
ArchJava:
Connecting Software Architecture to Implementation

Jonathan Aldrich

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195 2350 USA

+1 206 616-1846

{jonal, chambers}@cs.washington.edu
ABSTRACT
Software architecture describes the structure of a system, and is
useful for design, program understanding, and formal analysis.
However, in existing systems an implementation may not
conform to the designer’s architecture, causing confusion,
violating architectural properties, and inhibiting software
evolution. ArchJava is an extension to Java that seamlessly
unifies a software architecture with its implementation, ensuring
that the implementation conforms to the architectural constraints.
Therefore, programmers can visualize, analyze, reason about, and
evolve architectures with confidence that architectural properties
are preserved by the implementation.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Languages, ArchJava; D.3.2 [Programming Languages]:
Language Classifications – Object-oriented languages, Java;
D.3.1 [Programming Languages]: Formal Definitions and
Theory – Syntax, Semantics

General Terms
Documentation, Design, Languages, Theory, Verification.

Keywords
software evolution, program analysis, traceability, type system,
communication integrity.

1. INTRODUCTION
Software architecture [GS93][PW92] is the organization of a
software system as a collection of interacting components. A
typical architecture includes a set of components, connections
between the components, and constraints on how they interact.
Describing architecture in a formal architecture description
language (ADL) can make designs more precise and aid program
understanding, implementation, evolution, and reuse. Many
ADLs also support automated visualization and code-generation
tools [SDK+95], specification and analyses of temporal
properties including deadlock [AG97], formal reasoning about
correct refinement [MQR95], and other tools and analyses.

Existing ADLs, however, are not closely connected to an
implementation language, causing key problems in the analysis,
implementation, understanding, and evolution of software

systems. Architectural analysis may reveal important properties
of the architecture, but these may not be true in the
implementation. One such property is communication integrity
[MQR95], the constraint that components in the implementation
may only communicate with the components they are connected
to in the architecture. Some existing ADLs generate code that
connects existing components [SDK+95], but place strong
restrictions on the component code, unnecessarily burdening
implementers. Other ADLs expect the implementation to be
done manually in a different language, making it difficult to trace
architectural features to the implementation for program
understanding, and creating the danger that the architecture will
become out of date as the implementation evolves.

This paper presents ArchJava, a small extension to Java that
integrates software architecture smoothly into Java
implementation code. Our design makes two novel
contributions:

§
language and an implementation language, allowing flexible

-
architecture and implementation, and ensuring traceability

• ArchJava guarantees communication integrity in an
architecture’s implementation, even in the presence of
advanced architectural features like dynamic component
creation and connection.

The rest of this paper is organized as follows. The next section
introduces the main features of ArchJava by a series of examples.
Section 3 presents ArchJava’s support for architectural design
and evolution. Section 4 formalizes ArchJava’s type system and
outlines a proof of soundness and communication integrity in
ArchJava. Section 5 describes techniques for compiling and
visualizing ArchJava programs. Finally, section 6 discusses
related work, and section 7 concludes.

2. THE ARCHJAVA LANGUAGE
This section introduces the ArchJava language by a series of
examples. The language reference manual [AC01] gives the
complete language semantics. ArchJava is a backwards-
compatible extension to Java. It adds new language constructs to
support components, connections, and ports.

2.1 Basic Components
A component is a special kind of object that uses only structured
mechanisms to communicate with other components.
Components are instances of component classes. Figure 1 shows
an example of a parser component.

2.1.1 Ports
A component instance communicates with external components
through ports. A port represents a two-way communication
protocol between two component instances, from the point of
view of one of the components. If a component participates in
more than one logical communication channel, it specifies a port
for each different channel. For example, the parser in Figure 1
declares three different ports: main represents communication
with a top-level compiler component, in represents
communication with a scanner component, and out represents
communication with a code generator component.

Ports define two public interfaces [LHL77]. The provided
interface is a set of public methods that can be invoked by other

components connected to the port. The required interface is a
disjoint set of methods that the component can invoke through
the port. Required methods are implemented by the other
components that a port is connected to. Method declarations
within a port are labeled with the requires keyword or the
provides keyword (optional) to distinguish which interface
they belong to. For example, the in port of the parser defines a
required interface containing the method nextToken and a
provided interface containing the method setInfo.

Thus, a port specifies both the services implemented by a
component and the services a component needs to do its job.
Required interfaces make dependencies explicit, reducing
coupling between components, and promoting understanding of
components in isolation. Ports also make it easier to reason
about a component’s communication patterns.

In Figure 1, the parse method provided in the main port is
implemented in a separate method definition; as syntactic sugar,
it could also have been given a body inside the port. The parse
method invokes the required methods of the in and out ports
using regular method invocations, using the port as the receiving
object. These calls will be forwarded to external components
that implement the appropriate functionality. Required methods
declared in different ports are potentially distinct; calling one of
them results in invoking the provided method at the other end of
that connection.

2.2 Component Composition
In ArchJava, software architecture is expressed with composite
components, which are made up of a number of subcomponents
connected together. The subcomponents may themselves be
composite components, enabling hierarchical architectures to be
expressed.

