ∈H . not (∀ (m1, m2) ∈ v . m1(tk) = m2(tk))⇒ tk ∈ v’ }

freshenIds v {v’ | v’ is the result of replacing each ID in v with a fresh one}

87
in implementing the interface functions is to ensure that they are correct, simple enough

that they are feasible to implement, efficient enough that they do not add an unacceptable

overhead to partial evaluation and accurate enough that they expose as many residualiza-

tion opportunities to the partial evaluator as possible.

5.2 Internal Representation

Figure 5.2 specifies how abstract values are represented internally in SCF. The internal

representation corresponds directly to the definition of abstract values of table 1 of the

previous chapter. This correspondence is not required. For instance, Aiken and Murphy

[3] use an equational representation called leaf linear form as their internal representation

for regular tree expressions. The figure also specifies (on line 20) that an empty map is

simply a map with no “may” or “must” entries.

The definition leaves unspecified some key aspects of the internal representation.

Recall, for instance that keys in the must lists of maps are required to be singleton. More

broadly, SCF maintains all abstract values in a normal form. Only a subset of the values

representable by the value type of figure 5.2 are in normal form. We define the normal

datatype value =
top (* Written as 0 in this dissertation *)

| bottom of valueID (* Written as 1 in this dissertation *)
| tuple of value list * valueID
| tagval of string * value * valueID
| alt of value list * valueID
| fix of value * valueID
| rec
| map of must_map * may_map * valueID
| Int of int | Bool of boolean | String of string | Char of char

and must_map = must of (value * value) list
and may_map = may of (value * value) list
withtype valueID = string

fun mkInt i = Int i
fun mkBool b = Bool b
fun mkString s = String s
fun mkChar c = Char c
fun mkEmptyMap() = map(must_map [], may_map [], newId())

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

FIGURE 5.2: The Abstract Value Datatype.
We assume a function newId() that generates a unique string identifier on each invocation.

88
form in terms of a set of rewrite rules which convert to normal form an arbitrary value of

type value. For reasons discussed below, we divide the rules into a subset called the

“approximating rules” (comprising the OR-MAP and OR-TPL rules) and the “precise

rules” (comprising the remaining rules).

0 | v → v [OR-TOP]

1 | v → 1 [OR-BOT]

v | (v1 | ... | vn) → v | v1 | ... | vn [OR-ASSOC]

(v1 | ... | vn) | v → v | v1 | ... | vn [OR-ASSOC’]

v | v’ → v’ | v , if v’ < v [OR-LT]

v | v’ → v , if v = v’ [OR-EQ]

(v1 , ... , vn) | (u1 , ... , un) → (v1 | u1, ... , vn| un) [OR-TPL]

m1 | m2 → meetMaps(m1 , m2), where mi is a map [OR-MAP]

(..., 0 , ...) → 0 [ANDZ-TPL]

c 0 → 0 [ANDZ-TAG]

fix . 0 → 0 [ANDZ-FIX]

map(must(..., (0, v), ...), ...) → 0 [ANDZ-MUST-DOM]

map(must(..., (v, 0), ...), ...) → 0 [ANDZ-MUST-RNG]

map(..., may(...,vi, (0, v), vi+2,...)) → map(..., may(...,vi, vi+2,...)) [ANDZ-MAY-DOM]

map(..., may(...,vi, (v, 0), vi+2,...)) → map(..., may(...,vi, vi+2,...)) [ANDZ-MAY-RNG]

map(..., (vi, v’i), (vi+1, v’i+1), ...) → map(..., (vi+1, v’i+1), (vi, v’i), ...) , if vi+1 < vi [MDOM-LT]

map(..., (vi, v’i), (vi+1, v’i+1), ...) → map(..., (vi, v’i), ...) , if (vi, v’i) = (vi+1, v’i+1) [MDOM-EQ]

(v) → v [TPL-ELIM]

fix. v → v , if rec not free in v [FIX-ELIM]

FIGURE 5.3: Rewrite Rules for Normalizing Abstract Values.

Function meetMaps is defined in figure 5.5.

89
The first seven rules, from OR-TOP through OR-TPL restrict the form of alt abstract

values. The first two rules follow from the interpretation of alt as set union and that of

abstract values 0 and 1 as the empty and universal set respectively. These two rules have

the effect of keeping abstract values compact. The third and fourth rule constrains alt val-

ues to be maximally flat: a value alt [1, alt [2, 3]] is rewritten as alt [1, 2, 3].

The OR-LT and OR-EQ rules assume the presence of a total order < (with corre-

sponding equality relation =) on abstract values. We discuss a possible definition of this

order at the end of this section. Given the order, the OR-LT rule says that abstract values

constituting an or-value should be sorted under the order, and the OR-EQ rule says that the

or-value should not contain duplicates. These two rules make or-abstract values relatively

immune to the order in which their components were unioned into them, and to the num-

ber of times a given abstract value is unioned in to a result value.

Rules OR-TPL and OR-MAP perform “eager merges” to prevent two distinct tuple,

fix or map abstract values from co-existing at the top level of an alt value. The tuple rule,

for instance, converts the abstract value (1, 2) | (3, 4) to (1|3, 2|4). These rules are different

from the previous ones, in that the abstract values they produce may be approximations of

their original versions. However, these rules too are aimed at reducing the size of the

abstract values produced. The motivation for these rules is somewhat less obvious, since it

seems that at first glance, an application of the rule such as the above example seems

unlikely to reduce the size of abstract value by much (in the above example, for instance,

assuming list-based implementations, the two forms occupy the same amount of memory).

The big win from these rules becomes clear only when they are combined with other rules,

and when we take into account a common pattern of abstract values that arises when par-

tially evaluating program optimizations.

In particular, as exemplified by the specification of the dead assignment elimination

optimization in figure 3.7, program optimizations often pass around tuples containing one

or more maps. These maps have as their domain program structures such as variables or

labels in the AST being optimized. Now recall that alt values are created when the meet

function is called on abstract values. This occurs most commonly either when the partial

evaluator has arrived at a program point in the optimization via two or more sides of a case

statement (line 12 of figure 4.7) or when the evaluator is re-analyzing a function that is

90
already in the cache (line 31 of figure 4.4). In either case, the two tuples being met typi-

cally contain maps with many common entries. For instance, in the former case, the case

statement may handle a particular phrase in the AST in different ways, but this phrase

(being a small part of the AST) will only result in differences in a small part of the map.

Normalizing tuples by meeting the maps they contain (and thereby avoiding duplication of

values) can therefore save a substantial amount of space.

The OR-MAP rule is specified in terms of the unspecified meetMaps function, which

given two maps, returns a map. The only requirement on this function is that the resulting

set of maps be a superset of the incoming maps. An implementation of the function is dis-

cussed later in the chapter.

Unlike tuples and maps we do allow two tagged values with the same tag to co-exist

in an alt value. For instance cons(1, nil) | cons(2,nil) is in normal form, and we do not

rewrite for instance to cons(1|2, nil). This exception is again motivated by the pragmatics

of partially evaluating optimizations. It is common when optimizing to have alt’s of

tagged abstract values representing two different versions of a program phrase. For

instance, branch folding may result in two alternate sides of branches, represented as x =

y | p = y + 1 (say the incoming AST performed two completely different actions on

two sides of a constant branch). If we merged the two options prematurely in an effort to

normalize, the result of the optimization would instead be represented as (x|p) = y |

(y + 1). If the copy propagation optimization were then staged on this result, it would

have to account for the possibility that the incoming AST performs the copy p = y, and

produce residual code for downstream uses of p to propagate this copy if necessary.

In summary, we perform eager merging in order to reduce the size of abstract values,

but avoid it when the cost in accuracy is too high.

Rules ANDZ-TPL through ANDZ-MDOM simply exploit the fact that the empty set

is a “multiplicative zero”. Take rule ANDZ_TPL for instance. Recall that the abstract

tuple v = (v1,...,vn) stands for the set v of all concrete tuples (t1,...,tn) where for all i, ti ∈ vi.

However, if for some i, vi = 0, it follows that vi = {}, there is no possible satisfying value

of ti, v = {}, and v is equivalent to 0. These rules preserve the set of conforming values of

the abstract values being re-written: the set is always the empty set. Normalizing in this

91
manner reduces the space taken by abstract values, and speeds up operations in the not-

uncommon case that an abstract value has no conforming value1.

Rules MDOM-LT and MDOM-EQ sort abstract maps by their abstract key values.

The benefits of this step are similar to those of sorting alt-values. Two maps that map

structurally identical keys to identical values are guaranteed to be identical, allowing flex-

ible equality testing via purely structural comparison.

The final two rules remove operators. TPL-ELIM, simply replaces tuples with a sin-

gle field with the contents of that field. FIX-ELIM gets rid of the fix operator when it

applies to values with no free rec expressions. For example, fix. 1 | 2 and fix. fix. (nil |

cons(1, rec)) are rewritten to 1 | 2 and fix. cons(1, rec) (in the latter case, although the

outer fix contains a rec, the rec is not free). A rule implicit in the syntax of the abstract val-

ues is that “or” expressions with one disjunct are rewritten to just the disjunct.

We have not specified the total order < used while normalizing. Any total order on

abstract values that, ignoring IDs of abstract values, designates two structurally identical

abstract values as equal is sufficient for the purposes of normalization. In what follows, we

will assume a function compare: value * value -> order (where order = LESS | GREATER

| EQUAL) that specifies this total order. The particular function used in SCF is O(n).

5.3 Implementing Operations on Abstract Values

In this section, we describe how the functions that comprise the AbstractValue interface

are implemented. The descriptions are of interest because they show precisely how to

implement sufficiently aggressive but reasonably efficient versions of these operations. In

particular, it points out the minimum accuracy required by our application domain for var-

ious operations, shows how to maintain the normal form incrementally and exploit it, and

shows how to maintain abstract value IDs such that the resulting values are semantically

consistent. As implemented below, these operations all terminate in polynomial time, as

opposed to exponential lower-bounds on accurate versions of some of these operations on

RTEs [3].

1.This is not an uncommon case because the first time a function call is abstractly executed, it returns value top (i.e. 0) as
per line 44 of figure 4.5.

92
5.3.1 meet

As per the specification of the meet function in table 2, the meet of two abstract values v

and v’ intuitively results in (a superset of) the union of the sets v and v’. Also, as per the

specification of the alt form in table 1 of the previous chapter, the abstract value v | v’ rep-

(* meet: value * value -> value *)
fun meet(v, v’) =
if identical(v, v’) then v
else if compare(v,v’) = EQUAL then freshenIds v
else meet’(v,v’)

(* meet’: value * value -> value *)
and meet’(top, top) = top
| meet’(top, v) = v
| meet’(v, top) = v
| meet’(bottom _, _) = bottom newId()
| meet’(_, bottom _) = bottom newId()
| meet’(tuple(vs, _), tuple(vs’, _)) =

let vs’’ = ListPair.map meet (vs, vs’)
in tuple(vs’’, newId()) end

| meet’(u as tagval _, alt (vs, _)) = alt (merge([u], vs), newId())
| meet’(alt(us, _), v as tagval _) = alt (merge([v], us), newId())
| meet’(u as tagval_ , v) = alt (merge([u], [v]), newId())
| meet’(u, v as tagval _) = alt (merge([u], [v]), newId())
| meet’(alt (us, _), alt (vs, _)) = alt (merge(us, vs), newId())
| meet’(alt (us, _), v) = alt (merge(us, [v]), newId())
| meet’(u, alt (vs, _)) = alt (merge([u], vs), newId())
| m eet’(u as fix _, v as fix _) = alt (merge([u], [v]), newId())
| meet’(u as map _, v as map _) = meetMaps(u, v)

and merge(us, vs) = merge the sorted lists us and vs to get a sorted list without duplicates

... meetMaps as defined in figure 5.5...

and identical(v: value, v’: value): boolean=
identicalAtoms(v, v’) orelse idOf v = idOf v’

and identicalAtoms(v, v’): boolean =
... true iff v and v’ are the same int, bool, string, char or zero-ary tagged value ...

and idOf (v: value): int =
... return the id of abstract value v if it has one (undefined otherwise)...

and freshenIds(v: value): value =
... replace every ID of v with a fresh one, preserving duplicates...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

FIGURE 5.4: The meet Function.

93
resents precisely the union just mentioned. Intuitively then, the role of the meet function,

is simply to produce to the value alt(v, v’, id), subject to normal-form requirements, and

with an appropriate ID id. Figure 5.4 specifies the function. We summarize the key points

below.

If the two abstract values being met have the same ID, or if they are the identical inte-

ger, character, string, boolean or zero-ary tagged singleton value (e.g. the empty list nil), it

follows that they are structurally identical. The comparison function over abstract values

compare must then determine that compare(v, v’) = EQUAL, so that by the OR-EQ rule of

figure 5.3, we return v as the meet (line 3).

In the case that the IDs are unequal, but the two values are structurally equal, we

return a value that is the structurally equivalent to the input values with fresh IDs. We need

to freshen the IDs because leaving an old ID (say from the first argument value) would

indicate a correlation between the result value and the old abstract value, when the meet

function actually destroys the correlation (the resulting concrete value at run-time may

well flow in through the second abstract value).

Lines 8-12 implement the OR-TOP and OR-BOT rewrite rules. A detail is that when

implementing the rule v | 1 → 1, we tag the new 1 with a fresh ID, since we cannot assume

any correlation between the new set and the incoming sets. For instance, suppose the meet

function is being invoked to produce a result value given that two sides a branch evaluate

abstractly to (12 | 54) # 313 and 1#312, all we can conclude is that the resulting value

belongs to the set 1. We cannot, for instance ascribe ID 312 to the new result, since the

result may be produced via the first abstract value.

Lines 13-15 implement rewrite rule OR-TPL. Lines 17-23 implement the OR-LT and

OR-EQ rules. A subtlety is that at first sight, it seems that lines 17-23 may take two values

such as 1 | (2 , 3) and (3, 4) and (by line 20, in this case), produce the value 1 | (2, 3) | (3,

4) by merging sorted lists [1, (2 , 3)] and [(3, 4)]. The resulting value is not in normal

form, since the OR-TPL rule could be applied to merge the tuples. This case does not arise

because SCF-ML follows the same strong typing discipline as ML. In particular, the type

discipline prohibits a given value from being possibly both an integer and a tuple, so the

value 1 | (2, 3) could never have formed.

94
The meetMaps function which merges maps is defined separately in figure 5.5. Recall

that as per the rewrite rules, this function is simply required to return an abstract map rep-

resenting a superset of its incoming maps. Because abstract maps are a novelty of SCF, we

type vv_list = (value * value) list

(* meetMaps: value * value -> value*)
fun meetMaps(m as map(must ps, may qs,_), m’ as map(must ps’, may qs’, _)) =

let (musts, mays) = meetMusts([], [], ps, m’)
 mays’ = meetMays(mays, qs, m’)
 (musts’, mays’’) = meetMusts(musts, mays’, ps’, m)
 mays’’’ = meetMays(mays’’, qs’, m)

in map(must musts’, may mays’’’, newId()) end

(* meetMusts: vv_list* vv_list * vv_list * value -> vv_list * vv_list *)
and meetMusts(musts, mays, [], _) = (musts, mays)
| meetMusts(musts, mays, (k,v)::ps, m) =

case find(m, k) of
MUST v’ => meetMusts(insertSoft(musts, k, meet(v, v’)), mays, ps, m)

| MAY v’ => meetMusts(musts, insertSoft(mays, k, meet(v,v’)), ps, m)
| NOT => meetMusts(musts, insertSoft(mays, k, v), ps, m)

(* vv_list * vv_list * value -> vv_list *)
and meetMays(mays, [], _) = mays
| meetMays(mays, (k,v)::ps, m) =

case find(m, k) of
MUST v’ => meetMays(insertSoft(mays, k, meet(v,v’)), ps, m)

| MAY v’ => meetMays(insertSoft(mays, k, meet(v,v’)), ps, m)
| NOT => meetMays(insertSoft(mays, k, v), ps, m)

(* vv_list * value * value -> vv_list *)
and insertSoft(ms, k, v) =

...suppose kvs = {(k,v)} ∪ {(k’, v’) ∈ ms| not (mustBeDisjoint(k,k’))};
remove every (k’, v’) in kvs from ms;
insert (k’’, v’’) into ms where k’’ is the result of meeting all k’s in kvs and

v’’ is the result of meeting all v’s in kvs...

(* find: value * value -> value choice *)
and find(m, k) =

...see figure 5.14 for complete definition:
return MUST v if (k, v) must be in m

MAY v if (k,v) may be in m
NOT if k is definitely not in m

(* mustBeDisjoint: value * value -> boolean*)
and mustBeDisjoint(v: value, v’: value) =

... true if sets v and v’ can be guaranteed to be disjoint, false otherwise ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

FIGURE 5.5: The meetMaps Function.

95
go into some detail on how this operation is implemented. We use the figure 5.6 to show

how the meetMaps function works.

The intuition is that given two input abstract maps v and v’, a key k appears in the

must list of the result only if it is in the must list of both inputs. All other keys end up in the

may list of the result. In both cases, we need to do the appropriate book keeping to gather

the values corresponding to the keys. The meetMaps function achieves this (lines 5-8 of

figure 5.5) by processing the must and may lists of the incoming maps in turn.

For instance, line 5 of figure 5.5 compares elements of the must list of the first map to

the second map using the meetMusts helper function. Given our example, the latter func-

tion would recognize that the key 1 must be in both maps, although it maps to the values

19| 121 and 17 | 23 in the two maps. Since the result map is supposed to represent the

union of the two maps, the meetMusts function maps the key 1 to the meet of these two

values (line 15 of figure 5.5). Since 1 must be in both maps, the pair (1, 17 | 19 | 23 | 121)

is inserted into the musts list. On the other hand, since the key 7 must be in the first map

(where it maps to 34), but only may be in the second (where it maps to 12 | 13), the pair (7,

12 | 13 | 34) is inserted into the mays list. Lines 6 and 7 of figure 5.6 show these results.

v = map(must [(1, 19 | 121), (7, 34)], may[(2 | 3, 39)])

v’ = map(must[(1, 17 | 23), (8, 1)], may[(3 | 7, 12 | 13), (99, 100)])

After meetMusts call of line 5, figure 5.5:
musts: [(1, 17 | 19 | 23 | 121)]
mays: [(7, 12 | 13 | 34)]

After meetMays call of line 6, figure 5.5:
musts: [(1, 17 | 19 | 23 | 121)]
mays: [(7, 12 | 13 | 34), (2| 3, 12 | 13 | 39)]

After meetMusts call of line 7, figure 5.5:
musts: [(1, 17 | 19 | 23 | 121)]
mays: [(7, 12 | 13 | 34), (2| 3, 12 | 13 | 39), (8, 1)]

After meetMays call of line 8, figure 5.5:
musts: [(1, 17 | 19 | 23 | 121)]
mays: [(2 | 3 | 7, 12 | 13 | 34 | 39), (8, 1), (99, 100)]

The resulting abstract value meetMaps(v, v’):
map(must [(1, 17 | 19 | 23 | 121)], may [(2 | 3 | 7, 12 | 13 | 34 | 39), (8, 1), (99, 100)])

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

FIGURE 5.6: Example Showing How the meetMaps Function Works.

96
The meetMaps function feeds the resulting mays list (along with the may list qs of the

first map, and also the second map m’) into the meetMays function as per line 6 of figure

5.5. Since the key 2 | 3 of the may list may overlap with the key 3 | 7 of the map (and the

two map to values 39 and 12 | 13 respectively), meetMays adds the mapping (2 | 3, 12 | 13

| 39) to the mays list. We assume a function mustBeDisjoint: value * value -> boolean that

can tell us conservatively if (the sets corresponding to) two abstract values are definitely

disjoint. Lines 10 and 11 of figure 5.6 show the resulting mays and musts lists.

The meetMaps function then processes the may and must lists of the second input map

by calling the meetMusts and meetMays functions respectively on these lists. The results

of these calls are on lines 14-15 and 18-19 respectively of figure 5.6. The resulting lists are

packaged into a map value to give the result of the entire meetMaps function on the exam-

ple inputs (line 22).

To summarize, the meet function has two main complications. First, it needs to pre-

serve the normal form of its inputs, and in particular it needs to implement the meetMaps

function. Second, it needs to tag its results with fresh IDs where necessary, and more

importantly use the old IDs where possible.

5.3.2 mustBeEqual

Figure 5.7 shows how the mustBeEqual function is implemented. Recall that the ordering

function compare(v, v’) on abstract values v and v’ returns EQUAL if v and v’ are structur-

ally identical. Ordinarily, structural equality would be far too restrictive to check equality

of sets. For instance, we may be testing the sets represented by the two values 1 | 2 and 2 |

1 for equality, and structural equality would declare that the two are unequal. This is

where, as discussed previously, normal form comes to the rescue. The normal form of both

values is structurally identical (say 1 | 2). As discussed previously, normal form rewrites

many semantically equal but structurally unequal sets to be structurally equal. The rewrite

fun mustBeEqual(v, v’) =
case compare(v, v’) of

EQUAL => true
| _ => false

1
2
3
4

FIGURE 5.7: The mustBeEqual Function.

97
thus allows abstract values that are structurally unequal but semantically equal to be com-

pared for equality using structural comparisons.

5.3.3 isSingleton

The isSingleton function, given a value v, determines if the set v is singleton. Its imple-

mentation simply checks if its incoming abstract value contains an alt form, a 1 or a map

form with non-empty may list within it. If not, it declares the value singleton.

5.3.4 isScalar

An abstract value is a scalar if it definitely represents a set of scalar concrete values, i.e.,

integers, booleans, strings or characters. Figure 5.8 shows the linear-time test for this.

5.3.5 mkTuple

Given a list vs = v1...vnof abstract values, mkTuple vs returns a normal-form abstract value

representing concrete elements whose ith element ti ∈ vi. Figure 5.9 shows how mkTuple

is implemented. If vs contains only one value, mkTuple simply returns that value as

required by rewrite rule TPL-ELIM (line 2). If any v in vs is the empty abstract value top

(which we often write as 0), then as per normal form rule ANDZ-TPL, the entire tuple has

value top (line 3). If the above two conditions do not hold, the incoming values can be

packaged with a new ID to form the required tuple.

fun isScalar(Int _ | Bool _ | String _ | Char _) = true
| isScalar(alt(vs, _)) = List.all isScalar vs
| isScalar _ = false

1
2
3

FIGURE 5.8: The isScalar Function.

fun mkTuple (vs: value list) : value =
if List.length vs = 1 then hd vs
else if List.exists (fn x => x = top) vs then top
else tuple(vs, newId())

1
2
3
4

FIGURE 5.9: The mkTuple Function.

98
5.3.6 mkTagVal

Given abstract value v and string c, mkTagVal(c, v) returns an abstract value v’ s.t. if t ∈ v,

c t ∈ v’. Figure 5.10 does the job in constant time. If v is top, the mkTagVal function

returns top as the resulting value (line 2), as per normal form rule ANDZ-TAG.

5.3.7 evalPrimop

Figure 5.11 shows how the evalPrimop function is implemented. The function is given the

primitive operation (abbreviated to “primop” below) to be evaluated and an abstract value

v representing the argument of the primitive operation,1 returns value v’ s.t. for each t ∈ v,

p t ∈ v’.

Lines 2-3 handle some common but straightforward cases. If argument v is top, i.e., v

is empty, so is v’, regardless of the identity of the primop (line 2). Note that this is not nec-

essarily so: if we had a primop that ignored its inputs and returned a constant value, we

could add an additional case for this operation.

If v is bottom,2 so is v’, regardless of the operator. There are two subtleties here. First,

consider the case that the operator is sgn: int -> bool, i.e., a function which gets the sign of

its input. In this case, even if the argument is bottom, we could deduce that the return value

has to be true | false, and not bottom. By returning bottom, we seem to lose accuracy and

allow arbitrary integers for instance to leak into the return value (since all integers are part

of the set bottom). The typing discipline of SCF-ML again comes to the rescue: the result

of this primop can only be used in a context where a boolean value is expected so any non-

boolean value included in the abstract value can be ignored at that point.

The second subtlety is that as specified the returned set has a fresh ID, signifying that

its abstract values may not be correlated with any value computed so far. It is conceivable

1.For those unfamiliar with ML, the fact that the primitive operation takes only one value as argument does not restrict it
to being a unary operation: the single value may be a tuple of arbitrary arity.

2.Recall that we have been using the notation 1 to represent bottom.

fun mkTagVal(c: string, v: value): value =
if v = top then top
else tagval(c, v, newId())

1
2
3

FIGURE 5.10: The mkTagVal Function.

99
that the result value may not need a fresh ID: if we had a primop id: ’a -> ’a (which sim-

ply returned its input), we could have a special rule evalPrimop(id, v) = v which leaves the

ID of the incoming value unchanged.

Lines 5-9 and 14 are straightforward implementations of the semantics of table 2. Pri-

mops are assumed to be the traditional arithmetic and logical operators, along with built-in

SCF map operations. We first describe how traditional primops are processed. A primop

applied to a singleton tuple abstract value is just the singleton abstract value that results

from applying the primop to the corresponding concrete tuple (lines 5 and 9). If the tuple

has alternates as its components, the result is just the meet of applying the primop to all

tuples formed by picking one alternate from each component (lines 7 and 14). For instance

evalPrimop(|+|, |(1 | 25, 7 | 12)|) would return 8 | 13 | 32 | 37, since the primop would be

applied to the tuples (1, 7), (1, 12), (25, 7) and (25, 12).

An instructive special case is the treatment of the primop for equality if the input tuple

is not singleton, but the two component abstract values of the incoming abstract tuple have

the same ID (lines 11-12). Since two abstract values with the same ID are guaranteed to be

(* SCF_ML.primop * value -> value *)
fun evalPrimop(_, top) = top
| evalPrimop(_, bottom _) = bottom (newId())

| evalPrimop(|~|, Int i) = Int (~i)
| evalPrimop(|~|, alt (us, _)) =

...compute evalPrimop(|~|, u) for all us in u, and meet the results...
...
| evalPrimop(|=|, |(Int i, Int j)|) = if i = j then Bool true else Bool false
| evalPrimop(|=|, |(alt(us, id), alt(vs, id’))|) =

if id = id’ then
Bool true

else
...compute evalPrimop(|=|,|(u, v)|) for all u, v in us, vs in cross product, and meet the results...

|...
| evalPrimop(|map_insert|, |(vmap, vkey, vval)|) = execMapInsert(vmap, vkey, vval)
| evalPrimop(|map_find|, |(vmap, vkey)|) = execMapFind(vmap, vkey)
| evalPrimop(|map_equal|, |(vmap, vkey)|) = execMapEqual(vmap, vkey)

... execMapInsert defined in figure 5.12 ...

... execMapFind defined in figure 5.13...

... execMapEqual defined in figure 5.15...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

FIGURE 5.11: The evalPrimop Function.

100
correlated to represent the same concrete value, the equality operation can return the sin-

gleton abstract value true in this case. This case (and especially its counterpart for check-

ing equality for maps) can be important for evaluating fixpoint equality tests accurately.1

As lines 16-18 show, we special-case primitive operations on maps. We discuss in

some detail below how these are implemented.

5.3.7.1 The mapInsert Primitive Operation

Figure 5.12 specifies how the abstract insert operation on maps, execMapInsert, is imple-

mented. Given three abstract values vmap, vkey and vval, execMapInsert(vmap, vkey, vval)

produces abstract value v such that if for all m, k, t∈ vmap, vkey and vval, map_insert(m, k,

t) ∈ v, where map_insert, operates on concrete values.

Lines 2-5 address the case where the incoming abstract map is bottom, i.e., it can be

any map. Regardless of the incoming map, if vkey is singleton (say vkey = {k}), then we

know that k must map to one of the elements of vval in the result. In line 4, therefore, we

handle this case by requiring the must binding (vkey, vval) be in the resulting map. Since the

rest of the bindings on the result map are unconstrained, we also require the may binding

(bottom, bottom) in the result.

One may wonder why, in the case that vkey is not singleton, we cannot require a may

binding (vkey, vval) in the result map, in addition to the (bottom, bottom) map. The answer

lies in the semantics of the may list, as specified in table 1 of chapter 3. Essentially, a con-

crete binding (tk, tv) may be in vmap if, for any (k, v) in the may list of the abstract map, tk,

tv ∈ k, v, as long as k is not a key in the must list. Thus, for instance, if the map has the

form map(must [], may[(1|2,3), (bottom, bottom)]), looking up 1 in the map will yield bot-

tom (since 1 is not in the must list, and 1∈ bottom). As a result, whenever (bottom, bottom)

is in the may list, it is redundant to add any entries to the may list (although currently we

do not take special effort to avoid this redundancy).

1.In practice, the equality test is almost always on aggregate data structures (maps or sets, not scalars) that represent the
abstract store. These are handled specially in SCF as discussed in the following subsections.

101
When the value being inserted into a bottom map is not singleton, we therefore simply

return a bottom abstract map, taking care to give it fresh ID to avoid correlating it with the

incoming (or any other) map.

The assertions of lines 6 and 7 follow from the ANDZ-TPL rule: if vkey were 0, the

abstract tuple value (vmap, vkey, vval) of line 16, figure 5.11 would have been 0, so line 2 of

figure 5.11 would have returned 0 without even invoking the execMapInsert function.

Lines 8-16 handle the common case where non-top abstract keys and values are

inserted into a non-bottom map. In the case where the abstract key is a singleton (lines 9-

(* execMapInsert: value * value * value -> value *)
fun execMapInsert(bottom _, vkey, vval) =

if isSingleton vkey then
map(must[(vkey, vval)], may[(bottom (newId()), bottom (newID()))], newId())

else bottom (newId())
| execMapInsert(map(must musts, may mays, _), top, _) = ... should not reach here ...
| execMapInsert(map(must musts, may mays, _), _, top) = ... should not reach here ...
| execMapInsert(map(must musts, may mays, _), vkey, vval) =

if isSingleton vkey then
let musts’ = insert(remove(musts, vkey), vkey, vval)
in map(must musts’, may mays, newId()) end

else
let (musts’, values) = removePossibleMatches(musts, vkey, [], top)

vin = meetAll(vval :: values)
mays’ = insert(mays, vkey,vin)

in map(must musts’, may mays’ , newId()) end

(* vv_list * value * vv_list * value -> vv_list * value *)
and removePossibleMatches([], _, mustsout, vout) = (mustsout, vout)
| removePossibleMatches((k, v)::musts, vkey, mustsout, vout) =

if mustBeDisjoint(k, vkey) then
removePossibleMatches(musts, vkey, mustsout@(k,v), vout)

else
removePossibleMatches(musts, vkey, mustsout,, meet(v, vout))

and insert(ms: vv_list, key: value, v: value): vv_list =
...insert pair (key, v) into list ms, keeping ms sorted and duplicate-free wrt keys;

if some mapping (key’, value’) already exists s.t. key = key’,
replace it with (meet(key, key’), meet(v, value’))...

and remove(kvs: vv_list, vkey:value): vv_list =
... remove key-value pair (k,v) from kvs if k and vkey are not disjoint; return the new kvs...

and meetAll (vs : value list): value = ... meet together all the values v in vs ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
34
35

FIGURE 5.12: The execMapInsert Function.

102
11), we just add the binding (vkey, vval) to the must list, replacing in the process any exist-

ing binding (vkey, v’val) of vkey in the must list (line 10). The replacement is necessary

because normal form requires that map keys are unique (so we cannot have two entries

with the same key), and appropriate because the old bindings are overridden by the new

ones (so we do not, for instance, meet the old value with the new one). We leave the may

list unchanged. It is unnecessary to remove bindings for vkey in the may list since must

bindings shadow may bindings.

The case where the incoming key is not singleton is trickier (lines 12-16). Consider,

for instance, adding the binding (1|2, 88) to map(must [(1, 13), (34,12)], may [(2 | 3, 55),

(323, 175)]). A naive approach might simply add the above binding to the may list to pro-

duce the map map(must [(1, 13), (34,12)], may[(1 | 2, 88), (2 | 3, 55), (323, 175)]). A later

map_find operation on this map with key 1 would return the value 13, since the binding (1,

13) in the must list shadows other bindings of 1.

Reasoning about the required semantics in the concrete domain, we see that the naive

approach above is not quite correct. In the case that the incoming concrete map is [1 ->

13] ∈ map(must [(1, 13), (34,12)], may [(2 | 3, 55), (323, 175)]), and the concrete binding

inserted is (2, 88) ∈ (1|2, 88), the resulting map is [1 -> 13, 2 -> 88] and it is indeed cor-

rect for a find operation on key 1 to return 13. However, if the concrete key inserted were

(1, 88) ∈ (1|2, 88), then we would require the subsequent find operation to return 88.

Alternatively, we might first remove all bindings (k, v) from the must list such that k is

not disjoint with the key vkey being added. The resulting map would be map(must

[(34,12)], may [(1 | 2, 88), (2 | 3, 55), (323, 175)]). This solution does not work in the case

above where concrete key (2, 88) was inserted: it does not account for the possibility that

the old mapping (1, 13) was left untouched.

A correct solution is to first remove all bindings (k, v) in the must list such that k over-

laps with the key vkey being added (line 13), compute the meet of the values values so

gathered and the incoming value vval into value vin (line 14), and insert the binding (vkey,

vin) into the may list (line 15). In the example above, the resulting map would be map(must

[(34,12)], may [(1 | 2, 13 | 88), (2 | 3, 55), (323, 175)]).

103
5.3.7.2 The execMapFind Primitive Operation

Figure 5.13 shows how the execMapFind operation on maps, which implements the

abstract map_find operation, is implemented. Given abstract values vmap and vkey repre-

senting sets of concrete maps and keys respectively, execMapFind(vmap,vkey) returns an

abstract value v’ such that for each concrete tmap, tval ∈ vmap, vkey, map_find(tmap, tval) ∈

v’.

To understand the functionality required of the execMapFind function consider the

desired result for map(must [(1, 2)], may [(1|7, 3)]) (which corresponds to the set of con-

crete maps {[1->2], [1->2, 7->3]}) and key 1, 9 or 1|7.

•With abstract key 1, we would like to get back the abstract value SOME 2. The concrete

value 1 maps to the concrete value 2 in all conforming concrete maps. Generalizing,

fun execMapFind(vmap:value, vkey:value): value =
case find(vmap, vkey) of

MUST v => mkTagVal(“SOME”, v)
| MAY v => meet(mkTagVal(“SOME”, v), mkTagVal(“NONE”, mkTuple []))
| NOT => mkTagVal(“NONE”, mkTuple [])

1
2
3
4
5

FIGURE 5.13: The execMapFind Function.

(*find: value * value -> value choice *)
and find(map(must ms, may ms’, _), k) =

case findMust(ms, k) of
SOME v => MUST v

| NONE => case findMay(ms@ms’,k, top) of
top => NOT

| v => MAY v

and findMust([], _) = NONE
| findMust((k, v)::kvs, k’) =

if mustBeEqual(k, k’) then SOME v
else findMust(kvs, k’)

and findMay([], _, v) = v
| findMay((k, v)::kvs, k’, v’) =

let v’’ = if mustBeDisjoint(k, k’) then v’
else meet(v,v’)

in findMay(kvs, k’, v’’) end

... mustBeDisjoint defined in figure 5.5...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

FIGURE 5.14: The find Function on Abstract Maps.

104
therefore, if (k, v) is in the must list of vmap and k must be equal to vkey, the exec-

MapFind should return abstract value SOME v. Line 4 of the find helper function of

figure 5.14 detects this case, and line 3 of the execMapFind returns the appropriate

value.

•With abstract key 9, we would like to get back abstract value NONE, since 9 is not in the

must or may list of the incoming map, and therefore does not figure as a key in any of

the conforming concrete maps. In general, if vkey is disjoint from all keys in vmap, the

returned abstract value should be NONE. Line 6 of the find helper function and line 5

of the execMapFind function detect this case and return the correct value respectively.

•With abstract key 1|7, we would like to get back either SOME 2 (when the concrete key

is 1 and either concrete map is used), SOME 3 (when the concrete key is 7 and the

second concrete map is used), or NONE. Summing up, we would like to get the

abstract value NONE | SOME 2 | SOME 3 as the result. One way to get (essentially)

the latter return value is, given key 1|7, find all bindings with overlapping keys (in

this case (1, 2) and (1|7, 3)), and meet the range values of these bindings (in this case

2 and 3). If the meet returns abstract value v, return NONE | SOME v as the result of

the whole execMapFind operation. Lines 7 and 4 of the find and execMapFind opera-

tions respectively combine to achieve this effect.

5.3.7.3 The execMapEqual Primitive Operation

Figure 5.15 shows the execMapEqual operation on maps, which implements the abstract

map_equal operation. Given two abstract values vmap and v’map representing two sets of

concrete maps, execMapFind(vmap,v’map) returns an abstract value v’ such that for each

concrete tmap, t’map∈ vmap, v’map, map_equal(tmap, t’map) ∈ v’.

This operation is different from the mustBeEqual operation described previously.

That operation, given abstract maps, returns a boolean which is true if the sets represented

by the maps are guaranteed to be equal, and false otherwise. The current operation com-

pares the maps in the sets in all pairwise combinations, and returns an abstract value

whose value is the result of meeting the pairwise results. Thus, given abstract map veg =

105
map (must[], may[(2, 3)]) (which represents the set {[], [2 -> 3]} of concrete maps), mus-

tBeEqual(veg, veg) returns concrete value true, whereas execMapEqual(veg, veg) could

return abstract value true | false (comparing map [] to itself gives true, whereas comparing

it to [2->3] gives false). We cannot therefore use structural equality alone for computing

execMapEqual, as we did for mustBeEqual.

The example of the previous paragraph raises the question of whether execMapEqual

can ever return singleton abstract value true when comparing two non-singleton abstract

values vmap and v’map. After all, if vmap = {m1, m2, ...} and v’map = {m1’, m2’, ...} then if

execMapEqual(m1, m1’) = true then it must be true that execMapEqual(m1, m2’) = false.

This intuition holds in the absence of value ID tags. The additional correlations provided

by tags, however, allow even non-singleton abstract maps to return a singleton abstract

value true on pairwise comparison. In the case of the example with veg above, invoking

execMapEqual(veg, veg) in fact leads to the comparison of two abstract values with the

same ID. Having the same ID guarantees that not only will the sets of concrete maps cor-

(* execMapEqual: value * value -> value *)
fun execMapEqual(m as map(must ps, may qs, id), m’ as map(must ps’, may qs’, id’)) =

if id = id’ then Bool true
else if mustBeSingleton(m) andalso mustBeSingleton(m’) then Bool (mustBeEqual(m, m’))
else if mapsDefinitelyDifferInMusts(m, m’) then Bool false
else if qs = [] andalso qs’ = [] andalso

haveIdenticalStructureAndId(ps, ps’) then Bool true
else meet(Bool true, Bool false)

(* value * value -> boolean*)
and mapsDefinitelyDifferInMusts(m, m’) =

there exists key k s.t. k maps to disjoint values v and v’ in the must lists of m and m’ respectively
orelse
the must list of m is disjoint from the domain (as per must and may lists) of m’ or vice-versa

(* vv_list * vv_list -> boolean*)
and haveIdenticalStructureAndId([], []) = true
| haveIdenticalStructureAndId ([], _) = false
| haveIdenticalStructureAndId (_, []) = false
| haveIdenticalStructureAndId ((k,v)::ps, (k’, v’)::ps’) =

mustBeEqual(k, k’)
andalso ((mustBeSingleton v andalso mustBeSingleton v’ andalso mustBeEqual(v,v’))

orelse (idOf v = idOf v’))
andalso haveIdenticalStructureAndId(ps, ps’)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

FIGURE 5.15: The execMapEqual Function.

