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ABSTRACT 
Software architecture describes the structure of a system, and is 
useful for design, program understanding, and formal analysis.  
However, in existing systems an implementation may not 
conform to the designer’s architecture, causing confusion, 
violating architectural properties, and inhibiting software 
evolution.  ArchJava is an extension to Java that seamlessly 
unifies a software architecture with its implementation, ensuring 
that the implementation conforms to the architectural constraints.  
Therefore, programmers can visualize, analyze, reason about, and 
evolve architectures with confidence that architectural properties 
are preserved by the implementation. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
Languages, ArchJava; D.3.2 [Programming Languages]: 
Language Classifications – Object-oriented languages, Java; 
D.3.1 [Programming Languages]: Formal Definitions and 
Theory – Syntax, Semantics 

General Terms 
Documentation, Design, Languages, Theory, Verification. 

Keywords 
software evolution, program analysis, traceability, type system, 
communication integrity. 

1. INTRODUCTION 
Software architecture [GS93][PW92] is the organization of a 
software system as a collection of interacting components.  A 
typical architecture includes a set of components, connections 
between the components, and constraints on how they interact.  
Describing architecture in a formal architecture description 
language (ADL) can make designs more precise and aid program 
understanding, implementation, evolution, and reuse.  Many 
ADLs also support automated visualization and code-generation 
tools [SDK+95], specification and analyses of temporal 
properties including deadlock [AG97], formal reasoning about 
correct refinement [MQR95], and other tools and analyses. 

Existing ADLs, however, are not closely connected to an 
implementation language, causing key problems in the analysis, 
implementation, understanding, and evolution of software 

systems.  Architectural analysis may reveal important properties 
of the architecture, but these may not be true in the 
implementation.  One such property is communication integrity 
[MQR95], the constraint that components in the implementation 
may only communicate with the components they are connected 
to in the architecture.  Some existing ADLs generate code that 
connects existing components [SDK+95], but place strong 
restrictions on the component code, unnecessarily burdening 
implementers.  Other ADLs expect the implementation to be 
done manually in a different language, making it difficult to trace 
architectural features to the implementation for program 
understanding, and creating the danger that the architecture will 
become out of date as the implementation evolves. 

This paper presents ArchJava, a small extension to Java that 
integrates software architecture smoothly into Java 
implementation code.  Our design makes two novel 
contributions: 

§ 
language and an implementation language, allowing flexible 

-
architecture and implementation, and ensuring traceability 

 

• ArchJava guarantees communication integrity in an 
architecture’s implementation, even in the presence of 
advanced architectural features like dynamic component 
creation and connection. 

The rest of this paper is organized as follows.  The next section 
introduces the main features of ArchJava by a series of examples.  
Section 3 presents ArchJava’s support for architectural design 
and evolution.  Section 4 formalizes ArchJava’s type system and 
outlines a proof of soundness and communication integrity in 
ArchJava.  Section 5 describes techniques for compiling and 
visualizing ArchJava programs.  Finally, section 6 discusses 
related work, and section 7 concludes. 

2. THE ARCHJAVA LANGUAGE 
This section introduces the ArchJava language by a series of 
examples.  The language reference manual [AC01] gives the 
complete language semantics.  ArchJava is a backwards-
compatible extension to Java.  It adds new language constructs to 
support components, connections, and ports. 



2.1 Basic Components 
A component is a special kind of object that uses only structured 
mechanisms to communicate with other components.  
Components are instances of component classes.  Figure 1 shows 
an example of a parser component. 

2.1.1 Ports 
A component instance communicates with external components 
through ports.  A port represents a two-way communication 
protocol between two component instances, from the point of 
view of one of the components.  If a component participates in 
more than one logical communication channel, it specifies a port 
for each different channel.  For example, the parser in Figure 1 
declares three different ports: main represents communication 
with a top-level compiler component, in represents 
communication with a scanner component, and out represents 
communication with a code generator component. 

Ports define two public interfaces [LHL77].  The provided 
interface is a set of public methods that can be invoked by other 

components connected to the port.  The required interface is a 
disjoint set of methods that the component can invoke through 
the port.  Required methods are implemented by the other 
components that a port is connected to.  Method declarations 
within a port are labeled with the requires keyword or the 
provides keyword (optional) to distinguish which interface 
they belong to.  For example, the in port of the parser defines a 
required interface containing the method nextToken and a 
provided interface containing the method setInfo. 

Thus, a port specifies both the services implemented by a 
component and the services a component needs to do its job.  
Required interfaces make dependencies explicit, reducing 
coupling between components, and promoting understanding of 
components in isolation.  Ports also make it easier to reason 
about a component’s communication patterns. 

In Figure 1, the parse method provided in the main port is 
implemented in a separate method definition; as syntactic sugar, 
it could also have been given a body inside the port.  The parse 
method invokes the required methods of the in and out ports 
using regular method invocations, using the port as the receiving 
object.  These calls will be forwarded to external components 
that implement the appropriate functionality.  Required methods 
declared in different ports are potentially distinct; calling one of 
them results in invoking the provided method at the other end of 
that connection. 

2.2 Component Composition 
In ArchJava, software architecture is expressed with composite 
components, which are made up of a number of subcomponents 
connected together.  The subcomponents may themselves be 
composite components, enabling hierarchical architectures to be 
expressed. 
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component class Parser { 
  port main { 
    provides void parse(String file); 
  } 
  port in { 
    provides void setInfo(Token symbol, 
                           SymTabEntry e); 
    requires Token nextToken() 
                   throws ScanException; 
  } 
  port out { 
    provides SymTabEntry getInfo(Token t); 
    requires void compile(AST ast); 
  } 
 
  void parse(String file) { 
    Token tok = in.nextToken(); 
    AST ast = parseFile(tok); 
    out.compile(ast); 
  } 
 
  void parseFile(Token lookahead) { ... } 
  void setInfo(Token t, SymTabEntry e) { ... } 
  SymTabEntry getInfo(Token t) { ... } 
  ... 
} 
 

Figure 1.  A graphical parser component and its 
realization in ArchJava.  The Parser component class 
uses three ports to communicate with other components in 
a compiler.  The Parser receives parse messages from 
the body of the compiler through its main port.  The in
port declares a required method that requests a token 
from the lexical analyzer, and a provided method that 
initializes tokens in the symbol table.  Finally, the out
port requires a method that compiles an AST to object 
code, and provides a method that looks up tokens in the 
symbol table 
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component class Compiler { 
  void invoke(String args[]) { 
    // for each file in args 
    parser.main.parse(file); 
  } 
 