Parser

main

out in

component class Parser {
 port main {
 provides void parse(String file);
 }
 port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 void parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) { ... }
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A graphical parser component and its
realization in ArchJava. The Parser component class
uses three ports to communicate with other components in
a compiler. The Parser receives parse messages from
the body of the compiler through its main port. The in
port declares a required method that requests a token
from the lexical analyzer, and a provided method that
initializes tokens in the symbol table. Finally, the out
port requires a method that compiles an AST to object
code, and provides a method that looks up tokens in the
symbol table

parser codegen scanner

Compiler

out in out in
main

component class Compiler {
 void invoke(String args[]) {
 // for each file in args
 parser.main.parse(file);
 }

 Scanner scanner;
 Parser parser;
 CodeGen codegen;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;
}

Figure 2. A graphical compiler architecture and its
ArchJava representation. The Compiler component
class contains three subcomponents—a Scanner,
Parser, and CodeGen. This compiler architecture
follows the well-known pipeline compiler design [GS93].
The scanner, parser, and codegen components are
connected in a linear sequence, with the out port of one
component connected to the in port of the next
component

Figure 2 shows how a compiler’s architecture can be seamlessly
expressed in ArchJava. This example shows the advantages of
ArchJava—it is immediately clear that the parser communicates
with the scanner using one protocol, and with the code generator
using another. Furthermore, the architecture shows that the
scanner does not communicate directly with the code generator.
This kind of reasoning about the structure and communication
patterns in a program can make a program understanding task
easier.

2.2.1 Reasoning about Communication
If the drawing in figure 2 represented an abstract architecture to
be implemented in Java code, there would be no way to verify
the reasoning expressed above. For example, if the scanner was
passed a reference to the code generator, it could invoke any
method it wants to, violating the intuition communicated by the
architecture. In contrast, programmers can have confidence that
an ArchJava architecture represents an accurate picture of
communication between components, because the compiler
enforces communication integrity.

Communication integrity in ArchJava means that components in
an architecture can only call each others’ methods along declared

connections between ports. Each component in the architecture
can use its ports to communicate with the components to which it
is connected. However, a component may not invoke the
methods of its siblings in the architecture directly, because this
would represent communication not declared explicitly in the
architecture—a violation of communication integrity.

Communication integrity is enforced by ArchJava’s type system:
a component cannot get a typed reference to another component,
and thus cannot invoke any of that component’s methods (except
the methods defined in Object). Classes may not declare
fields or arrays of component type, and component types cannot
appear in port interfaces, so references of component type cannot
be passed between components. Finally, casts to component
types are prohibited, so a component cannot downcast a reference
of type Object to a component type.

2.2.2 Subcomponents
A subcomponent is a component instance that is declared inside
another component class. Subcomponents have a lifetime equal
to their parent component, and cannot directly communicate with
components external to their containing component. Thus,
communication patterns in ArchJava are hierarchical.

Subcomponents are declared using a component field—a field of
component type inside a component class. Subcomponents are
automatically instantiated when the containing component is
created, and component fields are treated as private, final,
and not static. Programmers can use a new expression in the
field initializer in order to call a non-default constructor.

2.2.3 Connections
The connect primitive connects two or more subcomponent
ports together, binding required methods to provided methods of
the same name and identical signatures. Each port may only
participate in one connection, so that it is clear where required
methods are bound. For each required method, there must be
exactly one corresponding provided method, but any number of
required methods may be connected to a single provided method.
Connections are instantiated just after the call to super() in
the constructor of the enclosing component instance.

2.2.4 Calling Subcomponent Methods
According to the principle of hierarchical communication
integrity, ArchJava allows components to invoke the provided
methods of their subcomponents’ ports. For example, the
invoke method of the compiler example calls the parse
method provided by the main port of the parser
subcomponent.

2.2.5 Correspondence of Code and Architecture
Figure 3 shows a capitalization component with a pipe-and-filter
architecture. Allen and Garlan use this somewhat contrived
example [AG97] to point out that the architecture of a system
may have a significantly different structure from its
implementation, which in their paper is based on a top-down
functional design. In ArchJava, the implementation of a system
corresponds closely to its architecture, as can be seen by
comparing the code for Capitalize to the abstract
architecture drawing.

upper

merge split

Capitalize

lower

in out

component class Capitalize {
 Split s;
 Upper u;
 Lower l;
 Merge m;

 connect s.out1, u.in
 connect s.out2, l.in;
 connect u.out, m.in1;
 connect l.out, m.in2;

 connect in, s.in
 connect out, m.out;

 port in {
 requires char getChar();
 }

 port out {
 provides char getChar();
 }
}

Figure 3. A pipe-and-filter component that capitalizes
every other letter in an input stream. The in port of the
component is connected to the in port of a Split
subcomponent that sends characters to alternating output
streams. One stream goes though a component that
capitalizes characters, the other goes through a component
that converts characters to lowercase. A Merge
component merges the two streams, and its output is
connected to the output of the composite component.

This feature has advantages and drawbacks. The big advantage
is understandability—it is easy to see how the each feature in the
architecture is implemented, and the architecture can be used to
document the large-scale structure of the system. Furthermore,
as requirements change, architecture and code will necessarily
evolve together. The correspondence between architecture and
code also allows the ArchJava compiler to easily verify key
architectural properties such as communication integrity in the
implementation. On the other hand, ArchJava limits the ways in
which implementers can structure their system. Although object
structures in ArchJava can be organized in flexible ways that
cross architectural boundaries, components must obey the
architecture’s structuring and communication constraints in order
to preserve communication integrity. Further experience will
show if this tradeoff is worthwhile.

2.2.6 Connections to Subcomponents
As figure 3 demonstrates, a component may provide a method by
connecting it statically to a provided method in a subcomponent,
or a required method in some other port. Therefore, the connect
statement can connect a containing component’s port to one or
more ports of its subcomponents, or can connect two ports of a
single component together from inside the component. A
component-local check is sufficient to verify that each provided
method has exactly one implementation.