106
responding to the two values will be the same, the concrete values are also guaranteed to

be identical. SCF would, in fact, return singleton value true in this case.

Line 3 of figure 5.15 exploits the correlation provided by IDs to assert that exec-

MapEqual on two correlated values gives singleton abstract value true. Otherwise (line 4),

in the case that the two maps are singleton, we can just test for structural equality to see if

the maps are equal or not. Otherwise (line 5), we check if the maps impose mutually

incompatible results via their must lists, and if so we return singleton abstract value false.

If (line 12) both maps must contain singleton key k, but k maps to two values v and v’ in

two maps such that v and v’ are disjoint, we can conclude that equality over all pairs is def-

initely false in every case. Alternately (line 14), for each singleton key k in the must list of

one map, if k is disjoint with all the keys of the other map, we can be sure that all pairwise

comparisons will give false.

If the must lists are not definitely incompatible, we make a final attempt to determine

that the two maps are definitely correlated. We check to see if the may lists are empty. If

so, we check (lines 17-23) for two maps that have the same IDs on all internal non-single-

ton abstract values, and return singleton true in this case. For example, map(must [(1,

2|3#21), (3,4)], may [])#232 and map(must [(1, 2|3#21), (3,4)], may [])#177. If even this

test fails, we conservatively return true|false, i.e., equality may be true or false.

The case of two maps having identical IDs being compared does not seem to come up

in practice. All other cases occur in our benchmarks.

5.3.8 match

Figure 5.16 shows how the match function is implemented in SCF-ML. Intuitively, match

performs pattern-matching on abstract values. Given pattern pt and abstract value v,

match(pt, v) is intended to return optionally (i.e., in the case that there is a possible match)

an abstract environment E mapping variables in pt to matching abstract values, and an

abstract value v’ which is the “part of v that was not matched by pt.” For instance, if pat-

tern pt is |binary(x, _)| and v = |(binary(1, 2) | unary 7)|, E would be the map [x -> |1|]

and v’ would be unary 7 (since the latter part of the abstract value does not match the pat-

tern) and match is required to return SOME([x -> |1|],|unary 7|).1

107
If it can guarantee that no match is possible, match may return NONE. As per the def-

inition of table 2, however, it is conservative for match to return SOME(E, v’) even when

no match is possible, as long as v’ contains v.

Line 4 handles the case that pt is the “wildcard” pattern _ (which matches all values

matched against it). In this case, since pt contains no variables, we return an empty envi-

ronment E, and since the match is complete, we return top (which corresponds to the

empty set) as the unmatched part. Similarly (line 6), if pt is the variable x, we return an

environment where x is bound to v, and again return top for the unmatched part.

1.More precisely, it is required to return SOME([x->v], v’), where |1| ⊆ v and |unary 7| ⊆ v’.

structure Env = AbstractEnvironment (* Define abbreviation for AbstractEnvironment module*)

(* match: SCF_ML.pat * value -> (Env.env * value) option *)
fun match(|_|, _) = SOME (Env.empty, top)

| match (|x|, v) = SOME (Env.init(|x|,v), top)

| match (pt, top) = NONE

| match (pt, bottom) = SOME (bindIDsToBottom pt, bottom(newID()))

| match(|c pt’|, vin as |c’ v|) =
if c = c’ then

case match(pt’, v) of
SOME(E, top) => (E, top)
| SOME(E, v’) => (E, |c v’|)
| NONE => NONE

else
(Env.empty, vin)

| match(pt as |c pt’|, alt(vs, _)) =
let (Eout, vout, possibleMatch) = matchAlternatives(pt, vs, Env.empty, top, false)
in if possibleMatch then SOME(Eout, vout) else NONE end

| match(|(ps)|, vin as |(vs)|) =
let (Eout, vout, possibleMatch) = matchTuple(ps, vs, Env.empty, top, false, 1, vs)
in if possibleMatch then SOME(Eout, vout) else NONE end

| match(pt, vin as fix(v, _)) =
let v’ = replaceRecs(v, freshenIDs vin)
in match(pt, v’) end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

FIGURE 5.16: The match Function.
Helper functions are defined in figure 5.17.

108
5.3.8.1 Matching Against alt Values

Lines 21-23 of figure 5.16 (along with the helper function matchAlternatives of figure

5.17) show how we match a pattern against an alt value, i.e., a value that is an “or” of val-

ues. The rule seems straightforward: to match a set of alternative values, match the indi-

vidual alternatives separately, and meet the environments and unmatched parts that result.

For instance, when we match pattern unary x against value unary 11 | unary 322 |

binary(1, 23), invoking match on the individual alternatives could return SOME([x -> 11],

top), SOME([x -> 322], top) and NONE respectively. Note that a NONE returned value

implies that the whole incoming value, in this case binary(1, 23), is unmatched. Meeting

the returned environments gives [x -> 11 | 322] and meeting the unmatched values gives

binary(1, 23).

The above rule, although intuitive, has an adverse consequence. Consider the environ-

ment that results from matching pattern binary(x, y) against value binary(1, 2) | binary(

(* matchAlternatives: pattern * value list * Env.env * value * bool ->
Env.env * value * bool *)

and matchAlternatives(_, [], Eout, vout, bout) = (Eout, vout, bout)
| matchAlternatives(pt, v::vs, Eout, vout, bout) =

case match(pt, v) of
NONE => matchAlternatives(vs, Eout, meet(v,vout), bout)

| SOME(E, v’) => matchAlternatives(vs, Env.meet(E, Eout), meet(v’,vout), true))

(* matchTuple: pattern list * value list * Env.env * value * boolean * int * value list ->
Env. env * value * bool *)

and matchTuple([], [], Eout, vout, bout, _, _) = (Eout, vout, bout)
| matchTuple(pt::pts, v::vs, Eout, vout, bout, i, vsorig) =

case match(pt, v) of
NONE =>

matchTuple(pts, vs, Eout,
meet(vout, mkTupleWithField(vsorig, i, v)), bout, i+1, vsorig)

| SOME(E, v’) =>
matchTuple(pts, vs,

Env.meet(E, Eout), meet(vout, mkTupleWithField(vsorig, i, v’)), true, i+1, vsorig)

and replaceRecs(v: value, v’: value): value= ... replace every free occurence of “rec” in v with v’...

and mkTupleWithField(vs: value list, i: int, v: value) =
... replace the i’th element of vs with v, and make a tuple from the resulting list ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

FIGURE 5.17: Helper Functions for the match Function.

109
12, 13). The individual components return environments [x -> 1, y -> 2] and [x -> 12, y -

> 13]. Meeting these environments yields [x -> 1 | 12, y -> 2 | 13]. In doing so, unfortu-

nately, we lose some information. In particular, it now seems possible that a match may

yield concrete environment [x -> 1, y -> 13], which is clearly impossible since according

to the incoming abstract value, y is always 2 when x is 1.

The problem is that we wish to correlate the value of a variable in the abstract envi-

ronment with that of another. Abstract value ID tags currently allow us to express correla-

tions where two variables (or fields thereof) have equal values, but in this case we want to

set up a mapping other than equality. Although it is possible that more sophisticated iden-

tity-tagging of abstract values can help preserve these correlations too, in SCF we address

this problem by avoiding such information-losing match statements where possible and

appropriate. We discuss the techniques involved in the next chapter.

5.3.8.2 Matching Tuple Patterns Against Tuple Values

Lines 25-27 of figure 5.16 (along with the helper function matchTuple of figure 5.17)

show how to match a tuple pattern against a tuple value. Unlike the case with alt, where

the problem was in constructing accurate-enough result environments, in this case the

trouble is constructing the abstract value v’ representing the unmatched part. Consider

matching the tuple pattern (unary x, unary y) with value (unary 0 | binary(1, 2), unary

121). As usual, we proceed in a compositional fashion and match the components of the

tuple pattern to those of the value. Say the results are SOME([x -> 0], binary(1,2)) and

SOME([y -> 121], top) respectively. The question now is how to construct the unmatched

part for the tuple, given the unmatched parts for its components.

A naive approach may be to simply accumulate the unmatched parts of the compo-

nents into a tuple. In the above case, the result would be the tuple (binary(1,2), top) (or, in

normal form, top). This would imply that there are no concrete tuples that do not match

the given pattern and conform to the incoming tuple abstract value. This is plainly not the

case. For instance, the concrete value (binary(1, 2), unary 121) conforms to the value, but

does not match the pattern. The key is that when one of the components of a tuple has

unmatched value v’i, then none of the concrete tuples in (v1,...,v’i,...,vn) matches. The cor-

rect rule is, therefore, that if v’1,...,v’n are the unmatched parts for components v1,...,vn of

110
the tuple, meet1≤ i≤ n (v1,...,v’i,...vn) is the unmatched part of the tuple as a whole. The

helper function matchTuple computes this meet. The helper function mkTupleWithField

(lines 23-24) creates each of the tuples being met.

5.3.8.3 Matching Against fix Values

The final subtle case in the match function of figure 5.16 is for fix abstract values

lines 29-31. Consider matching value v = fix. (unary 9 | binary(unary ((5 | 12) # 131), rec)

against pattern pt = binary(x, binary(y, _)).

The first step is to convert the incoming value into a form without a fix at the top

level. We “unroll” the fix value once as per the replaceRecs function of line 21, figure

5.17. Naively, the unrolling would replace every instance of rec in v with the value v itself.

The result would be: unary 9 | binary(unary ((5 | 12)# 131), fix.(unary 9 | binary(unary

((5 | 12) # 131), rec). Matching pattern pt above using the code from lines 21-23 returns

SOME([x -> ((5 | 12) # 131), y -> ((5 | 12) #131)]), a result that implies that the values of

x and y are correlated (since they have the same IDs).

However, the semantics of fix values that we give in table 1 of chapter 3 do not guar-

antee any such correlation between versions of an abstract value derived from two differ-

ent “unrollings” of a recursive value. Our solution is to renumber fix abstract values with

fresh ID numbers before replacing instances of rec with these values. While doing so, we

preserve any correlations within the body of the fix. The call to freshenIds function (line

30, figure 5.16) effects this renumbering. With this scheme, the result of the unrolling

above would be unary 9 | binary(unary ((5 | 12) # 131), fix.(unary 9 | binary(unary ((5 |

12) # 2986), rec)) (assuming freshenIds replaces ID 131 with ID 2986). Given this input

value, the abstract pattern match would return environment SOME([x -> ((5 | 12) # 131), y

-> ((5 | 12) #2986)]), and x and y are not correlated.

111
5.3.9 mapMap

Given abstract value v which represents an abstract map and a function f that maps

abstract values to abstract values (and that thereby represents a set of functions on con-

crete values as discussed in section 5.1), the mapMap function returns an abstract value v’.

Value v’ represents the set of maps that can result when each map in v has has its range

mapped according to a function in f.

For example, suppose the incoming map v = map(must[(1, 2|3), may [(4,5)]) and f x

= evalPrimop(|+|, |(x, 11|21)|). The set of concrete maps conforming to the incoming map

is v = {[1 -> 2], [1 -> 3], [1 -> 2, 4 -> 5], [1 -> 3, 4 -> 5]}. The set of incoming concrete

functions is f = {f x = x + 11, f x = x + 21}. Mapping the map [1 -> 3, 4 -> 5] according to

the function f x = x + 21 results in the new map [1 -> 24, 4 -> 26]. Doing this with all the

pairings of incoming concrete maps and functions gives the output set of maps: {[1 ->

13], [1 -> 14], [1 -> 13, 4 -> 16], [1 -> 14, 4 -> 16], [1 -> 23], [1 -> 24], [1 -> 23, 4 ->

26], [1 -> 24, 4 -> 26]}.

The set of concrete maps produced as a result in the above example can be repre-

sented by the abstract map map(must[(1, 13|14|23|24), may [(4,16|26)]). This abstract

map the result of applying f abstractly on each abstract value in the range of the incoming

map. For instance, f(2 | 3) = 13|14|23|24. In general, to produce an abstract value repre-

senting the application of (the concrete instances of) the abstract map function, it is suffi-

cient to apply the abstract map function to the values in the range of the abstract map. This

is what the implementation of figure 5.18 does.

5.3.10 mapUnionWith

Given abstract values v1 and v2 that each represent an abstract map and a “resolution”

function f that maps a pair of abstract values to an abstract value, the mapUnionWith func-

tion returns an abstract value v’ representing the set of maps that result when the two sets

fun mapMap(map(must musts, may mays, _): value, f: value -> value): value =
let musts’ = List.map (fn (k, v) => (k, f v)) musts

 mays’ = List.map (fn (k, v) => (k, f v)) mays
in map(must musts’, may mays’, newId()) end

1
2
3
4

FIGURE 5.18: The mapMap Function.

112
of maps in v1 and v2 are unioned pairwise. The functions f (i.e., the set of concrete func-

tions conforming to abstract function f) resolve the case when two concrete maps being

merged have some common key k which maps to possibly different values u1 and u2 in the

two maps. In particular, the entry corresponding to the key in the resulting map is fcon-

crete(u1, u2), where fconcrete ∈ f.

For example, suppose v1 = map(must[(1, 2)], may [(4,5)]) and v2 = map(must[(1,

17), (23, 65)], may []), and f (x, y) = x + y. The conforming sets of concrete maps then are

v1 = {[1 -> 2], [1 -> 2, 4 -> 5]} and v2 = {[1 -> 17, 23 -> 65]}, and f = { fn(x,y) => x+y}.

Given these sets, and picking u1 = [1 -> 2, 4 -> 5], u2 = [1 -> 17, 23 -> 65], we get the

map [1 -> 19, 4 -> 5, 23 -> 65] as the resulting concrete map. Note that since the key 1

was in both maps (with corresponding values 2 and 17 in the two maps), the value corre-

sponding to the key in the result map is 2 + 17 = 19. On the other hand, since key 4 was

(* mapUnionWith: value * value * (value -> value) -> value*)
fun mapUnionWith(m as map(must ps, may qs,_), m’ as map(must ps’, may qs’, _), f) =

let (musts, mays) = unionWithMusts([], [], ps, m’, f)
 (musts, mays) = unionWithMays(musts, mays, qs, m’, f)
 (musts, mays) = unionWithMusts(musts, mays, ps’, m, f)
 (musts, mays) = unionWithMays(musts, mays, qs’, m, f)

in map(must musts, may mays, newId()) end

(* unionWithMusts: vvlist* vvlist * vvlist * value * (value * value -> value) -> vvlist * vvlist *)
and unionWithMusts(musts, mays, [], _, _) = (musts, mays)
| unionWithMusts(musts, mays, (k,v)::ps, m, f) =

case find(m, k) of
MUST v’ => unionWithMusts(insert(musts, k, f(v,v’)), mays, ps, m, f)

| MAY v’ => unionWithMusts(insert(musts, k, meet(v, f(v, v’))), mays, ps, m, f)
| NOT => unionWithMusts(insert(musts, k, v), mays, ps, m, f)

(*unionWithMays: vvlist * vvlist * vvlist * value * (value * value -> value) -> vvlist * vvlist *)
and unionWithMays(musts, mays, [], _, _) = (musts, mays)
| unionWithMays(musts, mays, (k,v)::qs, m, f) =

case find(m, k) of
MUST v’ => unionWithMays(insert(musts, k, meet(v’, f(v,v’))), mays, qs, m, f)

| MAY v’ => unionWithMays(musts, insert(mays, k, meet(v, meet(v’, f(v,v’)))), qs, m, f)
| NOT => unionWithMays(musts, insert(mays, k, v), qs, m, f)

... insert as in figure 5.5, find as in figure 5.14...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

FIGURE 5.19: The mapUnionWith Function.

113
only in one of the maps, its value 5 passes through unscathed. Processing all possible pair-

ings for u1 and u2, we get the output set {[1 -> 19, 23 -> 65], [1 -> 19, 4 -> 5, 23 -> 65]}.

The above set of maps conforms to abstract value map(must[(1, 19), (23,65)],

may[(4, 5)), which can be derived systematically from the incoming map as follows. The

keys in the must or may list of the result abstract map are those from the respective lists in

either of the two incoming maps. This makes sense, since if abstract key k must be in

either map, the corresponding singleton concrete key is required to be in any result con-

crete map; it is therefore correct to place k in the must list of the result map. On the other

hand, since if a key appears in an input map, it is also required to appear in the result, it

makes sense to place all remaining keys in the may list.

We now consider the values corresponding to the keys k above in the resulting

abstract map. Consider an abstract key k that appears in the must list of an incoming map.

If k is also in the must list of the other incoming map, with corresponding abstract values v

and v’, then per the semantics of unionWith, we invoke f(v, v’) to compute the resolved key

(line 13). If k is only in the may list of the other, then we have to account for the possibility

that it does not appear in the second map. We do so by meeting the resolved value with

unresolved key v (since if k does not appear in the second map, we can use the value from

the first map without resolution). This case is handled on lines 14 and 21. If k definitely

does not appear in the second map, no resolution is necessary (line 15).

If k appears in the may list of both maps, we again need to perform the meet as above

to account for the possibility that the resolution function may or may not need to be

invoked (line 22). Finally, if k is definitely not in one map, but is in the may list of the sec-

ond, its corresponding value needs no resolution, but only may appear in the result (line

23).

fun collapseMap(map(must musts, may mays, _): value): (value * value) =
collapseMapLists(musts@mays, top, top)

and collapseMapList([], vdom, vrng) =(vdom, vrng)
| collapseMapList((k,v)::kvs, vdom, vrng) = collapseMapList(kvs, meet(k, vdom), meet(v, vrng))

1
2
3
4
5

FIGURE 5.20: The collapseMap Function.

114
5.3.11 collapseMap

The collapseMap function, given an input abstract value vmap that represents a map, is

supposed to return a pair of abstract values (vdom, vrng) such that vdom represents all con-

crete values in the domain of vmap and vrng represents all those in the range. The imple-

mentation of figure 5.20 achieves this by meeting together the abstract values in the key

and value (a.k.a. domain and range respectively) positions of the incoming map.

5.3.12 findLiveKeys

The purpose of the findLiveKeys function is to determine, given an input abstract value

that represents a tuple of two abstract maps m and m’, an abstract value v representing the

live keys under equality of the maps. As per section 4.4.4, “live keys” refers to the set of

concrete keys such that each key in the set belongs to one or other of the maps, but no key

in the set belongs to the must list of both maps and has the same singleton value in both

maps. In other words, the function returns the set of keys of the incoming maps whose val-

ues are not definitely equal, a set called the “live keys” in section 4.4.4.

(* findLiveKeys: value -> value *)
and findLiveKeys (bottom _) = bottom (newId())
| findLiveKeys(|(map(must ps, may qs, id), map(must ps’, may qs’, id’)|) =

let (psout, ps’out)= removeIdenticalEntries(ps, ps’, ps, ps’)
in collapseDomain (psout @ ps’out @ qs @ qs’) end

and removeIdenticalEntries([], _, psout, ps’out) = (psout, ps’out)
| removeIdenticalEntries((k, v)::ps, ps’, psout, ps’out) =

case findMust(ps’, k) of
SOME v’ =>

if isSingleton v andalso isSingleton v’ andalso mustBeEqual(v,v’) then
removeIdenticalEntries(ps, ps’, remove(psout, k), remove(ps’out, k))

else
removeIdenticalEntries(ps, ps’, psout, ps’out)

| NONE =>
removeIdenticalEntries(ps, ps’, psout, ps’out)

and collapseDomain kvs =
let (v, _) = collapseMapList(kvs,top,top) in v end

... findMust as in figure 5.14, remove as in figure 5.12, collapseMapList as in figure 5.20...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

FIGURE 5.21: The findLiveKeys Function.

115
The code of figure 5.21 finds the live keys in two steps. It first uses the removeIdenti-

calEntries function to step through the must list of the two maps, removing keys that

appear in both maps and have identical values (lines 7-16). It then appends the resulting

filtered must lists to the original may lists, and meets together the keys of the resulting list

(using the collapseDomain helper on lines 18-19).

5.4 Summary

In this chapter, we specified the abstract interface required of abstract values, the seman-

tics required of the functions in this interface, a concrete representation for abstract values,

and algorithms implementing the interface in a manner that conforms to the required

semantics. The semantics allow the interface functions to be approximate, and therefore

potentially more efficient than if they had to be exact. However, for practical use in simu-

lating optimizations, the functions need a minimum level of accuracy. Where relevant, we

described via examples the minimum accuracy required , and showed how our algorithms

provide this level of accuracy while preserving correctness.

116
6. Strategies for Accurate and Effective Partial Evaluation

Partial evaluation results in faster programs because the partial evaluator replaces expres-

sions in the incoming program with simpler residual expressions. Partial evaluators, given

abstract values representing possible arguments to the incoming program, compute the

abstract values representing the possible values of every expression in the incoming pro-

gram. Expressions guaranteed to produce a singleton abstract value are then folded, i.e.,

replaced with a simpler residual expression that computes the same value. In this simple

model, a fragment of code in the incoming program would correspond to at most one

residual fragment in the result program.

In practice, to ensure that generated residual programs are as fast as possible, the par-

tial evaluator addresses three key additional issues.1

First, it can be profitable to replicate fragments of the original program while

abstractly executing it. For instance, if the original program had an expression that could

possibly evaluate to two concrete values, the expression could not be folded using the sim-

ple partial evaluator above. But a partial evaluator that uses replication may process two

versions of that expression, each evaluating to a single concrete value which. The partial

evaluator must therefore have a specialization strategy which decides when code is repli-

cated before partial evaluation.

Second, it can be profitable for the partial evaluator to have a precise but infinitely tall

lattice. It is possible that when the functions being evaluated are recursive, the partial eval-

uator may be invoked on a particular piece of code an unbounded number of times. It is

the role of the widening strategy to ensure that the partial evaluator terminates while not

sacrificing too much precision.

Third, even when a given expression has a singleton abstract value, it is not trivial to

determine whether it is profitable to replace the expression with the corresponding con-

stant expression. The role of the rematerialization strategy is to determine when to replace

expressions with equivalent constant expressions, and how to make this replacement as

profitable as possible.

1.These issues arise when designing whole-program variants of many optimizations.

117
We will refer to these three strategies as improvement strategies, since they are

improving the quality of partial evaluation. We explore the potential costs and benefits of

these strategies through a detailed example in section 6.1 below. Sections 6.2 through 6.4

describe how SCF implements the three strategies to address these trade-offs. Section 6.5

summarizes the section and discusses related work.

6.1 Improvement Strategies at Work: A Detailed Example

In this section, we use a running example to illustrate the role of improvement strategies.

Although the partial evaluator in SCF applies to optimization functions (such as the dead-

assignment eliminator of figure 3.7) written in SCF-ML, we will use as our example in

this section a simpler SCF-ML function. The function is much smaller than a typical opti-

mization, but nevertheless manifests all the relevant complications.

In section 6.1.1, we show how partial evaluation progresses in the absence of

improvement strategies. In section 6.1.2, we show the benefits of adding function special-

ization. In section 6.1.3, we show how a slightly modified version of the example benefits

from aggressive rematerialization. In section 6.1.4, we show the benefits of expression

specialization. Finally, in section 6.1.5, we show that specialization can cause the partial

evaluator not to terminate, and illustrate the strategies used by SCF to ensure termination.

6.1.1 Partial Evaluation With No Improvement Strategies

Figure 6.1 presents a function, inc, that takes as input a list of integers and outputs the list

that results from incrementing each integer in this list. In this section, we will focus on

partially evaluating this function on abstract argument value [2|3], i.e., a list with a single

element of value 2 or 3.

The table of figure 6.2 shows the values produced when inc is partially evaluated

with abstract input vs = [2|3]. Each row of the table represents the values of variables

(* Increment each element of the incoming list *)
fun inc (vs: int list): int list =
case vs of
[] => []

| v’::vs’ => (v’+1)::(inc vs’)

1
2
3
4

FIGURE 6.1: Function to Be Partially Evaluated On Input vs = [2|3].

118
(vs, v’ and vs’), and the result of the function as a whole, due to a distinct invocation of

the partial evaluator on function inc.1

Below, we step through the invocation corresponding to each row in some detail. This

detailed view is useful for understanding the design and functioning of improvement strat-

egies.

1.On the initial call to the partial evaluator (invocation number 1), the variable vs has

value [2|3]. The value of vs matches the branch of the case expression on line 4 of

figure 6.1. The pattern match binds v’ to 2|3 and vs’ to []. The recursive call inc

vs’ (with value [] for vs’) is then evaluated via a cache lookup (as per figure 4.5,

line 42) for the value corresponding to function inc. The lookup returns the

placeholder value 0 (since the function has not been evaluated before). Recall that 0 is

the abstract value representing the empty set of concrete values, i.e., the top of the

abstract value lattice. Evaluating the expression (v’+1)::(inc vs’) then gives

value 0 as the result of the invocation as a whole.

2.The recursive call of the previous paragraph results in a task being added to the partial

evaluator’s worklist (as per figure 4.5, line 45). The task requires partial evaluation of

function inc on input value vs = []. The task is now popped off the worklist and

processed (invocation 2). First the argument [] of the recursive call is met with that of

the original call (i.e., with [2|3]) to get the argument value ([2|3]| []) for the new

invocation. This time, both sides of the case expression hold. The side guarded by

pattern [] evaluates to value [], while the other side again returns 0. Meeting the two

possibilities we get [] for the result of the invocation.

1.The invocation we refer to is the call to PEf on line 35 of figure 4.4.

Invocation
Number

vs v’ vs’ result

1 [2|3] 2|3 [] 0
2 [2|3] | [] 2|3 [] []
3 [2|3] | [] 2|3 [] [3|4] | []
4 [2|3] | [] 2|3 [] [3|4] | []

FIGURE 6.2: Partially Evaluating the inc() Function With No Improvement Strategies.

119
3.Because the result of the function changed from the earlier value 0 to the new value [],

and the function calls itself recursively, the partial evaluator needs to re-evaluate the

function.1 This time around (invocation 3), both sides of the case expression hold

again, but the lower branch evaluates to [3|4] (since the cache lookup for the recursive

call to inc returns [] this time), and meeting with the upper branch of the case, the

invocation returns [3|4] | [].

4.The change of result necessitates another partial evaluation of the function, but this

time (invocation 4) the result sticks at [3|4]|[] and the partial evaluator terminates.

Figure 6.3 shows the residualized function that results from the final invocation of the par-

tial evaluator on the input function. Note that in the final invocation of the partial evalua-

tor, none of the variables vs, v’ and vs’ evaluates to a singleton scalar abstract value,

and therefore neither does any of the expressions of the incoming function. As a result, the

partial evaluator cannot rematerialize any of the expressions in the incoming function, and

the residual version of the function is identical to the original one; partial evaluation pro-

vides no benefit at all.

6.1.2 Adding Function Specialization as an Improvement Strategy

In this section, we examine how the partial evaluation proceeds when we add just function

specialization.

Figure 6.4 shows the sequence of abstract values that results from specializing func-

tion inc during partial evaluation. We evaluate inc separately (i.e., without first meeting

in argument values from previous invocations) on each abstract value v it is invoked on,

producing corresponding residual functions incv. Each distinct specialized version of the

analyzed function is called a contour. The many contours for a given function are distin-

1.The partial evaluator performs the “results-changed?” check on line 39 of figure 4.4, determines that the result has
indeed changed, and places the callers of function inc, i.e., inc itself, on the worklist for further processing.

fun inc (vs: int list): int list =
case vs of
[] => []

| v’::vs’ => (v’+1)::(inc vs’)

1
2
3
4

FIGURE 6.3: Residual Function Resulting From Partial Evaluation Without Improvement.

120
guished by a contour key (the value v in this example). Rows of the table again denote the

distinct invocations of the partial evaluator on the inc function. The column labelled

“contour” specifies which particular contour of the inc function is processed by the invo-

cation.

The initial partial evaluation of the function results, as before, in a recursive invoca-

tion of function inc with abstract argument vs’ = []. Unlike in the unspecialized case

above, we do not merge this new argument value of inc with its original value before re-

analyzing inc. Rather, we analyze inc separately for this argument value, i.e., we ana-

lyze the callee contour inc[]. The analysis results in the case on line 3 of figure 6.1 being

taken. Invocation 2 therefore returns [] as a result for the whole function. As before, the

changed return value of the callee contour results in the re-analysis of the calling contour

inc[2|3] (invocation 3), which returns this time the value [3|4] and terminates.

Figure 6.5(a) shows the residual functions that result, under the assumption that the

partial evaluator only residualizes primitive scalars, i.e., integers, booleans, characters and

strings, in SCF-ML. Analyzing the two different contours results in two different residual

versions of the inc function. Since each version is partially evaluated with respect to just

a subset of the abstract argument values of the original function, the corresponding resid-

ual version can be better optimized than before. Note that although the total amount of

static code produced may be more than that produced by the unspecialized partial evalua-

tor, the amount of code dynamically executed is smaller. In particular, as per line 3 of fig-

ure 6.5(a), the residualized version of the function does not have to compare the incoming

value to pattern [], whereas (as per line 3 of figure 6.3) this comparison needs to be done

in the unspecialized version. Also, as per line 6, when the recursive call is executed, the

specialized version can simply produce the empty list with no need for testing the input

value.

invocation
number

contour vs v’ vs’ result

1 inc[2|3] [2|3] 1 [] 0
2 inc[] [] n.a. n.a. []
3 inc[2|3] [2|3] 1 [] [3|4]

FIGURE 6.4: Partial Evaluation With Function Specialization.

121
Finally, as figure 6.5(b) shows, each contour key may not have a corresponding resid-

ualized function. If the partial evaluator can rematerialize user-defined scalars (i.e., zero-

ary constructors) in addition to primitive scalars, then it would replace the call to inc[]

with an expression constructing the singleton result of that call, in this case the expression

[]. The resulting residual function executes fewer instructions than the one in figure

6.5(a).

6.1.3 Adding Rematerialization as an Improvement Strategy

In the previous section, we considered the case where the partial evaluator is restricted to

rematerializing scalars. The appeal of this approach is that a literal expression computing a

scalar is guaranteed to be no more expensive to evaluate than any expression it replaces.

The simplicity of the approach is at the expense of quality of code produced, however.

To demonstrate the inefficiency that results, we alter our running example slightly. Instead

of partially evaluating function inc on input value [2|3], we instead evaluate it on the input

[2|3, 7]. Figure 6.6(a) shows the residual functions that result, assuming purely scalar

rematerialization. The key point is that although the partial evaluator computes that the

invocation to function inc[7] results in the singleton abstract value [8], it cannot replace

the invocation with an expression constructing this value, since the list is not a scalar.

fun inc[2|3] vs =
case vs of
v’::vs’ => (v’+1)::inc[] vs’

and inc[] vs’ =
[]

1
2
3
4
5
6

FIGURE 6.5: Residual Function Resulting From Function Specialization.

fun inc[2|3] vs =
case vs of
v’::vs’ => (v’+1)::[]

1
2
3

(a) (b)

FIGURE 6.6: Rematerializing Non-Scalars.

fun inc[2|3,7] vs =
case vs of
v’::vs’=> (v’+1)::inc[7] vs’

and inc[7] vs =
case vs of
v::vs’ => 8::[]

1
2
3
4
5
6
7

(a)Scalar Rematerialization

fun inc[2|3,7] vs =
case vs of
v’::vs’=> (v’+1)::8 ::[]

1
2
3

(b) Non-Scalar Rematerialization

122
Figure 6.6(b) illustrates a more aggressive rematerialization strategy, which allows

the rematerialization of arbitrary singleton abstract values. Given this strategy, the partial

evaluator can replace the call to inc[] with an expression (line 3 of figure 6.6(a)) with

the expression 8::[], which generates the singleton list [8]. Avoiding the function call

clearly results in savings in this case: the residual code avoids the execution of an extra

function call and case expression.

Although rematerializing arbitrary singleton values can be profitable, it is not neces-

sarily so. Later in this chapter, we will see an example where the expression resulting from

rematerialization is more expensive than the one it replaces.

6.1.4 Adding Expression Specialization as an Improvement Strategy

Until now, we have considered the function call to be the unit of code replication: we have

replicated functions so as to specialize them for particular input values. We demonstrate in

this section that specializing at a granularity smaller than functions (and in particular, at

the level of expressions) can result in faster residual code.

In order to demonstrate expression specialization, we once again change the input

value to the inc function. This time, we assume that the input value is [2,3]|[7,8].

Figure 6.7(a) shows the result of function specialization with non-scalar rematerial-

ization, given these inputs. When the partial evaluator is first invoked on the contour

inc[2,3]|[7,8], the variable vs’ is bound to abstract value [3]|[8]. The residual func-

tion corresponding to this contour is shown on lines 1-3 of the figure. The recursive call to

inc now results in the contour inc[3]|[8]. The result of evaluating this contour is

[4|9], an abstract value that is not singleton. Since the result of evaluating the contour is

not singleton, the call cannot be rematerialized. The resulting residual call to inc[3]|[8]

FIGURE 6.7: Expression Specialization.

fun inc[2,3]|[7,8]vs =
case vs of
v’::vs’=> (v’+1)::inc[3]|[8] vs’

and inc[3]|[8] vs =
case vs of
v::vs’ => (v’+1)::[]

1
2
3
4
5
6
7

(a)

fun inc[2,3]|[7,8]vs =
case vs of
2::vs’ => 3::4::[]

| 7::vs’ => 8::9::[]

1
2
3
4

(b)

123
is on line 3 of figure 6.7(a), and the corresponding residualized function body is on lines

5-7.

Figure 6.7(b) illustrates an alternate possibility. When analyzing the original contour

inc[2,3]|[7,8], the partial evaluator detects that the abstract value being matched

against has two components ([2,3] and [7,8]) that match against the same pattern, namely

v’::vs’. It then specializes this pattern to produce two distinct corresponding patterns

(2::vs’ and 3::vs’), such that each new pattern matches exactly one of the two com-

ponents. Next, it specializes separately on the two component values the expression being

guarded by the pattern, i.e., it evaluates (v’+1)::inc vs’ twice: first with

(v’,vs’) = (2, [3]) and next with (7,[8]). Adding the additional test for the constant

values in the pattern allows, in each case, the body of the case to be replaced by an expres-

sion that constructs a constant singleton list.

The code of figure (b) executes fewer case expressions, function calls and arithmetic

operations than that of figure (a). On the other hand, for the one case expression that it

does execute, figure (b) performs an extra check (to determine whether the first element of

the incoming list is 2 or 3). Although in this example the benefits exceed the extra cost of

discriminating between the values being specialized on, this is not always the case.

Addressing this trade-off is a key part of expression specialization strategies.

6.1.5 Ensuring Termination in the Face of Improvement Strategies

The incPadded function of figure 6.8 is a slightly modified version of the inc function

of figure 6.1. Given an input list of integers vs and integer n, incPadded(vs, n) pro-

duces the same result as inc(vs), except that it prepends n copies of the first element of

vs to this result. For instance incPadded([23,343], 2) would yield [23, 23,

24, 344]. This small modification in the function being partially evaluated can poten-

tially cause a partial evaluator operating on it to loop forever.

Consider partially evaluating incPadded on abstract input ([2] , 0|1). Suppose we

use the technique from the previous sections of using the entire function argument as the

contour key. Then, as shown in figure 6.8(b), the partial evaluator will be invoked with an

unbounded number of contour keys. The problem is that the second abstract argument of

124
contour key vs n vs’ v’ result
[2] [2] 1 [] 2 1
[] [] 1 n.a. 2 1

(e) Widening non-finite results

(* Increment each element of vs by 1. Prepend n copies of the first
element of vs to the result *)
fun incPadded (vs: int list, n: int): int list =
case vs of
[] => []

| v’::vs’ =>
if n = 0 then (v’+1) :: (incPadded (vs’, n))
else v’:: (incPadded (vs, n-1))

1
2
3
4
5
6

contour key vs n vs’ v’ result
[2], 0|1 [2] 0|1 [] 2 0
[2], -1|0 [2] -1|0 [] 2 0
[2], -2|-1 [2] -2|-1 [] 2 0
[2], -3|-2 [2] -3|-2 [] 2 0
[2], -4|-3 [2] -4|-3 [] 2 0
[2], -5|-4 [2] -5|-4 [] 2 0

…

(b) Using the entire argument as the contour key

(a) Function to be partially evaluated on input vs = [2] , n = 0|1

FIGURE 6.8: Challenges of Function Specialization.

contour key vs n vs’ v’ result
[2] [2] 1 [] 2 0
[] [] 1 n.a. 2 []

[2] [2] 1 [] 2 [3]
[2] [2] 1 [] 2 [3] | [2,3]
[2] [2] 1 [] 2 [3] | [2,3] | [2, 2, 3]
[2] [2] 1 [] 2 [3] | [2,3] | [2, 2, 3] | [2, 2, 2, 3]

…

(d) Widening non-finite arguments

fun incPadded[2] n =
if n = 0 then [3]
else 2 :: (incPadded[2] (n-1))

1
2
3

(f) Residual version of function

contour key vs n vs’ v’ result
[2] [2] 0|1 [] 2 0
[2] [2] -1|0|1 [] 2 0
[2] [2] -2|-1|0|1 [] 2 0
[2] [2] -3|-2|-1|0|1 [] 2 0
[2] [2] -4|-3|-2|-1|0|1 [] 2 0
[2] [2] -5|-4|-3|-2|-1|0|1 [] 2 0

(c) Using the finite part of the argument as the contour key

125
incPadded (corresponding to formal n) is not finite. During partial evaluation, it can

take on an unbounded number of values, thus leading to an unbounded number of con-

tours.

A known solution to this problem is to omit the non-finite part of the contour key, and

only use the value of vs as contour key. Unfortunately, as shown in figure 6.8(c), although

this solution results in a finite number of contours, a single contour may still be slated for

analysis on an unbounded number of non-finite argument values. Since, for a given con-

tour, we meet together all argument values on which the contour has been invoked thus

far, the size of the input value keeps increasing with each invocation.

A standard solution to this new problem is to widen the non-finite arguments. We pre-

emptively set the value of the non-finite arguments to an abstract value whose size is guar-

anteed not to increase indefinitely. In figure 6.8(d), we set the abstract value correspond-

ing to argument n to the bottom of the abstract value lattice, 1. Unfortunately, as the figure

shows, this exposes another problem. Recall that (as per the core partial evaluator of fig-

ure 4.4), a contour may be re-analyzed either if it is invoked with arguments different from

those it has previously been analyzed with, or if the return-value of one of its callees has

changed. As figure 6.8(d) shows, since incPadded is its own callee, and each invoca-

tion to incPadded adds one entry to a result set of unbounded size, the number of such

invocations is unbounded.

A solution to this problem is to widen possibly unbounded results (in addition to wid-

ening arguments, as above). As shown in figure 6.8(e), if we set the return value to 1 on

every invocation of the function, the partial evaluator terminates after two invocations of

the function. The combination of restricting contour keys to finite parts of incoming argu-

ments, argument widening and return value widening is known to guarantee termination

of the partial evaluator.

An unintended (and detrimental) consequence of our return-value widening strategy

is that we know absolutely nothing about the possible values that may be returned by the

partially evaluated function. For instance, although we can tell by inspection that any

returned value is a list that is either empty, or has some number of 2s followed by a 3, our

return value 1 hides even the fact that the returned value has to be a list. As we shall see,

performing widening while limiting loss of information is crucial for performance in SCF.