  Scanner scanner; 
  Parser parser; 
  CodeGen codegen; 
 
  connect scanner.out, parser.in; 
  connect parser.out, codegen.in; 
} 
 

Figure 2.  A graphical compiler architecture and its 
ArchJava representation.  The Compiler component 
class contains three subcomponents—a Scanner, 
Parser, and CodeGen.  This compiler architecture 
follows the well-known pipeline compiler design [GS93].  
The scanner, parser, and codegen components are 
connected in a linear sequence, with the out port of one 
component connected to the in port of the next 
component 



Figure 2 shows how a compiler’s architecture can be seamlessly 
expressed in ArchJava.  This example shows the advantages of 
ArchJava—it is immediately clear that the parser communicates 
with the scanner using one protocol, and with the code generator 
using another.  Furthermore, the architecture shows that the 
scanner does not communicate directly with the code generator.  
This kind of reasoning about the structure and communication 
patterns in a program can make a program understanding task 
easier. 

2.2.1 Reasoning about Communication 
If the drawing in figure 2 represented an abstract architecture to 
be implemented in Java code, there would be no way to verify 
the reasoning expressed above.  For example, if the scanner was 
passed a reference to the code generator, it could invoke any 
method it wants to, violating the intuition communicated by the 
architecture.  In contrast, programmers can have confidence that 
an ArchJava architecture represents an accurate picture of 
communication between components, because the compiler 
enforces communication integrity. 

Communication integrity in ArchJava means that components in 
an architecture can only call each others’ methods along declared 

connections between ports.  Each component in the architecture 
can use its ports to communicate with the components to which it 
is connected.  However, a component may not invoke the 
methods of its siblings in the architecture directly, because this 
would represent communication not declared explicitly in the 
architecture—a violation of communication integrity. 

Communication integrity is enforced by ArchJava’s type system: 
a component cannot get a typed reference to another component, 
and thus cannot invoke any of that component’s methods (except 
the methods defined in Object).  Classes may not declare 
fields or arrays of component type, and component types cannot 
appear in port interfaces, so references of component type cannot 
be passed between components.  Finally, casts to component 
types are prohibited, so a component cannot downcast a reference 
of type Object to a component type. 

2.2.2 Subcomponents 
A subcomponent is a component instance that is declared inside 
another component class.  Subcomponents have a lifetime equal 
to their parent component, and cannot directly communicate with 
components external to their containing component.  Thus, 
communication patterns in ArchJava are hierarchical. 

Subcomponents are declared using a component field—a field of 
component type inside a component class.  Subcomponents are 
automatically instantiated when the containing component is 
created, and component fields are treated as private, final, 
and not static.  Programmers can use a new expression in the 
field initializer in order to call a non-default constructor. 

2.2.3 Connections 
The connect primitive connects two or more subcomponent 
ports together, binding required methods to provided methods of 
the same name and identical signatures.  Each port may only 
participate in one connection, so that it is clear where required 
methods are bound.  For each required method, there must be 
exactly one corresponding provided method, but any number of 
required methods may be connected to a single provided method.  
Connections are instantiated just after the call to super() in 
the constructor of the enclosing component instance. 

2.2.4 Calling Subcomponent Methods 
According to the principle of hierarchical communication 
integrity, ArchJava allows components to invoke the provided 
methods of their subcomponents’ ports.  For example, the 
invoke method of the compiler example calls the parse 
method provided by the main port of the parser 
subcomponent. 

2.2.5 Correspondence of Code and Architecture 
Figure 3 shows a capitalization component with a pipe-and-filter 
architecture.  Allen and Garlan use this somewhat contrived 
example [AG97] to point out that the architecture of a system 
may have a significantly different structure from its 
implementation, which in their paper is based on a top-down 
functional design.  In ArchJava, the implementation of a system 
corresponds closely to its architecture, as can be seen by 
comparing the code for Capitalize to the abstract 
architecture drawing. 
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component class Capitalize { 
  Split s; 
  Upper u; 
  Lower l; 
  Merge m; 
 
  connect s.out1, u.in 
  connect s.out2, l.in; 
  connect u.out, m.in1; 
  connect l.out, m.in2; 
 
  connect in, s.in 
  connect out, m.out; 
 
  port in { 
    requires char getChar(); 
  } 
 
  port out { 
    provides char getChar(); 
  } 
} 
 
Figure 3.  A pipe-and-filter component that capitalizes 
every other letter in an input stream.  The in port of the 
component is connected to the in port of a Split 
subcomponent that sends characters to alternating output 
streams.  One stream goes though a component that 
capitalizes characters, the other goes through a component 
that converts characters to lowercase.  A Merge 
component merges the two streams, and its output is 
connected to the output of the composite component. 



This feature has advantages and drawbacks.  The big advantage 
is understandability—it is easy to see how the each feature in the 
architecture is implemented, and the architecture can be used to 
document the large-scale structure of the system.  Furthermore, 
as requirements change, architecture and code will necessarily 
evolve together.  The correspondence between architecture and 
code also allows the ArchJava compiler to easily verify key 
architectural properties such as communication integrity in the 
implementation.  On the other hand, ArchJava limits the ways in 
which implementers can structure their system.  Although object 
structures in ArchJava can be organized in flexible ways that 
cross architectural boundaries, components must obey the 
architecture’s structuring and communication constraints in order 
to preserve communication integrity.  Further experience will 
show if this tradeoff is worthwhile. 

2.2.6 Connections to Subcomponents 
As figure 3 demonstrates, a component may provide a method by 
connecting it statically to a provided method in a subcomponent, 
or a required method in some other port.  Therefore, the connect 
statement can connect a containing component’s port to one or 
more ports of its subcomponents, or can connect two ports of a 
single component together from inside the component.  A 
component-local check is sufficient to verify that each provided 
method has exactly one implementation. 

2.3 Dynamic Architectures 
The constructs described above express architecture as a static 
hierarchy of interacting component instances, which is sufficient 
for a large class of systems.  Static architectures are easy to 
reason about, visualize, and are amenable to finite tools such as 
model checkers.  However, some systems require architectures 
that change dynamically, adding and removing components and 
connections.  Cite examples from papers in the literature.  
The language features below extend the static constructs in a 
natural way, describing a static approximation of the ways a 
dynamic architecture can be instantiated at run time. 