2.3 Dynamic Architectures
The constructs described above express architecture as a static
hierarchy of interacting component instances, which is sufficient
for a large class of systems. Static architectures are easy to
reason about, visualize, and are amenable to finite tools such as
model checkers. However, some systems require architectures
that change dynamically, adding and removing components and
connections. Cite examples from papers in the literature.
The language features below extend the static constructs in a
natural way, describing a static approximation of the ways a
dynamic architecture can be instantiated at run time.

2.3.1 Disconnected Components
ArchJava allows a parent component to create disconnected child
components dynamically with the new syntax. Like other
components, disconnected components must follow the rules for
communication integrity. Disconnected components cannot be
connected to other components, so they can only call methods on
their own subcomponents. Only the parent component can call a
disconnected component’s methods, as described above.

As a special case, disconnected components can be created at the
top level with a null parent component. This mechanism can be
used in the main method of a component-based application in
order to create a top-level component and invoke its methods.

For example, Figure 4 shows the implementation of a compiler’s
main method.

2.3.2 Dynamic Components
A limitation of disconnected components is that they cannot be
connected to other components. Furthermore, since array and
object fields cannot have component type, and component casts
are prohibited, dynamic components cannot be stored in
aggregate data structures such as container classes. Dynamic
components and connections overcome these limitations.

component class WebServer {
 Router r;
 connect r.main, main;

 dynamic Worker w;
 dynamic connect w.work, r.work;

 port main {
 provides Router.work newWorker() {
 Worker#w newW = new Worker#w();
 Router.work worker =
 connect(newW.work, r.work);
 return worker;
 }
 }
}

component class Router {
 dynamic port work {
 requires void job(Data data);
 provides void done() {
 freeList.add(sender);
 }
 }

 port main {
 requires work newWorker();
 provides void listen() {
 ...
 // when a HTTP request arrives
 work w;
 if (freeList.isEmpty()) {
 w = newWorker();
 } else {
 w =(work)freeList.remove(0);
 }
 Data data = ...;
 w.job(data);
 ...
 }
 }

 List freeList = new LinkedList();
}

Figure 5. Part of a web server component. The Router
subcomponent accepts incoming HTTP requests, and
manages a set of Worker components (not shown) that
respond. A free list of workers available to handle
requests is maintained; when the free list is empty and
another request comes in, the Router requests a new
worker on its main port. The WebServer then creates a
new worker and connects it to the Router. The Router
assigns jobs to Workers through the jobs port; when a
worker finishes a job, the done() method adds the worker
to the free list.

component class Compiler {
 public static void main(String args[]) {
 new Compiler().invoke(args);
 }

 // the rest of Compiler’s implementation...
}

Figure 4. Creating a disconnected Compiler component

A dynamic component field declaration is an abstraction for zero
or more components that may be created at runtime. It is
declared with the dynamic modifier added to the regular
component field declaration. The declaration does not actually
create the subcomponents; instead, it allows the user to create
one or more subcomponents at run time. Figure 5 shows a web
server component that declares a dynamic field w of component
type Worker.

Dynamic components can be instantiated at run time in the static
scope of the component that declared the dynamic component
field. Each dynamic component instance is associated with a
particular dynamic component field declaration. This association
is captured in a component field type, which combines a
component type with a field name using the # operator. The
component field type is specified in the new expression when
instantiating dynamic components. Variables can also be given a
component field type. The newWorker method in Figure 5
creates a component of type Worker#w and assigns it to a local
variable of the same type.

Dynamic components can be stored temporarily in an aggregate
data structure, retrieved, and then downcast to a component field
type within the static scope of their parent component. The
downcast includes a run time check to verify that the
component’s parent is equal to this, and that the component’s
parent field is equal to the field in the component field type.
This check ensures that only a dynamic component’s parent can
invoke its methods directly, and that dynamic component field
declarations are properly matched with component instances.

2.3.3 Dynamic Connections
Dynamic components can be linked together using dynamic
connections. A dynamic connection declaration is an abstraction
for zero or more connections may be created at runtime between
the component ports specified. The dynamic connection can be
instantiated at runtime with a connect expression. Connect
expressions are passed the ports to be connected as arguments
and return a connection object that represents the set of
connected ports.

In order to guarantee communication integrity, for each connect
expression in the program, there must be a dynamic connection
declaration connecting matching ports. For instance, in Figure 5,
a dynamic connection is declared with dynamic connect
w.work, r.work and is instantiated with the expression
connect(newW.work, r.work). Here newW.work
matches w.work, since newW has a component field type
Worker#w that includes field w, so the connection expression
can be statically checked for conformance to the dynamic connect
declaration.

2.3.4 Dynamic Ports
Often a single component communicates with several other
components using the same conceptual protocol. For example,
the Router component in the web server communicates with a
dynamically varying set of Worker components. Thus, there
must be a way to connect the work port to multiple components.
When the router invokes a worker’s methods through its work
port, there must also be a way to specify which worker is
intended to respond to the message send.

A dynamic port is a port that can participate in more than one
connection simultaneously. This allows a component instance to
communicate with multiple other dynamically created component
instances at run time. A dynamic port can be connected to other
ports using dynamic connections or static connections.

2.3.5 Required Interfaces
Required methods can be invoked through dynamic ports by
calling through a port’s required interface. Each port defines an
interface that includes all the required methods in that port.
When a dynamic connection is instantiated, the connection object
returned from the connect expression implements the required
interface of all the connected ports; thus its type is a union of all
the ports’ required interfaces. This union type cannot be written
directly in Java, but can be assigned to a variable of the
appropriate required interface type. In Figure 5, the connection
object is a subtype of the interfaces Router.work and
Worker.work, so it can be assigned to a variable of interface
type Router.work.