126
A final observation is that, comparing figure 6.8(f) to 6.8(a), in spite of the very con-

servative return values that result from widening, the residualized code obtained executes

significantly fewer operations than the original code. The benefit is wholly due to the fact

that we specialized using vs as a contour key. If we had used no contour key (and there-

fore performed no specialization at all), we would still have needed the widening tech-

niques to guarantee termination, but would have ended up with a residual program

identical to the incoming program. The additional step of identifying finite arguments and

specializing on them is therefore profitable even in the face of conservative widening.

6.2 Specialization Strategies

The examples of the previous section showed the benefits of specialization, both at the

granularity of entire functions. For function specialization, we saw the importance of

selecting an appropriate contour key. For expression specialization, we saw that discrimi-

nating between specialized versions of the expression can add to the number of instruc-

tions executed, so it is important to be careful in selecting when to perform expression

specialization.

In what follows, we describe how SCF’s specialization strategies are tailored for

effective specialization of optimizations. In section 6.2.1, we describe how SCF performs

function specialization. In particular, we describe how it identifies finite arguments and

picks contour keys. In section 6.2.2, we describe how SCF performs expression special-

ization.

6.2.1 Function Specialization

As discussed in the example of section 6.1.5, when specializing functions, it is important

to pick finite parts of function arguments for contour keys. In other words, we want to dis-

cover those arguments of functions that are guaranteed to take on a finite set of values any

time the program containing the function is partially evaluated. In section 6.2.1.1 below,

127
we specify SCF’s finiteness analysis, which computes the finite part of function argu-

ments.

In the preceding example, we used the finite part of the argument of a function as the

contour key for the function. We will argue in section 6.2.1.2 that in order to better par-

tially evaluate optimization programs, it is useful to use contour keys that are the result of

composing the finite parts of many function arguments, yielding contour keys that are

chains of finite argument values.

6.2.1.1 What Values to Specialize On: Finiteness Analysis

The goal of finiteness analysis is to determine for each function in the incoming program,

the parts of the function argument that are guaranteed to assume a finite number of

abstract values, over all invocations of the function during partial evaluation. In what fol-

lows, we first define the problem to be solved by finiteness analysis precisely, then explain

the intuition behind SCF’s analysis, and finally describe the analysis itself.

PROBLEM STATEMENT

The analysis represents the finite parts of function arguments using finiteness patterns.

Syntactically, a finiteness pattern has the form shown in figure 6.9(a). The structure of

finiteness patterns parallels that of abstract values1. This is for good reason, since the

φ ∈ FinitenessPattern =
F // finite

| I //infinite
| (φ1, ..., φn) //tuple
| c φ //construct
| c1 φ1|...|cn φn //alt

F-1 v = v
I-1 v = 1

(φ1, ..., φn)-1 (v1,...,vn) = (φ1
-1

 v1 , ..., φn
-1

 vn)
(φ1, ..., φn)-1 0 = 0
(φ1, ..., φn)-1 1 = (1, ... ,1)

(c φ)-1 0 = 0
(c φ)-1 1 = c(φ-1 1)
(c φ)-1(c v) = c(φ-1 v)
(c φ)-1(c1 v1|...|cn vn) = ci (φ-1 vi) where c = ci

(φ1|...|φm)-1 v = φ1
-1

 v| ...| φm
-1 v

FIGURE 6.9: Finiteness Patterns.

(a): Syntax (b): Semantics

128
intention is to use finiteness patterns as templates to indicate “interesting parts” (and in

particular, finite parts) of abstract values. For example, we argued in the example of figure

6.8(a) that the argument of function incPadded was a pair whose first component (vs)

was finite, and the second (n) infinite. Correspondingly, the finiteness pattern for this

function would be the tuple pattern φincPadded = (F, I). On the other hand, if we had a func-

tion f with one argument, a list of type ‘a list, and we deduced that only the head of

the list is finite, we would ascribe the finiteness pattern φf = nil | cons(F, I) to f.

Once the finiteness analysis deduces a particular finiteness pattern for a function, the

partial evaluator uses the pattern to extract the “finite parts” of incoming abstract values so

that they can be used as contour keys. Figure 6.9(b) shows how this projection works.

Given a finiteness pattern φ and abstract value v, the figure defines φ-1v, the abstract value

that results from applying the pattern to the value. Intuitively, the scheme ensures that if

two abstract values v and v’ are identical in their finite parts, then φ-1v and φ-1v’ are struc-

turally identical. The basic idea is to replace all parts of v and v’ that correspond to infinite

parts of the function with the same abstract value (we pick the abstract value 1).

Now that we have specified the output of the analysis precisely, we are ready to can

state the requirements of the analysis itself. Let P be a program with functions F =

{f1,...,fn}. Let V = {v1, v2, v3, ...} be the possible abstract inputs to P. When P is partially

evaluated with respect to some abstract input vi, let the sequence of abstract arguments

with respect to which function fj is partially evaluated be Uij = uij1, uij2,..., uijk , The

job of the finiteness analysis is to compute, for each function fj in F, a finiteness pattern φj

such that for all vi in V, the set Vij = {φj
-1(uijk)| uijk ∈Uij} is finite. We say that Vij closes V

with respect to input vi and function fj. Intuitively, we require that although the number of

abstract inputs uijk to a function may be unbounded, the “finite parts” of these inputs must

be bounded.

1.We omit recursive finiteness patterns here, although they can be made to have a consistent semantics, and provide
functionality beyond the patterns shown here. However, since they are not essential in SCF, and add significant
complexity, we omit them here.

129
THE INTUITION BEHIND SCF’S FINITENESS ANALYSIS

In designing the finiteness analysis for SCF, we keep in mind that the end effect we are

striving for is to “unroll” the optimization over the incoming abstract Abstract Syntax Tree

(AST). More precisely, we wish to specialize each analysis or transformation function to

each node of the incoming (abstract) AST that it analyzes or transforms. We argue below

that, given a conventional style of writing optimizations, this requirement can be phrased

as a finiteness requirement. The style of these optimizations also points to a simple imple-

mentation for the finiteness analysis.

As a concrete example of how an optimization is written, figure 6.10 replicates a

small fragment of the SCF-ML specification of dead-assignment elimination from chapter

3. The main point is that the optimization consists of analysis and transformation func-

tions1 (collectively called “optimization functions” below), where each type of AST node

(e.g., commands, expressions, expression lists) has its own optimization function (ana-

lyzeCmd, analyzeExpr and analyzeExprs in this example). Each of these func-

tions has as one of its arguments the AST node being analyzed (e.g., the formal c of line 2

1.Only analysis functions are shown in the figure.

FIGURE 6.10: A Fragment of Dead-Assignment Elimination.

...
and analyzeCmd(c:cmd, lSet:live_set, aMap:assign_map)

:(liveSet * assign_map) =
case c of
assign(v, e, lbl) =>
let val lv = if LiveSet.member(lSet, v) then live else dead
in (analyzeExpr(e, LiveSet.delete(lSet, v)),

AssignMap.insert(aMap, lbl, lv))
end

| seq(c,c’,_) =>
let val (lSet,aMap) = analyzeCmd(c’,lSet,aMap)
in analyzeCmd(c,lSet,aMap) end

| ...other cmd cases here...

and analyzeExpr(e:expr, lSet:live_set):live_set =
case e of
var_ref(v, _) => LiveSet.add(lSet, v)

| primop(op,es) => analyzeExprs(es, lSet)
| const _ => lSet
| ... other expr cases here...

...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

130
and the formal e of line 15). Further, given their argument AST nodes, the optimization

functions typically extract the sub-trees of these nodes and invoke the corresponding opti-

mization functions on them, or perform simple non-recursive processing. For example,

lines 5 and 10 of figure 6.10 extract the components of assignment and sequence com-

mands respectively, whereas lines 17 through 19 extract components of variable, primop

and constant expressions respectively. To summarize, typically each optimization function

has a formal parameter that represents a node of the AST being optimized; further, this

node is purely the result of applying a series of projection operations to the AST input to

the optimization program as a whole.

If the input AST to be optimized were a fully concrete AST, it is straightforward to

see that for each optimization function fj, if the q’th formal represents the AST node it is

analyzing, then the FP φj = (I,...,F,...I) (an n-tuple where only the q’th entry is F, otherwise

I) is a valid (as per the previous section) result of the finiteness analysis. For any incoming

AST vi, let Si be the set of all sub-trees of vi.
1 Let Vij be the set {(1,...,s,...,1)| s∈ Si , where

s is the q’th element of an n-tuple with 1 in all other positions}. Let Uij be the set of all

abstract values with which the partial evaluator invokes function fi. Clearly, applying any

sequence of projections to vi will result in a sub-tree of vi and will therefore be in Si. For

any tuple in Uij of actual parameters uijk = (a1,...,aq,...,an) with which fj is partially evalu-

ated, therefore, since aq is the result of applying some sequence of projections to vi, aq

must belong to Si. φj
-1(uijk) = (1,...,aq,...,1) must therefore belong to Vij. We therefore have

that {φj
-1(uijk)| uijk ∈Uij} ⊆ Vij. Finally, since Si and therefore Vij are finite, we conclude

that the φj as defined above are valid finiteness patterns as per the last section.

If the input AST is an abstract AST (as is true in SCF), matters become more com-

plex. In what follows, we assume only that the input AST is some abstract value from the

set AbsValue of all abstract values. If we exclude alt and fix values from AbsValue (call

this new set of values AbsValue’), the remaining abstract values are identical in structure

1.Not all functions in the optimization program are associated with a unique AST node; some functions, such as the meet
function, are helper functions. We associate FP I with all functions that are not optimization functions with AST nodes
as arguments.

131
to input AST’s above, except that the variants 1 and 0 are added as possible leaves of the

tree representing each value. In this case, for any v ∈ AbsValue’, we can generate Vv that

closes AbsValue’ with respect to v using the same sub-tree based construction as in the

previous paragraph.

If we include alt values (call this new set AbsValue’’), we need a definition of sub-tree

that accounts for values of the form v = c1 v1 | ... | cn vn. We assume without loss of gener-

ality that ci ≠ cj if i ≠ j. For our purposes, the sub-trees of the above value then are just

v1,...,vn. Note that applying a projection operator to v gives one of the vi. Given this defini-

tion of sub-trees, for any v in AbsValue’’, we can again use the same sub-tree based con-

struction as before to close AbsValue’’ with respect to v.

Finally, consider including fix values. The trouble with fix values is that applying a

projection operation on a fix value can result in an abstract value that is not structurally a

sub-tree of the original tree. For instance, if v = fix(c1 | c2(c3, c4 rec)), then c2
-1(v) is (c3,

c4 fix(c1 | c2(c3, c4 rec))). The result comes from replacing the rec token of the sub-tree

(c3, c4 rec) with the original value v. This last observation actually provides a method to

generate systematically all the abstract values possibly generated by projection, even in

the presence of fix values. Consider all structural sub-trees of the input value v to the pro-

gram. For every sub-tree with an unbound rec token, replace the token with the fix value

that originally bound the token. The resulting set Vv of abstract values closes AbsValue

with respect to v.

So far, we have established that any function argument such that all paths from pro-

gram entry to the function entry perform only projection operations is guaranteed to be

finite. Regardless of how long the paths are, and how many times the operators are

applied, the partial evaluator will only see a finite set of abstract values as the function

argument. This observation suggests a dataflow analysis for detecting finite arguments.

For each function in the program, begin by assuming initially that the argument is finite

(F). For each projection expression (of the form c-1 e or e-i) in a function, if e is finite, des-

ignate the expression to be finite (F) and infinite (I) otherwise. Designate all other expres-

sions to be infinite. If the expression is a function call, f e, if e is infinite then set the

132
finiteness of f’s formal to infinite too. Repeat the process until no function argument or

expression changes finiteness. Since there are only two possible finiteness patterns (F and

I), and a program fragment designated I can never change back to an F, the above iterated

process is guaranteed to stop.

The above analysis decides for each function whether its formal is entirely finite or

not. There is no notion of a part of the formal being finite and the rest infinite. A two-val-

ued finiteness pattern (φ ∈ FinitenessPattern ::= F | I) therefore suffices in this case. In

many cases, however, it is useful to keep track of the parts of expression that are finite. For

instance, if x is the finite formal of a function, the expression c-1 (c x) always evaluates to

the value of x, and should also therefore be designated finite. However, by the analysis we

just described, the application of the constructor c will cause sub-expression c x to be des-

ignated I, and thereby the whole expression to be I.

An option would be to extend the definition of finiteness patterns to (φ ∈ Finiteness-

Pattern ::= F | I | c φ). We could then, given the FP F for x, ascribe the finiteness pattern

c F to the sub-expression c x, and interpret the subsequent projection c-1 (c x) as “project-

ing” out the finiteness pattern F. A similar argument applies to the construction and pro-

jection of tuples, leading the finiteness pattern (φ ∈ FinitenessPattern ::= F | I | c φ |

(φ1,...,φn)).

A complication that arises when we allow recursive finiteness patterns is that the

resulting set of finiteness patterns becomes infinite. In particular, it is possible that during

the iterative process outlined above, a program fragment may assume an infinite sequence

of finiteness patterns (such as F, c F, c c F, c c c F, ..., or F, (F, F), (F, (F, F)), ...). A solu-

tion to the problem would be to allow the finiteness analysis to declare at some point that

it is in an infinite loop, and to allow it to widen select finiteness patterns to I so as to

ensure termination of the loop. Given the complexity of widening, SCF adopts a prag-

matic solution to the problem.

The key is that for optimization programs, it is most important to have tuple finiteness

patterns, i.e., those of the form (φ1,...,φn), and much less important to have construct of

patterns, i.e., those of the form c φ. The reason is that every “multi-argument” function call

results in the formation of argument tuples, part of which are finite and part of which are

133
not. Note, for instance, that the analyzeCmd function of the dead-assignment eliminator

(figure 3.7) takes as argument a tuple, the first argument of which is a fragment of the

incoming AST, and the others a set and a map. The first component of the tuple is finite

(since the AST only has a finite number of fragments), whereas the rest are not.

Even if we restrict ourselves to tuple patterns, syntactically it is possible for tuple

finiteness patterns to form infinite chains such as F, (F, F), (F, (F, F)), For a given ML

program, however, the chain can contain only a finite (and generally small) number of ele-

ments. In particular, the nesting depth of tuples in the finiteness pattern for the argument

of a function cannot be any deeper than the nesting depth of product types in the ML type

of that argument. For instance, if a function has argument type (int * (boolean *

char)), it is impossible for the function to have a finiteness pattern with tuples more

than two deep. The finiteness of the lattice simplifies the design of the analysis algorithm:

we do not have to make provisions for detecting and handling (via widening) infinite

loops in the analysis.

THE FINITENESS ANALYSIS IN SCF

The actual finiteness analysis used in SCF, specified in figure 6.11, uses the finiteness pat-

terns φ ∈ FinitenessPattern ::= F | I | (φ1,...,φn). We conservatively represent all finite-

ness patterns of the form c φ by I.

The algorithm maintains a cache C (line 4) which represents the currently known map

from function names to their finiteness patterns. For convenience of notation, C is actually

a reference to the cache, and is manipulated via side-effect by the algorithm. When the

algorithm terminates, it returns (line 8) the cache referred to by C. The returned cache is (a

slightly richer form of) the finiteness map mentioned above. For brevity, we write C[f] for

looking up function name f in cache C, and C[f → v] for the result of side-effecting key f

to value v in cache C.

The algorithm begins by assuming (line 7) optimistically that the entry function has

FP F. Given the finiteness pattern for the arguments of a function, the algorithm proceeds

(lines 18-29) by computing the FP for each sub-expression of the body of the function.

Intuitively, for each expression, the FP computed for the expression denotes the finite

parts of that expression. While doing so, it maintains an environment that maps bound

134
structure FinitenessAnalysis =
φ ∈ FinitenessPattern = FP = F | I | (φ1, ..., φn)
E ∈ AbstEnv = (Id, FP) map
C ∈ Cache = FinitenessMap ref = ((funName, (FP * FP)) map) ref
val C := ref Cache.empty
fun analyze (p: program): FinitenessMap =

let _ = FAf (entry function of p, F)
in !C end

and FAf (f: funName, φ: FP): FP =
let (φarg , φret) = case C[f] of SOME pr => pr | NONE => (F, F)

φnew = meet(φarg,φ)
 |f x = e| = the definition of function f

in if φnew <> φ then let φ’ret = FAe(e, [x -> φnew]) in (C[f -> (φnew, φ’ret)] ; φ’ret) end
else φret

end

and FAe (|k|: expr, E: AbstEnv): FP = F
| FAe (|x|, E) = E[x]
| FAe (|c e|, E) = let φ = FAe (e, E) in I end
| FAe (|(e1,...,en)|, E) = let [φ1...φn] = List.map (fn e => FAe(e, E)) [e1,...,en] in |(φ1,...,φn)| end
| FAe (|case e of m1,m2,...,mn|, E)=

let φ = FAe (e, E)
 [φ1...φn] = List.map (fn |pt => e’| =>

let E’ = match(E, pt, φ) in FAe(e’ , E’) end)
[m1,...,mn]

in List.foldl meet F φ1...φn end
| FAe (|f e|, E) = let φarg = FAe (e, E) in FAf (f, φarg) end
| FAe (|p e|, E) = let φarg = FAe (e, E) in I end

and meet (I: FP, _: FP) : FP = I
| meet (_, I) = I
| meet (F, φ) = φ
| meet (φ , F) = φ
| meet (|(φ1,...,φn)|, |(φ’1,... ,φ’n)|) = ListPair.map meet ([φ1,...,φn] , [φ’1,...,φ’n])

and match (E:AbstEnv, pt: Pattern, I: FP): AbstEnv = E[pt ->I]
| match (E, pt, F) = E[pt ->F]
| match (E, |x|, φ) = E[x ->φ]
| match (E, |_|, φ) = E
| match (E, |(pt1,...,ptn)|, |(φ1...φn)|) = ListPair.foldl (fn((pt,φ),E)=> match(E, pt, φ))

E ([pt1,...,ptn] [φ1, ..., φn])

and projectFiniteArgs (f: funName, C: FinitenessMap, v:value): value list=
let (φarg , _) = C[f]
in extract (as per figure 6.9(b)) the parts of v determined to be finite by finiteness pattern φarg end

end (* structure FinitenessAnalysis *)

FIGURE 6.11: Finiteness Analysis.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

135
variables to the FP’s for those values (just as a conventional interpreter would maintain an

environment mapping variables to the values they are bound to). We write [x → φ] to

denote an environment with singleton binding from x to φ, E[x] for the field x of environ-

ment E and E[x → φ] to denote environment E augmented with x bound to φ. The rules for

processing expressions are straightforward for the most part, and we discuss them in order

below.

•If the expression is a constant (line 18), it is wholly finite (the partial evaluator will eval-

uate the expression to a single value).

•If the expression is a variable (line 19), its FP is that ascribed to it in the environment.

•If the expression is a value constructor of the form c e (line 20), then the expression is

conservatively ascribed FP I. As discussed previously, the finiteness analysis of SCF

does not track finite parts of constructed values. We still analyze the body e of the

expression, since e may invoke a function and thereby contribute to its FP.

•If the expression is a tuple (line 21), the FP for the expression is simply a tuple-FP whose

components are the FP’s for the individual components of the incoming tuple.

•If the expression is a case expression (lines 22-27) of the form case e of matches, we pro-

ceed as follows. We first compute the FP φ for expression e. Now, each match in

matches has the form pattern => expression (where pattern may contain a finite set

of binding variables).

For each match, we first compute finiteness patterns for the variables bound in the

pattern via the match function (called on line 25, implemented on lines 38-43); the

extra variable-to-FP bindings are added to the environment in which the expression

part of the match is processed.

The match function has five cases. If the pattern φ above is I, i.e., the controlling

expression of the case expression is infinite, so are the values bound by its patterns

(line 38). We write E[pt → I] to indicate that all variables in pattern pt are bound to

FP I in environment E. If φ above is F, i.e., the controlling expression of the case

136
expression is finite, then so is every variable projected out of it (line 39). Note that we

are allowed to do this because projection operators preserve closure. If the incoming

pattern is a variable x, then in the resulting environment, x is bound to the same FP φ

as the controlling expression e being matched (line 40). If the pattern is a wildcard,

the resulting environment is the same as the incoming one (line 41). Finally, if the pat-

tern is a tuple pattern of the form (pattern1,...,patternn), the incoming FP φ must be of

the form (φ1,...,φn), and resulting environment is simply the union of the environ-

ments that result from matching φi to patterni (lines 42-43). No other case is legal for

the match. For instance, patterns of the form c p must match FP’s of the form F or I,

since we do not have FP’s of the form c φ; we therefore do not have to special-case

these patterns.

Given the augmented environments for each match, we compute (line 25) the FP’s for

the expressions constituting the bodies of each match as usual. Now, if φ1,...,φn are the

FP’s for the matches, then the FP for the case expression is the meet of these FP’s.

The meet function is defined on lines 31 through 35. It determines the composite FP

of a variable that may have two different FP’s when computed along two different

paths. The meet of any pattern with I is I (lines 31-32). Intuitively, if a variable can be

computed along two different paths, along one of which it may assume during partial

evaluation an infinite number of values and along the other a finite number, the vari-

able itself may have an infinite number of values. The meet of any pattern φ with F is

φ (lines 33-34). Intuitively, if a variable can be computed along two different paths,

along one of which it is restricted to assume a finite number of abstract values during

partial evaluation, then the finiteness of the variable is the same as that of implied by

the other path. In dataflow analysis terms, I and F are the bottom (most conservative)

and top (most precise) of the lattice of finiteness patterns. Finally, if the two abstract

values both have tuple FP’s, the FP of the resulting abstract value is simply the tuple

whose individual components are the pointwise meet of the incoming FP’s (line 35).

137
•If the expression is a function call of the form f e (line 28), we first find the FP φ for e,

and immediately reprocess the function f with new argument FP φ to determine the

new FP for its arguments and return values.

Analyzing a function is fairly standard (lines 10-16). Essentially, we check if the

incoming FP has been handled before; if so, we return the return value previously

computed. If not, we analyze the body of the function using an argument FP that is the

meet of the previously recorded finiteness pattern for the function, and the new one,

and return the resulting FP. The meet on the argument FP ensures that the argument is

only designated as finite only if it is finite along all paths leading to the function call.

•If the expression is a primitive operation, we assume that the result is infinite. The ratio-

nale for this is very similar to that for constructors: unbounded application of many

primitive operations, such as addition, subtraction, division and multiplication, can

result in an unbounded number of result values given a single input value. Since prim-

itive operations work on atomic primitives and on maps, and not on the crucial AST

nodes we wish to specialize on, we conservatively label infinite any values of these

types.

6.2.1.2 How Much to Specialize: Contour Chains from Lists of Finite Values

Once we identify the finite arguments of functions, we need to decide how to use the finite

arguments to form contour keys. So far, we have simply used the abstract value of the

finite argument as contour key for each function. In SCF, this strategy is not quite enough

to give us the desired level of specialization. In what follows, we explain how this simple

strategy is inadequate, and then describe a more complex strategy that addresses these

inadequacies.

PROBLEM 1: SPECIALIZING NON-FINITE FUNCTIONS

The first problem with using finite arguments as contour keys is that some functions may

not have any finite arguments. We will call such functions non-finite functions below. The

meet function of the dead code elimination optimization (figure 3.7, line 62) is an exam-

ple of a non-finite function. Consider applying dead-code elimination (from figure 3.7) to

138
the function foo of figure 6.12. As per the specialization keys derived from the finiteness

analysis, the analyzeWhile function for analyzing while loops will be replicated, with

one copy for each of the loops on lines 2 and 4 (since the finiteness analysis has the effect

of declaring any function argument that is a sub-tree of the incoming AST as finite). We

have labelled the two while loops with numbers 1 and 2, and write the corresponding rep-

licas of the analyzeWhile function as aW1 and aW2 respectively. However, the meet

function will not be replicated (since its arguments are maps, and therefore not sub-trees

of the input AST), so that both replicas of analyzeWhile will invoke the same instance

of the meet function, as shown in figure 6.13.

In the case of while loop 2, the partial evaluator will be invoked on the meet function

with an abstract live-variables set containing variable x. This is because the return com-

mand immediately after the second while loop uses x, and therefore keeps x live. On the

other hand, in the case of while loop 1, the partial evaluator will be invoked with an

abstract set that does not contain x, since the assignment command immediately after the

first while loop defines x. These two possible abstract arguments are shown in figure 6.13

as annotations on the corresponding edges1.

Unfortunately, the partial evaluator will first meet the information from the two

sources before analyzing the body of the meet function. The result is a “smearing” of

1.The figure represents the abstract live-variables sets as abstract maps. The set {“x”} is represented as the map [(“x”,
true)]. The empty set is represented as the empty map. This translation is necessary because SCF has no direct
mechanism for representing abstract sets.

int foo(int x){
while(read()){x=7;}1
x = 10;
while(read()){x--;}2
return x;}

1
2
3
4
5

FIGURE 6.12: Example Function to Be Optimized.

FIGURE 6.13: A Problem With Not Specializing Non-Finite Functions.

aW1(...)

aW2(...)

meet(lSet, lSet’)

([(“x”, true)], 0)

([], 0) ([(“x”, true)] | [], 0)

139
information from the two callsites: the partial evaluator will conclude that the incoming

live-variables set may or may not contain the variable x, and therefore that x may or may

not be live in either loop body. The corresponding removal of dead assignments will then

result in optional removal of assignments to x in both loop bodies, when a more accurate

analysis should have resulted in unconditional removal of the assignment in loop 1 but not

the one in loop 2.

Now that we have established that there is a clear cost to not specializing non-finite

functions, and that these costs are applicable in fairly common situations, we need to

address the question of how to specialize these functions. What contour keys should we

use for specialization? In SCF, we view non-finite functions as helper functions to the

finite functions that call them. Correspondingly, we attempt to analyze a distinct copy of a

non-finite function for each finite caller of the function. We achieve this effect by using

the contour key of the finite calling function to specialize non-finite callee functions. The

partial evaluator, while evaluating the body of any function, keeps track of the contour key

for that function explicitly. The contour key is the argument of type Contour-

Key.contour_key as specified on line 9 of figure 4.5 (which specifies the type signature for

the partial evaluator for expressions). At every callsite, the partial evaluator uses the con-

tour key of the caller function as one of the ingredients of the contour key for the callee

(line 41 of figure 4.5). Figure 6.14 illustrates the results of the new scheme: notice that the

smearing across callsites has disappeared because each callsite has its own version of the

callee.

FIGURE 6.14: Specializing Non-Finite Functions Using the Context Key of Their Callers.

aW1(...)

aW2(...)

meet1(lSet, lSet’)

([(“x”, true)], 0)

([], 0)

meet2(lSet, lSet’)

140
PROBLEM 2: SPECIALIZING FINITE RECURSIVE FUNCTIONS

Specializing non-finite functions by using the keys of their callers improves the accuracy

of partial evaluation, but still loses precision in an important case. Consider the case where

a node in the incoming function needs to be analyzed iteratively to fixpoint. In SCF-ML,

such analysis would typically be achieved by a recursive analysis function. An example is

the analyzeWhile function in the dead-assignment elimination example of figure 3.7,

which iteratively analyzes while nodes. Since the analyzeWhile function has a finite

argument (the command being analyzed),1 by our specialization strategy so far, we would

produce a distinct contour key for each while command being analyzed. We would thus

avoid merging the analysis-values corresponding to different while commands in the

program. However, since the analyzeWhile function may recursively be called many

times on the same while command, we may still merge analysis values from the evalua-

tion of these distinct calls. The resulting loss of accuracy adds significant overhead to the

residual version of the analysis.

Figure 6.15 illustrates this problem. Consider analyzing the function foo of figure

6.15. In particular, consider the while loop (labelled “1”) of lines 3 and 4. As per the dead-

assignment elimination optimization of figure 3.7, the loop will be analyzed by invoking

the analyzeWhile function. The analyzeWhile function calls itself recursively if

fixpoint has not yet been reached (figure 3.7, line 64), and also calls the meet helper

function.

Figure 6.16(a) shows the specialized callgraph that would result from the specializa-

tion strategy we have discussed so far. We would analyze separately a version of the ana-

1.As actually implemented in figure 3.7, the original while loop is not the argument the analyzeWhile function.
Instead, we pass two arguments corresponding to the loop: the exit condition of the loop (named test), and the body
of the loop (named body). The corresponding contour key will be the result of projecting these two arguments out using
finiteness pattern (I, I, I, F, F).

int foo(int x){
int x = x + 1|2;
while(read()){
print(x);}1

return;}

1
2
3
4
5

FIGURE 6.15: Modified Example Function to Be Optimized.

141
lyzeWhile and meet functions using the contour key corresponding to the while loop.

We write the corresponding distinct versions of the analyzeWhile and meet functions

as aW1 and meet1 respectively (the subscript “1” here corresponds to the fact that the

finite argument to analyzeWhile, i.e., the while command, has label 1). The recursive

call to analyzeWhile in the original analyzeWhile function is translated to a call to

the aW1 function: since the recursive call to the analyzeWhile function has as finite

argument the same while loop as the initial call, its target would also be the function

analyzeWhile1, resulting in the back-edge of figure 6.16(a).

The edges of the callgraph of 6.16(a) are labelled by the order in which the partial

evaluator processes them. The partial evaluator is initially invoked on analyzeWhile

from a callsite outside the analyzeWhile function (this call is labelled 1), and the next

two calls to the partial evaluator (labelled 2 and 3) are triggered by the recursive call to

analyzeWhile from within its own body.

Figure 6.16(b) tracks the value of the argument live_fix of aW1 over successive

invocations to the partial evaluator. Recall that argument live_fix represents the set of

live variables immediately after the loop-exit test. The first time the loop is analyzed, the

argument live_fix evaluates to the empty set {} (since no variables are live down-

stream of the loop of figure 6.15). This value is labelled call1 args in the figure. The

analyzeWhile function then analyzes the controlling expression and body of the loop,

concludes that a new live set {x} is now applicable, and recursively invokes analyze-

While with this argument. Unfortunately, since we are analyzing the same contour aW1

of analyzeWhile in both the initial and recursive calls, the partial evaluator does a

meet of the arguments before doing the recursive analysis. This is the meet done on line 31

FIGURE 6.16: A Problem With Maintaining One Contour Key Per Finite Argument.

aW1(live_fix, ...)

call1 args: (live_fix = {}, ...)

call2 args: (live_fix = {x} | {}, ...)

call3 args: (live_fix = {x} | {}, ...)

meet1(...)

1

2, 3

(a) (b)

142
of figure 3.7. The new abstract argument value of aW1 is therefore {}|{x} (the result of

meeting {} with {x}). This value is labelled call2 args. In processing this new function

call, the partial evaluator again encounters a recursive invocation of aW1. However, this

time around the live_fix argument has the same abstract value as in the previous itera-

tion (call3 args), and the partial evaluator terminates its analysis of the while loop with an

abstract live-variables set of {}|{x}.

The result abstract value for the loop of {}|{x} implies that it is possible that the live-

variables set may have value {} at the entry to the loop. The partial evaluator thus has to

reckon with the possibility that at the head of the loop, no variables at all are live. The

downstream transformation code that uses the value of this live-variables set has to take

this possibility into account (by generating residual code to conditionally eliminate the

assignment statement x = x + 1| 2 preceding the while loop). It is easy to see that in

practice the live-variables set is guaranteed to have variable x in it, and that the transfor-

mation step should therefore unconditionally leave the assignment untouched. The

approximation introduced by the meets performed at the recursive calls to the analyze-

While function therefore result in less efficient residual code being produced.

One way to solve the problem of excessive merging is to generate a separate contour

key for the invocations of the analyzeWhile function that we want to keep separate, so

that we never meet the results from two such invocations to the function. As mentioned

above, the merging we want to avoid is that which results from using the same contour key

for various recursive invocations of a function. For example, we would like the partial

evaluator to use one contour key when the analyzeWhile function is initially invoked

on the while loop (and, in general when any finite recursive function is invoked), a differ-

ent contour key for the recursive call to the analyzeWhile function on the same loop,

yet another key if the analyzeWhile function is invoked recursively from within this

second recursive call, and so on.

In SCF, we generate a separate contour key per invocation as follows. If the partial

evaluator is invoked on a call-chain f1,...,fn of functions with finite arguments v1,...,vn (we

will call the pair ki = (fi,vi) a specialization key for function fi in what follows), then we

use the list [kj,...,k1] of specialization keys as the contour key for invocation fj.

143
A side benefit of generating the contour keys in this manner is that the technique auto-

matically ascribes to non-finite functions (essentially) the contour key of their callers. If

we invoke a non-finite function f from a function with contour key ck, then the key for f

will be (f,1)::ck.1 Each finite function is therefore guaranteed to get a distinct copy of its

helper functions, as required in the previous section.

There is, however, a problem with the new scheme for generating contour keys. Even

though the number of specialization keys is bounded (as guaranteed by the finiteness anal-

ysis), the number of contour keys is no longer bounded. A function may be invoked recur-

sively with a bounded number of finite abstract arguments, but an unbounded number of

non-finite abstract arguments, and each of these invocations will result in a new contour

key.

The solution adopted in SCF is to bound the number of times a particular specializa-

tion key may appear in a contour key (or in effect, the number of times a recursive func-

tion may be “unrolled”), with a small integer, k. The fact that the augmented contour keys

are aimed at specializing recursive functions that analyze loops in the incoming program

(e.g. the analyzeWhile function analyzes while loops in incoming program) provides

us with a useful constraint in this direction. In particular, it has been observed [2] that

although in the worst case many dataflow analyses may iterate O(n2) times when process-

ing functions of size n, in practice they tend to iterate a small, constant number or times:

often, 2 or 3 times. In SCF, therefore, we use k = 2 as the depth to which recursion is spe-

cialized.

Figure 6.17 shows the contours produced by this approach when analyzing function

foo. Where we originally had the single contour aW1 any time analyzeWhile was

invoked on the while loop, we now maintain separate contours aW[1,...], aW[1,1,...],

etc. for each distinct recursive invocation of the analyzeWhile function on the incom-

ing while loop.2 Figure 6.17(a) shows the resulting specialized callgraph. Figure 6.17(b)

shows the abstract values for the arguments on this callgraph. The important case is that of

1.Recall that (figure 6.9(b)) the finite argument ascribed to a non-finite function is 1.
2.The ellipses represent the chain of specialization keys corresponding to the chain of function calls that led to the call to
analyzeWhile being specialized.

144
call arg2. Since call 2 results in a different contour than call 1, we do not need to meet the

abstract argument values for the two calls. The result is that in this case, the live_fix

argument of call arg2 has the abstract value {x} (composed to the previous less precise

value of {}|{x}). The more precise abstract value obviates the need for another recursive

call to analyzeWhile, and returns {x} as the set of live-variables for the entire while

loop.

The addition of key lists makes the worst-case running time (and size) of the analysis

exponential in the size of the result of performing purely finite-argument-based specializa-

tion on an optimization program (or equivalently, in the size of the incoming abstract func-

tion). A program that consists of n nested while loops can result in kn specialized versions

of the analyzeWhile function. However, in the common case, after specialization on

finite arguments, the resulting optimization program tends to have a tree-shaped callgraph

with relatively few merges (equivalently, the nesting depth of programs to be optimized is

typically independent of the size n of the program, and bounded by a small, fixed number

e.g. 2 or 3). With a tree-shaped callgraph, call-chain-based specialization costs drop from

exponential to linear.

THE CONTOUR KEY MODULE IN SCF

In the previous two subsections, we have described two problems (non-finite functions,

and recursive finite functions) in the design of contour keys, and outlined the solutions to

these problems. In this subsection (see figure 6.18) we provide the precise specification of

FIGURE 6.17: Using Chains of Finite Arguments as Contour Keys.

aW[1,...](...)

aW[1,1,...](...)

meet[1,...](...)

meet[1,1,...](...)

call1 args: (live_fix = {}, ...)

call2 args: (live_fix = {x}, ...)

1

2

(a) (b)

145
the contour key module in SCF. Although the criteria to be satisfied by contour keys are

somewhat tricky, the solution that results is straightforward to implement.

As described in the preceding section, a specialization key (line 4) represents a func-

tion and the finite abstract value it was invoked with. A contour key (line 5) is a list of spe-

cialization keys. The number of times a particular specialization key may appear in a

contour key is k (line 7). As a degenerate case, k = 0 results in disabling function special-

ization.

The main function in the module is mkContourKey, which creates new contour keys,

given the name f of the function to be specialized, the finiteness map fm for the program,

the abstract value v representing the argument of the function to be specialized, and the

contour key ck of the caller function. To generate the new contour key, we first use fm to

structure ContourKey =
struct
structure FA = FinitenessAnalysis
type specialization_key = SCF_ML.funName * value
type contour_key = specialization_key list

val k = ref 2
val emptyCtrKey = []

fun mkContourKey (f: SCF_ML.funName, fm: FA.FinitenessMap, v: value, ck:contour_key):
contour_key =

letvfinite = FA.projectFiniteArgs (fm, f, v)
sk = (f, vfinite)
k’ = List.length (List.find (fn(sk’) => sk = sk’) ck)

in
if k’ < !k then sk:: ck
else findCKSuffix (sk, ck)

end

and findCKSuffix (_: specialization_key, []: contour_key): contour_key = []
| findCKSuffix (sk, ck as (sk’::ck’)) =

if sk = sk’ then ck
else findCKSuffix(sk, ck’)

and getSpecializedFName (ck: contour_key): funName =
... return a unique function name for each ck...

fun func = getSpecializedFName //An abbreviation used in figure 4.4
end (* structure ContourKey *)

FIGURE 6.18: Module Implementing Contour Keys.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

146
project out the finite value vfinite corresponding to argument v (line 12), and create a new

specialization key sk by pairing the current function name with vfinite (line13). Next (line

14), we determine the number of times, k’, that the new specialization key has already

appeared in the contour key. If k’ is below the threshold k then we prepend sk to the old

contour key to produce the new contour key list (line 16). Otherwise, we return as contour

key the longest suffix of ck starting in sk (line 17). Function findCKSuffix (lines 20-23)

computes this suffix. Returning the suffix in this manner ensures that although the first k

recursive invocations of a function result in distinct specialized versions of the function,

all deeper recursive invocations result in a call to the k’th specialized version.

A final detail is that client modules (e.g. the partial evaluator module of figure 4.5,

line 46) require a function getSpecializedFName (detailed on lines 24-25) to generate a

unique function name , given the contour key for a function. This can be done in a number

of ways, including hashing.

6.2.2 Expression Specialization

It is sometimes beneficial, while partially evaluating an expression, to first replicate the

expression and partially evaluate each replica separately for a distinct context, i.e., for a

distinct abstract environment. In this section, we first present an example showing how

expression specialization can benefit partial evaluation of optimizations, and then discuss

how SCF provides the specialization required.

6.2.2.1 Example: Expression Specialization and Dead-Assignment Elimination

Consider computing the set of live variables for the abstract expression x+1|2+x by

invoking1 the analyzeExpr function from the dead-assignment eliminator of figure

3.7. Figure 6.19(a) shows an abbreviated trace of the function invocations that result from

this invocation, and their input and output values. The first column of the figure is the

invocation number, indicating the sequence in which the invocations are processed by the

1.When we refer to function “invocations” here, we are of course referring to instances when the function is executed
abstractly by the partial evaluator, not to function calls in a concrete execution.

147
partial evaluator. The second column is the name of the function invoked. The third col-

umn is the abstract value representing the expression or expression list input to the func-

tion. The last column is the abstract value representing the live variables set that results

from the invocation. As discussed previously (section 3.2.2.2), abstract sets are repre-

sented by their membership functions in SCF: a value is a member of a set if and only if it

maps to true in the map representing the set.