2.3.1 Disconnected Components 
ArchJava allows a parent component to create disconnected child 
components dynamically with the new syntax.  Like other 
components, disconnected components must follow the rules for 
communication integrity.  Disconnected components cannot be 
connected to other components, so they can only call methods on 
their own subcomponents.  Only the parent component can call a 
disconnected component’s methods, as described above. 

As a special case, disconnected components can be created at the 
top level with a null parent component.  This mechanism can be 
used in the main method of a component-based application in 
order to create a top-level component and invoke its methods.  

For example, Figure 4 shows the implementation of a compiler’s 
main method. 

2.3.2 Dynamic Components 
A limitation of disconnected components is that they cannot be 
connected to other components.  Furthermore, since array and 
object fields cannot have component type, and component casts 
are prohibited, dynamic components cannot be stored in 
aggregate data structures such as container classes.  Dynamic 
components and connections overcome these limitations. 

component class WebServer { 
  Router r; 
  connect r.main, main; 
  
  dynamic Worker w; 
  dynamic connect w.work, r.work; 
  
  port main { 
    provides Router.work newWorker() { 
      Worker#w newW = new Worker#w(); 
      Router.work worker = 
        connect(newW.work, r.work); 
      return worker; 
    } 
  } 
} 
 
component class Router { 
  dynamic port work { 
    requires void job(Data data); 
    provides void done() { 
      freeList.add(sender); 
    } 
  } 
 
  port main { 
    requires work newWorker(); 
    provides void listen() { 
      ... 
      // when a HTTP request arrives 
      work w; 
      if (freeList.isEmpty()) { 
        w = newWorker(); 
      } else { 
        w =(work)freeList.remove(0); 
      } 
      Data data = ...; 
      w.job(data); 
      ... 
    } 
  } 
 
  List freeList = new LinkedList(); 
} 
 

Figure 5.  Part of a web server component.  The Router 
subcomponent accepts incoming HTTP requests, and 
manages a set of Worker components (not shown) that 
respond.  A free list of workers available to handle 
requests is maintained; when the free list is empty and 
another request comes in, the Router requests a new
worker on its main port.  The WebServer then creates a 
new worker and connects it to the Router.  The Router 
assigns jobs to Workers through the jobs port; when a 
worker finishes a job, the done() method adds the worker 
to the free list. 

component class Compiler { 
  public static void main(String args[]) { 
    new Compiler().invoke(args); 
  } 
 
  // the rest of Compiler’s implementation... 
} 
 

Figure 4.  Creating a disconnected Compiler component 



A dynamic component field declaration is an abstraction for zero 
or more components that may be created at runtime.  It is 
declared with the dynamic modifier added to the regular 
component field declaration.  The declaration does not actually 
create the subcomponents; instead, it allows the user to create 
one or more subcomponents at run time.  Figure 5 shows a web 
server component that declares a dynamic field w of component 
type Worker. 

Dynamic components can be instantiated at run time in the static 
scope of the component that declared the dynamic component 
field.  Each dynamic component instance is associated with a 
particular dynamic component field declaration.  This association 
is captured in a component field type, which combines a 
component type with a field name using the # operator.  The 
component field type is specified in the new expression when 
instantiating dynamic components.  Variables can also be given a 
component field type.  The newWorker method in Figure 5 
creates a component of type Worker#w and assigns it to a local 
variable of the same type. 

Dynamic components can be stored temporarily in an aggregate 
data structure, retrieved, and then downcast to a component field 
type within the static scope of their parent component.  The 
downcast includes a run time check to verify that the 
component’s parent is equal to this, and that the component’s 
parent field is equal to the field in the component field type.  
This check ensures that only a dynamic component’s parent can 
invoke its methods directly, and that dynamic component field 
declarations are properly matched with component instances. 

2.3.3 Dynamic Connections 
Dynamic components can be linked together using dynamic 
connections.  A dynamic connection declaration is an abstraction 
for zero or more connections may be created at runtime between 
the component ports specified.  The dynamic connection can be 
instantiated at runtime with a connect expression.  Connect 
expressions are passed the ports to be connected as arguments 
and return a connection object that represents the set of 
connected ports. 

In order to guarantee communication integrity, for each connect 
expression in the program, there must be a dynamic connection 
declaration connecting matching ports.  For instance, in Figure 5, 
a dynamic connection is declared with dynamic connect 
w.work, r.work and is instantiated with the expression 
connect(newW.work, r.work).  Here newW.work 
matches w.work, since newW has a component field type 
Worker#w that includes field w, so the connection expression 
can be statically checked for conformance to the dynamic connect 
declaration. 

2.3.4 Dynamic Ports 
Often a single component communicates with several other 
components using the same conceptual protocol.  For example, 
the Router component in the web server communicates with a 
dynamically varying set of Worker components.  Thus, there 
must be a way to connect the work port to multiple components.  
When the router invokes a worker’s methods through its work 
port, there must also be a way to specify which worker is 
intended to respond to the message send. 

A dynamic port is a port that can participate in more than one 
connection simultaneously.  This allows a component instance to 
communicate with multiple other dynamically created component 
instances at run time.  A dynamic port can be connected to other 
ports using dynamic connections or static connections. 

2.3.5 Required Interfaces 
Required methods can be invoked through dynamic ports by 
calling through a port’s required interface.  Each port defines an 
interface that includes all the required methods in that port.  
When a dynamic connection is instantiated, the connection object 
returned from the connect expression implements the required 
interface of all the connected ports; thus its type is a union of all 
the ports’ required interfaces.  This union type cannot be written 
directly in Java, but can be assigned to a variable of the 
appropriate required interface type.  In Figure 5, the connection 
object is a subtype of the interfaces Router.work and 
Worker.work, so it can be assigned to a variable of interface 
type Router.work. 

Provided methods in a dynamic port can find out which 
connection a particular call came from using the sender 
keyword.  Defined in every provided method, the sender 
variable is a connection object that implements the required 
interface type of the port the call was made from.  Some methods 
may be provided in multiple ports; in this case, sender has 
static type Object and the programmer must use casts or 
instanceof tests to get the appropriate interface type.  Since 
some methods may be called either through a port or though a 
direct call, the sender variable is null when a direct call was 
made.  In Figure 5, the sender variable is used by the done 
method of the Router to cache a connection for use in a later 
HTTP request. 