Provided methods in a dynamic port can find out which
connection a particular call came from using the sender
keyword. Defined in every provided method, the sender
variable is a connection object that implements the required
interface type of the port the call was made from. Some methods
may be provided in multiple ports; in this case, sender has
static type Object and the programmer must use casts or
instanceof tests to get the appropriate interface type. Since
some methods may be called either through a port or though a
direct call, the sender variable is null when a direct call was
made. In Figure 5, the sender variable is used by the done
method of the Router to cache a connection for use in a later
HTTP request.

When the connection object is read from a collection (as in
freeList.remove) it can be cast to the appropriate required
interface type so that methods can be invoked through the
connection. To enforce communication integrity, ArchJava must
ensure that connection objects cannot be used by components that
were not involved in the original connection, because this might
violate the communication structure specified by the dynamic
connection declarations. This is verified by a run-time check in
each call that ensures that the calling component is one of the
connected component instances that requires the called method
(and throws an IllegalConnectionException if not).

2.3.6 Removing Components and Connections
Just as Java does not provide a way to explicitly delete objects,
ArchJava does not provide a way to explicitly remove
components and connections. Instead, components are garbage-
collected when they are no longer reachable through direct
references or connections.

2.4 Benefits of ArchJava
The ArchJava web server implementation has a number of
significant advantages over a similar Java implementation. The
architectural connections between objects are explicit, while in
Java they must be derived from the code using abstract
interpretation and alias analysis. The explicit, hierarchical
architecture makes visualization of program structure easy,
whereas visualization of “object soup” structures in Java can be

very challenging. Communication integrity is guaranteed,
allowing better reasoning about communication patterns.
Subcomponents are not just private, but encapsulated—
references cannot usefully escape the enclosing component. The
static declarations of dynamic connections also provide a novel
way to reason about dynamic object structures, a task that is
difficult in Java.

ArchJava also provides other, less central, advantages.
Dependencies between components are explicit, supporting
looser binding between components and promoting better
understanding of what services a component requires. The looser
binding combined with the explicit architecture makes it easy to
swap in new components, or interpose a “smart connector” that
performs buffering or interface translation between two
components. This task can be more difficult in Java, since it
involves changing the object creation expression, necessitating
design patterns like factory methods and decorators [GHJ+94].
The port mechanism allows programmers to explicitly specify the
different communication protocols that a component participates
in. Finally, ArchJava was designed to improve automated
reasoning by tools such as model checkers and alias analyses.
For example, static architectures are a natural fit for model
checkers, and dynamic connection declarations could help an
alias analysis to track references more effectively. Future
experience building tools will determine if the design meets this
goal.

In summary, ArchJava provides a number of features that help
developers to express, visualize, and reason about software
architecture.

3. DESIGN AND EVOLUTION
In addition to supporting fully developed architectures, ArchJava
supports incomplete architectures during the design phase, and
supports architectural evolution through component subtyping
and structural reconfiguration as requirements change.

3.1 Architecture Design
One of the advantages of formal architecture description
languages is that designers can get feedback on their design
before it is implemented. Existing ADLs support architectural
typechecking, deadlock detection, conformance to architectural
styles, and other analyses. As a result, architects can easily
experiment with different architectures at design time, catching
design errors earlier than would otherwise be possible.

ArchJava provides support for constructing, visualizing, and
typechecking incomplete architectures. This allows architects to
visualize their architecture and ensure key static and dynamic
properties during design, helping them to find architectural
errors earlier.

The key design advantage of ArchJava over existing ADLs and
implementation languages is that it supports iterative
development and checking. As the architecture and
implementation is gradually fleshed out, the ArchJava compiler
will incrementally check the consistency of the architecture and
implementation. Unlike previous systems, designers can be
confident that their code will conform to their architectural
design at every stage of the implementation.

The ArchJava compiler can be run in complete mode (the
default) or incomplete mode. The complete mode verifies that
all components are implemented, while the incomplete mode is
tolerant of partial implementations. A component can be left
incomplete simply by omitting subcomponents and connections.
A port’s body can be also left out, signifying that the port’s
interface is not yet specified. No interface checking is done
when an incompletely specified port is connected to another port.
As in Java, the body (not the signature) of a method can be left
unspecified by using the abstract modifier.

3.1.1 Example IV: Parser Design
Figure 6 shows an early design of the Parser component. The
Parser can be connected to the other components in the
compiler architecture as described in Figure 2. The designer has
left out the bodies of the in and out ports, so no interface
checking is done when these ports are connected to other ports.
Furthermore, no definition is given for the abstract parse
method, but its signature can be checked against the call in
main().

3.2 Evolution through Inheritance
Like other object-oriented languages, ArchJava supports software
evolution through inheritance and subtyping. As with regular
classes, component classes can extend another component class.
Components cannot extend ordinary classes (other than
Object) or implement ordinary interfaces; this would allow
violations of communication integrity, since components could be
used as the interface or class type by components that cannot be
communicating directly.

component class ByteCodeCompiler
 extends Compiler {
 CodeGenerator cg = new ByteCodeGenerator();
}

component class ByteCodeGenerator
 implements CodeGenerator { ... }

Figure 7a. Compiler with a byte-code generator back end

component class LoggingWorker
 extends Worker { ... }

component class LoggingWebServer
 extends WebServer {

 Router.work newWorker() {
 Worker#w newW = new LoggingWorker#w();
 ...
 }
}

Figure 7b. A logging web server that uses a
LoggingWorker component subclass

component class Parser {
 port main {
 provides abstract void
 parse(String file);
 }
 port in;
 port out;
}

Figure 6. Early Parser Design

Inheritance works in the expected way; existing fields, methods,
ports, component fields, and connections are inherited from the
component superclass. As in Java, methods can be overridden,
but component subclasses can also override ports and component
fields.