We assume we start with an empty input live set. To find the live variables in the

abstract add operation x+1|2+x (call 1), we find the live variables in the abstract expres-

sion list [x,1]|[2,x] that is the argument of the add operation (call 2). For conve-

nience, figure 6.19(b) reproduces the definition of the analyzeExprs function from

figure 3.7(b), which is responsible for analyzing expression lists.

FIGURE 6.19: Expression Specialization Applied to Dead-Assignment Elimination.
(a) Partial execution trace of dead-assignment elimination (b) The analyzeExprs function before expression

specialization (c) The analyzeExprs function after expression specialization on the abstract
expression.[x,1] | [2,x].

 (b)

fun analyzeExprs(es:exprs, lSet:live_set):live_set=
case es of
 exprs(e,es) => analyzeExprs(es,analyzeExpr(e))
| exprs_none => lSet

1
2
3
4

no. function input expr(s) input live set output live set

1 analyzeExpr +[x,1] | +[2,x] must[], may[] must[], may[(x, true)]

2 analyzeExprs [x,1] | [2,x] must[], may[] must[], may[(x, true)]

3 analyzeExpr 2|x must[], may[] must[], may[(x, true)]

4 analyzeExprs [1] | [x] must[], may[(x, true)] must[], may[(x, true)]

5 analyzeExpr 1|x must[], may[(x, true)] must[], may[(x, true)]

6 analyzeExprs exprs_none must[], may[(x, true)] must[], may[(x, true)]

 (a)

 (c)

fun analyzeExprs[x,1] | [2,x](es:exprs, lSet:live_set):live_set=
case es of
 exprs(e as const _,es)=> analyzeExprs[2,x](es,analyzeExpr(e))
| exprs(e,es) => analyzeExprs[x,1](es,analyzeExpr(e))

1
2
3
4
5

148
Consider partially evaluating this function on the expression list [x,1] |[2,x].

Recall that [x,1] and [2,x] are compact notation for exprs(var(“x”),

exprs(const(1),exprs_none)) and exprs(const(2),exprs(var

(“x”),exprs_none)) respectively. Matching these abstract values against the pat-

tern exprs(e,es) from line 3 of figure 6.19(b), we bind value x|2 to variable e and

[1]|[x] to variable es. Unfortunately, these bindings lose correlation implicit in the

incoming value: in particular, they imply (over-conservatively) that e may have concrete

value 2 when es has value [1], i.e., that the incoming expression list could be [2,1].

The latter possibility implies that x may not be live in the incoming expression list: note

that the returned abstract live set (line 2 column 5) is ([must[], may[(x, true)]), which

includes the concrete set {} as a conforming value.

Figure 6.19(c) shows how expression specialization can fix the problem. Essentially,

the specializer inserts discriminating patterns to prevent bindings that lose correlation. In

particular, the extra match of line 3 only matches the expression list [2,x] so the match

of line 4 will only match expression list [x,1]. Analyzing these values individually will

result in abstract live-variables sets ([must[(x, true)], may[]) for each branch of the case

expression, resulting in the set ([must[(x, true)], may[]]) for the whole case expression.

Note that the latter set has exactly one conforming concrete set, {x}, so that it excludes the

possibility that x may not be live downstream. Note also that expression specialization

eliminates matches that can have no possible concrete values matching against them: the

exprs_none case of figure (b) is not in figure (c).

6.2.2.2 Expression Specialization Support in SCF

Expression specialization in SCF is limited to avoiding loss of correlation from case

expressions. The interface between the partial evaluator and the specializer is via the dis-

criminate function which takes the list of matches, i.e., pattern-expression pairs of the case

| PEe (|case e of ms|, E, ck) =
let (e’,v) = PEe (e, E, ck)

ms = discriminate(ms, v)
(ms’, v’) = PEms (ms, v, E, ck)

in rematerialize (|case e’ of ms’|, v’) end

1
2
3
4
5

FIGURE 6.20: Invoking the expression specializer from the partial evaluator.

149
expression, and the abstract value being matched against, and returns a new list of

matches. The new list will, in general, contain more matches with discriminating patterns,

and will therefore result in less loss of correlation. Figure 6.20 shows how the part of the

partial evaluator that handles SCF-ML case expressions is modified. The additional code

(relative to the version of figure 4.5) required to achieve expression specialization is

underlined in line 3 of figure 6.20. The new code replaces, in a modular way, the old list of

matches with a new, more discriminating list of matches.

Figure 6.21 specifies the discriminate function. The important activity is in the foldl

iterator of lines 2 through 6. Given (line 6) the incoming list of matches msIn, and the list

vs of abstract values that need to be discriminated, the iterator steps through each match m

accumulating discriminating matches as follows. Let p be the pattern for the match m, let

ms be the discriminating matches accumulated so far, and let vs be the list of possible

abstract values to match against (line 2). Using the findPossibleMatches function, we first

identify the part vs’ of vs that have at least a partial match with pattern p and the part vs’’

of vs that are might not match p (line 3). We then use the discriminateMatch function to

produce a list of discriminating matches ms’, such that matches in ms’ discriminate

between values in vs’ (line 4). Finally, we append the new list ms’ of discriminating

matches to the list ms of matches accumulated thus far (line 5). The possibly unmatched

abstract values vs’’ are reserved for successive iterations.
fun discriminate(msIn: SCF_ML.match list, alt(vsIn, _): value): SCF_ML.match list=

let (ms,_) = foldl (fn(m as |p => _|, (ms,vs))=>
let (vs’, vs’’) = findPossibleMatches(p, vs)

ms’ = discriminateMatch(m,vs’)
in (ms@ms’, vs’’) end)

([],vsIn) msIn
in ms end

| discriminate (msIn, vIn as |fix _|) = discriminate(msIn, (unroll vIn))
| discriminate (msIn, _) = msIn

1
2
3
4
5
6
7
8
9

FIGURE 6.21: The discriminate Function for Specializing Case Expressions.

fun findPossibleMatches(p: SCF_ML.pattern, vs: value list):(value * value) list =
foldl (fn (v,(vsMatched, vsMismatched)) =>

case AbstractValue.match(p,v) of
SOME(_, top) => (v::vsMatched, vsMismatched)

| SOME (_, v’) => (v::vsMatched, v’::vsMismatched)
| NONE => (vsMatched, v::vsMismatched)

([],[]) vs

1
2
3
4
5
6
7

FIGURE 6.22: The findPossibleMatches Function.

150
IDENTIFYING VALUES TO DISCRIMINATE BETWEEN

Figure 6.22 specifies the findPossibleMatches function. Given pattern p and list vs of

abstract values that need to be discriminated, the function iterates through each value v in

vs, testing if v matches p (line 3), maintaining lists vsMatched (for those values processed

so far that at least partially match p), and vsMismatched (for those values that may at least

partially not match p). If the match is a total match, i.e., there is no part of v that does not

match p (line 4), then we add v solely to vsMatched (recall that the match function returns

the “unmatched part” as the second component of its return tuple, so a value of top for this

component implies the match was complete), if the match is partial, with v’ the

“unmatched part”, we add v to vsMatched, and v’ to vsMismatched (line 5), and if there is

definitely no match (line 6), we add v solely to vsMismatched.

GENERATING SEQUENCES OF DISCRIMINATING MATCHES

Figure 6.23 specifies the discriminateMatch function. Given a match m and a list vs of val-

ues to discriminate among, the function returns a set of matches that discriminate between

the values as much as possible, such that the extra matching overhead is bounded (and typ-

ically, small). The bound is determined by a global parameter: maxExtraMatchOps is the

maximum number of extra matching operations each discriminating match is allowed to

perform. For example, the pattern exprs(const _,es) of figure 6.19(c) performs

more matching operations than the pattern exprs(e,es) it replaced. Before perform-

ing its central task of generating the discriminating matches (via the helper function gen-

Matches), discriminateMatch first computes the number numMatchOps of operations

necessary to perform the incoming match m (line 2), adds on maxExtraMatchOps to deter-

mine the maximum number maxMatchOps of operations a generated discriminating match

is allowed to perform, and invokes genMatches to generate discriminating matches that

perform at most maxMatchOps operations.

fun discriminateMatch (m: SCF_ML.match, vs: value list): SCF_ML.match list =
let numMatchOps= numMatchOpsInMatch m

 maxMatchOps = numMatchOps + !maxExtraMatchOps
 ms = genMatches(m, vs, numMatchOps, maxMatchOps, [])
in ms end

1
2
3
4
5

FIGURE 6.23: The discriminateMatch Function for Generating Discriminating Matches.

151
ESTIMATING THE COST OF DISCRIMINATORS

A question that needs to be resolved at this point is that of counting the number of opera-

tions a match operation performs. For instance, how many more operations does the pat-

tern expr(const(2),es) of the previous paragraph perform at run time compared to

the pattern expr(e,es)that it replaces? In SCF, we interpret “number of operations” to

mean the number of operations that will be executed on a modern RISC machine.

Given that the pattern matches are ultimately compiled into a series of access and

comparison operators on the data being matched against, it is necessary to know how the

data being matched is represented in memory. We assume the layout shown in figure 6.24.

The representation is a standard [6] “boxed” representation. All values except atomic val-

ues (integers, booleans and characters) are assumed to be represented by pointers to con-

tiguous words in memory. An n-tuple is represented by n contiguous words in memory

(we ignore word-size issues). A tagged value is represented by an adjacent pair of words,

with the first word containing the tag and the second the value. Strings are represented as a

null-terminated sequence of words, each word containing a character. Atomic types are

represented by a single word.

The above assumptions on data layout lead to the algorithm of figure 6.25 for estimat-

ing the cost of executing a pattern match. The estimate is a conservative (worst-case) esti-

mate, and assumes that the entire pattern is traversed in search of a match before the match

fails. The algorithm steps through the input pattern recursively adding up the cost to load

FIGURE 6.24: Data Representation Assumed by SCF.

c

9 7 1 4

2

F O O b a r ? \n

7

(9, 7, 1, 4)

c(2)

“FOObar?”

7

tuples

tagged values

strings

integers

kind of data example representation

152
and compare against the corresponding parts of the value being matched against. When

the pattern is a tagged-value comparison, if the pattern representing the value is a wild-

card, the cost is just that for loading the tag and comparing it, i.e., 2 operations (line 3). If

the value-pattern is not a wildcard, then there is an additional offset load for accessing the

carried value itself, and the recursive cost of matching it (line 4). Similarly, when match-

ing against a tuple, wildcards in the tuple incur no cost, whereas all other places incur a 1-

operation cost for loading the corresponding value; the recursive cost of matching against

these values is then added (lines 5-7). Variable bindings incur no cost (line 8). Matching

against a string requires iteration over the characters of the string; each iteration requires a

counter update, two loads and two compares (five operations in all), so that the total

worst-case cost is five times the length of the string (line 9). Atomic constants require a

load and compare (line 10). Wildcards require no action (line 11).

COMPUTING INDIVIDUAL MINIMAL DISCRIMINATING MATCHES

Figure 6.26 sketches how the genMatches function works. Recall that the role of the func-

tion is, given a match m (of the form p=>e), a list of values vs that have at least a partial

match with m, a current number of match operations allowed n, a maximum number of

match operations allowed max, and a list of discriminating matches generated so far msSo-

Far, to augment msSoFar with versions of the match m that discriminate between as many

of the values in vs as possible. All match operations in m must have a cost between n and

max.

The function takes a brute-force generate-and-test approach. It iterates through values

of n between the cost of pattern p and max. For each n, for each value v in vs, it generates

fun numMatchOpsInMatch (m as |p => _|) = numMatchOpsInPattern p

and numMatchOpsInPattern |c _| = 2
| numMatchOpsInPattern |c p| = 3 + numMatchOps p
| numMatchOpsInPattern |(ps)| =

let numNonWildCards = List.foldl (fn (|_|,i) => i| (_, i) => i+1) 0 ps
in List.foldl (fn (p,i) => numMatchOpsInPattern p + i) numNonWildCards ps end

| numMatchOpsInPattern |x as p| = numMatchOpsInPattern p
| numMatchOpsInPattern |”s”| = (String.length s)*5
| numMatchOpsInPattern |c| = 2
| numMatchOpsInPattern |_| = 0

FIGURE 6.25: Counting the Number of Operations to Implement a Pattern Match.

1
2
3
4
5
6
7
8
9
10
11

153
all patterns of size n that result from merging p with some “prefix” of v (line 4 of figure

6.26), filters out those patterns that match with exactly one of the values in vs (line 5), con-

verts these patterns into matches (line 6), and accumulates them (line 7) into the running

result. Any values in vs that do find a unique match in line 5 are excluded from the next

iteration. If this exclusion results in an empty vs set, the iteration terminates early and

returns the accumulated matches (line 8), otherwise the iteration proceeds with the next

higher value of n (line 9). If the maximum number of comparisons allowed is exceeded,

the algorithm conservatively adds on the original match as a “catch-all” for any values that

have not been matched by the matches generated in the previous iterations (line 2).

Figure 6.27 illustrates how the genMatches function works on the example of figure

6.19. Figure 6.27(a) specifies the pattern p, and the two abstract values v1 and v2 such that

fun genMatches(m as |p=>_|:match , vs:value list, n:int, max:int, msSoFar:match list):(match list) =
if n > max then msSoFar @ [m]
else
let ps = generatePrefixPatterns(n, v, p)

(ps’, vs’) = testPrefixPatterns(ps,vs)
ms = makeMatchesFromPrefixPatterns(m, ps’)
msSoFar’ = msSoFar @ ms

in if vs’ = [] then msSoFar’
else genMatches(m, vs’, n+1, max, msSoFar’)

end

and generatePrefixPatterns(n: int, vs: value list, p: pattern): pattern list=
// for each value v in vs, generate the list ps of all size-n patterns at least as specific as p that prefix it.
//return the list derived from concatenating all such lists.

and testPrefixPatterns(ps, vs): (pattern list * value list) =
//initialize the returned-patterns-list ps’ to [], and the returned-value list vs’ to vs
//for each pattern p in ps, check if p matches some unique value v in vs
// if so, add p to ps’, and remove v from vs’
//return (ps’, vs’)

and makeMatchesFromPrefixPatterns(|p=>e|:match, ps:pattern list): match list =
//For each pattern p’ in ps, create a match |p’ => e|
//return the resulting list of matches

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

FIGURE 6.26: Computing Minimal Discriminating Matches Via Generate and Test.

154
vs = [v1,v2]. The values and pattern are illustrated using their parse trees. The cost of pat-

tern p is 5 operations in this case.

Figure 6.27(b) shows the first patterns generated by the generatePrefixPatterns func-

tion: patterns p1 and p2 are generated corresponding to values v1 and v2 respectively. Each

pattern consists of a prefix of the abstract value (in this case, just the root node exprs),

merged with the incoming pattern p. Since p1 and p2 both match v1 and v2, the testPrefix-

Patterns function of figure 6.26, line 5 returns an empty set ps’ of unique matching pat-

terns. No new matches will be added to msSoFar, and the genMatches function proceeds

iteratively with n = 6.

The next interesting case is for n = 7. As shown in patterns p1 through p4 of figure

6.27(c) using the additional 2 pattern-matching operations now available, SCF can now

FIGURE 6.27: Example: Computing Minimal Discriminating Matches.

exprs

var

exprsconst

exprs_none

exprs

e es

“x”

2

exprs

e as var es

_

exprs

var exprs

const exprs_none“x”

1

exprs

e es as exprs

_

exprs

e es as exprs

_

exprs

e as const es

_

v1

exprs

e es

exprs

e es

p v2
 (a) Argument Values

 (c) Patterns Generated for n = 7

 (b) Patterns Generated for n = 5

 (d) The analyzeExprs Function After Expression Specialization

fun analyzeExprs(es:exprs, lSet:live_set):live_set=
case es of
 exprs(e as var _,es)=> analyzeExprs(es,analyzeExpr(e))
| exprs(e as const _,es)=> analyzeExprs(es,analyzeExpr(e))

p1

p2p1

p2 p3 p4

1
2
3
4

155
perform an additional tag equality test on the incoming trees. Because the left child of v1

has tag var, the generatePrefixPatterns function adds a tag test to determine if the left

child of the incoming value has tag var. The resulting pattern is p1. Similarly, patterns p2,

p3 and p4 are based on v2 and test for tags exprs, const and exprs respectively. The

testPrefixPatterns function will now determine that patterns p1 and p3 match values v1 and

v2 uniquely. It will therefore return the list ps’ = [p1, p3] and vs’ = [] (since no values are

left to be matched). The makeMatchesFromPrefixPatterns will, given these patterns, pro-

duce the two matches of lines 3 and 4 of figure 6.27(d). At this point, since vs’ is empty,

genMatches and discriminateMatch will return.

The discriminate function will now call discriminateMatch with the remaining match

m = exprs_none => lSet of figure 6.19(b) and an empty list vs of values to discrim-

inate. Functions genMatches, discriminateMatch and discriminate will return at this point,

the latter with the list of matches [|(e as var _,es) => ...|, |(e as const

_, es) => ...|] as return value. Figure 6.27(d) shows the resulting function that the

partial evaluator sees.

6.2.2.3 Discussion: Sacrificing Specialization Opportunities for Simplicity

The expression specialization strategy described in the previous section is designed to be

simple while specializing optimization programs well. An appealing feature of SCF’s spe-

cialization strategy is that it does not require analysis of the expression guarded by the

matches being specialized (or worse, functions invoked by this expression). Below, we list

some of the design issues that SCF sidesteps in the quest for simplicity:

1.Maintaining correlations across repeated variable use. On any single execution of

an expression, when a given variable (or location, in general) is used multiple times in

the expression, the concrete value of the variable at all these uses will be the same. In

principle, we could perform an analysis to check if the current expression being

analyzed performs this kind of re-use, and if so specialize the expression to the

different concrete values the variable may assume. To minimize the size of the

expression produced, we could replicate only the smallest sub-expression that

156
contained all uses. In SCF, however, we consider this case too uncommon to merit the

extra complexity in analysis.

2.More rigorous cost-benefit analysis. Even when we restrict ourselves to specializing

correlation-losing case expressions, the decision to specialize needs to be based on a

cost-benefit analysis. Costs include both the overhead of the discriminating matches

introduced and the overhead induced by the increased size of the program (due to

replication). The main benefit is the increased efficiency of residual code. Ideally, we

would specialize whenever the benefit exceeded the cost.

In SCF, we make no effort to estimate total costs or benefit. In particular, although we

estimate the increased cost of each pattern match, we make no effort to estimate the

total extra costs across all new matches. We make no effort to estimate the cost of

increase in code size or the benefit of better-specialized code that may result. Our

philosophy is that if we keep the per-match overhead low enough, and only add

matches when it prevents a loss in correlation, we are unlikely to lose. Further,

estimates of costs and benefits have low accuracy, and very high cost: the size of the

specialized code will depend on the values being specialized on. Further, each

discriminating match results in replication not just of the expression guarded by the

match, but potentially also of the functions called by the expression. In general,

therefore, it is impossible to get an accurate estimate of code size without executing the

partial evaluator in its general interprocedural mode. Doing so at every possible

expression specialization site is clearly prohibitive. If more accurate estimation of costs

and benefits emerges as an important issue, it may be worth studying more elaborate

approaches from the partial evaluation community [45].

3.Generating more efficient discriminating patterns. The high-level description of

figure 6.26 hides at least one simplifying design decision adopted by SCF. Since the

testPrefix function generates discriminating patterns with strictly increasing n, and no

provision for backtracking, SCF loses opportunities for efficiency. Consider

specializing pattern c1 _ to abstract value v = c1(c2,c2) | c1(c2,c3)| c1(c3,c2)|

c1(c3,c3). The SCF algorithm would discard the n=5 patterns c1(c2,_),

157
c1(_,c2), c1(c3,_), c1(_,c3) because each of these match at least two of the

component values of v above, and would therefore fail the testPrefixPattern test of

figure 6.26. The algorithm would then proceed to n=7 and suggest the discriminating

patterns c1(c2,c2), c1(c2,c3), c1(c3,c2), c1(c3,c3). Unfortunately, the

optimal mix of discriminators combines the n=7 patterns with the n=5 ones:

c1(c2,c2), c1(c2,_), c1(_,c2), c1(_,c3).

6.3 Widening Strategy

In section 6.1.5, we showed how the infinitely tall lattice of abstract values used by the

partial evaluator in SCF can lead to an unbounded number of re-analyses of functions. We

sketched how a widening strategy can guarantee termination by lowering precision of

abstract values, but pointed out the importance of limiting the amount of precision sacri-

ficed.

In particular, if v1, v2, v3, ... is the sequence of (argument or return) abstract values

corresponding to invocations of the partial evaluator on the function, the ideal widening

strategy would be one that, in some finite number of steps, can predict the limit of this

sequence, i.e., can compute v∞ = limi→∞ vi. This problem is undecidable in general: it

amounts to predicting, for an arbitrary function, the set of values a variable may assume

over a program execution. A practical widening strategy therefore restricts itself to com-

puting, after some finite number of steps, an approximation v>∞ of v∞ such that v>∞ ⊇ v∞,

while trying to ensure that v>∞ is not “too big”, i.e., that it does not include key elements

missing from v∞.

A widening strategy needs to address two questions. When should the abstract store at

a given program point be widened? Given the decision to widen, what should the widened

value be?

In practice, the question of when to widen and what value to widen to depends

strongly on the program to be abstractly interpreted. In SCF, of course, we are interested in

abstractly interpreting optimization programs. At any function call, the state of optimiza-

tion programs is determined by three main data structures: the AST node being optimized,

the map (or set) representing the abstract store, and the AST node being generated (for

158
transformation functions). As discussed in the previous section, we expect each function

to be invoked on a finite number of incoming AST nodes, and we intend to analyze the

function separately for each of these nodes. We should not therefore have to widen the

value of the AST node being analyzed (and indeed, of any finite argument). SCF’s heuris-

tics therefore focus on when and how to widen maps and generated AST’s so as to avoid

excessive loss of information. Other kinds of values are widened conservatively.

In section 6.3.1, we introduce an example that shows the value of intelligently widen-

ing input maps and output AST nodes. In section 6.3.2, we use the example to motivate

our widening strategy, with a detailed look at how to handle maps.

6.3.1 Motivating Example: Widening and Constant Propagation

To understand the nuances of widening input maps and output AST nodes intelligently,

consider partially evaluating the constant propagation optimization on the abstract func-

tion of figure 6.28(a). We label with subscripts the abstract values representing the AST

nodes of interest to us. The abstract function represents the set of all concrete functions

that have the assignment x = -1 + 1 as the first statement, followed by zero or more

int foo(int y){
int x =3 -1 +0 1;2
fix4 ({}5 | x =7 x +8 1;6 rec)
return9 x +10 y}1

FIGURE 6.28: Motivating Example for Widening.
An abstract function (a) and constant propagation specialized to that function (b)

optimize1(f)

analyzeFun1(f) transformFun1(f,l)

analyzeCmd2(c,varConstMap,lblConstMap)

aC4(c,v,l)

aC6(c,v,l)

aC7(c,v,l)

transformCmd2(c,l)

tC4(c,l)

tC6(c,l)

tC7(c,l)

(b)

(a)

analyzeExpr0 ...

aC5 ...

159
increments of x, followed by the return statement x + y. Figure 6.28(b) shows the

callgraph for the version of constant propagation specialized to this input function. Note,

as before that we have essentially one contour per incoming AST node. In particular, the

fix value in the incoming AST results in the recursive calls from aC6 to aC4, and from

tC6 to tC4.

Every function in the callgraph has as first parameter the node being processed. The

node parameter is followed in some cases by map varConstMap (abbreviated as v),

which is a variables-to-constants map representing the values of all variables defined

before the current AST node. Whenever the constant propagation analysis determines that

a variable x has constant value k, it adds binding x->k to varConstMap. The final

parameter in each case is the map lblConstMap (abbreviated as l) which is a map

from AST node labels to their constant value. Whenever the constant propagation analysis

detects an expression labelled l that can be replaced by a constant k, it adds the binding l-

>k to lblConstMap.

Once the analysis is complete, the optimization uses the transform functions to

transform the incoming AST, while consulting the lblConstMap built up by the analy-

sis. Whenever the constant propagation transformation detects a node labelled l such that l

maps to constant k in lblConstMap, it replaces the node with the constant expression k.

We now study how SCF handles this example, focusing mainly on the maps produced

when processing the fix value of figure 6.28.

Invocation
Number

v l v’ l’

1 (must[x->0],
may[])

(must[0->0],
may[])

(must[x->φ],
may[])

(must[0->0],
may[])

2 (must[x->0|1],
may[])

(must[0->0],
may[8->1])

(must[x->0|1],
may[])

(must[0->0],
may[8->1])

3 (must[x->0|1|2],
may[])

(must[0->0],
may[8->1|2])

(must[x->0|1|2],
may[])

(must[0->0],
may[8->1|2])

4 (must[x->0|1|2|3],
may[])

(must[0->0],
may[8->1|2|3])

(must[x->0|1|2|3],
may[])

(must[0->0],
may[8->1|2|3])

...

FIGURE 6.29: Argument and Return Values Produced While Evaluating analyzeCmd4.

160
Consider partially evaluating the contour analyzeCmd4 of figure 6.28(b) with the

appropriate variable-to-constants map (v) and label-to-constant map (l). Recall that the

analyzeCmd function takes as its arguments the command c to be analyzed along with

l and v, and returns a modified variable-to-constants map v’ and a modified label-to-con-

stants map l’. Figure 6.29 shows a possible sequence of invocations of the function, and

the input and output values for each invocation.

On the first invocation of analyzeCmd4, map v contains just x->0 (from processing

assignment x =3 -1 +0 1), and map l has 0->0 (since the expression -1 +0 1, with

label 0, can be replaced by the constant expression 0). The invocation results in the analy-

sis of the two sub-commands, x =7 x +8 1;6 fix4 ({}5 | x =7 x +8 1;6

rec)1 and {}5:

1.Processing sub-command 6 results in sequentially processing command 7 and then

command 4. Processing command 7 results in x being re-bound to the constant 1 in v

and label 8 being bound to 1 (indicating that the expression x +8 1 can be replaced by

the constant expression 1) in l. Processing command 4 results in a recursive call to

analyzeCmd4 being placed on the worklist with values (must[x->1], may[]) and

(must[0->0, 8->1], may[]) respectively for arguments v and l. A cache lookup returns

a value of 0 for the return value of the recursive call and therefore for command 6 as a

whole.

2.Processing sub-command 5 results in the two maps passing through unchanged.

Meeting the result values from the two sides, the final returned value v’ of v is

meet((must[x->1], may[]), 0) = (must[x->1], may[]), and l’ is meet((must[0->0],

may[]), 0) = (must[0->0], may[]).

On the second invocation (invocation 2 of figure 6.29) of analyzeCmd4, the partial

evaluator pops the above argument values (v = (must[x->1], may[]), l = (must[0->0,

8->1], may[])) from the worklist, and meets it with the old values ((must[x->0], may[]),

(must [0->0], may[])) from the previous invocation, to get the new abstract input values

1.This command is obtained by “unrolling” the original command, fix4 ({}5 | x =7 x +8 1;6 rec), once.

161
(v = (must[x->0|1], may[]), l = (must[0->0], may[8->1]). The new invocation results

in a fresh recursive call to analyzeCmd4 with argument v = (must[x->1|2], may[]), l

= (must[0->0], may[8->1|2]) pushed on the worklist, leading eventually to invocation 3.

Figure 6.29 lists the argument and return values for the first four invocations in the

unbounded series of invocations that follows.

The example highlights the two key requirements for a widening strategy for SCF.

First, the strategy needs to widen indvidual fields of tuples. Second, maps need to be wid-

ened carefully. In particular, maps tend to grow in values not in keys, so that widening

growing alt abstract values to 1 will often affect only individual values in the maps, and

not the keys.

6.3.2 Reducing Information Loss While Widening

A simple strategy the partial evaluator can adopt to avoid unbounded analysis of a contour

is to keep track of the number of times the contour has been analyzed and, if this number

exceeds a small fixed threshold, to widen both input and result values of the contour to the

abstract value 1.

“Maximal-widening” strategies such as the one above are extremely conservative. In

the particular context of our examples, if widening happens when analyzing some com-

mand c, both result maps l and v will be widened to 1, so the analysis of all downstream

commands could have both input and output values of these maps be 1. Worse, since the

transformation function is typically downstream of the analysis function, partial evalua-

tion of the transformation function may have to proceed under the worst-case assumption

that map l has value 1.

A standard strategy in this situation is to perform “sufficient widening” instead of

maximal widening. The value to widen to is typically picked using a heuristic parameter-

ized by the sequence of values seen so far for arguments and results. Intuitively, these

strategies observe the sequence of values so far and tries to guess their lower bound. Ide-

ally, such a strategy would guess the greatest lower bound (g.l.b.) of the sequence. Com-

puting the g.l.b. is, in general, undecidable. Most sufficient-widening strategies, therefore,

are iterative: after an initial number n1 of steps, they guess a lower bound based on the val-

162
ues seen so far. If, after some number n2 > n1 of steps, the series of values has not con-

verged, they guess another one, and so on. Finally, for some bounded integer k, if the

series has not converged after k steps, they revert to the maximal widening strategy.

6.3.3 Widening in SCF

Figure 6.30 shows how the widening strategy is implemented in SCF. In particular, SCF

uses k=2, and n1 and n2 are fixed before the partial evaluator executes; the typical values

used by SCF are 10 and 11 respectively (lines 4 and 5 of the figure).

The widening function, widen (lines 7-12), takes as argument the abstract value v to

be widened, the number n of times the value has been widened (including the current

instance), and the finiteness pattern fp for the value. If the maximal widening threshold

has been reached, if the incoming value is already 1, no widening is performed (line 9),

otherwise, the result returned is the maximally widened value 1. If only the sufficient wid-

ening threshold is reached, but not the maximal threshold, then the function widen’ is

invoked (line 10) to achieve sufficient widening of non-finite components. Below the suf-

ficient-widening threshold, no widening is performed (line 12).

The widen’ function essentially traverses the abstract value and the corresponding

finiteness pattern, widening each sub-value with respect to each sub-pattern.

•The base case for widening is the replacement of infinite alt and fix values with 1 (line

29-30). For instance, given non-finite value 2|3, the result of widening would be 1.

•On the other hand, if an abstract value is known to be finite, then it is not widened, for

reasons discussed above (lines 14-15).

•Widening of tuple values whose finiteness is represented by a tuple finiteness-pattern

happens component-wise (lines 21-24, and 48-49). For example, widening (12|78, 2|3)

given finiteness pattern (F, I) will result in abstract value (12|78, 1). If the pattern were

(I, I), the result would be (1,1).

•Widening of infinite tuples results in each component of the tuple value being assumed

infinite, and therefore widened with respect to I (lines 17-20). List.enumerate(i, x)

163
structure Widening = struct
structure FA = FinitenessAnalysis
type widening_result = WIDENED of value | UNWIDENED
val n1 = ref 10
val n2 = ref 11

fun widen(v: value, n: int, fp: FA.FinitenessPattern): widening_result =
if n >= !n2 then //maximal widening

if v = bottom _ then UNWIDENED
else WIDENED (bottom (newId()))

else if n >= !n1 then widen’ (v, fp) //sufficient widening
else if n < !n1 then UNWIDENED //no widening yet

and widen’(v: value, FA.F: FA.FinitenessPattern) =
UNWIDENED

| widen’(bottom _: value, _) = UNWIDENED
| widen’(tuple(vs, _), fp as FA.I) =

case (widenTuple (vs, List.enumerate (List.length vs, fp))) of
SOME vs => WIDENED vs

| NONE => UNWIDENED
| widen’(tuple(vs, _), |(fps)|) =

case (widenTuple (vs, fps)) of
SOME vs => WIDENED (tuple(vs, newId()))

| NONE => UNWIDENED
| widen’(tagVal(c,v,_), _) =

case widen’ (v,FA.I) of
WIDENED v’ => WIDENED tagVal(c,v’,newId())

| _ => UNWIDENED
| widen’(alt(vs,_), _) = WIDENED (bottom(newId()))
| widen’(fix(v,_), fp) = WIDENED (bottom(newId()))
| widen’ (map(must uus, may vvs, _) =

case (widenMap uus, widenMap vvs) of
(NONE, NONE) => UNWIDENED

| (SOME uus’, NONE) => WIDENED(map(must uus’, may vvs, newId()))
| (NONE, SOME vvs’) => WIDENED(map(must uus, may vvs’, newId()))
| (SOME uus’, SOME vvs’) => WIDENED(map(must uus’, may vvs’, newId()))

| widen’ (v, _) = UNWIDENED

and widenMap (vvs: (value * value) list): (value * value) list option =
let uus = //replace each (v,v’) in vvs with (u, u’), where u and u’ result from widening v and v’

 isWidened= //true if any u, u’ above actually required widening
 uus’ = //sort tuples (u,u’) in uus’ by u;

//replace maximal sub-sequences (u,u’1),...,(u,u’n) with (u, meet u’1,...,u’n)
in if isWidened then SOME uus’

else NONE
end

and widenTuple(vs:value list, fps: FA.FinitenessPattern list): (value list) option =
... widen vi w.r.t. fpi to get ui; if no ui is widened, return NONE else SOME us ...

end //structure Widening

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

FIGURE 6.30: Widening in SCF.

164
constructs a list of length i with all elements set to x. Widening (12|78, 2|3) results in

value (1, 1).

•Since finiteness patterns do not currently model the internals of tagged values in detail,

any time we widen an infinite tagged value, all we know is that the entire value may be

infinite (i.e., has finiteness pattern I). We therefore widen all sub-components of the value

assuming they are infinite (line 26).

•Maps consist of two sorted lists of pairs of abstract values. Widening a map (lines 31-36)

consists of traversing the lists, widening each abstract value in a pair. We then re-sort the

resulting lists by the domain values of the pairs. Any time a list thus sorted has a series

of values (u, u1’), ... , (u, un’), i.e., pairs with duplicate keys, we replace the whole set

with the single pair (u, meet(u1’,...,un’)).

•In every case where widening of sub-components is attempted, if no sub-component

actually needs widening, the entire value is deemed not to need widening (lines 20, 24,

28, 33).

When applied to the example of figure 6.29, the widening strategy avoids the need for an

unbounded number of rows. In particular, invocation 10 will trigger widening and produce

the following values for (v, l, v’, l’): (must[x->1], (must[0->0], may[8->1]), must[x->1],

(must[0->0], may[8->1])). Invocation 11 will again result in widening being triggered,

and the same maps being generated. Since the old and new values are the same, the partial

evaluator can avoid re-analysis of the contour (line 36 of figure 4.4), and therefore any of

the callee contours. Partial evaluation will therefore terminate with the above relatively

accurate widened values of the map.

6.4 Rematerialization Strategy

The central benefit of partial evaluation comes from replacing expressions that compute

constant values with simpler residual expressions that compute the same value, much like

a traditional constant propagation optimization. In SCF, the decision of when to perform

the replacement and what expression to replace with is made by the rematerialization

strategy.

165
All rematerialization strategies used in SCF conform to the

REMATERIALIZATION_STRATEGY signature of figure 6.31. The signature requires three

functions:

1.A reset function invoked before partial evaluation commences (see line 10 of figure 4.4

to understand precisely where SCF invokes it), which lets the conforming module reset

data structures that need initialization before the partial evaluator is used.

2.A postProcess function that takes as input the program resulting from partial

evaluation and returns the program that results from performing any rematerialization-

related post-processing on this program. This function is invoked at line 17 of figure

4.4.

3.A rematerialize function that takes as input an expression and an abstract value for that

expression, and returns a residual version of the expression.

SCF supports two rematerialization strategies. The simpler and more conventional one

(figure 6.33(a)), which we call scalar rematerialization, is identical to that used by the tra-

ditional constant propagation optimization. Any expression that evaluates to a singleton

scalar (i.e., integers, characters, booleans and strings; in general any value that can be gen-

erated by a literal expression in SCF-ML) is replaced by the SCF-ML literal that evaluates

to that scalar (lines 3-7 of the figure). For instance, given expression x+1 and abstract

value Int 17, the rematerialized expression will simply be the literal 17.

SCF also provides a more aggressive rematerialization strategy that allows remateri-

alization of non-scalars. The complication with rematerialization of non-scalars is that it is

possible for the rematerialized expression to be more expensive to compute than the origi-

nal version. Consider, for instance, partially evaluating expression x in an environment

where x is bound to the non-scalar singleton abstract value cons(1, cons(3, cons(232,

signature REMATERIALIZATION_STRATEGY = sig
val reset :unit -> unit

val postProcess :SCF_ML.program -> SCF_ML.program

val rematerialize :SCF_ML.expr * AbstractValue.value -> SCF_ML.expr
end

1
2
3
4
5
6
7

FIGURE 6.31: Signature Required of the Rematerialization Strategy Module.

166
nil))). If x is replaced by the residual expression cons(1, cons(3,

cons(232,nil))), the replacement would have the effect of slowing the program

down. On the other hand, we saw in section 6.1.3 that rematerializing non-scalars is some-

times profitable.

The challenge in rematerialization of non-scalars is therefore to find a replacement

expression that is guaranteed to cost less than the original one to compute. SCF has a sim-

ple technique that enables it to make this guarantee for any expression e that has a single-

ton constant value v. The technique is outlined in figure 6.33. Let ev be the constant

expression that evaluates to v. Then SCF replaces e with a variable (of the form

__rematVar__i where i is an integer), and inserts the binding __rematVar__i =

ev at the top level of the program. We call the inserted variables rematerialization vari-

ables. In the actual implementation, SCF generates the variable (line 6 of the figure), and

stores the binding between the variable and the residual expression in a rematerialization

map (lines 7 and 8). When the postProcess() function is called on the program (after par-

tial evaluation is completed), SCF examines the body of the program to determine all

rematerialization variables actually referenced, and prepends the program with bindings

between these variables and the corresponding rematerialization expressions. When a

rematerializable expression is a sub-expression of a larger rematerializable expression, the

FIGURE 6.32: Scalar Rematerialization.

structure RematStrategy = struct
(* Replace singleton scalars by the literal expressions that generate them *)
fun rematerialize(e: SCF_ML.expr, v: AbstractValue.value): SCF_ML.expr =

if AbstractValue.isSingleton v andalso AbstractValue.isScalar v then genLiteral v else e

and genLiteral (v: value):SCF_ML.expr =
... for the single concrete value s in v, return the SCF_ML literal that evaluates to s...

and reset() = ()

and postProcess(p: SCF_ML.program): SCF_ML.program= p

end //structure RematStrategy

1
2
3
4
5
6
7
8
9
10
11
12
13

167
rematerialization variable for the former is subsumed by the one for the latter. SCF’s check

to see if rematerialization variables are actually referenced is designed to avoid adding

bindings to such variables.