When the connection object is read from a collection (as in 
freeList.remove) it can be cast to the appropriate required 
interface type so that methods can be invoked through the 
connection.  To enforce communication integrity, ArchJava must 
ensure that connection objects cannot be used by components that 
were not involved in the original connection, because this might 
violate the communication structure specified by the dynamic 
connection declarations.  This is verified by a run-time check in 
each call that ensures that the calling component is one of the 
connected component instances that requires the called method 
(and throws an IllegalConnectionException if not). 

2.3.6 Removing Components and Connections 
Just as Java does not provide a way to explicitly delete objects, 
ArchJava does not provide a way to explicitly remove 
components and connections.  Instead, components are garbage-
collected when they are no longer reachable through direct 
references or connections. 

2.4 Benefits of ArchJava 
The ArchJava web server implementation has a number of 
significant advantages over a similar Java implementation.  The 
architectural connections between objects are explicit, while in 
Java they must be derived from the code using abstract 
interpretation and alias analysis.  The explicit, hierarchical 
architecture makes visualization of program structure easy, 
whereas visualization of “object soup” structures in Java can be 



very challenging.  Communication integrity is guaranteed, 
allowing better reasoning about communication patterns.  
Subcomponents are not just private, but encapsulated—
references cannot usefully escape the enclosing component.  The 
static declarations of dynamic connections also provide a novel 
way to reason about dynamic object structures, a task that is 
difficult in Java. 

ArchJava also provides other, less central, advantages.  
Dependencies between components are explicit, supporting 
looser binding between components and promoting better 
understanding of what services a component requires.  The looser 
binding combined with the explicit architecture makes it easy to 
swap in new components, or interpose a “smart connector” that 
performs buffering or interface translation between two 
components.  This task can be more difficult in Java, since it 
involves changing the object creation expression, necessitating 
design patterns like factory methods and decorators [GHJ+94].  
The port mechanism allows programmers to explicitly specify the 
different communication protocols that a component participates 
in.  Finally, ArchJava was designed to improve automated 
reasoning by tools such as model checkers and alias analyses.  
For example, static architectures are a natural fit for model 
checkers, and dynamic connection declarations could help an 
alias analysis to track references more effectively.  Future 
experience building tools will determine if the design meets this 
goal. 

In summary, ArchJava provides a number of features that help 
developers to express, visualize, and reason about software 
architecture. 

3. DESIGN AND EVOLUTION 
In addition to supporting fully developed architectures, ArchJava 
supports incomplete architectures during the design phase, and 
supports architectural evolution through component subtyping 
and structural reconfiguration as requirements change. 

3.1 Architecture Design 
One of the advantages of formal architecture description 
languages is that designers can get feedback on their design 
before it is implemented.  Existing ADLs support architectural 
typechecking, deadlock detection, conformance to architectural 
styles, and other analyses.  As a result, architects can easily 
experiment with different architectures at design time, catching 
design errors earlier than would otherwise be possible. 

ArchJava provides support for constructing, visualizing, and 
typechecking incomplete architectures.  This allows architects to 
visualize their architecture and ensure key static and dynamic 
properties during design, helping them to find architectural 
errors earlier. 

The key design advantage of ArchJava over existing ADLs and 
implementation languages is that it supports iterative 
development and checking.  As the architecture and 
implementation is gradually fleshed out, the ArchJava compiler 
will incrementally check the consistency of the architecture and 
implementation.  Unlike previous systems, designers can be 
confident that their code will conform to their architectural 
design at every stage of the implementation. 

The ArchJava compiler can be run in complete mode (the 
default) or incomplete mode.  The complete mode verifies that 
all components are implemented, while the incomplete mode is 
tolerant of partial implementations.  A component can be left 
incomplete simply by omitting subcomponents and connections.  
A port’s body can be also left out, signifying that the port’s 
interface is not yet specified.  No interface checking is done 
when an incompletely specified port is connected to another port.  
As in Java, the body (not the signature) of a method can be left 
unspecified by using the abstract modifier.   

3.1.1 Example IV: Parser Design 
Figure 6 shows an early design of the Parser component.  The 
Parser can be connected to the other components in the 
compiler architecture as described in Figure 2.  The designer has 
left out the bodies of the in and out ports, so no interface 
checking is done when these ports are connected to other ports.   
Furthermore, no definition is given for the abstract parse 
method, but its signature can be checked against the call in 
main(). 

3.2 Evolution through Inheritance 
Like other object-oriented languages, ArchJava supports software 
evolution through inheritance and subtyping.  As with regular 
classes, component classes can extend another component class.  
Components cannot extend ordinary classes (other than 
Object) or implement ordinary interfaces; this would allow 
violations of communication integrity, since components could be 
used as the interface or class type by components that cannot be 
communicating directly. 

component class ByteCodeCompiler 
          extends Compiler { 
  CodeGenerator cg = new ByteCodeGenerator(); 
} 
 
component class ByteCodeGenerator 
          implements CodeGenerator { ... } 
 
Figure 7a.  Compiler with a byte-code generator back end 

 
component class LoggingWorker 
          extends Worker { ... } 
 
component class LoggingWebServer 
          extends WebServer { 
 
  Router.work newWorker() { 
      Worker#w newW = new LoggingWorker#w(); 
      ... 
  } 
} 

Figure 7b.  A logging web server that uses a 
LoggingWorker component subclass 

component class Parser { 
  port main { 
    provides abstract void 
      parse(String file); 
  } 
  port in; 
  port out; 
} 

Figure 6.  Early Parser Design 



Inheritance works in the expected way; existing fields, methods, 
ports, component fields, and connections are inherited from the 
component superclass.  As in Java, methods can be overridden, 
but component subclasses can also override ports and component 
fields. 

An overriding port must specify a superset of the original port’s 
provided method signatures, in the same way as Java allows 
subclasses to define additional methods.  However, overriding 
ports must have an identical set of the original port’s required 
methods, because inherited code may depend on the entire 
required interface, and existing connections cannot provide any 
additional required methods.  Component subclasses may also 
declare additional ports as long as they do not contain any 
required methods. 