An overriding port must specify a superset of the original port’s
provided method signatures, in the same way as Java allows
subclasses to define additional methods. However, overriding
ports must have an identical set of the original port’s required
methods, because inherited code may depend on the entire
required interface, and existing connections cannot provide any
additional required methods. Component subclasses may also
declare additional ports as long as they do not contain any
required methods.

Component fields can be overridden with a component field of
the same name and type, but a new initialization expression.
New components and connections can also be added in a
subcomponent.

3.2.1 Subtyping
Instead of inheriting the interface and the implementation of
another component class, a component class may inherit only the
interface. This represents subtyping without inheritance,
allowing one component class to be used in place of another even
if there is no implementation inherited. Unlike Java, there is no
way to implement multiple interfaces—either a component class
extends a single other component class, or it implements the
interface of a single other component class. These rules are
necessary to ensure component substitutability, which is trickier
than in Java because of required methods.

When a component implements the interface of another
component, it must implement all of the public and package
methods of that component (including methods provided by
ports). Ports can be overridden as discussed above. Component
fields and connections are not inherited in interface inheritance,
but the implementing component class can specify new
component fields and connections.

3.2.2 Examples of Evolution using Subtyping
The checked subtype relation can be used to increase confidence
that a program evolution step is correct. In Figure 7a, the

Compiler component from Figure 2 has been subclassed to
include a code generator that generates bytecode instead of
executable code. The new component class is specified in an
explicit initialization expression. It is a subtype of the
CodeGenerator, ensuring that its interface matches the code
generator’s interface.

Subtypes can also be used for dynamic components and
connections. Figure 7b shows a component that extends the web
server from Figure 5 to instantiate a Worker subcomponent that
logs the jobs that it performs. Because LoggingWorker
inherits from Worker, it could be mixed freely with Worker
objects in the same program. Subtyping relationships between
component types extend to component field types with the same
field name; thus LoggingWorker#w is a subtype of
Worker#w, allowing assignment and casts to type Worker#w.

3.3 Evolution through Reconfiguration
Because ArchJava makes connections between components
explicit, it can support evolution through component
reconfigurations. Such reconfiguration can be more difficult in
Java because a conceptual connection may be spread out in many
references throughout the program, all of which must be
potentially changed by an evolutionary step.

Consider the capitalization example from Figure 3. Assume that
a better Split component has been identified, and the designer
wants to replace Split with NewSplit, shown in Figure 8.
This presents a tricky evolutionary step, because (as is often the
case in real component development) there is no subtyping
relationship between Split and NewSplit. The out port
contains a different method name and signature. Furthermore,
the components have a different control model—the original
component is passive, but the new component contains an active
thread that requests characters at the in port and sends them on
the out port.

component class NewCapitalize {
 NewSplit s;
 Upper u;
 Lower l;
 Buffer b1;
 Buffer b2;

 connect in, s.in;
 connect s.out1, b1.in;
 connect b1.out, u.in;
 connect s.out2, b2.in;
 connect b2.out, l.in;

 port in {
 requires char getChar();
 }
 // rest of component...
}

component class Buffer {
 port in {
 synchronized void putChar(char c);
 }
 port out {
 synchronized char getChar();
 }
 // buffering code...
}

Figure 9. Capitalization Component with NewSplit

component class Split {
 port in {
 requires char getChar();
 }
 port out1 {
 provides char getChar();
 }
 // similar for out2
}

component class NewSplit {
 port in {
 requires char getChar();
 }
 port out1 {
 requires void putChar(char c);
 }
 // similar for out2
}

Figure 8. The interfaces of old & new Split

This evolutionary step might be difficult in Java, because a
programmer would have to track down all the uses of the old
component and change them to work appropriately with the new
component. Alternatively, the programmer could trace all uses of
the old component to the creation point, and write a wrapper for
the new component. Both of these approaches are potentially
challenging and error-prone (especially in more complex
examples), simply because the communication patterns between
components are often spread out and component aliases are
difficult to track in the source code.

Figure 9 shows one possible solution to this interface-matching
problem in ArchJava. A synchronized buffer component provides
the putChar method that is required by the NewSplit
component, and provides the getChar method that is required
by the Upper and Lower components that the old Split
component was connected to. Two buffer components are used
to connect the NewSplit component to the existing Upper and
Lower components. This is an example of how the mediator
design pattern [GHJ+94] can be applied in ArchJava to allow
mismatched interfaces to communicate.

4. ARCHJAVA FORMALIZATION
4.1 Definition of Communication Integrity
Communication integrity is the key property of ArchJava that
ensures that the implementation does not communicate in ways
that could violate reasoning about architectural properties.
Intuitively, communication integrity in ArchJava means that
component instance A cannot call the methods of component
instance B unless B is A’s subcomponent, or A and B are sibling
subcomponents of a common component instance that declares a
connection between them.

To define communication integrity more precisely, we first
define the dynamic execution scope of a component to include all
a component’s methods and the methods they transitively invoke
until a method of another component is called:

Definition 1 [Dynamic Execution Scope]: Let mf be an
executing method frame. If m is a component method, then mf ∈
escope(this). Otherwise, mf ∈ escope(caller(mf)).