Figure 6.34 shows how SCF-style non-scalar rematerialization could work when the

dead assignment elimination optimization of figure 3.7 is partially evaluated. Consider the

case where the function being optimized has the compound statement x =21 y + z;22

return23 x. Figure 6.34(a) shows the transformation functions corresponding to each

of the commands (function transformCmd_21 is responsible for transforming the

command labeled 21 and so on), in the absence of non-scalar rematerialization. Since

command 21 (the assignment to x) is live in the above fragment (since the succeeding

command uses x), we expect transformCmd_21 to return the command unchanged

(line 12, figure 6.34(a)). However, since the returned value is not a scalar, the scalar rema-

terialization strategy cannot rematerialize away the function call, even though the returned

value has a constant value.1 When non-scalar rematerialization is enabled, the function

1.In this particular case, the call can be eliminated by a conventional optimization, i.e., inlining, but this is generally not
the case.

structure RematStrategy = struct
val rematMap = ref VarNameToExpMap.empty : (VarNameToExpMap.map ref)

fun rematerialize(e: SCF_ML.expr, v: AbstractValue.value): SCF_ML.expr =
if AbstractValue.isSingleton v then

let vName = genNewVarName() //vars have unique prefix __rematVar__
 exp = (* build an expression that generates value v*)

 rematMap := (!rematMap.insert(vName,exp)
in SCF_ML.var(vName) end

else (e,v)

and reset() = (rematMap : = VarNameToExpMap.empty)

and postProcess(p: program) =
...for each module m in p

for each variable v in m of the form __rematVar__*
let SOME exp = VarNameToExpMap.find(rematMap,v)
in prepend the binding val v = exp to m end...

end //structure RematStrategy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

FIGURE 6.33: Non-Scalar Rematerialization.

168
call can be replaced by a rematerialization variable (__rematVar__732 on line 15 of

figure 6.34(b)), provided the variable is initialized with the appropriate constant value

(lines 4-7 of the figure).

Since the non-scalar rematerialization strategy replaces each eligible expression with

a single variable, it may seem that the strategy guarantees that the run-time overhead asso-

ciated with the rematerialized expression is guaranteed to be no more than that of the orig-

inal expression. However, if we take into account the cost of initializing the

rematerialization variable, it is no longer clear that the cost of the rematerialized expres-

sion outweighs its benefit. Consider the example of figure 6.34. The original expression in

FIGURE 6.34: Example: SCF-Style Non-Scalar Rematerialization.
(a) Result of partial evaluation with scalar rematerialization (b) Result of partial evaluation with non-scalar

rematerialization

structure DAE = struct
...

fun optimize(f:fun):fun =
transformFun(f, analyzeFun(f))

...
and transformCmd_22(c:cmd, assigns:assign_map):cmd =
...
| seq(c, c’, lbl) =>

seq(transformCmd_21(c,aMap),transformCmd_23(c’,aMap),lbl)
...
and transformCmd_21(c, a) = c
...
end (* structure DAE *)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

structure DAE = struct
...
val __rematVar__732 =
assign(var(“x”, label 15),

primop(op_add,exprs(var(“y”, label 16),
exprs(var(“z”, label 17),
expr_none(label 18), label 19)), label 20), label 21)

fun optimize(f:fun):fun =
transformFun(f, analyzeFun(f))

...
and transformCmd_22(c:cmd, assigns:assign_map):cmd =
...
| seq(c, c’, lbl) =>

seq(__rematVar__732,transformCmd_23(c’,aMap),lbl)
...
end (* structure DAE*)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

 (a)

 (b)

169
this case is the call to function transformCmd_21 on line 10 of figure (a). The cost

associated with the function call is essentially that of jumping to the location of the func-

tion and returning from the location (since the function just returns one of its arguments).

With a naive implementation of SCF-ML, the result of rematerialization (figure (b)), on

the other hand, has to pay the cost of executing the initializer expression of lines 4-7 at

module load time. Note that this expression is substantially more complicated than a

jump-and-return sequence. If we associate this cost with the rematerialization variable,

therefore, it is possible that the rematerialized version costs more at run-time than the orig-

inal version.

A solution to this problem is to implement the SCF-ML language so that all constant

expressions are evaluated at compile time, and generated into the text segment of the pro-

gram. The only significant cost at module load time, therefore, is to page in the text seg-

ment from disk, and this can be done in parallel with the execution of the program as a

whole. David Tarditi’s dissertation [67] discusses in detail how to implement this optimi-

zation in a compiler for Standard ML. In this work, we do not actually implement this

optimization. Rather, when evaluating the performance of non-scalar rematerialization, we

simulate this effect by executing each module we load a large number of times, so that the

one-time module-load-time cost is insignificant relative to execution cost.

6.5 Summary and Related Work

We have described a set of techniques, which we collectively call improvement strategies,

that are essential for effective partial evaluation of optimization programs in SCF. For

each technique, we give examples to show why the technique is necessary for the task of

partially evaluating optimizations, and describe algorithms that are suitable for the task.

The strategies discussed in this chapter are instances of corresponding techniques that

have long been advocated for improving partial evaluation (and program analysis in gen-

eral). Below, we describe how the techniques of this section relate to existing work.

170
6.5.1 Specialization

Specialization, i.e., the replication of code (whether at the function granularity, which we

call “function specialization”, or at the expression granularity, which we call “expression

specialization”) for different analysis contexts, is a standard technique in partial evalua-

tion [30, 56], whole program optimization in general [60, 25, 20] and intraprocedural opti-

mization [41, 19].

When the domain of analysis is unbounded in size, a known problem with function

specialization is termination: the number of different analysis contexts may not be

bounded at analysis time, so that the analysis may seek to generate and analyze an

unbounded number of code replicas. The standard solution to this problem is to either

model the domain of the analysis so that it is finite, or to bound a priori the number of con-

texts the analysis is allowed to consider. In partial evaluation, it is often useful to consider

(at least) the typically infinite domain of concrete values with full precision. Further, typi-

cal applications (such as specializing interpreters) depend in practice on producing a num-

ber of specialized replicas for which no a priori bound is known. The standard techniques

mentioned above are therefore insufficient.

Finiteness analysis [28, 23, 37, 36], which identifies “finite” function parameters, i.e.,

those that are guaranteed to take on a finite set of values during concrete execution, is

intended to handle both infinite domains and the lack of a priori bounds on number of spe-

cializations. The underlying idea behind this technique is that if there exists some well-

founded partial order on the domain of values over which the programs in a language exe-

cute, and some “reducing” operations O in the language that are guaranteed to produce

outputs that are less than their inputs as per this order, then any parameter that is computed

from the program input purely by a chain of reducing operations is finite. It is impossible

for the parameter to be computed by an infinite sequence of reducing operations since the

corresponding sequence of values produces by the operations is bounded from below.

The finiteness analysis of SCF is strongly inspired by those mentioned above, with

the key difference that it is aimed at detecting parameters finite under abstract execution

rather than concrete execution. The above finiteness analyses are aimed at offline partial

evaluation where the fully concrete values of one or more parameters of the program are

171
known at specialization time; partial evaluation consists essentially of fully concrete exe-

cution based on just these inputs. In SCF however, the domain of values we have to handle

is the abstract value domain (including, in particular, fix values), and the potentially infi-

nite chains of operations we are interested in are abstract projection operations. However,

because applying a sequence of abstract projection operations to fix abstract values can

produce the original fix value, we cannot use the fact that the operations strictly “reduce”

their input values. Instead we use the requirement that if v is the input value to the chain of

operations, all operations in the chain must produce values that are in a finite set derivable

from v.

Expression specialization, which replicates a program point for different statically

computed environments, has a long history as “the trick” for enabling polyvariant special-

ization under dynamic control in partial evaluation [30, 16, 24], and as a mechanism for

converting higher-order calls to functions to first-order calls (or inlined expressions) in

functional [55, 44, 61] and object-oriented [10, 18] languages. SCF shares the general

emphasis of most of these systems on obtaining as precise a representation as possible for

the set of possible environments at a particular program point, and on ensuring that the

tests inserted to distinguish between concrete contexts are not too cumbersome. However,

the abstract domain used by SCF is considerably more expressive than those used by these

systems, so deciding on the abstract environments to split into is potentially a more com-

plex task. Further, the concrete values to be distinguished have a different structure (they

are arbitrary ML values, as opposed to tuples of class variables, for instance), so the pat-

terns inserted to distinguish between them have to be computed differently (they are ML

patterns, as opposed to sets of class-variable tests).

6.5.2 Widening

Widening of abstract stores has long [54, 34, 15] been recognized as necessary for termi-

nation in the presence of infinitely tall lattices. However, the particular technique used has

depended on the domain of the abstract analysis, and on the particular aspects of the

domain to be represented with maximum accuracy. Representing sets of maps precisely is

especially important in the abstract analysis of compilers. SCF takes special care, there-

fore, to preserve accuracy in maps while widening.

172
6.5.3 Rematerialization

The non-scalar rematerialization problem, i.e., that of deciding where to place code com-

puting constant values without increasing the running-time of the program being special-

ized, is a special case of the problem of placing residual expressions to eliminate

redundancy. In general, the problem may be formulated as that of performing partial

redundancy elimination [35, 9] on the residual code produced by the partial evaluator.

Ruf [56], for instance, describes a two-step online partial evaluation scheme, where a

program is first partially evaluated with the residual code represented as dataflow graphs

which use multiple references to a single graph node to represent common sub-expres-

sions. A separate code-generation step then generates code for the nodes at a point domi-

nating their use in order to avoid redundant recomputation. Since SCF only rematerializes

constant computations, it is safe (and simple) to hoist these computations to the top level

of the program. Hoisting is potentially inefficient, since many of these code fragments

may not need to be computed in a given run of the residual program. However, the trick

borrowed from Tarditi [67] of “compiling” the constant fragments into the text segment

allows SCF to avoid the direct cost of unnecessary computation (although if the text seg-

ment gets too large, there may be indirect cost in terms of unfavorable memory usage pat-

terns).

173
7. Dead-Store Elimination

As discussed in section 3.3, the residualized code produced by partial evaluation contains

many store operations that are dead, i.e., some parts of data structures built up in the resid-

ual code are not actually used. SCF contains an optimization, called dead-store elimina-

tion (DSE), to delete these operations. In this chapter, we describe how this optimization

works.

DSE may be viewed as a generalization of traditional dead-assignment elimination,

which typically eliminates assignments to variables. In addition to avoiding assignments

to dead variables, DSE also eliminates stores to fields of non-scalar, possibly recursive,

data structures. Previous work [40, 53] has investigated how to generalize dead-assign-

ment elimination in this manner, and SCF adapts some of these techniques, in particular

the representation of the abstract stores using a form of context-free grammars called live-

ness patterns. The novelty of DSE is its special machinery to avoid a particularly common

and expensive class of store operations that pervade partially evaluated optimization pro-

grams: insertions to the map data structures that represent the abstract store used by the

optimization. Previous work has discussed general techniques to eliminate dead stores into

recursive structures, but these techniques prove to be ineffective in handling this important

class of stores in practice.

To help understand the problem with stores to maps, figure 7.1 below reproduces the

example from section 3.3 that shows a partially evaluated version of dead-assignment

elimination1. As previously discussed, partial evaluation results in specialized versions of

...
and analyzeCmd3 (c, lSet, aMap) =
case c of
assign(v, e, l) =>

let val lv = live
in (analyzeExpr(e, LiveSet.delete(lSet, v)),

AssignMap.insert(aMap, 3, live))
end

...

and transformCmd3 (c, aMap) =
case c of
assign(v, e, lbl) =>
c

1
2
3
4
5
6
7
8
9
10
11
12
13
14

FIGURE 7.1: Analysis and Transformation Functions After Partial Evaluation.

174
the analyzeCmd and transformCmd functions. In principle, the specialized analysis

function analyzeCmd3 analyzes a command and updates the part of the abstract store

(represented by the map aMap) related to this command. The specialized transformation

function transformCmd3 reads this same part of the abstract store and produces a

transformed version of the command. In figure 7.1, however transformCmd3 clearly

does not read the abstract store map aMap even though the analyzeCmd3 function

writes the map (on line 7). This is a common situation, and one we seek to exploit: the part

of the transformation function that reads the abstract store is folded away by the partial

evaluator because the read is guaranteed to return a single fixed value (the value live in

this case). The corresponding write to the abstract map is therefore unnecessary, and can

be eliminated. Since updates of the abstract store are typically the most expensive part of

what an optimization does, eliminating a significant number of such writes can result in

big savings.

The eliminator is structured as a backwards whole-program abstract interpretation. In

section 7.1 below, we discuss the structure and meaning of liveness patterns, the domain

over which the abstract interpretation takes place. In section 7.2, we present the analysis

itself. Section 7.3 discusses related work.

7.1 Liveness Patterns: The Domain of Abstract Interpretation

Traditional dead-assignment elimination (DAE) analyses abstract the store as a mapping

from variables defined in the program to liveness values, i.e., either live or dead. If the

abstract store maps variable x to value dead at a particular program point, the implication

is that for all concrete traces of the program, the store location associated with variable x is

guaranteed not to be read downstream. A value of live would imply that the store location

may be read downstream. Traditional implementations of DAE represent the mapping

from variables to liveness values as a set of live variables: a variable is in the live-vari-

ables set if and only if it would map to the value live in the abstract store map.

Traditional versions of DAE do not seek to model non-scalar values with much accu-

racy. In SCF, however, we are quite interested in avoiding stores to fields of non-scalars.

1.Note that we are applying partial evaluation and dead-store elimination to the dead-assignment elimination
optimization, i.e., the program being optimized is itself an optimizer.

175
In particular, as mentioned above, we wish to avoid map insert operations, and AST sub-

tree composition operations. SCF therefore models fields of non-scalar values (and maps

in particular) in much more detail than a traditional DAE. Just as DAE uses sets of live

variables to represent the abstract store, DSE uses sets of live fields to provide a more

detailed abstraction of the store.

Figure 7.2 illustrates the difference between the DSE and DAE. Figure 7.2(a) speci-

fies a function foo, some sub-computations of which are dead. In particular, note that the

binding of variable x3 on line 4 is dead, since x3 is not used downstream. As shown in

figure 7.2(b), DAE is able to identify and eliminate this dead binding. On the left of the

figure, we show the set of live variables computed (in the traditional backward pass) by

fun foo x0=
let x1 = x0+1

x2 = x0*10
x3 = x0-2
x4 = (x1, x2)

in case x4 of (x5, _) =>
x5

end

1
2
3
4
5
6
7
8

FIGURE 7.2: Scalar vs. Non-Scalar Dead-Store Elimination.
(a) Candidate for dead-store elimination (b) Applying dead assignment elimination to foo. Live variables (left) and
optimized function (right) (c) Applying dead-store elimination to foo. Live fields (left) and optimized function

(right).

(a)

{x0}
{x0, x1}
{x0, x1, x2}
{x1, x2}
{x4}
{x5}
{return_val}

1
2
3
4
5
6
7
8

fun foo x0=
let x1 = x0+1

x2 = x0*10
x3 = x0-2
x4 = (x1, x2)

in case x4 of (x5, _) =>
x5

end

1
2
3
4
5
6
7
8

{x0}
{x0, x1}
{x0, x1}
{x1}
{x4-1}
{x5}
{return_val}

1
2
3
4
5
6
7
8

fun foo x0=
let x1 = x0+1

x2 = x0*10
x3 = x0-2
x4 = (x1, 0)

in case x4 of (x5, _) =>
x5

end

1
2
3
4
5
6
7
8

(b)

(c)

176
DAE at corresponding points in foo. For instance, the analysis computes that at the pro-

gram point preceding line 5 of foo, x1 and x2 are the only live variables. The two vari-

ables are deemed live since they are fields of x4, which is used on line 6. DAE is unable

to track the fact that only the first field of x4 is used on line 6, so that the store of x2 into

the second field does not imply that x2 is used downstream and therefore live. Figure

7.2(c), shows how a DSE optimization may represent and exploit the partial liveness of

x4. The key difference in representation is that DSE reasons about the liveness of fields of

values represented by variables as opposed to variables, and as shown on line 6, has a way

to represent the fact that only the first field of x4 is live (using notation x4-1). The key

benefit, of course, is that variable x2 is now seen to be dead at line 5, so that its binding

(on line 3) may be eliminated in addition to that of x2 (on line 4).

SCF represents sets of live fields indirectly using a representation called liveness pat-

terns. In what follows, we first introduce field projectors, a representation for individual

fields of SCF-ML values, and then describe an interpretation of liveness patterns as sets of

field projectors.

7.1.1 Field Projectors

In figure 7.2(c), we used (without formally defining) the notation x4-1 to represent the

first field of the tuple-value represented by x4. We now define precisely a notation for

representing arbitrary fields of non-scalar values of interest to SCF.

Figure 7.3 specifies the syntax and semantics of field projectors, along with exam-

ples. As per figure 7.3(a), there are four kinds of fields we specify; as per figure 7.3(b), the

field represented by a projector may be understood in terms of the result of applying the

projector to an incoming concrete value. The identity field (line 1) of a value is the value

itself. The projector c-1 ι (line 2) represents the c-variant of a value, with the tag-label

stripped. For instance, if some variable has values cons(23, nil) and nil, the field repre-

sented by projector cons-1 ι will have values (23, nil) and undefined respectively. The pro-

jector ι -i (line 3) represents the i’th field of a tuple value. For instance if a variable has

value (23, nil), the field ι -2 will have value nil. Finally, the projector ι[h] represents the

map value corresponding to map key h. For instance, given variable with value [(“bar”,

177
1), (“foo”, 7)] (a map represented as an association list), the field ι [“foo”] will have

value 7.

Field projectors can be combined, i.e., fields are allowed to have their own fields. Fig-

ure 7.3(c) shows examples of compound field projectors. Line 4, for instance, shows a

field projector that represents the first field of the map entry corresponding to key var “x”.

In what follows, we will sometimes abbreviate “field projector” as “field”.

7.1.2 Liveness Patterns: Syntax and Semantics

In the previous section, we presented a representation for individual fields of SCF-ML

values. DSE represents a set of fields at each program point, so that any store operation

that writes to a field not in this set may be eliminated. SCF-ML uses a representation

called liveness patterns (LP’s) to represent sets of fields. We use this special representation

for sets of fields (rather than simply placing field projectors in a conventional set data

structure) because the LP’s provide a more compact and readable alternative.

Figure 7.4(a) specifies the syntax of LP’s. Figure 7.4(b) specifies the translation func-

tion τ that maps a LP to the set of field projectors represented by it. Finally, figure 7.4(c)

shows some example LP’s and the set of fields they represent.

f ∈ FieldProjector (Π) ::= ι //Identity field
| c-1 f //Constructor field
| f-i //Tuple field
| f[h] //Map field

h ∈ Herbrand Universe //SCF-ML concrete values (sec 3.2.2.1)

1
2
3
4
5

FIGURE 7.3: Syntax and Semantics of Field Projectors.
(a) Syntax (b) Semantics (c) Examples: Applying field projectors.

(a)

ι h = h //Identity projection
(c-1 f) (c h) = f h //Project constructor bodies
(f-i) (h1,…,hi,…,hn) = f hi //Project tuple elements
(f[hi]) [(h1,h’1),…,(hi,h’i)…,(hn,h’n)]= f h’i //Project map elements

1
2
3
4

(b)

(cons-1 ι) (cons(1, cons(2, nil))) = (1, cons(2, nil))

(cons-1 ι−2) (cons(1, cons(2, nil))) = cons(2, nil)

(cons-1 (cons-1 ι−1)−2) (cons(1, cons(2, nil))) = 2

(const-1 ι[var “x”]) ([(var “x”, const 1), (var “y”, non-const)]) = 1

1

2

3

4

(c)

178
The LP L (short for Live) stands for the set Π of all possible field projectors (line 1 of

figure 7.4(b)). If a value if designated live, then it and any of its fields may be read by a

downstream computation. The LP D (short for Dead) stands for the empty set of field pro-

jectors (line 2): if a value is designated dead, it is guaranteed that none of its fields will be

read downstream. The set of fields represented by a product liveness pattern (line 3) is the

union of the set of fields represented by the components of the product.1 The set of fields

represented by a sum pattern (line 4) is the union of the fields represented by its sum-

mands. A detail is that if c l is a summand, the field c-1 ι is a field represented by the sum,

regardless of whether l is dead: a downstream computation may check the tag on a tagged

1.In what follows, we write patterns of the form c() as c.

l ∈ LivenessPattern::= L //live pattern
| D //dead pattern
| (l1,…,ln) //product pattern
| c1 l1 |…| cn ln //sum pattern

s.t. ci ≠ cj if i ≠ j
| [v, l] //map pattern

v ∈ AbsValue //SCF-ML abstract values (sec 3.2.2.2)
c ∈ constructors = ConstructorName ∪ Int ∪ Bool ∪ String

1
2
3
4
5
6
7
8
9

FIGURE 7.4: Syntax and Semantics of Liveness Patterns (LP’s).
(a) Syntax (b) Semantics translating from liveness patterns to sets of field projectors (c) Examples: Sets of field

projectors represented by liveness patterns.

(a)

τ : LivenessPattern -> 2FieldProjector

τ L = Π
τ D = {}
τ (l1,…,li,…,ln) = ∪i=1…n {fi

-i| li ≠ D ∧ fi ∈ τ li}
τ (c1 l1|…|ci li|…|cn ln) = ∪i=1…n {ci

-1 fi | fi ∈ {ι} ∪ τ li}
τ [v, l] = {f[h]| h ∈ v ∧ f ∈ {ι} ∪ τ l}

1
2
3
4
5

(b)

τ(D, D) = {}
τ(D, cons D) = {(cons-1 ι)-2}
τ(D, nil) = {(nil-1 ι)-2}
τ(D, unary D | binary D) = {(unary-1 ι)-2,(binary-1 ι)-2}
τ(D, L) = {f-2| f ∈ Π}
τ([Int 1| Int 21| Int 1332, const D])= {const-1[Int i]|i ∈ {1,21,1332}} ∪

{ι[Int i]|i ∈{1,21,1332}}
τ(uni(uni(uni D | bin D)))) = {uni-1 uni-1 uni-1 ι,

uni-1 uni-1 bin-1 ι}

1
2
3
4
5
6
7
8
9

(c)

179
value without inspecting its components. Finally, a map pattern, which is a pair of an

abstract value v representing the domain of the map and a LP l representing the range of

the map, represents the set of fields corresponding to indexing incoming maps with keys

from v, and those derived from accessing the fields corresponding to l of the resulting val-

ues.

Figure 7.4(c) gives examples of liveness patterns, and the sets of fields they corre-

spond to. A product pattern whose components are dead (line 1) represents the empty set

of fields. A subtle point here is that we could make this pattern represent the set {ι}, i.e.,

we may want to account for the case where although the fields of a tuple value are not

read, the structure itself is significant. However, the typing discipline of ML makes it

unnecessary to distinguish this case. If a value has a product type, then the number of

fields and their types are fixed statically; there is no need for a dynamic check to confirm

this, so that the structure of a tuple by itself is never interrogated in an SCF-ML program.

As per line 3 of figure 7.4(c), zeroary patterns (such as nil) have interpretations as

fields. Line 5 shows a product LP whose second component is L: the LP translates to the

set of fields all of which are second components of a tuple, but internally may have any

possible structure. Line 8 gives a simple example of why the LP representation is more

compact than that of explicitly maintaining a set of fields: the LP, because it is essentially

a grammar as opposed to an enumeration, is able to factor the prefix uni(uni(...))

of the fields.

7.1.3 The Lattice of Liveness Patterns

The LP’s of the previous section form a lattice under the partial order ≤ (read “is less dead

than”) defined in figure 7.5(a). It is straightforward to verify l ≤ l’ iff τ l ⊇ τ l’, i.e., a live-

ness pattern is less dead than another if the set of fields it represents contains the set of

fields represented by the other.

Figure 7.5(b) specifies a meet function M over this lattice. The meet function is sym-

metric in its arguments (line 11). It approximates conservatively the greatest lower bound

(g.l.b.) for this lattice, in the sense that M(l1, l2) ≤ g.l.b.(l1, l2). Equivalently (since set

union is the g.l.b. function over the lattice of the set under ordering ⊇), τ M(l1, l2) ⊇ τ l1 ∪

180
τ l2: the set of fields represented by the meet of two LP’s contains the union of the sets rep-

resented by the LP’s individually.

An inconvenient aspect of the lattice is that its height is not bounded. The lattice

includes descending chains such as L < ... c c c D < c c D < c D < D. Furthermore, it is

possible to generate such an unbounded sequence of liveness values during DSE. From the

point of view of the dataflow analysis that uses the lattice, this unboundedness implies that

the analysis will have to use a widening function, much as the partial evaluator did for the

abstract value lattice in chapter 6. We present the widening function used by SCF in the

next section.

7.1.4 Helper Functions

Figure 7.6 specifies the liveness pattern module. In addition to the LP datatype and the

meet function, the module contains four auxiliary functions that operate on liveness pat-

terns. Two of these functions are defined in figure 7.6, the other two in figures 7.7 and 7.8.

The first helper function is widen (lines 5-11 of figure 7.6), which takes two LP’s lnew

and lold and returns a third pattern lres. If DSE has analyzed a program point n1 (typically n

FIGURE 7.5: The Lattice of Liveness Patterns.
(a) The partial order “is less dead than” on the LP domain (b) The meet function M on LP’s.

L ≤ l ≤ D
(l1,…,ln)≤ (l’1,…,l’n) ⇔ ∀ i ∈ 1… n. li ≤ l’i
c l ≤ c l’ ⇔ l ≤ l’
l1 |…|ln ≤ l’1|…| l’m ⇔ ∀ j∈ 1… m. ∃ i∈ 1… n. li ≤ l’j
[v, l] ≤ [v’, l’] ⇔ v’⊆ v ∧ l ≤ l’

(a)

M L l = L
M D l = l
M (l1,…, ln) (l’1,…l’n) = (M l1 l’1,…,M ln l’n)
M (c11 l1|…|c1m ln) (c21 l1|…|c2n l2n)= c31 l31|…|c3p l31

 s.t. c3i ∈ {c11,…,c1m,c21,…,c2n}∧
 (c3i = c1j = c2k) ⇒l3i = M l1j l2k∧
 (c3i = c1j ≠ c2k) ⇒l3i = l1j∧
 (c3i = c2k ≠ c1j) ⇒l3i = l2k

M (l1[v1]) (l2[v2]) = (M l1 l2)
[AbstractValue.meet(v1,v2)]

M l1 l2 = M l2 l1

(b)

1
2
3
4
5

1

2

3

4

5

6

7

8

9

10

11

181
= 10 in SCF) times, the widen function will be invoked on the LP computed for that pro-

gram point on every subsequent analysis of the program point. LP’s lnew and lold are pro-

duced by two successive iterations of the fixpoint loop at a particular program point; lnew

is the latest pattern, and lold the penultimate one.

The widening function satisfies the criterion that after the widening threshold is

crossed, the LP associated with a program point will change at most once. It is impossible,

therefore, for the LP associated with any program point in the program to descend indefi-

nitely down an unbounded chain in the lattice, and (as long as the flow functions are

monotonic w.r.t. to the LP lattice), the dataflow analysis performed by DSE is guaranteed

to converge.

A simple way to accomplish the criterion above would be for widen to return L: fun

widen(l,l’)= if equal(l,l’) then l else L. This simple strategy is too conservative. In partic-

ular, recall from the example of figure 7.1 that a key task of DSE is to eliminate dead

writes to the map(s) representing the abstract store in the optimization being analyzed. In

1.We call n the widening threshold.

structure LPModule =
type LP = //see definition of LivenessPattern in figure 7.4(a)
fun meet(lp:LP, lp:LP):LP = //see definition of meet function M in figure 7.5(b),

and widen(L:LP, _:LP):LP = L
| widen(|(lsnew)|, |(lsold)|) = let ls’ = ListPair.map widen (lsnew,lsold) in |(ls)| end
| widen([v, l], [v’, l’]) =

let v’’ = if AV.mustBeEqual(v,v’) then v else AV.bot(mkNewId())
l’’ = widen(l,l’)

in [v’’, l’’] end
| widen(l, l’) = if identical(l,l’) then l else L

and makeLPFromPattern: (SCF_ML.pattern * LPMap.map -> LP)
//see figure 7.7

and makeLPFromAbstValue(AV.bot _: value):value =
//see figure 7.8

and projectVariant(s:string, |c1 l1 |...|cn ln|) = if s = ci then SOME li else NONE

and identical(l:LP, l’:LP):bool = //true iff l and l’ are structurally identical
end //LPModule

FIGURE 7.6: The Liveness Pattern Module.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

182
typical implementations of optimizations, these maps are threaded throughout the pro-

gram, typically as part of a tuple whose other element is the sub-tree of the AST being

optimized. Note, for instance that as per line 2 of figure 7.1, the argument of the ana-

lyzeCmd function is a tuple whose first element is the command c being analyzed, and

the remaining two arguments (lSet and aMap) are representations of the abstract store;

similarly, as per line 11, the argument of the transformCmd function is a tuple whose

first element is the command c being transformed, and the second is the map aMap repre-

senting the abstract store. To eliminate stores to these threaded maps in the face of widen-

ing, it is important that the widening function preserve detailed liveness information on

the threaded map(s).

Lines 6-10 of figure 7.6 show how SCF maintains non-trivial information about

threaded maps even in the face of widening. As per line 7, a tuple LP is widened by wid-

ening its individual components. If a threaded map is part of a tuple threaded through the

optimization, therefore, as long as the map LP within the tuple pattern is widened not-too-

conservatively, the LP for the map will be threaded back through the program. As per lines

7-10, a map LP is widened so that at least in the case that the LP computed by successive

rounds of analysis after the widening threshold remains unchanged, the map remains

unchanged. As per line 11, for all other LP’s, if the new LP is different from the old, the

entire LP is widened to L. Overall, the strategy has the effect that it drastically widens only

those components of the tuple LP being passed through that change across fixpointing

iterations.

The fourth helper function (line 35), projectVariant takes as argument a string s and a

sum liveness pattern l. It optionally returns the liveness pattern l’ such that s l is a sum-

mand of l’.

The second helper function, makeLPFromPattern (figure 7.7) takes as arguments an

SCF-ML pattern, and a liveness map from identifiers to liveness patterns, and returns a

liveness pattern that represents the set of live fields of any value matched by the pattern,

given the access patterns specified by the liveness map. Consider, for example, the pattern

cons(x,y) with the liveness map [x->L, y->(L,D), z->cons(L,L)]. The map implies that all

parts of variable x are live, and that the fields y-1 and y-2 are live and dead respectively.

183
Given these three pieces of information, we may conclude that for any value matching the

pattern, the fields cons-1 ι-1 and cons-1 (ι-1)-2 are live, i.e., that the fields denoted by the LP

cons(L,(L,D)) are live. In practice, replacing each identifier in the pattern with the LP

attributed to the identifier in the liveness map (line 2), and replacing all wildcard matches

with the LP D (line 1), yields the required result LP. The rest of the function (lines 3-8)

traverses the pattern looking for identifiers and wildcards to replace.

A slight complication arises when the pattern is a binding pattern of the form x as

<pattern>. Recall that SCF-ML allows case expressions such as case foo() of x

as cons(y, _) => y::x, which prepends the first element of a list to the list itself.

The complication is that if the pattern being matched in the previous paragraph were z as

cons(x,y) (with the same liveness map), then we know from the cons... part of the pattern

that the value being matched has LP cons(L,(L,D)) as before, but the identifier z implies

(since z has LP cons(L,L) in the map) that the value has LP cons(L,L). We combine the two

pieces of information by meeting the two LP’s (line 8) to get aggregate LP for the value, in

this case cons(L,L).

The third function, makeLPFromAV, takes an abstract value and returns a LP that rep-

resents (a superset of) the fields of each concrete value represented by that abstract value.

The LP returned has a structure very similar to that of the abstract value it represents. For

instance, the abstract value cons(3, cons(1, nil)) results in liveness pattern cons(3, cons(L,

nil)). Note that the abstract value 1 is turned into the liveness pattern L: since the former

represents the set of all possible values, the latter represents the set of all possible fields.

LP’s, however, are simpler in basic structure from abstract values in three basic ways, as

reflected in the corresponding lines of the function:

fun makeLPFromPattern(|_|: SCF_ML.pattern, lpm:LPMap.map):LP = LP.D
| makeLPFromPattern(|x|, lpm) = case LPMap.find(lpm,x) of SOME l => l | _ => LP.D
| makeLPFromPattern(|c|, _) =|c()|
| makeLPFromPattern(|c p|, lpm) = let l = makeLPFromPattern(p,lpm) in |c l| end
| makeLPFromPattern(|(ps)|, lpm) =

let ps’ = List.map (fn p => makeLPFromPattern(p, lpm)) ps in |(ps’)| end
| makeLPFromPattern(|x as p|, lpm) =

LP.meet(makeLPFromPattern(p, lpm), makeLPFromPattern(|x|, lpm))

FIGURE 7.7: The makeLPFromPattern Helper Function.

1
2
3
4
5
6
7
8

184
•It is possible for different alternates in alt abstract values to have the same constructor,

whereas the different alternates of a liveness pattern must have different constructors

(line 5 of figure 7.4(a)). For instance, cons (3, nil) | cons (4, nil) | nil is a valid abstract

value, whereas the LP that summarizes (a superset of) the fields represented by this

abstract value would be cons(3|4, nil) | nil. The conversion function therefore merges

alternates with the same tag (lines 5-6) before recursively processing the summand

abstract values (line 7).

•It is possible to have a recursive (fix) abstract value, whereas DSE provides no recursive

LP’s. The translation therefore conservatively attributes LP L to fix abstract values

(line 9): all fields of conforming concrete values are assumed live.

•Abstract map values have an associated list structure, whereas map LP’s are represented

by a pair. Abstract values seek to maintain the correlation between particular domain

and range elements of the map, whereas LP’s do not. DSE therefore first collapses the

domain and range of the incoming map into abstract values (line 11). These two val-

ues determine the domain and range respectively of the resulting map LP.

7.2 The Abstract Interpreter

The interprocedural part of DSE (not shown because it is a standard context-insensitive

widening-based worklist scheme) associates with every function being analyzed one LP

representing its return value, and one representing its argument. The return LP of a func-

fun makeLPFromAbstValue(AV.bot _: value):value = |L|
| makeLPFromAbstValue(AV.tuple(vs, _)) = |(List.map makeLPFromAbstValue vs)|
| makeLPFromAbstValue(AV.tagval(c, v, _)) = let l = makeLPFromAbstValue v in |c l| end
| makeLPFromAbstValue(AV.alt vs) =

let [c1’,..,cm’] = List.map (fn c _ => c) vs
vs’ = List.fold (fn (|c v|, [...,c v’,...] => [...,c (AV.meet(v,v’),...])) [c1’ top,...,cm’ top] vs
[l1,...,ln] = List.map makeLPFromAbstValue vs’

in |l1|...|ln| end
| makeLPFromAbstValue(AV.fix(v,_)) = |L|
| makeLPFromAbstValue(v as AV.map _) =

let (vkey, vval) = AV.collapseMap v in |[vkey, makeLPFromAbstValue vval]| end
| makeLPFromAbstValue |[Int|Bool|String] k|= |[Int | Bool | String] k()|

FIGURE 7.8: The makeLPFromAbstValue Helper Function.

1
2
3
4
5
6
7
8
9
10
11
12

185
tion captures the fields of the return value accessed by computations downstream of the

function. The argument LP captures the fields of the argument value accessed by the func-

tion body and all downstream computations. The analysis begins by assuming that the

optimization program as a whole has return LP L, i.e., that every field of any return value

of the program may be used. LP’s are propagated from callees to callers in a fixpoint loop.

Termination is guaranteed by widening the LP’s associated with a function after it is pro-

cessed a fixed number of times using the widen function of the previous section.

During execution, DSE maintains a map (defined by the module LPMap) between

function names and liveness patterns (line 2 of figure 7.10) and a worklist wl (line 1) of

functions to be processed along with their best known argument and result patterns. While

processing each function, it consults the global collecting semantics map lvm (line 3 of

figure 7.10) that maps map expressions to their set of live keys as described in section

4.4.4.

Given the return LP for a particular function, the intraprocedural part of DSE com-

putes the argument LP for the function, and a pruned version of the function body. Given

function foo of figure 7.9, for instance, and a return LP L, the intraprocedural analysis

deduces that foo has argument LP (L,D). In particular, note that the case expression of line

2 specifies that x1 must have two fields, of which the second is unused (and is therefore

dead). The pruned function body (shown on the right of the figure) is different from the

original because it no longer binds the dead variable x3.

The intraprocedural analysis works by recursively associating a LP with each sub-

expression of the function body. The LP for a subexpression specifies which fields of the

values produced by the subexpression may be used downstream. For each subexpression

e, the backward pass returns a pair containing the expression resulting from pruning out

dead sub-expressions of e, and a map (which we will call the liveness map) from free vari-

ables of e to LP’s that represent the live fields of those variables. This map corresponds to

FIGURE 7.9: Interprocedural Analysis Example.
Input for intraprocedural analysis (l). A pruned version of the function (r).

fun foo x1 =
case x1 of (x2, x3) =>

x2
end

1
2
3
4

fun foo x1 =
case x1 of (x2, _) =>

x2
end

1
2
3
4

186
the live-variables set in traditional dead-code elimination. Analyzing sub-expression x2

of line 3 of figure 7.9, for instance, results in the liveness map [(x2,L)]; the case expres-

sion as a whole gives liveness map [(x1,(L,D))]. The bulk of the complexity of the DSE

optimization lies in the way particular types of sub-expressions are treated. Figures 7.10

through 7.16 describe the different cases. We discuss each case below.

7.2.1 Dead Expressions

If the expression being analyzed has liveness pattern D (figure 7.10, lines 6-7), we may

conclude that no field of the expression will be read downstream. In this case, if the

expression has type t (written e:t in the figure), we replace the expression by a simpler

expression of type t. The function makeReplacementExpr computes this simpler expres-

sion. If t is a product type, the replacement expression is a tuple consisting of replacement

sub-expressions derived from the multiplicands. In the case that it is a sum type, the

replacement sub-expression is simply a zeroary variant of that type; in case the type does

not have a zeroary variant, we introduce one.

For example, an expression of type list = cons of int * list | nil will be replaced with the

expression nil. An expression of type int * list could be replaced with expression (0, nil).

The latter case exposes a complication. For instance, if the original expression were the

variable x, then the replacement expression in this case is more complicated, not less, than

the one it replaces! We finesse this issue by relying on the non-scalar rematerialization

strategy of the previous chapter: we assume that all constants can be generated statically in

the text segment so no runtime cost is incurred in constructing them. An alternate strategy,

which we have also explored in SCF, is to never attempt to replace expressions of tuple

type with a simpler expression; instead, we simply analyze such an expression using live-

ness pattern (D,...,D) (where the number of D’s correspond to the arity of the tuple), and

thereby attempt to simplify the components of the tuple.

The second component of the returned tuple, the liveness map, is the empty map in this

case: a dead expression does not constrain the liveness of variables or their fields.