Component fields can be overridden with a component field of 
the same name and type, but a new initialization expression.  
New components and connections can also be added in a 
subcomponent. 

3.2.1 Subtyping 
Instead of inheriting the interface and the implementation of 
another component class, a component class may inherit only the 
interface.  This represents subtyping without inheritance, 
allowing one component class to be used in place of another even 
if there is no implementation inherited.  Unlike Java, there is no 
way to implement multiple interfaces—either a component class 
extends a single other component class, or it implements the 
interface of a single other component class.  These rules are 
necessary to ensure component substitutability, which is trickier 
than in Java because of required methods. 

When a component implements the interface of another 
component, it must implement all of the public and package 
methods of that component (including methods provided by 
ports).  Ports can be overridden as discussed above.  Component 
fields and connections are not inherited in interface inheritance, 
but the implementing component class can specify new 
component fields and connections. 

3.2.2 Examples of Evolution using Subtyping 
The checked subtype relation can be used to increase confidence 
that a program evolution step is correct.  In Figure 7a, the 

Compiler component from Figure 2 has been subclassed to 
include a code generator that generates bytecode instead of 
executable code.  The new component class is specified in an 
explicit initialization expression.  It is a subtype of the 
CodeGenerator, ensuring that its interface matches the code 
generator’s interface. 

Subtypes can also be used for dynamic components and 
connections.  Figure 7b shows a component that extends the web 
server from Figure 5 to instantiate a Worker subcomponent that 
logs the jobs that it performs.  Because LoggingWorker 
inherits from Worker, it could be mixed freely with Worker 
objects in the same program.  Subtyping relationships between 
component types extend to component field types with the same 
field name; thus LoggingWorker#w is a subtype of 
Worker#w, allowing assignment and casts to type Worker#w. 

3.3 Evolution through Reconfiguration 
Because ArchJava makes connections between components 
explicit, it can support evolution through component 
reconfigurations.  Such reconfiguration can be more difficult in 
Java because a conceptual connection may be spread out in many 
references throughout the program, all of which must be 
potentially changed by an evolutionary step. 

Consider the capitalization example from Figure 3.  Assume that 
a better Split component has been identified, and the designer 
wants to replace Split with NewSplit, shown in Figure 8.  
This presents a tricky evolutionary step, because (as is often the 
case in real component development) there is no subtyping 
relationship between Split and NewSplit.  The out port 
contains a different method name and signature.  Furthermore, 
the components have a different control model—the original 
component is passive, but the new component contains an active 
thread that requests characters at the in port and sends them on 
the out port. 

component class NewCapitalize { 
  NewSplit s; 
  Upper u; 
  Lower l; 
  Buffer b1; 
  Buffer b2; 
 
  connect in, s.in; 
  connect s.out1, b1.in; 
  connect b1.out, u.in; 
  connect s.out2, b2.in; 
  connect b2.out, l.in; 
 
  port in { 
    requires char getChar(); 
  } 
  // rest of component... 
} 
 
component class Buffer { 
 port in { 
  synchronized void putChar(char c); 
 } 
 port out { 
  synchronized char getChar(); 
 } 
 // buffering code... 
} 
 

Figure 9.  Capitalization Component with NewSplit 

component class Split { 
  port in { 
    requires char getChar(); 
  } 
  port out1 { 
    provides char getChar(); 
  } 
  // similar for out2 
} 
 
component class NewSplit { 
  port in { 
    requires char getChar(); 
  } 
  port out1 { 
    requires void putChar(char c); 
  } 
  // similar for out2 
} 
 

Figure 8.  The interfaces of old & new Split 



This evolutionary step might be difficult in Java, because a 
programmer would have to track down all the uses of the old 
component and change them to work appropriately with the new 
component.  Alternatively, the programmer could trace all uses of 
the old component to the creation point, and write a wrapper for 
the new component.  Both of these approaches are potentially 
challenging and error-prone (especially in more complex 
examples), simply because the communication patterns between 
components are often spread out and component aliases are 
difficult to track in the source code. 

Figure 9 shows one possible solution to this interface-matching 
problem in ArchJava.  A synchronized buffer component provides 
the putChar method that is required by the NewSplit 
component, and provides the getChar method that is required 
by the Upper and Lower components that the old Split 
component was connected to.  Two buffer components are used 
to connect the NewSplit component to the existing Upper and 
Lower components.  This is an example of how the mediator 
design pattern [GHJ+94] can be applied in ArchJava to allow 
mismatched interfaces to communicate. 

4. ARCHJAVA FORMALIZATION 
4.1 Definition of Communication Integrity 
Communication integrity is the key property of ArchJava that 
ensures that the implementation does not communicate in ways 
that could violate reasoning about architectural properties.  
Intuitively, communication integrity in ArchJava means that 
component instance A cannot call the methods of component 
instance B unless B is A’s subcomponent, or A and B are sibling 
subcomponents of a common component instance that declares a 
connection between them. 

To define communication integrity more precisely, we first 
define the dynamic execution scope of a component to include all 
a component’s methods and the methods they transitively invoke 
until a method of another component is called: 

Definition 1 [Dynamic Execution Scope]:  Let mf be an 
executing method frame.  If m is a component method, then mf ∈ 
escope(this).  Otherwise, mf ∈ escope(caller(mf)). 

Now we can define communication integrity: 

Definition 2 [Communication Integrity for ArchJava]:  A 
program has communication integrity if, for all method calls 
b.m(...) in an executing method frame mf, where b is a 
component instance and mf ∈ escope(a), either: 

1. a = b, or  

2. parent(b) = a, or  

3. parent(b) = parent(a) ∧ 
“dynamic connect f1, f2,...” ∈ 
                                                  class(parent(b)), 
where f1 = parentfield(a) ∧ f2 = parentfield(b) 

In this definition, we assume m is not one of the methods defined 
in Object; these methods are not very interesting for reasoning 
about component communication, and our system does not 
enforce communication integrity on them. 

Also, notice that there can be communication aside from method 
calls due to data sharing from aliased objects, static fields, and 

the operating system.  Existing ways to control this form of 
communication often involve significant restrictions on 
programming style.  ArchJava’s design allows reasoning about 
communication through method calls between components, while 
imposing few restrictions on programmers.  Future work includes 
developing ways to control these additional communication 
channels while preserving expressiveness. 