Now we can define communication integrity:

Definition 2 [Communication Integrity for ArchJava]: A
program has communication integrity if, for all method calls
b.m(...) in an executing method frame mf, where b is a
component instance and mf ∈ escope(a), either:

1. a = b, or

2. parent(b) = a, or

3. parent(b) = parent(a) ∧
“dynamic connect f1, f2,...” ∈
 class(parent(b)),
where f1 = parentfield(a) ∧ f2 = parentfield(b)

In this definition, we assume m is not one of the methods defined
in Object; these methods are not very interesting for reasoning
about component communication, and our system does not
enforce communication integrity on them.

Also, notice that there can be communication aside from method
calls due to data sharing from aliased objects, static fields, and

the operating system. Existing ways to control this form of
communication often involve significant restrictions on
programming style. ArchJava’s design allows reasoning about
communication through method calls between components, while
imposing few restrictions on programmers. Future work includes
developing ways to control these additional communication
channels while preserving expressiveness.

4.2 Enforcement of Communication Integrity
There are three ways a component method could be invoked in a
way that violates communication integrity. First, a method could
be invoked on an expression of component type. Second, a
method could be invoked on an expression of component field
type. Finally, a method could be invoked on a connection object
through a port’s required interface.

These three possible violations of communication integrity are
prohibited by a number of static and dynamic checks ensuring
four key invariants:

Invariant 1 [Component Type Encapsulation]: Inside
escope(A), all expressions of component type refer either to A or
to a disconnected component created in escope(A).

Invariant 1 is enforced by a number of restrictions imposed by
the ArchJava language. First, no fields in objects may be given a
component type—only component fields in components. Second,
casts to component type are illegal. Third, arguments to public
component methods may not have component type, and non-
public component methods may only be called on this.
Because of these restrictions, the only way to get an expression
of component type in ArchJava is to create a disconnected
component (whose conceptual parent is A) or to use this inside
a component’s lexical scope. These expressions can be passed
around to private component methods and to object methods
within a component’s execution scope, but must be implicitly
downcast to Object before escaping the component’s execution
scope. Invariant 1 enforces communication integrity in the first
case, where a method is invoked on an expression of component
type.

Invariant 2 [Component Field Type Encapsulation]: Inside
escope(A), all expressions of component field type with field f
refer to a subcomponent of A that was associated with the
component field f at creation.

Invariant 2 is enforced in a similar way to invariant 1. Casts to a
component field type are allowed in ArchJava, but the cast
dynamically checks that the target is a subcomponent of this,
and the target’s parent field is the one specified in the type. The
only other way to get an expression of component field type in
ArchJava is to create a subcomponent (with parent A and parent
field f) or to refer to a component field inside a component’s
scope. Invariant 2 enforces communication integrity in the
second case, where a method is invoked on an expression of
component field type.

Invariant 3 [Connection Creation Integrity]: All connection
objects created dynamically in a component instance A connect
subcomponents of A, such that the corresponding fields were
connected in a dynamic connect declaration in A.

Invariant 3 is enforced by typechecking connect expressions. The
typechecker ensures that each expression being connected is of
some type f.C, where f is a field of A with a type D and C is a
subtype of D, and the fields in the expression types are connected
in a dynamic connect declaration. The type check, combined
with invariant 2, ensures invariant 3.

Invariant 4 [Connection Invocation Integrity]: For all
invocations of a required method through a connection object C
(or a static port P) in the scope of a component instance A, A is
one of the objects connected by C (or connected to P).

Invariant 4 is enforced with a dynamic check done by the
dynamically created connection objects, and by the static
semantics of static connections. Together, invariants 3 and 4
enforce communication integrity in the second case, when a
method is invoked on a connection object through a port’s
required interface.

4.3 Formalization as ArchFJ
To prove communication integrity and the safety of our type
system, we have formalized the core of ArchJava as ArchFJ.
ArchFJ is based on Featherweight Java [IWP99]. This section
defines the syntax, types, subtyping rules, dynamic semantics,

and static semantics for ArchFJ. We outline the proofs of
communication integrity, subject reduction, and progress.

To be inserted from other document

5. TOOL SUPPORT
Tool support for ArchJava includes planned compilation,
analysis, and visualization tools.

5.1 Compilation Technique
In this section we outline a proposed compilation technique for
ArchJava. Our system allows separate compilation, although a
global compilation system could produce more optimized code.
The details can be found in an accompanying technical report
[AC01]. Should we really be citing this? It’s a bit out of date
right now…

5.1.1 Components
A component class is translated into an interface containing all of
the methods that the component provides, and a class that
implements the interface and defines the methods. If the
component class inherited from Object, the generated class
inherits from $Component$, an internal class that has a
$parent$ field to keep track of the component’s parent. The
static component fields are translated into private final fields of
the same type, initialized just after the call to super() in the
containing component’s constructor. Each port is translated into
a new interface, containing all of the port’s required methods. In
addition, static ports generate a private final port field of the
interface type. Calls to required methods through that port are
converted to invocations on the object in the port field. A sender
argument of the port’s required interface type is added to all
provided methods, in order to implement the sender keyword.
If the same method is provided in multiple different ports, the
sender will be of static type Object, and must be cast to the
appropriate type in the ArchJava source code.