187
val wl:DSEWorkList.worklist = ref DSEWorkList.empty
structure LPMap = ... //Map from IDs to liveness patterns
val lvm:LabelAbstractValueMap.map = ref LabelAbstractValueMap.empty
...
//Dead store elimination on expressions
fun DSEe (|e:t|: SCF_ML.expr, D:LP):(expr * LPMap.map) =

(makeReplacement t, LPMap.empty)

| DSEe (|x|, lp) = (|x|, LPMap.empty.insert(x,lp))

| DSEe (|(es)|, L) =
let (es’, lpms) = List.unzip (List.map (fn e => DSEe(e, L)) es)

lpm = List.fold mergeMap LPMap.empty lpms
in (|(es’)| , lpm) end

| DSEe (|(es)|, |(ls)|) =
let (es’, lpms) = List.unzip (ListPair.map (fn (l,e) => DSEe(e, l)) (ls,es))

lpm = fold mergeMap LPMap.empty lpms
in (|(es’)| , lpm) end

| DSEe (|c e|, |L|) = let (e’, lvm) = DSEe(e, L) in (|c e’|, lvm) end

| DSEe (|c e|: t, cls as |c1 l1|...|cn ln|) =
case List.find (fn |c l| => true| _ => false) cls of

SOME |c l| => let (e’, lvm)= DSEe(e, l) in (|c e’|, lvm) end
| NONE => (makeReplacement t, LPMap.empty)

| DSEe (e as |p _|, l) = DSEprimop(e, l)

| DSEe (|case e of ms|, l) =
let (ms’, l’, lpm’) = DSEms(ms, l)

(e’, lpm) = DSEe(e, l’)
in (|case e’ of ms’|, mergeMap(lpm, lpm’)) end

| DSEe (|f e|, l) =
let larg = case LPCache.find(!lpc, l) of SOME ci => ci#argVal | NONE=> |D|

_ = DSEWorkList.add(!wl, MAY(f, lret))
(e’, lpm) = DSEe(e, larg)

in (|f e’|, lpm) end
| DSEe (|k|, _) = (|k|, LPMap.empty)

| DSEe (ec as |cf (fn x => e) e’|, l) = DSEcf(ec, l)

//Merge two liveness pattern maps; meet liveness patterns shared between the maps
and mergeMap(lpm:LPMap.map, lpm:LPMap.map):LPMap.map =
LPMap.unionWith (fn (lp,lp’) => LPModule.meet(lp,lp’)) (lpm, lpm’)

and makeReplacement (ts as |t1* ...*ti*...* tn|:SCF_ML.type):SCF_ML.expr =
let es = List.map makeReplacement ts in | (es)| end

| makeReplacement t = zeroaryVariant t
FIGURE 7.10: The Function DSEe for Dead Store Elimination on SCF-ML Expressions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

188
7.2.2 Variables

If the expression being analyzed is a variable x (line 9), since from the previous case we

know that x’s LP l is not D, i.e., x is not completely dead, we conclude that x cannot be fur-

ther simplified.

To record that all the fields of x represented by LP l are live, we return a liveness map

[x->l].

7.2.3 Tuples

If the expression is a tuple, the LP for the expression must either be L (denoting that every

field of every value that the expression evaluates to is live), or a product LP (note that the

case where the LP is D is already handled by section 7.2.1). In the former case (lines 11-

14), we analyze every component of the tuple expression using LP L, and construct a new

tuple expression and liveness map from the results. In the latter case, lines 16-19, we ana-

lyze each component of the tuple expression using the corresponding component of the

tuple LP instead.

If a field is live in some field of a tuple, it is live in the tuple as a whole: we therefore

simply merge the corresponding liveness maps to get the map for the tuple as a whole

(lines 13 and 18).

7.2.4 Constructors

If the expression is a constructor application c e, the LP must either be L or a sum LP.

In the former case (line 21), we analyze the body e of the expression using LP L (to

acknowledge that any field of e may be live), and tag the resulting expression e’ with tag c

to produce the pruned expression. The liveness map from e is the same as that of c e, since

applying the constructor does not affect the liveness of any variables in the expression (or

their fields).

In the latter case (lines 23-26), we first identify the summand c l that shares the same

tag as the expression, and analyze e with LP l (so as to constrain only the fields of e

denoted by l) (lines 24-25). The return values for the entire expression follow straightfor-

wardly. If no such summand exists, the entire expression is dead, and replaced by a com-

189
pact replacement expression (line 26) as in the dead expression case above; the liveness

map is of course empty.

7.2.5 Primitive Operations

Primitive operations (primops) are analyzed via the DSEprimop function (invoked on line

28 of figure 7.10, defined in figure 7.11). The interesting case is when the primop in ques-

tion is a map find, insert or equality operation. For all other cases (line 29 of figure 7.11),

we simply optimize the argument of the primop under the assumption that all its argu-

ments are live (i.e., using LP L),1 and reconstitute the primop using the pruned argument

expression, while noting the live fields of the argument.

7.2.5.1 Map Insertion

If the argument is a map_insert operation, we seek to determine if the operation is dead by

checking if the potential map fields into which the insertion takes place are dead as per the

LP for the map. If so we avoid the map insert operations. If not, we keep the operation and

recursively optimize its subexpressions.

For instance, suppose we know that over any execution of a program, a map insert

operation map_insert(em,ek,ev) writes to keys {1, 454, 6443}, i.e., ek may evalu-

ate to one of these values.2 Suppose also that the LP for the resulting map is [12|13, L].

Since the latter LP indicates that no downstream computation accesses keys other than 12

and 13 of the map, and the insert operation does not write to any of these keys, we can

eliminate the map insert operation. In particular, we can replace the map_insert opera-

tion with the expression e’m representing the optimized pre-insertion map. Line 2 of fig-

ure 7.11 consults the map lvm for the set of live keys for insert operations. Line 3 extracts

live keys from the LP. Line 6 checks if the two sets are disjoint. Line 7 returns e’m if they

are indeed disjoint.

The question now arises as to what LP’s to use when optimizing the subexpressions

em, ek and ev in the above example. Take expression em first. Since em represents a

1.Note again that the case where the expression is dead is handled on lines 6 and 7.
2.em, ek and ev are meta-variables representing SCF-ML expressions.

190
map, we need to build a LP of the form [v, l] for it, where v represents live keys of the

map, and l the live fields of the values stored in the map. A conservative choice for the set

v of live keys for em is to use the same set as for the map_insert operation as a whole:

if a key k is not live downstream of the map_insert operation, since the

map_insert operation itself does not make any additional keys live, k cannot be live in

the map being inserted into. In the above example, for instance, we may conclude that at

most the keys {12, 13} of the map represented by em are live. Similarly, a conservative

choice for the LP l representing the values stored in em is the LP for the map resulting

from the map_insert operation as a whole.

A small optimization is that in the particular case that the map_insert operation

can insert exactly one concrete value, we can perform a “strong update”: we can optimize

and DSEprimop(|map_insert(em,ek, ev):Map.map|:SCF_ML.expr, l:LP):(SCF_ML.expr* LPMap.map)=
let vk_val = case LabelAbstractValueMap.find(!lvm, SCF_ML.labelOf ek) of SOME v => v

(vk_live,l’) = case l of L => (bottom(newId()), L)||[v, l]| => (v, l)
vk = if AV.mustBeSingleton vk_val then AV.subtract(vk_live, vk_val) else vk_live
(em’, lpmm)= DSEe(em,[vk, l’])

in if AbstValue.mustBeDisjoint(vk_val,vk_live) then
(em’, lpmm)

else
let ((e’k,lpmk), (e’v, lpmv))= (DSEe(ek,LPModule.makeLPFromAbstValue vk), DSEe(ev,l’))

lpm = LPMap.merge(lpmm, LPMap.merge(lpmk,lpmv))
in (|map_insert(e’m,e’k, e’v)|, lpm) end

end

| DSEprimop(|map_find(em,ek)|, l) =
let vk = case LabelAbstractValueMap.find(!lvm, SCF_ML.labelOf ek) of SOME v => v

lv = case LPModule.projectVariant(“SOME”, l) of SOME l’ => l’
(em’, lpmm)= DSEe(em,[vk, lv])
lk = LPModule.makeLPFromAbstValue vk
(ek’, lpmk) = DSEe(ek,lk)
lpm = LPMap.merge(lpmm,lpmk)

in (|map_find(e’m,e’k)|, lpm) end

| DSEprimop(e as |map_equal(em1,em2)|, l) =
let (e’1, lpm1) = DSEe(em1,[1, L])

(e’2, lpm2) = DSEe(em2,[1, L])
lpm = LPMap.merge(lpm1, lpm2)

in (|map_equal(e’1, e’2)|, lpm) end

| DSEprimop(|p e|, _) = let (e’, lvm) = DSEe(e, L) in (|p e’|, lvm) end

FIGURE 7.11: The Function DSEprimop for Optimizing Primops, Including Map Operations.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

191
(line 5 of figure 7.11) em using the LP for the post-insertion map with this key removed

(line 4). For instance, if the possible values of ek above were {12}, then we know that

only the key 13 of em is alive: key 12, even if defined pre-insertion, is re-defined before its

first use.

Now, consider optimizing subexpression ek (we only have to do this if the insert

operation as a whole is not dead). We need to deduce a LP with respect to which to opti-

mize ek. We again make a conservative estimate in this case. In the example above, since

the result of inserting the key ek into the map em is a map with LP [12|13, L], we can

assume that the only concrete values produced by ek that are live are 12 and 13. Corre-

spondingly, it is sufficient that the LP for optimizing ek specify that every field of con-

crete values 12 and 13 is live. The LP 12|13 does the trick. Given that the insert expression

as a whole inserts keys into a map expression, and that it has LP [v,l], a general technique

for obtaining the LP for ek therefore is to generate an LP that includes all the fields of all

the concrete values that conform to v. This is precisely what we do via the call to makeLP-

FromAbstValue on line 9.

Finally, consider optimizing subexpression ev. As LP for this subexpression, we sim-

ply (and conservatively) use the LP l for the range of the map expression as a whole (line

9). Since l includes all fields of all map range values possibly used downstream, it will in

particular contain all live fields of values that ev evaluates to.

7.2.5.2 Map Reads

We now describe how map read operations are processed. The basic intuition is that if a

particular read operation reads a key from a map, then that key should be live in the LP for

that map.

For instance, suppose we have a read operation map_find(em,ek)with LP lv =

SOME (12|77).1 Suppose also that the collecting semantics map lvm attributes live keys vk

= “a”|“c”|“m” to this expression . We want an LP [v,l] for expression em. First, focus on

1.Recall that the map_find operation has type (‘a, ‘b) map * ‘a -> ‘b option. Thus,
map_find([(7,123)], 7) returns value SOME 123, whereas map_find([(7,123)], 12) returns NONE.

192
v, the set of live keys in the map. Since (as per vk) we read at most the values “a”, “c” and

“m”, we conclude that at least these keys should be live. In general, we can simply use the

abstract value vk denoting the read keys as the set v of keys required to be live in the map.

Now consider the LP l for representing the values stored in the map. Since (as per lv)

downstream computations are interested in at most the values 12 and 17 stored in the map,

we conclude that it is sufficient to store these values in the map. Thus l is the result of pro-

jecting away the SOME tag from LP lv. as per lines 15-17 of figure 7.11.

Finally, we need an LP with respect to which expression ek can be optimized. Ideally,

we would like to identify just those keys of the map that result in the live fields denoted by

lv. For instance, if we knew that em evaluates to abstract map (must[(“a”,12),(“b”,17)],

may [(“c”,99|100)]), then since we know from lv above that only the values 12 and 17 are

live downstream, we could conclude that key “c”, which maps to dead value 99, is itself

dead. However, SCF maintains much simpler information about the map: it only maintains

the abstract value, vk, representing the set of keys with which the map is read. Since a map

key cannot be live if that key is never read, we can use vk as a conservative estimate of the

set of live keys. In particular, we say that every field of every concrete value that conforms

to vk is live. We use the function makeLPFromAbstValue to generate the LP representing

these fields (line 18 of figure 7.11). Line 19 performs the actual optimizing of ek.

Merging liveness maps and reconstituting the map expression (lines 20-21) is routine.

7.2.5.3 Map Equality Tests

The third primitive operation of interest on maps is the equality test on maps. Given

expression map_equal(em1,em2) and its LP l we need to determine the liveness pat-

terns for the expressions em1 and em2 that represent the argument maps to the operation.

To do so, we need to answer the question: given that we want to compare two maps for

equality, which parts (i.e., keys and values) of these maps would we need to access in

order to determine equality (and are therefore live upstream)? In the absence of any fur-

ther information, we must resort to saying that every part of every key or value of these

maps may contribute to determining equality. We therefore ascribe (lines 24 and 25 of fig-

193
ure 7.11) the liveness pattern [1, L] to each of the maps: the 1 indicates that every key in

the maps may be accessed, and the L indicates that every part of every value for these keys

may be accessed.

A possible concern at this point is that these values may be so conservative as to ren-

der the DSE pass ineffective. After all, the above approach implies that any time a map

equality test appears in the residual optimization program (we expect at least one of these

for each loop in the incoming program), most live upstream inserts to this map will also be

live. The fact that these inserts cannot be eliminated as dead would seem to jeopardize our

goal (mentioned in the introduction to this chapter) of removing as many map insertion

operations as possible.

In practice, however, we are saved by the fact that optimization programs tend to

thread two maps representing the abstract store: the first is the traditional abstraction of

the store at a given program point, and the second is the “sticky representation” of the

store, i.e., a map from all relevant program points to the latest relevant dataflow fact at that

point. Equality testing is only performed between the former kind of map, whereas the lat-

ter (which is essentially an annotation of the program with dataflow facts) is only used in

the transformation part of the optimization: transformations check whether the dataflow

fact at a point requires a program transformation at that point. Even if many of the former

kind of map insert operations are not removed, virtually all inserts into the latter map that

are not read by the transformation code are removed.

In the DAE optimization of figure 3.7, for instance, the set lSet gives the set of live

variables at the current program point, whereas the “sticky” map aMap maps all assign-

ment commands analyzed thus far to the liveness of that command. Equality testing is per-

formed only on lSet (figure 3.7, line 61).

7.2.6 Case Expressions

We now discuss (starting with figure 7.10, lines 30-33) how to compute the liveness map

and pruned expression for a case expression ec = case eg of p1 => e1 | ... | pn => en (recall

that each individual pattern/expression pair mi = pi => ei is called a match). We first

describe how the individual matches mi are processed, followed by the guard expression

194
eg, and end by describing how to combine these component results into the results for the

case expression as a whole.

7.2.6.1 Example

Before diving into details, we present an example (figure 7.12). The expression on the left

of the figure is a case expression that needs optimization. Assume that the LP for the

expression is binary L, i.e., downstream computations only access the binary variant of

the result of the case expression. Note that intuitively, if the unary variant of the result is

indeed unused, then the match of line 2 (which produces only this variant) is dead and can

be removed. Further, since the variable x3 bound in line 3 is unused, its binding can be

removed. Finally, since the guard expression x1 is live (since there is at least one match

against it) and cannot be further simplified, we leave it unchanged. The result is the

pruned expression on the right of the figure.

It remains to show how to produce the liveness map for the expression: which vari-

ables (and in particular, which of their fields) used in the expression are live? Examining

the pruned expression on the right side of the figure (since we can disregard dead parts of

the initial expression), we see that there are two candidate variables, x1 and x2. x2 is

bound within the expression before any of its uses, and is therefore disqualified from the

live set. x1 is free within the expression and therefore live, but the case expression only

reads the first field x2 of the binary variant of this variable. Finally, since the expression

as a whole returns binary(x2,x2) and the overall LP for the expression is binary L,

we know that all of x2 is live inside the match. We conclude therefore that only the field

(binary-1 ι)-1 of x2 is live, or equivalently, create a liveness map binding x1 to LP

binary(L,D).

FIGURE 7.12: DSE of Case Expressions.
Original expression (l); pruned expression (r).

case x1 of
unary x2 => unary x2

| binary(x2, x3) => binary(x2,x2)
end

1
2
3
4

case x1 of
binary(x2, _) => binary(x2,x2)

end

1
2
3

195
7.2.6.2 Optimizing Matches With DSEm and DSEms

Function DSEm of figure 7.13 describes how individual matches are optimized.

To analyze each match, we need to first decide what LP to analyze it with. In our

example, if the case expression as a whole has LP binary L, it is clearly reasonable to use

this LP for analyzing each match of the case expression (figure 7.14, line 2). This is con-

servative because if a value is definitely dead downstream of a case expression, then it

must in particular be dead downstream of each match in the case.

Optimizing a match phrase m (of the form p => e) produces four results (line 1 of

function DSEm in figure 7.13): the pruned version m’ = p’ => e’ of the match, the liveness

map lpm’ indicating live fields of the match, an LP l’ representing live fields accessed by

the pattern p of the map, and a boolean isLive that is true if any part of the value of e’ is

possibly live, and false otherwise. Below, we describe, in turn, how each of these results is

computed.

1.We compute the pruned expression e’ and liveness map lpm corresponding to

expression e (line 2, figure 7.13) by a recursive call to DSEe. We compute, in the helper

fun DSEm(|p =>e|: SCF_ML.match, l:LP):(SCF_ML.match * LPMap.map * LP * bool)=
let (e’, lpm) = DSEe(e, l)

(p’, l’, lpm’) = filterPattern(p, lpm)
isLive = not (isReplacementVal e’)

in (|p’ => e’|, lpm’, l’, isLive) end

and filterPattern(p:SCF_ML.pattern, lpm:LPMap.map): (SCF_ML.pattern * LP *LPMap.map) =
let ids = getIdsFromPattern p

p’ = List.fold (fn (id, p) => case LPMap.find(lpm,id) of
SOME L=> p
| _ => removeIdFromPattern(p,id))

p ids
lpm’ = List.fold (fn (id, lpm’) => LPMap.remove(lpm’, id)) lpm ids
(l’, lpm’’) = LPModule.makeLPFromPattern(p’, lpm’)

in (p’, l’, lpm’’) end

and removeIdFromPattern(p:SCF_ML.pattern, x:SCF_ML.id): SCF_ML.pattern =
//If identifier x is bound in pattern p, replace the binding instance with the wildcard pattern “_”

and isReplacementVal(e: SCF_ML.expr): boolean =
//true if e is an expression produced by the makeReplacement function of figure 7.10, false otherwise

FIGURE 7.13: The Function DSEm for Optimizing Case Expression Matches.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

196
function filterPattern, the pruned pattern p’ as follows. If any of the variables bound in

p don’t appear in lpm, we deduce that it is unnecessary to bind them (since they are

dead), and remove them from p (lines 8-12). The result is p’. In our example, when

pruning the match of figure 7.12(l), line 3, since x3 is dead in the expression

binary(x2,x2), we replace it with a wildcard to get the pattern of line 2 of figure

7.12(r).

2.If e is not inferred dead (and therefore replaced by a simpler expression), we set isLive

to true, else false (line 3).

3.To compute lpm’, we note that the pruned pattern p’ binds some of the variables in lpm.

These variables are therefore dead outside the match phrase. In our example, although

x2 is live inside the match of line 3 of figure 7.12(l), it is dead outside, since it is bound

by the match pattern. We therefore remove from lpm’ all variables that are bound in p’

(line 13). This step is analogous to killing assigned variables from the live-variables set

in conventional dead assignment elimination.

4.Finally (line 14), we invoke the helper function makeLPFromPattern (defined earlier

in section 7.1.4) to compute the live fields accessed by each pattern, including the

effect of bound variables. Intuitively, the resulting LP l’ represents the set of fields of

the guard expression eg that are accessed as a result of the pattern match p.

Merging the results of individual matches is straightforward (figure 7.14). We apply the

appropriate meet operators to the LP’s (line 3) and liveness maps (line 4) resulting from

each match. For future reference, note that the resulting LP represents the set of all fields

of the guard expression that may be accessed by any of the matches, i.e., all live fields of

fun DSEms(ms: SCF_ML.match list, l:LP):(SCF_ML.match list * LP * LPMap.map) =
let (ms, lpms, ls, les) = List.unzip (List.map (fn m => DSEm(m,l)) ms)

l = List.fold LPModule.meet LPModule.D ls
lpm = List.fold LPMap.merge LPMap.empty lpms
msLive = ListPair.fold (fn (m, true, msLive’)=> m::msLive’ | _=> msLive’)

[] (ms, les)
in (msLive, l, lpm) end

and DSEm ... // See figure 7.13

FIGURE 7.14: The Merge Function DSEms for Optimizing Case Expression Matches.

1
2
3
4
5
6
7
8
9

197
the expression. We accumulate the pruned matches that result into a list of matches, with

the optimization that if a match is dead, we omit it from the list (line 5).

7.2.6.3 Optimizing the Guard Expression

Having computed the set of all live fields of the guard expression in the previous section,

it is a simple recursive call to DSEe (figure 7.10, line 32) to optimize the guard expression

eg. Intuitively, since eg is consumed solely by the patterns pi of the matches, its live fields

are just the union of the fields accessed by these patterns (or of the fields of variables

bound by the patterns).

7.2.7 Constants

Scalar constants cannot be further pruned, and don’t result in new live variables (figure

7.10, line 40).

7.2.8 Curried Functions

Recall that SCF-ML has two built-in functions, map_map and map_unionWith, on

map operations that each take an anonymous function and either one or two maps as argu-

ments. The former applies the function to every range value in the argument map. The lat-

ter produces a union of two maps, applying the anonymous function to merge range values

whenever the maps being combined have a common key. See figure 3.5 for examples of

how these functions are used. We now discuss how DSE works for these two built-in func-

tions.

7.2.8.1 Example

Consider the example expression on the left of figure 7.15. Suppose the expression as a

whole has LP [1|22|37, binary L].1 This LP indicates that every live value in the range of

FIGURE 7.15: DSE of Curried Expressions.
Original expression (l); pruned expression (r).

map_map
(fn SOME x => binary(x,x)

| NONE => nil)
m

1
2
3
4

map_map
(fn SOME x => binary(x,x))
m

1
2
3

198
the map is a binary variant. Since the range values of the map are produced by application

of the anonymous function of lines 2-3, we can conclude that only the parts of this func-

tion that produce binary variants of this function are live. In particular, the case that pro-

duces the nil variant on line 3 is dead. The resulting pruned expression is the one on the

right of figure 7.15.

The second result required from DSE of the expression is its liveness map: which of

its variables are live, and what are their LP’s, i.e., which fields of these variables are live?

Since the efficacy of DSE depends critically on being able to track the live fields of maps,

it is actually more important that we get as precise a result as possible for the LP of the

map being operated upon, than to prune (as in the previous paragraph) the curried expres-

sion. It is clear from the figure that the only variable free in the expression, and therefore

possibly live outside it, is m, which represents the incoming map. What can we say about

the liveness of fields of this incoming map, given our knowledge of the LP of the result

map?

Consider the liveness of map keys. Since the map operation itself does not use any of

the keys of the incoming map (it uses purely the values in the range of the map, and those

of variables bound outside the expression), we conclude that the incoming map has no

more live keys than the result map. In our example, we conclude that the value 1|22|37

conservatively approximates the live key set of the incoming map. Note that the same rea-

soning holds for the union operation (since the anonymous function for this operation also

operates purely on range values of the incoming maps); of course, in the case of unions,

there are two incoming maps, each of whose domains are approximated by that of the out-

going one.

Now consider the liveness of map range values. The range values of the result map

are created by applying the anonymous function to those of the input map. In our example,

the live fields of the range values of this result map are captured by the LP binary L. The

anonymous function that generates these values has the form (fn SOME x => binary(x,x) |

NONE => nil). By requiring that this expression produce results with live fields repre-

sented by binary L, we conclude that x must have LP L too, and that the input to the anon-

1.Since both built-ins result in a map, their LP’s must both be either a map LP, L or D.

199
ymous function has LP SOME L. Abstracting away from the example, the LP for the range

values of the incoming map is computed by using the range LP of the result map as the

result LP of the anonymous function, and using the traditional DSE backward pass to

compute the LP for the formal parameter of the function.

7.2.8.2 The Function DSEcf for Optimizing Curried Functions

Figure 7.16 specifies the function DSEcf that specifies the details of the algorithm underly-

ing the example above. The function works via the helper function optimizeCurriedMap-

Operation, which takes six arguments: opr, the particular primitive map operation being

optimized, the variable x that represents the formal parameter of the anonymous function,

the expression eb that is the body of the anonymous function, the expression em that gener-

ates the map (if opr is map_map) or the pair of maps (if opr is map_unionWith) to be oper-

ated on, the LP l of the resulting map, and the number i of argument maps (i is 1 for the

map_map operation and 2 for map_unionWith).

We first tease apart the domain (into variable vmap_dom) and range (into lr) of the

result map (line 9) from the LP l for the whole expression. The complication here is that if

the result is L (i.e., we simply know that all parts of the result are live), we need to infer

that all possible keys of the map may be live (by using the abstract value bottom for it) and

all possible range fields are live (by using LP L for it). We then proceed as described in the

and DSEcf(|map_unionWith (fn x => eb) em|:expr, l:LP):(expr* LPMap.map)=
optimizeCurriedMapOperation(|map_unionWith|, x, eb, em, 2)

| DSEcf(|map_map (fn x => eb) em|, l)=
optimizeCurriedMapOperation(|map_map|, x, eb, em, 1)

and optimizeCurriedMapOperation(opr:SCF_ML.primop, x:id, eb:expr, em:expr, 1:LP, i:int):
(expr * LPMap.map) =

let (vmap_dom,lr) = case l of L => (bottom(newId()), L)| |[v, l]| => (v, l)
(e’b,lpmb) = DSEe(eb, lr)
lb = case LPMap.find(lpmb, x) of SOME l => l| _ => D
lmap_rng = case opr of map_map => lb | map_unionWith => LPModule.meet(lr, lb)
lmap = [vmap_dom, lmap_rng]
lm = case i of 1 => lmap | 2 => |(lmap, lmap)|
(e’m,lpmm) = DSEe(em, lm)
lpm’b = LPMap.delete(lpmb,x)

in (|opr (fn x => e’b) e’m|, LPMap.merge(lpm’b, lpmm)) end

FIGURE 7.16: The Function DSEcf for Optimizing Curried Function Applications.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

200
preceding example. To compute the range value of the incoming map(s), we invoke (line

10) DSE on the body eb of the anonymous function, and look (line 11) for the LP (if any)

bound to formal x. As discussed in the example above, for the map_map operation, lb then

represents the liveness of range values.

A complication is that for map_unionWith operations, the anonymous function is only

applied to range values that have a common key. For instance, the expression

map_unionWith (fn (x,y) => x + y) (m1,m2), with incoming maps m1 and

m2 bound to values [(1,2)] and [(3,4)] produces the result map [(1,2), (3,4)]. In this case,

the anonymous function is not applied at all, since the two maps have no keys in common.

Conservatively, therefore, to derive LP’s for the incoming map ranges, given the LP for

the result map, we need to account for the fact that the fields may or may not have been

created by the anonymous function. For map_unionWith operations, in order to get the

range LP for the incoming maps, we meet (line 12) the lb (which is computed assuming

that each range value is produced by application of the anonymous function) and lr (which

assumes the function was not applied). Also, since we cannot determine during our back-

ward pass which of the two input maps contained each live field, we need to conserva-

tively assume that either could have done so. In our algorithm, we therefore produce a

tuple of identical LP’s for the incoming pair of maps (line 14).

Since the incoming maps are produced by the expression em, now that we have the LP

lm for the incoming maps, we can optimize em with a recursive call to DSEe (line 15).

It remains to create a liveness map for the expression as a whole. We do this by meet-

ing the liveness maps from the two components of the expression, that from the anony-

mous function (lpmb) and that from em (lpmm) (line 17). Before doing so, we account for

the fact the formal parameter of the anonymous function is not free (and therefore, dead)

in the expression as a whole (line 16).

7.3 Summary

In this chapter, we described the dead-store elimination algorithm (a whole program con-

text-insensitive, flow-sensitive abstract interpretation) that SCF uses to eliminate dead

computations from partially evaluated optimization programs. Compared to traditional

201
dead-assignment elimination, the novelty of this algorithm is that it keeps track of the live-

ness of individual fields of data structures, through the use of liveness patterns. Liveness

patterns were originally introduced by Liu et al. [40], and Reps et al. [53]. In fact, the form

of liveness patterns introduced there is more powerful than ours in some ways. In particu-

lar, when describing the liveness of recursive structures, they can describe certain infi-

nitely deep but highly regular kinds of liveness patterns that a value may exhibit. Our

contribution relative to these works is a pragmatic one: we have noticed that the high reg-

ularity that recursive liveness patterns capture is not exhibited by the key recursive struc-

tures (maps) in our application. Instead, we introduce a custom liveness pattern for maps

that is intended to track the highly irregular patterns of liveness that arise in practice in a

tractable and effective manner. We combine these specalized liveness patterns with infor-

mation computed by the partial evaluation pass to more effectively remove dead map

operations.

202
8. Evaluation

The goal of SCF is to make it easy to produce effective staged compilers. In this chapter,

we evaluate the extent to which SCF succeeds, and the contribution of its components

towards its performance.

We have implemented a prototype of SCF in Standard ML. We provide an SCF-ML

front-end to allow specification of optimizers. We also provide a C front-end (which

parses C programs into abstract values) to specify functions, called “input functions”

below, whose optimization is to be staged. We have staged pipelines containing three tra-

ditional dataflow optimizations: constant propagation, copy propagation and dead-assign-

ment elimination. Compared to our experience hand-writing staged versions of these

optimizations for DyC [24], using SCF to automatically implement staged versions these

optimizations has certainly been far easier in design, implementation and debugging: the

burden of writing optimizations in SCF-ML and invoking the automatic stager is much

lower than writing a specialized stager. The remaining issues, which can be evaluated by

measurement, are whether automatic staging as in SCF is effective, and what the contribu-

tions of the individual techniques in SCF are.

The most direct way to establish the broad effectiveness and applicability of auto-

matic staged compilation à la SCF would be to demonstrate significant reduction in total

execution time (including late-stage optimization overhead), for a variety of plausible

compiler pipelines over a broad, representative set of benchmark programs and their

inputs. We could show, for instance, that SCF can effectively exploit information available

only at run time by comparing the total execution time for the program with and without a

(SCF-based) run-time optimization stage. Similarly, to show how the quality of SCF out-

put compares to that of hand-staged schemes, we could compare total execution times for

programs that use SCF-staged versus hand-staged run-time stages.

From the point of view of this dissertation, such an approach, although comprehen-

sive, is prohibitive in terms of engineering effort. Implementing an entire compiler pipe-

line in SCF-ML (especially a non-trivial compiler backend), preparing for staged

compilation a comprehensive set of C programs as benchmarks, and evaluating the perfor-

mance of pre-existing staging techniques on these inputs, are each tasks that can take

203
teams of engineers years of work.1 The goal of this evaluation, therefore, is more modest.

We provide strong evidence that at least for a few useful C programs, and for a pipeline

consisting of three conventional intraprocedural optimizations that were staged (each at

great engineering cost) by hand in a well-known previous system, SCF can produce (at lit-

tle engineering cost) a staged version of the pipeline capable of yielding significant end-

to-end speedups. In this restricted context, we also analyze the contributions of the various

techniques comprising SCF to net speedup.

In section 8.1, we describe our evaluation framework and our measures of effective-

ness. In section 8.2, we discuss the overall effectiveness of SCF. In section 8.3, we analyze

the contribution of individual techniques. We summarize the results in section 8.4.

8.1 Evaluation Framework

We discuss in section 8.1.1 below what system configuration (and related parameters) we

measure in order to establish SCF’s effectiveness. In section 8.1.2, we discuss the inputs

under which these measurements are made.

8.1.1 System Configuration and Parameters Used in Measurements

Figure 8.1 shows how SCF is intended to be used to support two-stage dynamic compila-

tion, where the first three phases of the compilation pipeline are staged. For pragmatic rea-

sons our actual implementation differs somewhat from the configuration shown. The two

stages, labeled 1 and 2, are the traditional static-compile-time and run-time stages respec-

tively. The part of the compiler pipeline to be staged (labeled unstaged pipeline in the fig-

ure) consists, in this case, of our three staged optimizations, i.e., namely, constant

propagation (labeled CnP), copy propagation (CpP) and dead assignment elimination

(DAE). The stager takes as input this pipeline of optimizations, as well as an abstract value

representing the input to the pipeline. In this case, the input abstract value is a pair of

which the first element is f, the function to be optimized, and the second is C, a list map-

1.In work directly preceding this thesis, the author spent two years in a team of three full-time graduate students
accumulating one of the most comprehensive sets of benchmarks for evaluating a staged compilation system based on
hand-staged optimizations [24]. However, even that work did not entail developing an entire compiler pipeline (although
we did modify most of one), or directly testing competing systems.

204
ping the arguments of this function to sets of their possible run-time constants as discussed

at the end of section 3.2.3. Execution of the stager produces a specialized version of the

pipeline, labeled CnP’ through DAE’ in the figure.

At run time (stage 2), the binary version Pbin of program P (which is invoked with

some input Ip, and of which function f is a part) is executed until f is invoked for the first

time. At this point, the concrete value c corresponding to abstract value C is available,

since c is derived from the actual parameters to be passed to f. P can therefore yield con-

trol to the staged version of the optimization pipeline (labeled staged pipeline in the fig-

ure) with argument (f,c). The invocation generates an optimized version fopt of function f.

A traditional back end phase consisting of a scheduler, code generator and assembler per-

forms machine specific transformations on the resulting function and produces a binary

version fopt_bin of the function. Finally, a linker links fopt_bin to the rest of the binary image

of the program (labeled Pbin-fbin) to obtain a new, optimized executable for the program

(Popt_bin). All future invocations of function f result in execution of the optimized version

fopt_bin. For future reference, let ttotal_staged (as indicated at the bottom of the figure) be the

total time, inclusive of all optimization overhead, spent executing the program.

Figure 8.2 shows three baseline configurations that the automatically staged compiler

may be compared against. The simplest configuration (figure 8.2(a)) is a conventional sin-

gle-stage compiler that is used to produce an executable Pbin. Since compilation happens

entirely before program execution, this configuration ignores the information c available

FIGURE 8.1: Staged Dynamic Compilation Using SCF.

CnP’

CnP DAE

stager stager stagerf, C

f, c

CpP

CpP’ DAE’Pbin linker Popt_bin
IP OP

Pbin-fbin

1

2
fopt_bin

ttotal_staged

topt_staged

unstaged pipeline

staged pipeline

tcodegentP tP_opt

back
end

fopt

205
only at run time. Let ttotal_noOpt be the time taken to execute Pbin on IP. An alternative (fig-

ure 8.2(b)) is to again use a single-stage compiler, but to execute the compiler entirely at

run time. A final option (figure 8.2(c)) is to use a hand-staged compiler. Let ttotal_unstaged

and ttotal_handstaged respectively be the total time (including optimization overhead) to exe-

cute the program P in the last two cases.

A direct approach to validate the SCF approach to staged compilation compared to no

late-stage optimization, unstaged late-stage optimization, and hand-staged late-stage opti-

mization would be to compare ttotal_staged to ttotal_noOpt, ttotal_unstaged and ttotal_handstaged

respectively. For the purposes of this dissertation, however, the direct approach has a dis-

tinct disadvantage: it requires that the backend and linker phases of the compiler being

staged be implemented. Implementing high-quality versions of these phases entails a sub-

CnP
f, c

CpP DAEPbin
back-

linker Popt_bin
IP OP

Pbin-fbin

fopt_bin

FIGURE 8.2: Baseline Configurations for Evaluating SCF.
(a) Single stage, no dynamic compilation (b) Single stage, all dynamic (c) Two stages, hand-staged dynamic

compilation

topt_unstaged

Pbin
IP OP

ttotal_noOpt

(a)

(b)

CnP’, CpP’, DAE’
f, cPbin linker Popt_bin

IP OP

Pbin-fbin

fopt_bin

topt_handstaged

DyC static stage
fannotated

(c)

ttotal_handstaged

ttotal_unstaged

end

back-
end

tf_noOpt

206
stantial amount of work, as mentioned previously. We therefore settle for a more indirect

demonstration of SCF’s effectiveness, as described below.

As illustrated at the bottom of figure 8.1, the end-to-end execution overhead

ttotal_staged can be broken into the following components: the time tP spent executing the

unoptimized version of the program, the time topt_staged spent executing the staged parts of

the optimization pipeline, the time tcodegen spent executing the backend and the linker, and

the time tP_opt subsequently spent executing the run-time-optimized version of the pro-

gram. Staged compilation results in a net speedup if the time tloss lost in late-stage compi-

lation (tloss = topt_staged + tcodegen) is less than the time tgain gained executing the

optimized binary Popt_bin instead of the unoptimized Pbin (tgain = ttotal_noOpt - (tP +

tP_opt)). An ideal technique would maximize tgain and minimize tloss.

Regarding tloss, given that we have no way of affecting tcodegen, we will focus on

quantifying the extent to which SCF can reduce topt_staged. Specifically, we will measure

the staged optimization speedup (topt_unstaged/topt_staged): since topt_unstaged is unaffected

by staging techniques, increasing this ratio will clearly imply a decrease topt_staged.

Regarding tgain, we will focus on the asymptotic speedup, sa = ttotal_noOpt/(tP +

tP_opt); again, since ttotal_noOpt and tP do not depend on staging technique, maximizing the

asymptotic speedup clearly maximizes tgain. In line with convention, we will actually

measure the asymptotic speedup of the function f to be optimized dynamically (and not

that of the program P as a whole): sa = tf_noOpt/tf_opt, where tf_opt is the time spent in the

dynamically optimized version of function f, whereas tf_noOpt is the time spent in the

unoptimized version.

From the previous two paragraphs, it should be clear that we need to measure four

timings: to compute staged optimization speedup, we need topt_staged and topt_unstaged, and

to compute asymptotic speedup, tf_noOpt and tf_opt.

We measure tf_noOpt by instrumenting the unoptimized binary Pbin to record the time

spent in function f; tf_noOpt is a fraction of the total execution time tP_noOpt as shown in fig-

ure 8.2(a). The remaining three numbers are measured as shown in figure 8.3.

207
Figure 8.3(a) takes the pipeline from figure 8.1, and essentially replaces the compiler

backend with a full compiler, i.e., gcc. The compiler takes as input C source (generated by

a pretty printer from SCF-ML abstract values, and written fopt_C in the figure), and pro-

duces an executable. Since we have factored out the effect of the compiler backend (by

avoiding a direct end-to-end measurement), we are free to insert an arbitrarily slow (but

highly effective) backend. We simulate the interleaving of program execution and optimi-

zation by directly feeding the input (f,c) (which is ordinarily produced by late-stage execu-

tion of the program being optimized) to the optimization pipeline. We record the time

spent by the staged pipeline generating the input to the backend; this is topt_staged. Figure

8.3(b) does the same with the unstaged pipeline of figure 8.2(b). The time spent executing

the unstaged version of the sequence of three optimizations is topt_unstaged.

In both cases, the result of the pipeline as a whole is the same (Popt_bin): the staged

optimizer produces exactly the same result as the unstaged variant, hopefully at much

lower overhead. We instrument this binary to measure time tf_opt spent in function f.

FIGURE 8.3: Configurations Used in this Evaluation.

CnP’

CnP DAE

stager stager stagerf, C

f, c

CpP

CpP’ DAE’ gcc Popt_bin
OP

P-f

fopt_Cfopt C pretty
printer

IP

topt_staged
tf_opt

CnP
f, c

CpP DAE

topt_unstaged

gcc Popt_bin
OP

P-f

fopt_Cfopt C pretty
printer

IP

(a)

(b)
tf_opt

208
8.1.2 Inputs to the Optimization Pipeline

Having discussed which optimizations we stage and what aspects of the stager we mea-

sure, we now discuss the staged inputs to the optimization pipeline. Recall that (as shown

in figure 8.3), the pipeline is fed an abstract version (f,C) of the optimization inputs at the

early stage (an abstract pair of which the first element is the function f to be optimized and

the list C mapping formals of f to abstract values), and the concrete version (f,c) at the late

stage. In the unstaged case, we just use the late stage inputs (f,c). In this section, we dis-

cuss the actual functions f and the corresponding constants C and c used in our evaluation.