4.2 Enforcement of Communication Integrity 
There are three ways a component method could be invoked in a 
way that violates communication integrity.  First, a method could 
be invoked on an expression of component type.  Second, a 
method could be invoked on an expression of component field 
type.  Finally, a method could be invoked on a connection object 
through a port’s required interface. 

These three possible violations of communication integrity are 
prohibited by a number of static and dynamic checks ensuring 
four key invariants: 

Invariant 1 [Component Type Encapsulation]:  Inside 
escope(A), all expressions of component type refer either to A or 
to a disconnected component created in escope(A). 

Invariant 1 is enforced by a number of restrictions imposed by 
the ArchJava language.  First, no fields in objects may be given a 
component type—only component fields in components.  Second, 
casts to component type are illegal.  Third, arguments to public 
component methods may not have component type, and non-
public component methods may only be called on this.  
Because of these restrictions, the only way to get an expression 
of component type in ArchJava is to create a disconnected 
component (whose conceptual parent is A) or to use this inside 
a component’s lexical scope.  These expressions can be passed 
around to private component methods and to object methods 
within a component’s execution scope, but must be implicitly 
downcast to Object before escaping the component’s execution 
scope.  Invariant 1 enforces communication integrity in the first 
case, where a method is invoked on an expression of component 
type. 

Invariant 2 [Component Field Type Encapsulation]:  Inside 
escope(A), all expressions of component field type with field f 
refer to a subcomponent of A that was associated with the 
component field f at creation. 

Invariant 2 is enforced in a similar way to invariant 1.  Casts to a 
component field type are allowed in ArchJava, but the cast 
dynamically checks that the target is a subcomponent of this, 
and the target’s parent field is the one specified in the type.  The 
only other way to get an expression of component field type in 
ArchJava is to create a subcomponent (with parent A and parent 
field f) or to refer to a component field inside a component’s 
scope.  Invariant 2 enforces communication integrity in the 
second case, where a method is invoked on an expression of 
component field type. 

Invariant 3 [Connection Creation Integrity]:  All connection 
objects created dynamically in a component instance A connect 
subcomponents of A, such that the corresponding fields were 
connected in a dynamic connect declaration in A. 



Invariant 3 is enforced by typechecking connect expressions.  The 
typechecker ensures that each expression being connected is of 
some type f.C, where f is a field of A with a type D and C is a 
subtype of D, and the fields in the expression types are connected 
in a dynamic connect declaration.  The type check, combined 
with invariant 2, ensures invariant 3. 

Invariant 4 [Connection Invocation Integrity]:  For all 
invocations of a required method through a connection object C 
(or a static port P) in the scope of a component instance A, A is 
one of the objects connected by C (or connected to P). 

Invariant 4 is enforced with a dynamic check done by the 
dynamically created connection objects, and by the static 
semantics of static connections.  Together, invariants 3 and 4 
enforce communication integrity in the second case, when a 
method is invoked on a connection object through a port’s 
required interface. 

4.3 Formalization as ArchFJ 
To prove communication integrity and the safety of our type 
system, we have formalized the core of ArchJava as ArchFJ.  
ArchFJ is based on Featherweight Java [IWP99].  This section 
defines the syntax, types, subtyping rules, dynamic semantics, 

and static semantics for ArchFJ.  We outline the proofs of 
communication integrity, subject reduction, and progress. 

To be inserted from other document 

5. TOOL SUPPORT 
Tool support for ArchJava includes planned compilation, 
analysis, and visualization tools. 

5.1 Compilation Technique 
In this section we outline a proposed compilation technique for 
ArchJava.  Our system allows separate compilation, although a 
global compilation system could produce more optimized code.  
The details can be found in an accompanying technical report 
[AC01].  Should we really be citing this?  It’s a bit out of date 
right now… 

5.1.1 Components 
A component class is translated into an interface containing all of 
the methods that the component provides, and a class that 
implements the interface and defines the methods.  If the 
component class inherited from Object, the generated class 
inherits from $Component$, an internal class that has a 
$parent$ field to keep track of the component’s parent.  The 
static component fields are translated into private final fields of 
the same type, initialized just after the call to super() in the 
containing component’s constructor.  Each port is translated into 
a new interface, containing all of the port’s required methods.  In 
addition, static ports generate a private final port field of the 
interface type.  Calls to required methods through that port are 
converted to invocations on the object in the port field.  A sender 
argument of the port’s required interface type is added to all 
provided methods, in order to implement the sender keyword.  
If the same method is provided in multiple different ports, the 
sender will be of static type Object, and must be cast to the 
appropriate type in the ArchJava source code. 

Each component field generates a new tag class that encodes the 
field name, and a private final field initialized to an object of the 
tag class.  The value in the tag field is later passed as an extra 
parent tag argument to the constructor of subcomponents, where 
it is passed to the $Component$ constructor and assigned to a 
private final parent tag field.  This value is checked when an 
object is downcast to a component field type—the downcast is 
translated into a call to a downcast method, which verifies that 
the value in the current component’s tag field is equal to the 
parent tag of the object being downcast.  Figure X10 shows an 
example of translating a dynamic component. 

component class C { 
  dynamic SubC s; 
  void foo(Object o) { 
    Object o = new SubC#s(); 
    ((SubC#s)o).bar(); 
  } 
} 
 
Translation: 
 
interface C { 
  void foo(Object o) 
} 
 
class C$def extends $Component$ implements C 
{ 
  C$tag$s s = new C$tag$s(); 
 
  C$def(Object $parent$) { 
    super($parent$); 
  } 
 
  void foo(Object o) { 
    Object o = new SubC$def(s); 
    SubC temp$1 = (SubC)o; 
    if (s != temp.$parent$) 
      throw new ComponentCastException(); 
    temp$1.bar(); 
  } 
} 
 
class C$tag$s { } 



5.1.2 Connections 
Each static and dynamic connection declaration generates a new 
class that implements the required interfaces of the connected 
ports.  The connection’s constructor takes the connected 
components as arguments and assigns them to internal final 
fields.  Dynamic connections are instantiated at dynamic connect 
expressions, and static connections are instantiated in the 
constructor of the component class containing the connection. 