Each component field generates a new tag class that encodes the
field name, and a private final field initialized to an object of the
tag class. The value in the tag field is later passed as an extra
parent tag argument to the constructor of subcomponents, where
it is passed to the $Component$ constructor and assigned to a
private final parent tag field. This value is checked when an
object is downcast to a component field type—the downcast is
translated into a call to a downcast method, which verifies that
the value in the current component’s tag field is equal to the
parent tag of the object being downcast. Figure X10 shows an
example of translating a dynamic component.

component class C {
 dynamic SubC s;
 void foo(Object o) {
 Object o = new SubC#s();
 ((SubC#s)o).bar();
 }
}

Translation:

interface C {
 void foo(Object o)
}

class C$def extends $Component$ implements C
{
 Ctags s = new Ctags();

 C$def(Object $parent$) {
 super($parent$);
 }

 void foo(Object o) {
 Object o = new SubC$def(s);
 SubC temp$1 = (SubC)o;
 if (s != temp.$parent$)
 throw new ComponentCastException();
 temp$1.bar();
 }
}

class Ctags { }

5.1.2 Connections
Each static and dynamic connection declaration generates a new
class that implements the required interfaces of the connected
ports. The connection’s constructor takes the connected
components as arguments and assigns them to internal final
fields. Dynamic connections are instantiated at dynamic connect
expressions, and static connections are instantiated in the
constructor of the component class containing the connection.

In order to verify that calls through a connection are made from
one of the connected components, all required methods have an
extra sender argument generated and provided by the compiler.
When a required method is called, this is passed as the sender.
For dynamic connections, the implementation methods in the
connection object check that the sender is one of the connected
objects that requires the given method. The connection object
then forwards the method call to the connected component that
provides it, passing the connection object itself as the sender
so that the invoked method knows which connection it was
invoked from. Figure X11 shows an example of translating a
dynamic connection declaration.

A provided method that is implemented by a connection to
subcomponents or to another required method is given a body
that simply calls the appropriate method.

In addition to generating code, the compiler must also do a
number of semantic checks. The most important of these are the
communication integrity checks, and the well-formedness checks
for connections. The latter verifies that there is a unique
provided method for each required method in the connected
ports.

5.1.3 Performance
The overhead of ArchJava programs compared to ordinary Java
implementations includes indirection through connection objects
and the extra check when casting to a component field type.
Assuming a JIT compiler, all of these incur a cost roughly
comparable to a dynamic message dispatch.

We theorize that the architectural constructs of ArchJava will me
most useful at the larger scales of the application, meaning that
most method calls will use ordinary dispatch and not experience
any ArchJava overhead at all. Therefore, we expect that
performance is likely to be indistinguishable from a comparable
Java implementation, or at worst will be comparable to the
existing overhead of object constructs.

5.1.4 Concurrency
Concurrency is largely orthogonal to ArchJava. Components can
protect themselves from concurrent access by using synchronized
methods or other means, as in Java. Since the structures
generated by the compiler are all immutable, data races are not
an issue.

5.2 Visualization
Because of the structural nature of software architecture, is it
particularly important to provide tools that can visually display,
navigate through, and edit the architecture. As an initial, proof
of concept implementation, we are defining a translation from
ArchJava to Acme [GMW97], an architecture interchange
language. This will allow ArchJava architectures to be browsed

and edited in the AcmeStudio environment [Kom98], a freely
available tool for Acme architectures. An additional advantage
of translations to Acme is that ArchJava architectures can be
compared with architecture descriptions written in other
languages, and analysis tools written for other ADLs can
potentially be applied.

6. RELATED WORK
6.1 Object-oriented Programming Systems
Software Architectures can be implemented in object-oriented
languages such as C++ [ref] and Java [GJS97]. There are a
number of differences between an architecture expressed in an
object-oriented language and an ADL. First of all, object
interfaces declare the services an object provides, but do not
specify the services the object relies on. This information must
be gleaned from the details of the implementation. Second, there
is no direct way to specify a hierarchical communication
structure, only local connections between objects. This makes
structural visualization and analysis hard, impeding
understandability. Finally, there is no concept of communication
integrity, beyond the constraint that calls obey the type system.
Any object can communicate with any other object, if it has a
reference and casts it to an appropriate type. In contrast,
ArchJava supports reasoning about communication between
component instances, even in the presence of aliasing.

UML [ref?] is a notation for expressing object-oriented designs.
It is capable of expressing relationships between objects that in
some cases go beyond what ArchJava provides, for example, in
specifying the multiplicity of object relationships. Although

component class Component {
 dynamic SubComponent1 s1;
 dynamic SubComponent2 s2;
 dynamic connect s1.p1, s2.p2;
}

Translation:

 // compiler-generated connection
class Component$Connect1 {
 implements SubComponent1$port$p1,
 SubComponent2$port$p2 {

 Component$Connect1(Object s1, Object s2) {
 this.s1 = s1;
 this.s2 = s2;
 }

 // required by port p1 in SubComponent1
 public final int foo(int arg1,
 Object sender) {
 if (sender != s1)
 throw new
 IllegalConnectionException();
 return s2.foo(arg1, this);
 }

 private final Object s1;
 private final Object s2;

 ...
}

Figure X11. Translation technique for dynamic
connections

tools to generate code from UML have been built [refs?], the
notation has no inherent semantic base, a problem that is the
subject of current research [ref?]. UML also has no concept of
communication integrity or hierarchy, making it difficult to
visualize and reason about communication patterns.

Component-based infrastructures such as COM [ref], CORBA
[ref], and JavaBeans [ref] further support development of
applications from components. Some tools for JavaBeans even
support graphical ways to connect components together, allowing
simple architectures to be visualized. Possible drawbacks in
such systems include poor support for structural specification of
dynamically changing systems, no concept of communication
integrity, and a complex mapping from component events and
properties to the code that implements them. On the other hand,
these infrastructures often support multi-language, distributed
systems.