Table 3 lists the functions f and the inputs C and c. We use as tests four functions: the

very simple mul_add function used as an example in chapter 2, and three other func-

tions, dotproduct, doconvol and main_loop, which were used in our previous

study on hand-staged optimization [24]. We consider different variants of these functions,

Table 3: Inputs to Staged Pipeline

No. Input Function (f) Description of f
Abstract Values (C) and Concrete
Values (c) to Which Staged Arguments
of f are Bound in the Early, Late Stages

1 mul_add mul_add from figure 2.7:
computes a * x + y;
a is fixed at run time

stage1: a = ’Int
stage2: a = 1

2 mul_add stage1: a = 0 | 1
stage2: a = 1

3 mul_add stage1: a = 3 | 1
stage2: a = 1

4 dotproduct Finds the dot product of two vectors v1 and
v2 of size s; v2 and s are fixed at run time

stage1: v2 = ’Int, s = ’Int
stage2: v2 = [0, 1, 7], s = 3

5 dotproduct stage1: v2 = ’Int, s = 3
stage2: v2 = [0, 1, 7], s = 3

6 doconvol Convolves 2-D image matrix i with a 2-D
convolution matrix c; c is fixed at run time
(from the pnmconvol program of the
netpbm library)

stage1: c = ’Int
stage2: c = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]

7 doconvol_1d 1-D version of above stage1: c = ’Int
stage2: c = [0, 1, 0]

8 main_loop Main loop of the Dinero cache simulator;
invokes routines for finding, fetching and
updating cache entries; cache configuration
parameters fixed at run time

stage1:
Cache configuration parameters:
i-cache size in kilobytes, i = ’Int
d-cache size in kilobytes, d = ’Int
i/d cache associativity, a = ’Int
...
stage2:
i = 8
d = 8
a = 1
...

9 main_loop_f As above, also with cache fetch routine
inlined

10 main_loop_f_u As above, also with cache update routine
inlined

11 main_loop_f_u_f As above, also with cache find routine
inlined

209
along with variants of input abstract value C in each case. A combination of a function

variant and its abstract value is an input value configuration; each configuration is a row

in table 3, with eleven configurations in all. Below we discuss the configurations for each

function.

1.For the mul_add function, we examine three possible values for the early stage input

C. In configuration 1, all that is known is that parameter a of the function will have

some constant value at run time. In configuration 2, we assume early-stage information

that a will have value either 0 or 1 in the late stage. In configuration 3, we assume

early-stage values 1 or 3 for a. The different early-stage input values are included to

illustrate that, unlike conventional compilers, the performance of staged compilers

depends on the quality of information available at the early stage. In all three

configurations, we assume that the late-stage value of a is 1.

2.The dotproduct function takes two arrays v1 and v2 of length s as input and

computes their dotproduct. In configurations 4 and 5, we assume that v2 is a known

early to be a constant array determined only at run time (in fact, we use annotations of

the style used in DyC [24] to indicate that not only is the pointer v2 a constant, but so

are dereferences off it). In configuration 4, we assume that s is only known to be some

fixed integer at run time, whereas in 5, we assume that it is the particular integer 3. In

either case, we intend that at run time, the dotproduct loop is unrolled, and the values of

v2 corresponding to each iteration treated as a constant.

3.The doconvol function is extracted from the pnmconvol program of the netpbm

[47] image manipulation library. It has two variants.

The first, configuration 6, convolves input matrix i with respect to input matrix c.

Both matrices are two dimensional. The convolution involves a quadruply nested loop:

the outer two levels of nesting iterate over the elements of i, whereas the inner two

iterate over those of c. We assume that c is known early to be a constant matrix

determined only at run time. We intend that the doubly nested loop over the

convolution matrix c is unrolled fully at run time.

The second, configuration 7, is a convolution over one-dimensional matrices i and c.

210
In this case, the inner loop is doubly nested, the outer loop over i and the inner one

over c. We intend that the singly nested loop over the convolution matrix c is unrolled

fully at run time.

4.The main_loop function is the inner loop of a cache simulator [27]. It loops through

the entries from a file containing a trace of memory addresses and cache queries (each

query is a fetch or an update), and simulates performing the query at a given virtual

address. A common sub-step for both fetches and updates is the find step which

computes the physical location in the cache that the given virtual address maps to.

Typically, the structure of the cache is fixed at the beginning of a simulation run,

yielding the possibility that the function can be optimized with respect to this constant

value. Further, we can stage the optimization, since we know at stage 1 that the

variables representing the structure will have some constant value, as detailed in the

rightmost column for configurations 8 through 11.

The function as originally implemented has three helper functions fetch, update

and find that implement the corresponding queries. The run-time constant

computations are spread out over these three functions. In order to get maximum

benefit from intraprocedural optimization, it is necessary to inline all three callee

functions into the parent main_loop function. Configurations 8 through 11 differ in

the number of these callee functions that are inlined. We choose to examine the four

increasingly complex configurations separately in order to gauge how both asymptotic

speedup and staged optimization speedup vary with input function size.

8.2 Overall Effectiveness of SCF

In this section, we examine the end-to-end effectiveness of SCF using the two metrics dis-

cussed in the previous section: staged optimization speedup (in section 8.2.1) and asymp-

totic speedup (in section 8.2.2).

All measurements in this section and the next were performed on a lightly loaded 350

MHz Pentium processor with 256MB RAM and 8kB L1 instruction and data caches and a

512kB L2 cache. Times reported are user times.

211
8.2.1 Staged Optimization Speedup

Figure 8.4 shows the staged optimization speedup (i.e., the ratio of the time taken to exe-

cute the unstaged version of the compiler to that of the staged one) for each of the 11 input

configurations described in the previous section. The figure also shows the reduction in

the number of operations executed by the optimizer (i.e., the ratio of the number of opera-

tions executed in the unstaged version of the compiler to that of the staged one), as

counted by a concrete interpreter for the optimization program. The chart on the left is a

graphical representation of the table on the right. A few key points are worth noting.

First, the staged pipelines are significantly (up to an order of magnitude) faster than

their unstaged versions in most cases. Thus, automatic staging via SCF is capable of sig-

nificantly reducing run-time compilation overhead relative to conventional variants of

optimization pipelines.

Second, the speedup due to staging may be quite sensitive to the particular abstract

values provided at each stage. Comparing configurations 2 and 3, for instance, even

though the two configurations differ only in that the former binds argument a of function

mul_add to 0|1 and the latter to 1|3, the speedup in the latter case is more than thrice that

in the former. The reason is that since the product of any value with 0 is 0, constant propa-

gating a potential 0 value results in a chain of computations that potentially need to be

folded away (to 0). A staged constant propagator that handles these extra potential cases

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11
configuration no.

sp
ee

d
up

/i
n

st
r.

 r
ed

u
ct

io
n

speedup
instr. reduction

FIGURE 8.4: Speedup of Staged Optimizer Relative to Unstaged Optimizer.

config # speedup reduction in instructions

1 1.9 2.1
2 2.9 2.2
3 5.5 7.9
4 2.9 2.6
5 2.5 2.9
6 1.1 1.2
7 4.7 4.2
8 12.2 9.8
9 4.7 6
10 4.8 8.5
11 4.7 9

212
needs to perform more checks than one that does not, resulting in extra compile-time over-

head.

Third, large reductions in number of instructions executed do not always translate to

correspondingly large gains in execution time. For instance, comparing configurations 10

and 11 to configuration 8, we would expect to get speedups of roughly 10× in the former

cases, as in the latter case. However, the actual speedup is half of that expected. Figure

8.5, which presents the pipeline expansion, i.e., the ratio of the size of the staged pipeline

in the final stage to that of the unstaged version, provides a possible reason for this anom-

aly. The staged pipelines for configurations 10 and 11 occupy roughly six times as much

space as that of configuration 8. It is very likely that these pipelines perform poorly in the

(small) hardware cache on our machine.

Fourth, the size of the staged compiler usually grows linearly in the size of the input

program, rather than exponentially, as is the theoretical worst case described in section

6.2.1.2. Figure 8.5 shows that this is roughly true for all configurations but configuration 6

(note that although the function in configuration 6 is roughly three times the size of that in

configuration 3, the expansion factor is six to seven times the size). The reason is that the

theoretical worst case size increase applies when the input function has deeply nested

loops. The convolution routine in configuration 6 contains a four-way nested loop; even

bounded unrolling of the nested recursion required for analyzing this loop resulted in

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11
configuration no.

fu
n

ct
io

n
 s

iz
e

(n
o

d
es

)

0

10

20

30

40

50

60

p
ip

el
in

e
ex

p
an

si
o

n

function size (nodes)
pipeline expansion

FIGURE 8.5: Pipeline Expansion Factor and Input Function Size.
Function size indicates the size of the function before staging. Pipeline expansion factor is the ratio of the size of the

specialized optimization pipeline to the unspecialized version.

conf # func. size (nodes) pipeline expansion
1 147 1.4
2 148 1.4
3 148 1.3
4 198 1.6
5 439 3.6
6 2880 47.7
7 1097 7.9
8 1084 6.7
9 3960 19.2
10 7656 36.3
11 8396 38.5

213
noticeable exponential blowup. Configurations 9 through 11 seem to yield sub-linear

increase in size; this is mainly because the stager is able to determine at the early stage that

the functions being optimized in these configurations are for the most part not amenable to

late stage optimization, so that the corresponding residual code is for the most part folded

away or removed as dead. Configuration 6 suffers in this respect. In that case, the loop

body being unrolled consists of a load of a run-time constant of a value that is then multi-

plied and added to non-constant values. Given that the actual value of the constant is not

known statically, the stager needs to accommodate the possibility that the value could be

zero, one or a power of two. The residual code thus maintains analysis and transformation

code to handle these possibilities.

8.2.2 Asymptotic Speedup

Figure 8.6 shows the asymptotic speedup of the optimized functions produced at runtime.

For three of the configurations (5, 6 and 11), the corresponding ratio for hand-staged sys-

tems is included under the label “hand speedup”. The numbers for the hand-staged system

are taken directly from our previously published results [24] and therefore have caveats as

discussed below. Three points are especially worth noting.

The staged optimizations do provide noticeable speedups. In a sense, this is not sur-

prising since prior work on hand-staged systems [24, 14] has already shown that the opti-

mizations in our pipeline are effective in speeding up input functions. However, most

optimizations have versions with different levels of aggressiveness, e.g., a constant propa-

gator may or may not reduce multiplies by powers of two to shifts, or fold multiplies by

0

1
2

3

4
5

6

1 2 3 4 5 6 7 8 9 10 11

configuration no.

as
ym

p
to

ti
c

sp
ee

d
u

p

SCF speedup

hand speedup

conf # SCF speedup hand speedup

1 1.2
2 1.2
3 1.2
4 2.7
5 2.7 5.7
6 1.7 3.1
7 1.9
8 1
9 1.1

10 1.1
11 1.3 1.7

FIGURE 8.6: Asymptotic Speedup of Compiled Functions.

214
zero to the constant zero. Our measurements demonstrate that the particular SCF-ML

specification of the three optimizations in our pipeline is aggressive enough to achieve

good speedups on at least three of the input programs previously examined in the literature

(mul_add is a micro benchmark particular to the current evaluation).

Configurations 8 through 11 illustrate a peculiarity of staged compilation that we dis-

cussed in the previous section. Fewer opportunities for late-stage optimization may actu-

ally result in greater staged compiler speedup, if the stager is able to determine

conclusively in the early stage that the opportunities do not exist.

The speedup due to the hand-staged pipeline is significantly greater than that

achieved by SCF. One possible reason for this gap is that the optimizations as specified in

the SCF pipeline may not be as aggressive as that in the hand-staged pipelines. Another is

that the two sets of speedup numbers were obtained on different hardware systems, and

the utility of a given optimization can vary widely across systems. We reproduce the hand-

staged numbers here simply to give an indication, however imperfect, of how the auto-

mated result compares with hand-staged versions.

8.3 Contributions of Staging Techniques to Compiler Speedup

We now analyze the extent to which various techniques in the stager contribute to the

speedup of the staged compiler. The analysis proceeds by disabling a technique (or a

group of techniques that work together) and recording the staged optimization speedup

with the resulting stager. If the original speedup was s and the new speedup s’, we report

the fractional speedup change (abbreviated “speedup change” below), (s’-1)/(s - 1). For

instance, if the original speedup were 1.4 and the new speedup 1.2, then the speedup

change would be (1.2 - 1)/(1.4 - 1) = 0.5. If the new speedup is below 1, i.e., it is a slow-

down, then the fractional speedup change is negative. For instance if s’ is 0.6 (with s as

before), then the fractional speedup change is -1. If the new speedup is the same as the old

speedup, the speedup change is 1. Intuitively, the speedup change ascribed to a technique

is the fraction of the original speedup that is lost by disabling the technique.

215
We present our results in three subsections. The subsections correspond to the bene-

fits derived from abstract value implementation techniques, improvement strategies and

dead store elimination respectively.

8.3.1 Contributions from Abstract Value Implementation Techniques

SCF uses a more detailed representation of abstract values (defined in figure 5.2) than

most online partial evaluation systems. In what follows, we examine in succession the

effect of removing tuple, alt and fix variants of SCF abstract values, of disabling value

ID’s, and of using a simpler representation than that based on may and must lists for

abstract maps.

8.3.1.1 Removing tuple, alt and fix forms

Figure 8.7 shows the effect of removing various combinations of the tuple, alt and fix vari-

ants. By “removing” alt and fix variants, we mean that the stager is forced to use the

abstract value bottom where it would ordinarily use one of these variants. By “removing”

the tuple form, we mean that whenever the stager would ordinarily create a tuple abstract

value that has even one field that is non-singleton, we replace the whole tuple with bot-

tom; a fully concrete tuple would continue to be represented as before. In effect, we gauge

the impact of these variants by using the conservative value bottom instead of them. Since

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
 c

h
an

g
e

tuple/alt/fix

alt/fix

fix

FIGURE 8.7: Contributions from Variants of the Abstract Value Representation.

config # orig. speedup tpl/alt/f ix alt/f ix fix
1 1.9 1 1.1 1.9
2 2.9 1 1 2.9
3 5.5 1 1.1 5.5
4 2.9 1 1 1.3
5 2.5 1 1.1 2.5
6 1.1 1 0.9 1
7 4.7 1 1.1 1.3
8 12.2 1 6.7 12.2

9 4.7 1 3.2 4.7
10 4.8 1 3.4 4.8
11 4.7 1 3.6 4.7

216
many traditional online partial evaluation systems use a three-level abstract value hierar-

chy consisting of top, concrete values and bottom, this is an interesting study.

The table to the right of figure 8.7 gives, for each of the 11 input function configura-

tion, the staged optimization speedup achieved by the full-featured version of SCF, the

version (labeled “tpl/alt/fix”) where all three variants (i.e., tuple, alt and fix) are removed,

the version (labeled “alt/fix”) where alt and fix variants are removed, and the version

(labeled “fix”) where only the fix variant is removed. The chart on the left shows the corre-

sponding speedup changes.

Not surprisingly, disabling tuple values (along with fix and alt) leads to speedup drop-

ping to 1 in every case. The reason is that since disabling non-singleton tuples sets them to

bottom, then in particular, the abstract input tuple (f, C) to the optimization pipeline will

be bottom for all eleven configurations. For instance, configuration 1 ordinarily has input

(int mul_add(){...}, (..., CONSTANT(1))) as in figure 3.13(a). If we

only represented fully concrete tuples explicitly, then (since this tuple contains non-con-

crete value 1), the configuration would have input 1. A bottom abstract input value at the

early stage means precisely that the stager has no information whatsoever about the

abstract input at this stage, so that the specialized value of each optimization is identical to

the original one.

Disabling just fix and alt values produces more interesting results. Intuitively, this

restricts early-stage information available to SCF exclusively to fully concrete sub-fields

of tuples. We describe the significant effects below.

•There is no significant difference in performance between configurations 2 and 3, which

only differ in the alt values that parameter a is bound to. In the absence of alt values, we

would simply assume a value of bottom for this parameter in both cases. The magnitude

of the speedup for configurations 1 through 3 is also close to one: the stager ordinarily

produces alt forms for almost every statement in the mul_add function (figure 3.13);

setting these to bottom loses almost all useful information at the early stage. Configura-

tion 5 (optimizing a loop statically unrolled 3 times) also relies on extensive use of the

alt form because the stager cannot rule out a variety of options; its speedup also therefore

drops close to one.

217
•In cases where the early stage needs to reason about loops being unrolled, and the degree

of unrolling is statically unknown (configurations 4, 6 and 7), the stager ordinarily uses

fix values to represent the early results of unrolling. In all three configurations, the loop

to be unrolled dominates the body of the function being optimized, so that setting this fix

value to bottom results in loss of information about most of the function, and therefore a

precipitous drop in stager speedup. Note that although the histogram seems to imply an

especially dramatic fall in performance on configuration 6, this is an artifact of the rela-

tive fractional speedup change we use: actually, the speedup drops from a modest 1.1 to

a small slowdown of 0.9.

•Somewhat surprisingly, in the largest benchmark (configurations 8 through 11) most of

the body of the function is provably unaffected by the optimizations, so the lack of alt

and fix forms has much less impact. Of course, here we are making a virtue out of neces-

sity: if much of the body is provably unaffected by optimization then presumably the

code produced by late-stage optimization will not be much faster than that without the

optimization.

Disabling just fix values only has an effect in the configurations where fix values are used.

As mentioned above, this is in configurations 4, 6 and 7. In these cases, speedup all but

disappears. In all other configurations, speedup is unaffected.

8.3.1.2 Dropping Abstract Value ID’s

Figure 8.8 shows the effect of dropping ID tags from abstract values. In all programs that

require fixpoint analysis of loops, performance drops significantly. The reason is that fix-

point analysis requires abstractly executing an SCF-ML map equal operation to test ter-

mination of the fixpoint loop (e.g. line 61 of figure 3.7). As explained in section 5.3.7.3,

map equality invoked on non-singleton abstract maps will always result in an abstract

value (true|false) in the absence of value ID’s, so that the termination test of the fix-

218
point loop may always be false during partial evaluation. At some point, the partial evalu-

ator is forced to declare a possible infinite loop and widen its abstract state.

A somewhat subtle point to note here is that the map equal instructions as in line 61

of figure 3.7 are only executed when a while loop possibly in the input function at the

late stage is being analyzed. Consequently, loops in the input function that are to be fully

unrolled in the late stage (so that there is no possibility at all that they will be loops at the

late stage) do not require abstract execution of the map equal test during abstract inter-

pretation at the early stage. In the latter cases, therefore, value ID’s, which are intended to

facilitate equality comparisons, are not relevant. Configurations 4 and 5 (the fully unrolled

dotproduct functions) therefore escape the performance penalty. Configurations 6 and

7 contain both unrolled loops and non-unrolled ones, so that accurate equality testing is

important in them. All the loops in 9 through 11 are of the non-unrolled variety, so they

experience signficant reduction in speedup. As will be seen later, these latter configura-

tions do not lose all speedup because of the complementary role played by SCF’s widen-

ing techniques. Configurations 1 through 3 contain no loops and are therefore unaffected

by value ID’s.

8.3.1.3 Dropping “must” and “may” Lists in Maps

Figure 8.9 shows the result of weakening the special representation that SCF uses for rep-

resenting abstract maps. In particular, the stager is modified so that it does not separately

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
 c

h
an

g
e

FIGURE 8.8: Contributions from Abstract Value ID’s.

config # orig. speedup new speedup

1 1.9 1.9
2 2.9 2.9
3 5.5 5.5
4 2.9 2.9
5 2.5 2.5
6 1.1 0.8
7 4.7 1.3
8 12.2 12.2
9 4.7 2.4

10 4.8 1.9
11 4.7 1.7

219
keep track of the definitely-known mappings using the must list (figure 5.2, line 12) and

the possible mapping using the may lists. Instead, the stager represents a map by a pair of

values (k,v), where k is the meet of the keys in the original must and may lists, and v the

meet of the corresponding values.

Not surprisingly, losing the ability to keep track of mappings precisely destroys

speedup in every case. Recall that all our optimizations consist of an analysis step that sets

the fields of a map representing the abstract store at each node of the function being opti-

mized and a transformation step that consults this map for each node. Essentially, SCF is

unable to simplify the transformation code for any optimization because information for

every node in the AST is conflated with that for every other node. Most importantly, this

results in map lookup operations that cannot be folded away because they do not return

singleton values (both in analysis and transformation code) and map write operations that

cannot be eliminated by dead-assignment elimination because the downstream transfor-

mation code may read these writes.

Unfortunately, dropping precise map representations does not affect unrolling of the

optimization over the incoming AST, so that the specialized optimizations still occupy

much more space than the unspecialized version. As with configuration 6, this double

whammy of ineffective optimization and code bloat can result in significant slowdowns,

not just lack of speedups.

-7

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
 c

h
an

g
e

FIGURE 8.9: Contributions from must and may Lists in Abstract Maps.

config # orig. speedup new speedup

1 1.9 1
2 2.9 1
3 5.5 1.1
4 2.9 1
5 2.5 1
6 1.1 0.4
7 4.7 1.1
8 12.2 1
9 4.7 0.7

10 4.8 0.7
11 4.7 0.5

220
8.3.2 Contributions from Improvement Strategies

We now turn to the efficacy of improvement strategies used in SCF. The four improve-

ment strategies we examine are function specialization (described in section 6.2.1),

expression specialization (section 6.2.2), widening (section 6.3) and non-scalar rematerial-

ization (section 6.4).

8.3.2.1 Function Specialization

To understand the effect of function specialization techniques we performed two experi-

ments. In the first case (labeled “finite args” in figure 8.10), we omitted finiteness analy-

sis, and therefore did not specialize on finite arguments. SCF’s use of finiteness analysis is

detailed in section 6.2.1.1. In practice, we implemented this by using the finiteness key

bottom for all functions in the optimization program. In the second case (labeled “help-

ers”), we omitted specializing non-finite functions, which are typically helper functions,

for each calling context. The need for specializing helper functions is detailed in section

6.2.1.2. We implemented this by using a single finiteness key bottom for all non-finite

functions (i.e., with finiteness patterns of I for their arguments).

Not specializing on finite arguments (and therefore not unrolling the optimization

over the incoming input function) essentially has the effect of performing no specializa-

tion at all. Note that we continue to specialize on k-deep context chains (with k = 2), so

that all function call chains optimize(...)-> ... f ... -> f’ (which may

contain at most two instances of functions f) result in unique specialized versions of func-

tion f’. For instance, we generate two instances of the analyzeCmd function in the con-

stant propagation optimization of figure 3.7, one corresponding to the call from the

analyzeFun function (line 18, figure 3.7), and the other corresponding to a recursive

call (e.g. line 31). The second instance contains a recursive call to the first one, since fur-

ther unrolling is forbidden given the value of k.

Not surprisingly, blind specialization based purely on call chains (i.e., not specializing

on individual nodes of the incoming AST) is insufficient for producing good specializa-

tion: there are tens to hundreds of instance of various types of phrases (expressions, com-

mands, etc.) in any non-trivial function, and (if k = 2) only two specialized versions of the

functions that process them. Each version is therefore invoked more times than the (gener-

221
ous) widening threshold of n1 = 12 times that SCF uses, resulting in aggressive widening

of argument and return values to bottom. The net effect is the same as staging with input

abstract value bottom: there is no speedup (or slowdown) relative to no staging, although

staging time (not shown) is considerably longer, since widening needs to happen first. As

shown in the curve labeled “finite args” in figure 8.10, the result is uniformly a fractional

speedup change of zero.

Figure 8.10 also shows the effect of not specializing non-finite “helper functions” in

the context of their calling contour key chain. Recall that helper functions are non-finite

functions, i.e., ones with no finite arguments. In practice, for the three optimizations we

are staging, there are only two helper functions: meet, which perform the relevant map

meet operation in all three optimizations, and constAsLatticeElement, which con-

verts an SCF-ML constant value into a constant propagation lattice value in the constant

propagation optimization. Only the meet function affects the value of the abstract map

threaded through the optimization: constAsLatticeElement does not read or write

the abstract store. A consequence is that configurations that do not invoke the meet func-

tion are minimally impacted by not specializing helpers, whereas those that do (in particu-

lar, the ones with branches and/or loops) are affected significantly.

The meet function is invoked when the incoming function contains a branch. As

described in section 6.2.1.2, the case that is especially expensive is when the incoming

function contains an early branch followed by many downstream branches. The resulting

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
 c

h
an

g
e

helpers

finite args

FIGURE 8.10: Contributions from Context-Sensitivity Strategy.

config # orig. speedup finite args helpers

1 1.9 1 1.8
2 2.9 1 2.9
3 5.5 1 5.4
4 2.9 1 2.8
5 2.5 1 2.5
6 1.1 1 0.8
7 4.7 1 2.2
8 12.2 1 4.7
9 4.7 1 1.8
10 4.8 1 1.5
11 4.7 1 1.4

222
conflation of abstract stores at branches can result in significant performance loss, as

shown in configurations 6 through 11.

8.3.2.2 Expression Specialization

Figure 8.11 shows the effect of disabling expression specialization (see section 6.2.2), i.e.,

not introducing discriminators to case expressions in order to split the abstract environ-

ment under which the body of the case expression is specialized. In our benchmarks,

expression specialization does not have a significant effect. Although it is not difficult to

come up with examples where expression specialization should make a significant differ-

ence, it seems that these opportunities are certainly not ubiquitous across all instances of

staged compilation. Note that the fractional speedup change metric exaggerates the effect

on configuration 6 in the histogram because the speedup was relatively small to begin

with.

8.3.2.3 Widening

The careful widening strategy in SCF (see section 6.3) ensures that partial evaluation of

optimizations terminates in a finite number of steps, while preserving accuracy in com-

mon cases. In particular, the widening ensures that maps (which, in general, represent the

abstract store that is propagated throughout the optimization) are treated carefully. In the

rest of this section, we refer to “careful widening” simply as “widening”.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11
configuration no.

sp
ee

d
u

p
 c

h
an

g
e

FIGURE 8.11: Contributions from Expression Specialization.

config # orig. speedup exp. spec.

1 1.9 1.8
2 2.9 2.8
3 5.5 5.5
4 2.9 2.8
5 2.5 2.3
6 1.1 1
7 4.7 4.5
8 12.2 11.7
9 4.7 4.5
10 4.8 4.4
11 4.7 4.6

223
Widening is essential in SCF, because programs specialized on finite arguments (i.e.,

“unrolled” over incoming AST’s) may still contain recursion. Combined with the fact that

the abstract value lattice has unbounded height, this recursion may result in non-termina-

tion. In the common case, recursion arises from two sources. First, optimization programs

iterate to fixpoint in order to analyze loops in the programs they are optimizing; in SCF-

ML the iteration is implemented as a recursive function call to functions such as ana-

lyzeWhile in the implementation of dead-assignment elimination (figure 3.7). Second,

an abstract AST may contain recursive (or fix) abstract values, which correspond to infi-

nitely large sub-trees of the incoming AST.1 “Unrolling” optimizations over such AST’s

also results in recursive calls (e.g., figure 6.28).

The above sources of recursion make different requirements of widening. Assuming

precise equality tests (facilitated by abstract value ID’s), the k-deep-contour-chain-based

specialization in SCF is typically sufficient for fully unrolling the recursive analysis of

while loops. In this case, we expect each contour to be analyzed less than k times, so that

the widening threshold for the contour (which is typically greater than k) is not exceeded,

and widening is not required. When analyzing fix forms, however, there is no a priori

bound on the number of times a contour is analyzed, so that the widening is typically

expected to be invoked. Of the configurations we are evaluating, configurations 1, 2, 3 and

8 have no loop in them (so that widening is irrelevant), 5 has an unrolled loop that is, how-

ever, unrolled fully at the early stage (so that widening is again irrelevant), 4 has an

unrolled loop represented as a fix form (so that widening is always relevant), 6 and 7 have

both unrolled and non-unrolled loops (widening should be even more relevant when

abstract value ID’s are disabled in this case), and 9 through 11 have only non-unrolled

loops (so that widening is relevant only when abstract value ID’s are disabled).

Figure 8.12 shows the impact of disabling widening. The data labeled “no widen” is

the case where only intelligent widening is turned off, i.e., dumb widening to bottom is

used instead. The data labeled “no widen/ID’s” is the case where both widening and

abstract value ID’s are turned off. Turning off just widening causes catastrophic loss in

precision in the configurations (4, 6 and 7) that contain non-unrolled cases. However, its

1. In our examples, fix values are a result of unrolling loops at the early stage.

224
impact is not significant in the configurations that have only non-unrolled loops. In this

case, it is only when abstract ID’s are also turned off, so that widening is forced, that the

contribution of widening becomes clear. Comparing configurations 9-11 across figures 8.8

and 8.12, it is clear that widening can compensate to some extent for the loss of precision

from discarding value ID’s. In figure 8.12 (“no widen/ID’s” case) where widening is dis-

carded, speedup change essentially falls to zero, whereas in figure 8.8, where widening

(but not value ID’s) is retained, we still see a noticeable speedup. Not surprisingly, widen-

ing has no significant impact on the configurations (1, 2, 3, 5 and 8) which have no loops.

8.3.2.4 Non-Scalar Rematerialization

Non-scalar rematerialization (see section 6.4) replaces SCF expressions that evaluate to a

(possibly non-scalar, e.g., AST nodes) constant value with an expression that synthesizes

just that specific constant. Given that these new expressions can themselves be much more

expensive than the ones they replace, we need an additional optimization, that of generat-

ing them into the text segment at compile time (called “hoisting” below) so that no run-

time cost is paid when evaluating them.

Figure 8.13 shows the results (labelled “remat”) of disabling non-scalar rematerializa-

tion. In summary, disabling rematerialization has a modest effect. This is in line with our

observation that much of the time spent in optimization is spent in accessing the abstract

store (i.e., writing into and out of maps), and not as much in generating the trees. In many

cases, the optimization generates trees by using unchanged parts of the incoming AST by

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
 c

h
an

g
e

no w iden

no w iden/ID's

FIGURE 8.12: Contributions from Widening Strategy.

config # orig. speedup no widen no widen/ID's

1 1.9 1.9 1.9
2 2.9 2.8 2.9
3 5.5 5.5 5.4
4 2.9 1.1 1.1
5 2.5 2.4 2.4
6 1.1 0.9 0.8
7 4.7 1.1 1
8 12.2 12.1 12.2
9 4.7 4.5 1.1
10 4.8 4.6 0.8
11 4.7 4.7 0.7

225
reference (for instance, a dead code eliminator may simply reuse entire statements by ref-

erence as in line 79 of figure 3.7), so that the original expression is not as expensive as it

would be if it re-assembled every sub-tree of the incoming AST.

Figure 8.13 also shows the results (labeled “hoist”) of performing non-scalar remate-

rialization without the hoisting optimization. In effect, we force the stager to generate all

constant values including, in particular, entire sub-trees known at static compile time.

Since the number of map operations eliminated remains the same, in most cases we still

see a speedup. However, forcing all constant values to be built from scratch (when the

original program may have constructed them by references to existing values) substan-

tially reduces the efficacy of staging. The drop is most noticeable in configurations 9, 10

and 11, which process large AST’s, most of which can be proven to be constant (and un-

transformed) at static compile time.1 Constructing these AST’s not only adds to the num-

ber of operations relative to the version without rematerialization, but also adds substan-

tially to the size of the residual programs, which were already extremely large (see figure

8.5).

Configurations 9 through 11 benefit especially strongly from hoisting. The reason is

that, as mentioned previously, configurations 1 through 8, have many potential (but not

definite) opportunities for optimization. At the early stage, therefore, the structure of most

1.As in previous cases, although the fractional speedup change for configuration 6 is quite dramatic, the baseline speedup
was only 1.1 in that case.

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
ch

an
g

e

remat

hoist

FIGURE 8.13: Contributions from Non-Scalar Rematerialization and Hoisting.

config # orig. speedup remat hoist

1 1.9 1.7 1.5
2 2.9 2.4 2.1
3 5.5 4.7 4.1
4 2.9 2.5 2.1
5 2.5 2.3 1.9
6 1.1 1 0.9
7 4.7 4.2 2.7
8 12.2 10.2 9.1
9 4.7 4.2 1.6

10 4.8 4.1 1.4
11 4.7 4.3 1.3

226
of the late-stage AST is not fully concrete. These parts of the AST are therefore not rema-

terialized. Correspondingly, the total benefit attributable to intelligent rematerialization is

not as high for these configurations as for configurations 9 through 11.

8.3.3 Contributions from Dead-Store Elimination

Figure 8.14 shows the effect (labeled “dead store”) of turning off dead-store elimination

(DSE) altogether. DSE is the subject of chapter 7. One of the key innovations of DSE as

implemented in SCF, is the use of a written-keys map computed by the partial evaluator

that indicates, for each map insert operation in the residualized optimization, the set of

possible keys that may be written by that operation. SCF is able to remove map insert

operations by checking whether this set of keys has a null intersection with the down-

stream list of possibly live map keys (section 7.2.5.1). The result of not using the written-

keys map is labeled “dead inserts” in figure 8.14.

Two key trends stand out. First, disabling dead assignment elimination leads to signif-

icant losses in stager speedup. Surprisingly, however, not all speedup is lost: one may

expect that removing the map-operation-eliminating and AST-construction-eliminating

effects of DSE would remove all speedup or even result in slowdowns. On examining the

specialized code, the primary reason is that a significant number of map read operations

are folded away by the partial evaluator because they yield fully concrete results. A lesser

effect is that some sub-trees, although unnecessarily constructed, are rematerialized at

compile time in the text segment, so that their cost is not paid at run time.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11

configuration no.

sp
ee

d
u

p
 c

h
an

g
e

dead store

dead inserts

FIGURE 8.14: Contributions from Dead-Store Elimination.

config # orig. speedup dead store dead inserts

1 1.9 1.3 1.4
2 2.9 1.4 1.3
3 5.5 2.2 2.9
4 2.9 1.4 1.6
5 2.5 1.3 1.5
6 1.1 0.8 0.9
7 4.7 2 2.4
8 12.2 4.6 4.9
9 4.7 1.8 2
10 4.8 1.7 2.1
11 4.7 1.6 2.2

227
Second, not being able to eliminate map insert operations has almost as bad an effect

as not performing any dead store elimination. To understand why, recall (see figure 7.1 for

an example) that most staged optimizations (and certainly the three actually staged in this

study) can be divided into an analysis part, which writes a map from labels in the incom-

ing AST to lattice values, and a transformation part, which reads this map to perform

appropriate transformations of the AST. Typically, if for any given node in the AST, the

read (in the transformation code) from the map can be folded away, then the upstream

write (in the analysis code) into the map becomes dead. If the write corresponding to a

node becomes dead, then often all the analysis code that went into computing the written

value also becomes dead, so that in summary, the map accesses, analysis logic and AST

accessors for a particular node all become dead (and removable). Unfortunately, most of

this benefit vanishes if we cannot eliminate the intermediate map write operation. As the

figure shows, however, DSE still has some modest benefit even in this case: the “dead

inserts” numbers are slightly higher than the “dead store” case. A look at the generated

code reveals that many tree-construction and traversal operations that either build or

extract parts of trees that are not used downstream (mostly because their results have been

rematerialized downstream) can still be avoided.

8.4 Summary

We provide evidence that SCF can produce staged optimization pipelines that can generate

significantly optimized code. The generated optimizations can exploit run-time informa-

tion at substantially lower run-time overhead than their conventional variants. Asymptotic

speedup of the generated functions ranges from 1× (no speedup) to 2.7×. Speedup of

staged compilation ranges from 1.1× to 12.2×. A pleasing result is that the staged compiler

speedup is often high when not much run-time optimization is feasible: in the common

case that not much optimization is possible, staged compilation can determine statically

that this is so, and avoid paying the run-time overhead of trying to optimize.

Many of the techniques included in SCF have a noticeable effect on its ability to pro-

duce faster late-stage compilers. Except for expression specialization, which did not have

significant impact on our benchmarks, disabling each of the techniques we examined

228
resulted in loss of at least half the speedup for at least one (and frequently more) of the

input configurations. Not surprisingly, some design choices, such as representing at least

alt variants of abstract values, must/may lists in abstract maps, and specializing on argu-

ments (via finiteness analysis), were essential for any speedup on any configuration.

229
9. Conclusions

In this chapter, we examine the main contributions of this thesis, present a critique of the

work and sketch possible directions for future work.

9.1 Contributions

This dissertation makes three main contributions. First, it introduces an architecture for

staging individual optimizations and pipelines that requires far less work from compiler

writers than traditional approaches. Second, it provides an implementation of this archi-

tecture that cleanly and effectively combines two existing powerful but notoriously diffi-

cult-to-use techniques, partial evaluation and dead store elimination. Third, it reports

measurements of an implementation of this architecture that show that it can yield staged

compilers with good performance at very low per-optimization engineering overhead.

SCF unifies and automates a variety of existing approaches to staging individual opti-

mizations. Existing approaches involve writing a special staged version of each traditional

optimization to be staged. Staging an optimization therefore requires considerable addi-

tional engineering effort specific to that optimization. In this dissertation, we show that it

is possible to get many of the effects of the specially designed staged optimizations by

applying one generic function (called the stager) to generic versions of these optimiza-

tions written in a domain specific language (SCF-ML); figure 3.2 illustrates this approach

at a schematic level. Since it is far easier to re-implement a conventional design in this

domain-specific language than to design and implement staged versions of optimizations,

this viewpoint has the potential of making staged optimization more widely usable.

Through the use of a uniform representation (regular tree grammars) to represent

early-stage inputs and outputs of optimizations, SCF further shows how the infrastructure

for staging a single optimization can be composed with little effort to yield one that can

stage pipelines of optimizations. Figure 3.1 captures this approach. Existing approaches

specify early-stage information using optimization specific annotation languages, and pro-

vide little support for staging pipelines of optimizations: changing the order of optimiza-

tions in the staged pipeline either did not make sense (as in swapping compiler backends

with intermediate optimizations), or implied writing an entire new staged pipeline corre-

230
sponding to the new sequence of opportunities. Since most compilers rely heavily on pipe-

lined optimizations for effectiveness, making it easy to construct and use staged pipelines

further lowers the barrier to useing staged optimization.

A large literature exists both on partial evaluation and dead-store elimination, the two

constituent technologies of the stager. Both techniques are known to be difficult to use. In

terms of power and challenge of use, partial evaluation is comparable to theorem proving:

many useful problems can be formalized in terms of these techniques, but both techniques

are intractable with respect to many common problems that are nominally formulated in

terms of them. Good solutions often require extensive use of heuristics, and often user

involvement. Similarly, dead-store elimination belongs to a family of techniques, of which

alias analysis is the canonical example, that is widely applicable in principle, but for

which scalable, effective implementations require domain-specific heuristics. Developing

an instance of these two techniques that automatically and effectively applies to a class of

useful problems is therefore a significant challenge.

The key technical contribution of this dissertation is a set of implementation tech-

niques (representation choices and custom heuristics) suited for partial evaluation of opti-

mization programs, and for dead-store elimination of residual optimizers produced by the

partial evaluator. Below, we list the key implementation techniques, and describe why

they are particularly effective when specializing optimizers. Although the particular ver-

sion of these implementation techniques used in SCF is often novel with respect to tradi-

tional designs of partial evaluators, the more important contribution is that taken together,

they result in effective staging of intraprocedural optimizations.

• Optimization specification language. Many optimizations may be naturally written in

a functional language. This allows SCF to require that optimizations are written in a

purely functional, first-order subset of ML, thus skirting issues related to side effects

and control-flow analysis.

• Finiteness analysis. Optimizations tend to be compositional over their input programs.

This makes it easier for SCF to determine, via its finiteness analysis, which functions to

specialize, and which of their arguments to specialize them with respect to.

231
• Regular-tree-grammar based abstract domain. The compositional nature of trans-

formation functions also motivates the effort involved in using the highly accurate reg-

ular-tree-grammar based domain such as the one proposed in this dissertation. For

partial evaluation of general programs, having an extremely detailed representation for

abstract values is often futile because complex patterns of recursion in the function

being interpreted very quickly confuse the partial evaluator; for most non-singleton

inputs, the abstract store soon degenerates to the conservative abstract value bottom as

result. Transformation functions, because they compositionally replace sub-trees of the

incoming ASTs with transformed versions, are typically easier to reason about. As a

result, they often yield intricate tree-grammars that describe their results.