In order to verify that calls through a connection are made from 
one of the connected components, all required methods have an 
extra sender argument generated and provided by the compiler.  
When a required method is called, this is passed as the sender.  
For dynamic connections, the implementation methods in the 
connection object check that the sender is one of the connected 
objects that requires the given method.  The connection object 
then forwards the method call to the connected component that 
provides it, passing the connection object itself as the sender 
so that the invoked method knows which connection it was 
invoked from.  Figure X11 shows an example of translating a 
dynamic connection declaration. 

A provided method that is implemented by a connection to 
subcomponents or to another required method is given a body 
that simply calls the appropriate method. 

In addition to generating code, the compiler must also do a 
number of semantic checks.  The most important of these are the 
communication integrity checks, and the well-formedness checks 
for connections.  The latter verifies that there is a unique 
provided method for each required method in the connected 
ports. 

5.1.3 Performance 
The overhead of ArchJava programs compared to ordinary Java 
implementations includes indirection through connection objects 
and the extra check when casting to a component field type.  
Assuming a JIT compiler, all of these incur a cost roughly 
comparable to a dynamic message dispatch. 

We theorize that the architectural constructs of ArchJava will me 
most useful at the larger scales of the application, meaning that 
most method calls will use ordinary dispatch and not experience 
any ArchJava overhead at all.  Therefore, we expect that 
performance is likely to be indistinguishable from a comparable 
Java implementation, or at worst will be comparable to the 
existing overhead of object constructs. 

5.1.4 Concurrency 
Concurrency is largely orthogonal to ArchJava.  Components can 
protect themselves from concurrent access by using synchronized 
methods or other means, as in Java.  Since the structures 
generated by the compiler are all immutable, data races are not 
an issue. 

5.2 Visualization 
Because of the structural nature of software architecture, is it 
particularly important to provide tools that can visually display, 
navigate through, and edit the architecture.  As an initial, proof 
of concept implementation, we are defining a translation from 
ArchJava to Acme [GMW97], an architecture interchange 
language.  This will allow ArchJava architectures to be browsed 

and edited in the AcmeStudio environment [Kom98], a freely 
available tool for Acme architectures.  An additional advantage 
of translations to Acme is that ArchJava architectures can be 
compared with architecture descriptions written in other 
languages, and analysis tools written for other ADLs can 
potentially be applied. 

6. RELATED WORK 
6.1 Object-oriented Programming Systems 
Software Architectures can be implemented in object-oriented 
languages such as C++ [ref] and Java [GJS97].  There are a 
number of differences between an architecture expressed in an 
object-oriented language and an ADL.  First of all, object 
interfaces declare the services an object provides, but do not 
specify the services the object relies on.  This information must 
be gleaned from the details of the implementation.  Second, there 
is no direct way to specify a hierarchical communication 
structure, only local connections between objects.  This makes 
structural visualization and analysis hard, impeding 
understandability.  Finally, there is no concept of communication 
integrity, beyond the constraint that calls obey the type system.  
Any object can communicate with any other object, if it has a 
reference and casts it to an appropriate type.  In contrast, 
ArchJava supports reasoning about communication between 
component instances, even in the presence of aliasing. 

UML [ref?] is a notation for expressing object-oriented designs.  
It is capable of expressing relationships between objects that in 
some cases go beyond what ArchJava provides, for example, in 
specifying the multiplicity of object relationships.  Although 

component class Component { 
  dynamic SubComponent1 s1; 
  dynamic SubComponent2 s2; 
  dynamic connect s1.p1, s2.p2; 
} 
 
Translation: 
 
  // compiler-generated connection  
class Component$Connect1 { 
  implements SubComponent1$port$p1, 
             SubComponent2$port$p2 { 
 
  Component$Connect1(Object s1, Object s2) { 
    this.s1 = s1; 
    this.s2 = s2; 
  } 
 
    // required by port p1 in SubComponent1 
  public final int foo(int arg1, 
               Object sender) { 
    if (sender != s1) 
      throw new 
       IllegalConnectionException(); 
    return s2.foo(arg1, this); 
  } 
 
  private final Object s1; 
  private final Object s2; 
 
  ... 
} 
 

Figure X11.  Translation technique for dynamic 
connections 



tools to generate code from UML have been built [refs?], the 
notation has no inherent semantic base, a problem that is the 
subject of current research [ref?].  UML also has no concept of 
communication integrity or hierarchy, making it difficult to 
visualize and reason about communication patterns. 

Component-based infrastructures such as COM [ref], CORBA 
[ref], and JavaBeans [ref] further support development of 
applications from components.  Some tools for JavaBeans even 
support graphical ways to connect components together, allowing 
simple architectures to be visualized.  Possible drawbacks in 
such systems include poor support for structural specification of 
dynamically changing systems, no concept of communication 
integrity, and a complex mapping from component events and 
properties to the code that implements them.  On the other hand, 
these infrastructures often support multi-language, distributed 
systems. 

Tools such as Reflexion Models [MNS95] have been developed 
to enable programmers to visualize the structure of existing 
programs.  These tools are particularly effective for legacy 
systems, where rewriting the application in a language that 
supports architecture directly would be prohibitively expensive.  
Specifying architecture directly in ArchJava has the advantage 
that architecture is visible in the source code, and ArchJava 
allows reasoning about the connections and communication 
integrity between component instances, not just component 
classes. 

6.2 Advanced Type Systems 
Advanced, polymorphic type systems such as those found in ML 
[ref], GJ [ref], and Cecil [ref], allow more specific specification 
of types, but still cannot effectively express program structure. 

More recent work proposes type systems for controlling aliasing 
in object-oriented programs that can be used to enforce a kind of 
communication integrity.  Pointers that are aliased by two 
components can create a back door for communication that does 
not flow through a declared communication channel.  Linear 
types can be used to declare unique objects that are unaliased 
[Min96].  Passing a unique object from one component to another 
does not create an aliasing problem, since the source component 
may not use the object again. 

Other research has investigated enclosing types.  Early work such 
as Islands [ref] or Balloons [ref] imposed strict rules on sharing 
objects between components.  These systems can guarantee 
communication integrity, but also limit expressiveness.  More 
recently, Flexible Alias Protection [NVP98] strikes a balance 
between guaranteeing aliasing properties and allowing flexible 
programming idioms.  Although these systems aid in reasoning 
about aliasing, they do not directly express software architecture. 