• Non-scalar rematerialization strategy. The compositional structure of optimizations,

combined with the fact that only select parts of the incoming AST are transformed,

results in large sub-trees of the resulting ASTs being determined statically. The non-

scalar rematerialization strategy proposed in this dissertation, in particular the tech-

nique (borrowed from the functional language implementation literature) of hoisting

constant non-scalars to the text segment, is especially effective here.

• Built-in abstract maps. Optimizations tend to use certain data structures extensively,

e.g., maps and sets. This enables SCF to provide pre-defined variants of these data

structures. The specializer understands their semantics, allowing it to model accurately

this large class of complex computations.

• k-call-instance-deep calling contours. A common class of recursive calls in optimiza-

tions, fixpoint loops to process recursive commands, is known to often terminate within

a (typically small) fixed number of iterations independent of the program being opti-

mized. This provides a natural and effective bound on the degree of context sensitivity

to be used in analyzing these calls, motivating the k-call-instance-deep specialization

approach proposed in this dissertation. This specialization approach differs from more

conventional bounded-call-chain based specialization because it uses a bound on the

number of times a function is specialized on a particular finite argument: it is the coop-

232
eration between the finiteness analysis and the context-sensitivity strategy that provides

the desired level of specialization.

• Highly context-sensitive analysis. Optimizations are typically not very large (hun-

dreds to thousands of lines, say), and input functions being analyzed do not typically

consist of very highly nested loops (this is the worst case that results in exponential

space and time blowup), so it is not impractical to use extensive specialization and

highly context-sensitive algorithms, as SCF does.

• Integrated partial-evaluator and dead-store eliminator. Optimizations use a single

datastructure, the abstract store, to propagate the results of analyzing various parts of

the incoming AST in a structured manner. In particular, an optimization typically ana-

lyzes a sub-tree of the AST, stores the result of this analysis in a slot of the abstract

store indexed by the sub-tree, and retrieves the result from the store when transforming

the same sub-tree. In the common case that the partial evaluator folds away this last

read operation, the dead-store eliminator in SCF is able to deduce that the correspond-

ing write operation is dead, by comparing the set of downstream live keys with the

“written-keys” set provided by the SCF partial evaluator for every map-write operation.

The communication of these written keys from the partial evaluator to the dead store

eliminator is a novel and critical aspect of SCF.

9.2 Critique

The work described in this dissertation can stand improvement along a variety of dimen-

sions:

•Relevance. Staged compilation, as highlighted in this dissertation, is aimed at efficiently

exploiting information available only at a late stage (such as run time) to optimize

programs. The main kind of run-time information described in this dissertation is the

value of variables that have run-time constant (or quasi-constant) values. Unfortu-

nately, although strenuous efforts by various groups over the last decade have shown

that such value-specific optimization can improve the time to execute a variety of real

233
programs, it still seems unlikely that the vast majority of programs will benefit from

it. Further, it is unclear that the performance benefits that accrue are worth the engi-

neering cost of building the staging system. Although the techniques advocated in this

dissertation may reduce the incremental cost of building a staged compiler, even the

one-time cost of building the stager is still not clearly worth the benefit of increased

performance in some, but not most, programs. This begs the question of whether

staged compilation is destined to be a niche concept relevant only to a small

extremely performance-conscious community with plenty of run-time constants in

their programs.

In fact, recent trends in software engineering present an opportunity to increase the

scope and relevance of staged compilation. These trends provide both more compel-

ling kinds of run-time information than values of variables, and more compelling

analyses and transformations (we give this combination the generic name “rewrites”

below) than those that relate to a reduction in raw execution overhead for select C

programs. An important emerging class of run-time information is the identity of

dynamically linked parts of a program: dynamic assembly of programs is increasingly

common in modern programs, and these programs are assembled in a number of

stages. An important emerging class of rewrites is the analysis of whole programs to

confirm that various soundness and security properties hold, and (if necessary) insert

run-time tests to enforce these properties. Another increasingly important class of

rewrites (because of the increasing adoption of languages such as Java and C#) is that

of optimizations necessary for efficient implementation of high-level languages.

Putting these two trends together, staged compilation should be well positioned to

verify whole programs for soundness and security in a staged way: it should be possi-

ble to partially evaluate these rewrites (and accompanying translations) with respect

to fragments of programs available at the early stage, leaving for run-time execution

only parts of the rewrites possibly affected by the structure of the program as a whole.

Automatically staging rewrites may be especially valuable, because rewrites for secu-

rity and soundness are often written by compiler users (as opposed to compiler-writ-

234
ers), who may find it far too technically demanding to hand-write staged versions of

the rewrites.

•Scalability. Unfortunately, if whole programs are to be staged, the approach detailed in

this dissertation is not quite the right one. In particular, one of the results of staging is

the original optimization unrolled over the incoming code fragment being analyzed,

so that the size of the resulting specialized optimizer increases at least linearly in the

size of the incoming fragment. Already, when the fragment is a function of 300 or so

lines of code, the specialized optimizations produced are too large to fit in modern

processor caches. If the fragment is a program, which can easily be 30,000 to 30 mil-

lion lines of code, it is possible that the specialized programs will begin to tax the

memory requirements of processors.

•Incrementality. Because specialized optimizers in SCF are often far larger than the

incoming optimizers, applying the stager in more than two stages is not necessarily

beneficial. The original intention when designing SCF was that optimizations would

be staged incrementally across multiple stages. Each stage would receive as inputs a

more precise description (using the tree-grammar formalism) of the optimization

inputs than the previous one, and the most specialized version of the optimization

from the previous stage. Each stage would produce an even more specialized version

of the optimization to be consumed by the next stage. The hope was that, by using the

most specialized version of the optimization at any stage, we could avoid re-doing the

work that was “folded away” in the previous stage, and thus perform only an incre-

mental amount of work.

In practice, because the specialized optimizations are so much larger than the unspe-

cialized ones, and because the specialized optimization still traversed large pre-

known parts of incoming ASTs to get at newly-known parts, using the much more

compact original optimization at later stages is still faster than using the specialized

version. Especially if whole programs are to be analyzed using staged optimization, it

235
is critical to develop staging algorithms that pass on much less work (and much

smaller structures) for later stages to process.

•Applicability. Although SCF-ML is a Turing-complete functional language, and there-

fore capable of specifying any optimization, the heuristics in SCF are all tuned

towards staging optimizations that are compositional, in that nodes in the incoming

AST are processed strictly by examining the results of recursively processing its sub-

nodes. Unfortunately, certain important conventional optimizations, such as register

allocation (where a global graph-coloring problem that is decidedly non-composi-

tional needs to be solved), scheduling (where transformed sub-nodes of ASTs may be

moved to be their sibling or cousin nodes) and partial redundancy elimination (with

similar behavior to scheduling) have non-compositional structure in their traditional

formulation. To allow staging of entire pipelines, it is important to understand how to

handle (at least important) non-compositional phases. Two possible directions are to

investigate compositional versions of these optimizations (for instance “linear scan”

versions of register allocators that perform no global graph coloring optimizations are

quite effective), and to investigate special hand-written stagers for just these optimi-

zations (thus abandoning pure automatic staging).

•Robustness. Another disadvantage of the expressivity of SCF-ML is that even optimiza-

tions that have compositional structure can be written in ways that are difficult to ana-

lyze. For instance, users may even define and use their own recursive datatypes to

represent the abstract store instead of using the built-in version, all but guaranteeing

that no benefit will be derived from staging. As another example, the use of recursive

helper functions may also result in widening and catastrophic degradation of staged

results.

Given that SCF relies fairly heavily on the incoming SCF-ML programs conforming

to a “stager-friendly” style (which, in its defense, is a very natural style for writing

optimizations), it is important to have either an automatic style checker (which ideally

recommends how to fix programs with bad style), or to replace SCF-ML with a

236
domain-specific language such that all optimizations specified in it are guaranteed to

stage well.

•Evaluation. The suite of optimizations and input programs used for evaluating SCF-ML,

discussed earlier in this dissertation, is intended to establish the potential of staging

realistic problems on a pipeline of conventional optimizations. The suite is undoubt-

edly too limited, both in terms of optimizations staged and inputs optimized, to com-

prehensively establish the value of automatic staging. Part of the problem here is the

sheer engineering cost of specifying a complete compiler pipeline for staging, and of

preparing inputs for these pipelines: in effect, the performance study requires the

specification of an entire compiler, and the porting of a variety of substantial pro-

grams to this compiler! A comprehensive study would therefore be appealing only if

the anticipated benefits of automated staging exceed this cost. In particular, as per the

“relevance” bullet earlier, the ability to perform whole-program optimization, correct-

ness verification and security checks may serve as the necessary motivation.

•Manageability. The work described in this paper is the latest in a series of staged compi-

lation systems built at the University of Washington [8, 24, 50]. The author of this dis-

sertation was heavily involved in designing and building all three systems. Although

the work from these projects has been well received (each system resulted in a publi-

cation at a high-quality venue, and the publication on the second system earned an

“influential paper” citation), all three projects were only modestly successful in teas-

ing out and developing as free-standing contributions the key technical innovations

that enabled them. More bluntly, we produced one major publication per system, not

one per major technique in the systems, leading to the question of whether the sys-

tems contained innovations that could stand by themselves. Given that the systems

were extremely expensive to build (each taking many person-years of effort)1, it is

useful to consider whether anything could be done to increase the cost-benefit ratio of

1. Costs include the amount of labor involved (counting just graduate student time, roughly fifteen person years over
seven years), and the size and sophistication of the systems built (easily 200,000 lines of C, Perl, assembler and Stan-
dard ML code all told, with more than 30,000 lines of code in SCF, the smallest system).

237
these complex projects.

The author’s experience with SCF suggests that one of the more effective ways to

reduce the cost of system implementation and to focus on technically innovative

aspects of such projects is to formalize the problem early, often and compactly. When

building extremely large systems, it is critical to formally specify what is being built.

Ideally, the formal specification should be abstract and compact enough so that the

soundness of the approach is clear, and more importantly, the innovative parts of the

system are in sharp focus. It is important to formulate the system as much as possible

in terms of existing approaches, so that it is clear how the “innovative” parts truly add

to the existing knowledge in the field. Advisors can better gauge from the formaliza-

tion whether there is enough “meat” to support multiple students and publications.

Graduate students should be facile with the formalization before implementing. In

fact, it should be possible to implement the system to reflect the specification as

closely as possible.

SCF does not have a particularly good formalization in this sense. Specifically, the

formalization is not compact or sufficiently abstract; it is certainly difficult to be con-

vinced of the soundness of SCF by looking at its (incomplete) specification in this

dissertation! However, specifying SCF as an instance of the existing partial evalua-

tion and dead-store elimination techniques (with their conventional decomposition

into sub-problems such as the various improvement strategies), allowed us to both

adapt existing work on these techniques, and also to be clear about the significance of

the sub-problems in the scheme of things. For instance, given that improvement strat-

egies for partial evaluation can rarely be viewed as substantial free-standing contribu-

tions, we made the decision to focus on solutions to these sub-problems (such as

finiteness analysis) that were sufficient for SCF to succeed reasonably well, and not to

strive for heroic solutions that could be presented as free-standing contributions to

partial evaluation theory.

Finally, having used “in anger” a modern programming language (SML/NJ) with

extensive support for abstraction, typing and modularization, it is clear to the author

238
that specifying a program in such a language (as opposed, for instance, to C, in which

the earlier systems were developed) both forces and aids in developing a formal view

of the system.

9.3 Future Work

The critique of the previous section suggests a course for future work. Most importantly,

the scope of staged compilation should be broadened to include whole program rewrites,

whether those aimed at performance optimization or, perhaps more importantly, those

aimed at enforcing adherence of programs to various restrictions, e.g., those for correct-

ness, security, and style. The key staged information to be accommodated would be the

structure of the program being assembled. In a nutshell, staged compilation may enable

automatic and efficient whole-program checking and enforcement of properties in the face

of dynamically assembled programs.

Realizing the above vision requires first that a clearly useful set of rewrites that bene-

fit from whole-program structure, and that cannot be solved by interface matching alone,

be identified. Good candidate rewrites would be those critical for efficient implementation

of advanced languages, and rewrites for policy enforcement.

Next, staging will need to be more efficient, both in terms of time and space costs. It

will be useful to investigate implicit representations of rewrites, which maintain special-

ized versions of the data structures being interpreted by the rewrites rather than of the code

that interprets the data structures. For instance, a staged points-to analysis (or any set-

based [26] analysis) may communicate specialized points-to (or more generally, set-con-

straint) graphs between stages rather than entire “unrolled programs”. It will further be

useful to investigate incremental representations, where instead of communicating entire

specialized rewrite programs (albeit in implicit form) between stages and analyzing the

entire specialized input program for the stage, only the “part that does useful work” and

the “part that contributes new information” respectively are communicated. Another inter-

esting approach to efficiency could be approximation. SCF produces specialized optimiza-

tions that have exactly the same semantics as their unspecialized variants, even if the

possible run-time benefit is not very high. It may be possible to systematically transform

239
an optimization into less aggressive variants by using conservative lattice-bottoms if the

expected gain from optimization is not very high. Finally, it will be useful for staging to be

modular: when two parts of a program that have each been built up in many stages are

finally composed, it should be possible to exploit as much as possible the partial results

from the two parts.

Given that dynamic compilation will likely always be the key motivator for staged

compilation, it is important to understand how the compiler backend (register allocation,

scheduling, assembly, codegen, linking) that generates executable code from the above

rewrites could be staged. Register allocation and scheduling are two optimizations that can

sometimes impact program performance substantially and have aspects somewhat differ-

ent from conventional dataflow optimizations. Ideally, it should be possible to develop

versions of these optimizations that stage fairly well and produce code of acceptable

though perhaps not optimal quality. At the very least, it is important to identify and inte-

grate extremely fast unstaged versions of these optimizations, so that the gains of staging

are not exceeded by the loss of slow backend compilation.

Finally, it is important to formalize the above work so that both soundness and nov-

elty of the approach are clear. The emphasis here should be on being precise while

abstracting away irrelevant detail. The key challenge is to identify the important and gen-

eral underlying operations, define a compact notation to express them, and specify the

entire staged infrastructure in this notation. The result should ideally be something that a

practitioner can appreciate and understand within a few days of poring over the specifica-

tion. Such a specification can serve as an important managerial and motivational tool.

The allure of staged compilation has always been that of having your cake and eating

it too: performing high quality optimization at late stages while transferring most of the

cost of doing so to the earlier stages. Recent work, including this dissertation, has shed

considerable light on realizing this vision, although the broader goal of these efforts, i.e.,

value-specific dynamic optimization, has been of limited interest. On the other hand, the

problem of efficient whole-program analysis of dynamically assembled program is an

instance of the staged compilation problem that is of far broader interest. Applying and

extending the insights of the staged compilation community to this problem could dramat-

ically increase their relevance: much more cake to have and to eat!

240
References
[1] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M. Stichnoth.

Fast, effective code generation in a just-in-time Java compiler. In Proceedings of the
ACM SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 280–290, June 1998.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

[3] A. Aiken and B. R. Murphy. Implementing regular tree expressions. In Proceedings
of the Fifth Conference on Functional Programming Languages and Computer
Architecture, pages 427–447, Berlin, West Germany, Sept. 1991.

[4] A. Aiken and B. R. Murphy. Static type inference in a dynamically typed language.
In Conference Record of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages, pages 279–290, Jan. 1991.

[5] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994. DIKU report 94/19.

[6] A. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[7] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In J. Maluszynski
and M. Wirsing, editors, Programming Language Implementation and Logic
Programming, volume 528 of Lecture Notes in Computer Science, pages 1–13.
Springer, 1991.

[8] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad. Fast,
effective dynamic compilation. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and Implementation, pages 149–159,
May 1996.

[9] P. Briggs and K. D. Cooper. Effective partial redundancy elimination. In
Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation, pages 159–170, June 1994.

[10] C. Chambers. The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. PhD thesis, Stanford
University, Mar. 1992. Technical Report STAN-CS-92-1420.

[11] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis
for Java. In Proceedings of the 1999 ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, Denver, CO, Nov. 1999.

[12] A. L. Chow and A. Rudmik. The design of a data flow analyzer. In Proceedings of
the ACM SIGPLAN ’82 Symposium on Compiler Construction, pages 106–113, June
1982.

[13] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree

241
automata techniques and applications, 1998.

[14] C. Consel and F. Noël. A general approach for run-time specialization and its
application to C. In Conference Record of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 145–156, Jan. 1996.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pages 238–252, Jan. 1977.

[16] O. Danvy and J. Palsberg. Eta-expansion does the trick. ACM Transactions on
Programming Languages and Systems, 18(6):730–751, 1996.

[17] M. Das. Unification-based pointer analysis with directional assignments. In
Proceedings of the ACM SIGPLAN ’00 Conference on Programming Language
Design and Implementation, pages 35–46, May 2000.

[18] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proceedings of the 1995 European
Conference on Object-Oriented Programming, LNCS 952, Aarhus, Denmark,
August 1995. Springer-Verlag.

[19] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computing, 30(7):478–490, July 1981.

[20] R. Fitzgerald, T. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi. Marmot: An
optimizing compiler for Java. Software: Practice and Experience, 30(3):199–232,
Mar. 2000.

[21] C. Flanagan and M. Felleisen. Componential set-based analysis. In Proceedings of
the ACM SIGPLAN ’97 Conference on Programming Language Design and
Implementation, pages 235–248, June 1997.

[22] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In Conference Record of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 1–15, Jan.
1996.

[23] A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure termination of off-line
partial evaluation. In D. Bjørner, M. Broy, and I. V. Pottosin, editors, Ershov
Memorial Conference, volume 1181 of Lecture Notes in Computer Science, pages
273–284. Springer, 1996.

[24] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers. An evaluation of
staged run-time optimizations in DyC. In Proceedings of the ACM SIGPLAN ’99
Conference on Programming Language Design and Implementation, pages 293–304,
May 1999.

[25] D. Grove. Effective Interprocedural Optimization of Object-Oriented Languages.

242
PhD thesis, University of Washington, Oct. 1998.

[26] N. Heintze. Set-based analysis of ML programs. In Proceedings of the 1994 ACM
Conference on Lisp and Functional Programming, pages 306–317, Orlando, FL,
June 1994.

[27] M. Hill and A. Smith. Experimental evaluation of on-chip microprocessor cache
memories. In Proceedings of the International Symposium of Computer Architecture,
pages 158–166, June 1984.

[28] C. K. Holst. Finiteness analysis. In Proceedings of the Fifth Conference on
Functional Programming Languages and Computer Architecture, pages 473–495,
Berlin, West Germany, Sept. 1991.

[29] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[30] N. D. Jones, C. K. Gomarde, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, New York, NY, 1993.

[31] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like
structures. In Conference Record of the Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 244–256, Jan. 1979.

[32] R. Kelsey, J. Rees, and W. Clinger. Revised^5 report on the algorithmic language
Scheme. Higher-Order and Symbolic Computation, 11(1), Aug. 1998.

[33] D. Keppel. Runtime Code Generation. PhD thesis, University of Washington, 1996.

[34] G. A. Kildall. A unified approach to global program optimization. In Conference
Record of the First ACM Symposium on Principles of Programming Languages,
pages 194–206, Oct. 1973.

[35] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion: Theory and practice.
ACM Transactions on Programming Languages and Systems, 16(4):1117–1155, July
1994.

[36] C. S. Lee. Finiteness analysis in polynomial time. In M. V. Hermenegildo and
G. Puebla, editors, Proceedings of the Ninth Internatinal Static Analysis Symposium,
volume 2477 of Lecture Notes in Computer Science, pages 493–508, Madrid, Spain,
Sept. 2002. Springer-Verlag.

[37] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In Conference Record of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 81–92, Jan. 2001.

[38] P. Lee and M. Leone. Optimizing ML with run-time code generation. In Proceedings
of the ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation, pages 137–148, May 1996.

[39] M. Leone and P. Lee. Optimizing ML with run-time code generation. Technical

243
report CMU-CS-95-205, School of Computer Science, Carnegie Mellon University,
December 1995.

[40] Y. A. Liu and S. D. Stoller. Eliminating dead code on recursive data. In Proceedings
of the Sixth International Static Analysis Symposium, LNCS 1694, pages 211–231,
Venice, Italy, Sept. 1999. Springer-Verlag.

[41] J. L. Lo and S. J. Eggers. Improving balanced scheduling with compiler
optimizations that increase instruction-level parallelism. In Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation,
pages 151–162, June 1995.

[42] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, 1978.

[43] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, Cambridge, MA, 1997.

[44] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Conference
Record of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 271–283, Jan. 1996.

[45] M. Mock, C. Chambers, and S. J. Eggers. Calpa: A tool for automating selective
dynamic compilation. In Proceedings of the 33rd Annual International Symposium
on Microarchitecture, Monterey, CA, Dec. 2000.

[46] B. R. Murphy and M. S. Lam. Program analysis with partial transfer functions. In
Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 94–103, 2000.

[47] Netpbm web page. ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/.

[48] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based run-time
specialization: Implementation and experimental study. In International Conference
on Computer Languages, pages 132–142, May 1998.

[49] Y. G. Park and B. Goldberg. Escape analysis on lists. In Proceedings of the ACM
SIGPLAN ’92 Conference on Programming Language Design and Implementation,
pages 116–127, June 1992.

[50] M. Philipose, C. Chambers, and S. Eggers. Towards automatic construction of staged
compilers. In Conference Record of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 2002.

[51] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A system for fast, flexible, and
high-level dynamic code generation. In Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and Implementation, pages 109–121,
June 1997.

[52] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Conference Record of the 22nd ACM SIGPLAN-SIGACT

244
Symposium on Principles of Programming Languages, pages 49–61, Jan. 1995.

[53] T. W. Reps and T. Turnidge. Program specialization via program slicing. In Dagstuhl
Seminar on Partial Evaluation, pages 409–429, 1996.

[54] J. C. Reynolds. Automatic computation of data set definitions. In IFIP Congress (1),
pages 456–461, 1968.

[55] J. C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted from the
proceedings of the 25th ACM National Conference (1972), with a foreword.

[56] E. Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University,
February 1993. Technical report CSL-TR-93-563.

[57] E. Ruf. Context-insensitive alias analysis reconsidered. In Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation,
pages 13–22, June 1995.

[58] E. Ruf. Effective synchronization removal for Java. In Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Language Design and Implementation,
May 2000.

[59] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In Conference Record of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 16–31, Jan.
1996.

[60] O. Shivers. Control-flow analysis in Scheme. In Proceedings of the SIGPLAN ’88
Conference on Programming Language Design and Implementation, pages 164–174,
June 1988.

[61] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991. CMU-CS-91-145.

[62] F. Smith, D. Grossman, J. G. Morrisett, L. Hornof, and T. Jim. Compiling for
template-based run-time code generation. Journal of Functional Programming,
13(3):677–708, 2003.

[63] V. C. Sreedhar, M. Burke, and J.-D. Choi. A framework for interprocedural
optimization in the presence of dynamic class loading. In Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Language Design and Implementation,
pages 208–218, May 2000.

[64] B. Steensgaard. Points-to analysis in almost linear time. In Conference Record of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32–41, Jan. 1996.

[65] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani. Overview of the IBM Java just-in-time compiler. IBM
Systems Journals, 39(1):175–193, February 2000.

245
[66] W. Taha and T. Sheard. MetaML and multi-stage programming with explicit
annotations. Theoretical Computer Science, 248(1-2):211–242, 2000.

[67] D. Tarditi. Design and Implementation of Code Optimiziations for a Type-Directed
Compiler for Standard ML. PhD thesis, School of Computer Science, Carnegie
Mellon University, Dec. 1996. Technical Report CMU-CS-97-108.

[68] D. W. Wall. Register allocation at link time. In Proceedings of the ACM SIGPLAN
’86 Symposium on Compiler Construction, pages 264–275, July 1986.

[69] W. E. Weihl. Interprocedural data flow analysis in the presence of pointers,
procedure variables and label variables. In Conference Record of the Seventh Annual
ACM Symposium on Principles of Programming Languages, pages 83–94, Jan. 1980.

246

VITA

Matthai Philipose was born in Ernakulam, India. He received a B.S. from Cornell Univer-

sity in 1994, an M.S. from the University of Washington in 1996 and a Ph.D. from the

University of Washington in 2005, all in computer science. He is currently a member of

the research staff at Intel Research in Seattle.

	Automatic Staged Compilation
	Matthai Philipose
	A dissertation submitted in partial fulfillment of the requirements for the degree of
	Doctor of Philosophy
	University of Washington
	2005
	Program Authorized to Offer Degree: Computer Science and Engineering
	Date:_________________________
	Date____________________________
	Matthai Philipose
	Chair of the Supervisory Committee:
	Professor Craig Chambers
	Computer Science and Engineering
	1. Introduction
	2. Motivation and Background
	FIGURE 2.1: A Simple View of a Modern Compiler
	2.1 A Simple Model of a Modern Compiler
	1. Approximation. As per the widely used abstract interpretation [15] view of program analysis, c...
	2. Summarization. As mentioned above, a typical optimization interprets with respect to an abstra...
	3. Selective optimization. The simplest, and most common, technique for lowering optimization cos...

	2.2 Compilation Stages
	FIGURE 2.2: Compilation Stages
	1. The separate compile time stage, when individual functions are available. The functions themse...
	2. The library assembly stage, when a set of functions is assembled into a library. Having these ...
	3. The static link stage, when sets of functions and libraries are grouped into whole programs, i...
	4. The load stage, when programs are loaded from disk into memory for execution. Details (D4) of ...
	5. The execution stage, when the program is run. Based on values computed during execution of the...
	FIGURE 2.3: Staged Compilation: A Schematic View

	2.3 Staged Compilation
	2.4 Staging via Procrastination
	2.5 Staging via Pessimism
	1. To understand as precisely as possible whether a particular function call side effects a parti...
	2. When optimizing object-oriented programs, it is necessary to determine the possible set of cla...
	3. When performing constant propagation or partial evaluation, it is necessary to have the values...
	4. When performing backend optimizations such as scheduling and register allocation, it is useful...

	2.6 Staging via Preplanning
	2.6.1 Summarization as Preplanning
	FIGURE 2.4: Staging Analyses by Summarization
	FIGURE 2.5: Example Pipeline to Demonstrate Preplanning on Pipelines of Optimizations

	2.6.2 Preplanning for Pipelines of Optimizations
	FIGURE 2.6: Inputs to the Example Pipeline
	FIGURE 2.7: Manual Staging by Compiler Users
	FIGURE 2.8: Manual Staging by Compiler Writers
	FIGURE 2.9: Using an Automatic Optimization Specializer

	2.7 Summary

	3. Overview and Example
	3.1 High-Level Description of SCF
	FIGURE 3.1: High-Level View of SCF

	3.2 The Interface to the Stager
	FIGURE 3.2: Signature of the Stager
	3.2.1 SCF-ML: The Language for Specifying Optimizations
	FIGURE 3.3: Concrete Syntax for SCF-ML Programs
	FIGURE 3.4: SCF-ML Program for Reversing a Linked List of Integers
	FIGURE 3.5: Map Operations in SCF-ML
	FIGURE 3.6: Defining an Intermediate Representation for a Subset of C in SCF-ML
	FIGURE 3.7: Specifying Dead Assignment Elimination in SCF-ML

	3.2.2 Augmented Regular Tree Expressions
	FIGURE 3.8: Concrete Values That May Be Defined in SCF-ML Programs
	FIGURE 3.9: Examples of Some Abstract Values and the Sets they Represent
	FIGURE 3.10: Representing Input Functions as Abstract Values

	3.2.3 How the Stager is Invoked
	FIGURE 3.11: Staging a Three-Phase Compiler Pipeline
	FIGURE 3.12: Invoking the Stager at Static Compile Time
	FIGURE 3.13: Abstract Values Input and Output by the Stager at Compile Time
	FIGURE 3.14: Stub Function Providing Run-Time Interface to Staged Optimizers

	3.3 Internal Structure and Interfaces of the Stager
	FIGURE 3.15: Internal Structure of the Stager
	FIGURE 3.16: Inputs To, and Output From, the Partial Evaluator
	FIGURE 3.17: Partially Evaluated Dead-Assignment Elimination
	FIGURE 3.18: Analysis and Transformation Functions After Partial Evaluation
	FIGURE 3.19: Analysis and Transformation Functions After Dead-Store Elimination

	3.4 Summary

	4. The Partial Evaluator
	FIGURE 4.1: Signature of the Partial Evaluator
	4.1 Signatures of Some Key Data Structures
	FIGURE 4.2: Signatures of Primary Data Structures Used by the Partial Evaluator

	4.2 Core SCF-ML and Notational Conventions
	FIGURE 4.3: Abstract Syntax for SCF-ML Programs

	4.3 Initialization and Fixpointing
	FIGURE 4.4: Initialization and Fixpoint Loop for Partially Evaluating Programs.

	4.4 Partial Evaluation of Individual Functions
	FIGURE 4.5: Partial Evaluation of Functions and Expressions in SCF.
	4.4.1 Literals
	4.4.2 Variables
	4.4.3 Tuples and Constructors
	4.4.4 Primitive Operations
	FIGURE 4.6: Three Special Cases of PEe of Primitive Operations

	4.4.5 Case Expressions
	FIGURE 4.7: Partially Evaluating Pattern Matching
	FIGURE 4.8: Partially Evaluating Case Expressions: An Example

	4.4.6 Function Calls
	4.4.7 Special Forms for Manipulating Maps
	FIGURE 4.9: Partial Evaluation of Map Iterators in SCF
	FIGURE 4.10: Partial Evaluation of Map Iterators in SCF
	FIGURE 4.11: Partial Evaluation of Map Iterators in SCF

	4.5 Summary

	5. Implementing Abstract Values
	FIGURE 5.1: Signature of the AbstractValue Module
	5.1 Interface
	5.2 Internal Representation
	FIGURE 5.2: The Abstract Value Datatype
	FIGURE 5.3: Rewrite Rules for Normalizing Abstract Values

	5.3 Implementing Operations on Abstract Values
	FIGURE 5.4: The meet Function
	5.3.1 meet
	FIGURE 5.5: The meetMaps Function
	FIGURE 5.6: Example Showing How the meetMaps Function Works

	5.3.2 mustBeEqual
	FIGURE 5.7: The mustBeEqual Function

	5.3.3 isSingleton
	5.3.4 isScalar
	FIGURE 5.8: The isScalar Function

	5.3.5 mkTuple
	FIGURE 5.9: The mkTuple Function

	5.3.6 mkTagVal
	FIGURE 5.10: The mkTagVal Function

	5.3.7 evalPrimop
	FIGURE 5.11: The evalPrimop Function
	FIGURE 5.12: The execMapInsert Function
	FIGURE 5.13: The execMapFind Function
	FIGURE 5.14: The find Function on Abstract Maps
	FIGURE 5.15: The execMapEqual Function

	5.3.8 match
	FIGURE 5.16: The match Function
	FIGURE 5.17: Helper Functions for the match Function

	5.3.9 mapMap
	FIGURE 5.18: The mapMap Function

	5.3.10 mapUnionWith
	FIGURE 5.19: The mapUnionWith Function
	FIGURE 5.20: The collapseMap Function

	5.3.11 collapseMap
	5.3.12 findLiveKeys
	FIGURE 5.21: The findLiveKeys Function

	5.4 Summary

	6. Strategies for Accurate and Effective Partial Evaluation
	6.1 Improvement Strategies at Work: A Detailed Example
	6.1.1 Partial Evaluation With No Improvement Strategies
	FIGURE 6.1: Function to Be Partially Evaluated On Input vs = [2|3]
	FIGURE 6.2: Partially Evaluating the inc() Function With No Improvement Strategies
	FIGURE 6.3: Residual Function Resulting From Partial Evaluation Without Improvement

	6.1.2 Adding Function Specialization as an Improvement Strategy
	FIGURE 6.4: Partial Evaluation With Function Specialization
	FIGURE 6.5: Residual Function Resulting From Function Specialization
	FIGURE 6.6: Rematerializing Non-Scalars

	6.1.3 Adding Rematerialization as an Improvement Strategy
	6.1.4 Adding Expression Specialization as an Improvement Strategy
	FIGURE 6.7: Expression Specialization

	6.1.5 Ensuring Termination in the Face of Improvement Strategies
	FIGURE 6.8: Challenges of Function Specialization.

	6.2 Specialization Strategies
	6.2.1 Function Specialization
	FIGURE 6.9: Finiteness Patterns
	FIGURE 6.10: A Fragment of Dead-Assignment Elimination
	FIGURE 6.11: Finiteness Analysis
	FIGURE 6.12: Example Function to Be Optimized
	FIGURE 6.13: A Problem With Not Specializing Non-Finite Functions.
	FIGURE 6.14: Specializing Non-Finite Functions Using the Context Key of Their Callers
	FIGURE 6.15: Modified Example Function to Be Optimized
	FIGURE 6.16: A Problem With Maintaining One Contour Key Per Finite Argument
	FIGURE 6.17: Using Chains of Finite Arguments as Contour Keys
	FIGURE 6.18: Module Implementing Contour Keys

	6.2.2 Expression Specialization
	FIGURE 6.19: Expression Specialization Applied to Dead-Assignment Elimination
	FIGURE 6.20: Invoking the expression specializer from the partial evaluator
	FIGURE 6.21: The discriminate Function for Specializing Case Expressions
	FIGURE 6.22: The findPossibleMatches Function
	FIGURE 6.23: The discriminateMatch Function for Generating Discriminating Matches
	FIGURE 6.24: Data Representation Assumed by SCF
	FIGURE 6.25: Counting the Number of Operations to Implement a Pattern Match
	FIGURE 6.26: Computing Minimal Discriminating Matches Via Generate and Test
	FIGURE 6.27: Example: Computing Minimal Discriminating Matches
	1. Maintaining correlations across repeated variable use. On any single execution of an expressio...
	2. More rigorous cost-benefit analysis. Even when we restrict ourselves to specializing correlati...
	3. Generating more efficient discriminating patterns. The high-level description of figure 6.26 h...

	6.3 Widening Strategy
	6.3.1 Motivating Example: Widening and Constant Propagation
	FIGURE 6.28: Motivating Example for Widening
	FIGURE 6.29: Argument and Return Values Produced While Evaluating analyzeCmd4
	1. Processing sub-command 6 results in sequentially processing command 7 and then command 4. Proc...
	2. Processing sub-command 5 results in the two maps passing through unchanged.

	6.3.2 Reducing Information Loss While Widening
	6.3.3 Widening in SCF
	FIGURE 6.30: Widening in SCF

	6.4 Rematerialization Strategy
	FIGURE 6.31: Signature Required of the Rematerialization Strategy Module
	1. A reset function invoked before partial evaluation commences (see line 10 of figure 4.4 to und...
	2. A postProcess function that takes as input the program resulting from partial evaluation and r...
	3. A rematerialize function that takes as input an expression and an abstract value for that expr...
	FIGURE 6.32: Scalar Rematerialization
	FIGURE 6.33: Non-Scalar Rematerialization
	FIGURE 6.34: Example: SCF-Style Non-Scalar Rematerialization

	6.5 Summary and Related Work
	6.5.1 Specialization
	6.5.2 Widening
	6.5.3 Rematerialization

	7. Dead-Store Elimination
	FIGURE 7.1: Analysis and Transformation Functions After Partial Evaluation
	7.1 Liveness Patterns: The Domain of Abstract Interpretation
	FIGURE 7.2: Scalar vs. Non-Scalar Dead-Store Elimination
	7.1.1 Field Projectors
	FIGURE 7.3: Syntax and Semantics of Field Projectors

	7.1.2 Liveness Patterns: Syntax and Semantics
	FIGURE 7.4: Syntax and Semantics of Liveness Patterns (LP’s)

	7.1.3 The Lattice of Liveness Patterns
	FIGURE 7.5: The Lattice of Liveness Patterns

	7.1.4 Helper Functions
	FIGURE 7.6: The Liveness Pattern Module
	FIGURE 7.7: The makeLPFromPattern Helper Function
	FIGURE 7.8: The makeLPFromAbstValue Helper Function

	7.2 The Abstract Interpreter
	FIGURE 7.9: Interprocedural Analysis Example
	7.2.1 Dead Expressions
	FIGURE 7.10: The Function DSEe for Dead Store Elimination on SCF-ML Expressions

	7.2.2 Variables
	7.2.3 Tuples
	7.2.4 Constructors
	7.2.5 Primitive Operations
	FIGURE 7.11: The Function DSEprimop for Optimizing Primops, Including Map Operations

	7.2.6 Case Expressions
	FIGURE 7.12: DSE of Case Expressions.
	FIGURE 7.13: The Function DSEm for Optimizing Case Expression Matches
	1. We compute the pruned expression e’ and liveness map lpm corresponding to expression e (line 2...
	2. If e is not inferred dead (and therefore replaced by a simpler expression), we set isLive to t...
	3. To compute lpm’, we note that the pruned pattern p’ binds some of the variables in lpm. These ...
	4. Finally (line 14), we invoke the helper function makeLPFromPattern (defined earlier in section...
	FIGURE 7.14: The Merge Function DSEms for Optimizing Case Expression Matches

	7.2.7 Constants
	7.2.8 Curried Functions
	FIGURE 7.15: DSE of Curried Expressions
	FIGURE 7.16: The Function DSEcf for Optimizing Curried Function Applications

	7.3 Summary

	8. Evaluation
	8.1 Evaluation Framework
	8.1.1 System Configuration and Parameters Used in Measurements
	FIGURE 8.1: Staged Dynamic Compilation Using SCF
	FIGURE 8.2: Baseline Configurations for Evaluating SCF
	FIGURE 8.3: Configurations Used in this Evaluation

	8.1.2 Inputs to the Optimization Pipeline
	1. For the mul_add function, we examine three possible values for the early stage input C. In con...
	2. The dotproduct function takes two arrays v1 and v2 of length s as input and computes their dot...
	3. The doconvol function is extracted from the pnmconvol program of the netpbm [47] image manipul...
	4. The main_loop function is the inner loop of a cache simulator [27]. It loops through the entri...

	8.2 Overall Effectiveness of SCF
	8.2.1 Staged Optimization Speedup
	FIGURE 8.4: Speedup of Staged Optimizer Relative to Unstaged Optimizer
	FIGURE 8.5: Pipeline Expansion Factor and Input Function Size

	8.2.2 Asymptotic Speedup
	FIGURE 8.6: Asymptotic Speedup of Compiled Functions

	8.3 Contributions of Staging Techniques to Compiler Speedup
	8.3.1 Contributions from Abstract Value Implementation Techniques
	FIGURE 8.7: Contributions from Variants of the Abstract Value Representation.
	FIGURE 8.8: Contributions from Abstract Value ID’s
	FIGURE 8.9: Contributions from must and may Lists in Abstract Maps

	8.3.2 Contributions from Improvement Strategies
	FIGURE 8.10: Contributions from Context-Sensitivity Strategy
	FIGURE 8.11: Contributions from Expression Specialization
	FIGURE 8.12: Contributions from Widening Strategy
	FIGURE 8.13: Contributions from Non-Scalar Rematerialization and Hoisting

	8.3.3 Contributions from Dead-Store Elimination
	FIGURE 8.14: Contributions from Dead-Store Elimination

	8.4 Summary

	9. Conclusions
	9.1 Contributions
	9.2 Critique
	9.3 Future Work