Techniques like these are the subject of ongoing research, and 
we plan to incorporate them into ArchJava in the future.  Our 
current strategy of guaranteeing communication integrity of calls 
between components allows considerable reasoning about 
software architecture while putting minimal restrictions on 
implementers.  With linear and/or enclosing types, ArchJava 
could still allow flexible implementation strategies, and 
guarantee a stronger version of communication integrity: that 
data does not flow between components except along declared 
communication channels. 

6.3 Advanced Module Systems 
Advanced module systems such as MzScheme’s Units [ref] and 
ML’s functors [ref] can be used to describe the static architecture 
of a system.  The FoxNet project [ref] shows how functors can be 
used to build up a network stack out of statically connected 
components. 

Using a powerful module mechanism for architectural 
connections has the advantage of using an existing language 
construct.  However, using an explicit architectural description 
also has several advantages.  First, programmers and automated 
tools can more easily recognize explicit architectural constructs, 
while it may be hard to distinguish between modules used to 
encapsulate an ADT and modules used to link up conceptual 
components.  Thus, an explicit architecture enhances 
visualization and automated reasoning about architecture.  
Second, module systems do not define, document, or enforce 
communication integrity—this must be done using program 
annotations and the discipline of implementers.  For example, if 
a module contains free variables or references to internal data 
structures of other modules, these can be used as communication 
“back doors.”  Finally, modules cannot be used to define or 
reason about object instances in dynamically changing 
architectures, because module connections are static.  Instead, 
the ordinary type system must be used, with the drawbacks 
discussed above. 

6.4 Existing Architecture Description 
Languages 
A number of Architecture Description Languages have been 
defined to describe, model, check, and implement software 
architectures [MT00].  Many of these languages were partly 
inspired by the hardware architectures expressible in VHDL 
[ref?]. 

Many ADLs support sophisticated analyses.  For example, 
Wright [AG97] allows architects to describe detailed 
communication protocols in a language based on CSP.  
Connections can be checked for compatibility, deadlock, and 
other properties.  SADL [MQR95] formalizes architectures in 
terms of theories, shows how generic refinement operations can 
be proved correct, and describes a number of flexible refinement 
patterns. 

Acme [GMW97] is an architectural interchange language.  It 
defines a basic syntax for components and connections, and has 
extensible properties that can express the features of other 
languages.  xArch [ref] is a new, similar project based on XML 
[ref].  Automated translators have been defined from Wright 
[AG97] and Aesop [ref] into Acme, so developers can compare 
architectures and take advantage of a set of common tools.  We 
are defining a translation from ArchJava to Acme to leverage 
existing visualization and analysis tools. 

Rapide [LV95] is an ADL designed to support event-driven 
simulations of software architectures.  An executable sub-
language includes reactive constructs for event-driven 
programming, as well as more conventional object-oriented and 
procedural constructs.  Although Rapide was primarily designed 
to support architecture simulation, components in a Rapide 
architecture can be given real implementations in the executable 



sub-language or in languages such as C++ or Ada.  Rapide 
supports declarative event-based dynamic connections that 
support precise reasoning about event traces and dependencies.  
In contrast, ArchJava’s dynamic connection declarations describe 
communication structure precisely, allow reasoning about 
component instances, and fit naturally into conventional object-
oriented languages. 

There are style guidelines that can be used to help assure 
communication integrity in Rapide [LV95].  In particular, 
components must only communicate with other components 
through their own interfaces, and interfaces cannot include 
references to mutable types.  These guidelines are not enforced 
automatically, and are incompatible with many common 
programming idioms, such as shared data structures.  ArchJava 
allows a more flexible programming style with objects, while 
still automatically enforcing communication integrity among 
components.  The execution trace of an implementation in a 
language such as Ada can also be checked for structural and 
event conformance to Rapide architectures [Mad96]. 

UniCon  [SDK+95] and other ADLs generate code to connect 
components together.  The components themselves must be 
implemented in other languages.  This allows easy incorporation 
of legacy code, but can restrict their interfaces to what the code 
generation system can support, and also opens the door to 
violations of communication integrity.  The C2 system 
[MOR+96] provides runtime libraries in C++ and Java that 
connect components in as specified in the C2SADEL ADL.  C2 
requires a particular architectural style, which can enhance 
reasoning but also restricts the use of idioms like shared data 
structures and limits the scope of C2’s applicability.  
Communication integrity relies on programmers following C2’s 
implementation guidelines. 

7. FUTURE WORK AND CONCLUSION 
There are a number of possible directions for future work in 
integrating programming languages and software architecture: 

§ Supporting distributed software architectures with 
components implemented in multiple languages 

§ Applying temporal specifications to components during 
design and model-checking the implementation to 
verify that it conforms to the architecture 

§ Applying linear and enclosing types to enforce a 
dataflow version of communication integrity 

§ Developing tools like Reflexion Models to support 
migration from Java to ArchJava 

§ Applying ArchJava to large real applications, to test 
how well it can express architecture and support 
program evolution 

In conclusion, ArchJava allows programmers to effectively 
express software architecture and then seamlessly fill in the 
implementation with Java code.  At every stage of development 
and evolution, programmers can have confidence that the 
implementation conforms to the specified architecture, because 
ArchJava enforces communication integrity.  Therefore, ArchJava 
enables effective design, better program understanding, and a 
cleaner evolutionary path than existing alternatives. 
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Appendix A: ArchJava Grammar Extensions 
We add the following new keywords to Java: 

component 
port 
provides 
requires 
dynamic 
connect 
sender 

 

The following grammar elements have been added to the Java 
grammar described in the Java Language Specification [GJS97]: 
type_decl ::= ... 
          |   component_decl 
 
component_decl ::= 
    modifier* component class idtype component_body 
 
component_body ::= { component_body_decl* } 
 
component_body_decl ::= class_body_decl 
                    |   port_decl 
                    |   connect_decl 
 

port_decl ::= modifier* port id port_body 
 
port_body ::= { port_body_decl* } 
 
port_body_decl ::= providesopt method_declaration 
               |   requires method_header ; 
 
connect_decl ::= dynamicopt connect port_list; 
 
port_list ::= name 
          |   port_list , name 
 
method_invocation ::= ... 
                  |   connect_expression 
 
connect_expression ::= connect ( argument_list ) 

 
primary_no_new_array ::= ... 
                     |   sender 
 
qualified_name ::= ... 
               |   name # id 
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