Tools such as Reflexion Models [MNS95] have been developed
to enable programmers to visualize the structure of existing
programs. These tools are particularly effective for legacy
systems, where rewriting the application in a language that
supports architecture directly would be prohibitively expensive.
Specifying architecture directly in ArchJava has the advantage
that architecture is visible in the source code, and ArchJava
allows reasoning about the connections and communication
integrity between component instances, not just component
classes.

6.2 Advanced Type Systems
Advanced, polymorphic type systems such as those found in ML
[ref], GJ [ref], and Cecil [ref], allow more specific specification
of types, but still cannot effectively express program structure.

More recent work proposes type systems for controlling aliasing
in object-oriented programs that can be used to enforce a kind of
communication integrity. Pointers that are aliased by two
components can create a back door for communication that does
not flow through a declared communication channel. Linear
types can be used to declare unique objects that are unaliased
[Min96]. Passing a unique object from one component to another
does not create an aliasing problem, since the source component
may not use the object again.

Other research has investigated enclosing types. Early work such
as Islands [ref] or Balloons [ref] imposed strict rules on sharing
objects between components. These systems can guarantee
communication integrity, but also limit expressiveness. More
recently, Flexible Alias Protection [NVP98] strikes a balance
between guaranteeing aliasing properties and allowing flexible
programming idioms. Although these systems aid in reasoning
about aliasing, they do not directly express software architecture.

Techniques like these are the subject of ongoing research, and
we plan to incorporate them into ArchJava in the future. Our
current strategy of guaranteeing communication integrity of calls
between components allows considerable reasoning about
software architecture while putting minimal restrictions on
implementers. With linear and/or enclosing types, ArchJava
could still allow flexible implementation strategies, and
guarantee a stronger version of communication integrity: that
data does not flow between components except along declared
communication channels.

6.3 Advanced Module Systems
Advanced module systems such as MzScheme’s Units [ref] and
ML’s functors [ref] can be used to describe the static architecture
of a system. The FoxNet project [ref] shows how functors can be
used to build up a network stack out of statically connected
components.

Using a powerful module mechanism for architectural
connections has the advantage of using an existing language
construct. However, using an explicit architectural description
also has several advantages. First, programmers and automated
tools can more easily recognize explicit architectural constructs,
while it may be hard to distinguish between modules used to
encapsulate an ADT and modules used to link up conceptual
components. Thus, an explicit architecture enhances
visualization and automated reasoning about architecture.
Second, module systems do not define, document, or enforce
communication integrity—this must be done using program
annotations and the discipline of implementers. For example, if
a module contains free variables or references to internal data
structures of other modules, these can be used as communication
“back doors.” Finally, modules cannot be used to define or
reason about object instances in dynamically changing
architectures, because module connections are static. Instead,
the ordinary type system must be used, with the drawbacks
discussed above.

6.4 Existing Architecture Description
Languages
A number of Architecture Description Languages have been
defined to describe, model, check, and implement software
architectures [MT00]. Many of these languages were partly
inspired by the hardware architectures expressible in VHDL
[ref?].

Many ADLs support sophisticated analyses. For example,
Wright [AG97] allows architects to describe detailed
communication protocols in a language based on CSP.
Connections can be checked for compatibility, deadlock, and
other properties. SADL [MQR95] formalizes architectures in
terms of theories, shows how generic refinement operations can
be proved correct, and describes a number of flexible refinement
patterns.

Acme [GMW97] is an architectural interchange language. It
defines a basic syntax for components and connections, and has
extensible properties that can express the features of other
languages. xArch [ref] is a new, similar project based on XML
[ref]. Automated translators have been defined from Wright
[AG97] and Aesop [ref] into Acme, so developers can compare
architectures and take advantage of a set of common tools. We
are defining a translation from ArchJava to Acme to leverage
existing visualization and analysis tools.

Rapide [LV95] is an ADL designed to support event-driven
simulations of software architectures. An executable sub-
language includes reactive constructs for event-driven
programming, as well as more conventional object-oriented and
procedural constructs. Although Rapide was primarily designed
to support architecture simulation, components in a Rapide
architecture can be given real implementations in the executable

sub-language or in languages such as C++ or Ada. Rapide
supports declarative event-based dynamic connections that
support precise reasoning about event traces and dependencies.
In contrast, ArchJava’s dynamic connection declarations describe
communication structure precisely, allow reasoning about
component instances, and fit naturally into conventional object-
oriented languages.

There are style guidelines that can be used to help assure
communication integrity in Rapide [LV95]. In particular,
components must only communicate with other components
through their own interfaces, and interfaces cannot include
references to mutable types. These guidelines are not enforced
automatically, and are incompatible with many common
programming idioms, such as shared data structures. ArchJava
allows a more flexible programming style with objects, while
still automatically enforcing communication integrity among
components. The execution trace of an implementation in a
language such as Ada can also be checked for structural and
event conformance to Rapide architectures [Mad96].

UniCon [SDK+95] and other ADLs generate code to connect
components together. The components themselves must be
implemented in other languages. This allows easy incorporation
of legacy code, but can restrict their interfaces to what the code
generation system can support, and also opens the door to
violations of communication integrity. The C2 system
[MOR+96] provides runtime libraries in C++ and Java that
connect components in as specified in the C2SADEL ADL. C2
requires a particular architectural style, which can enhance
reasoning but also restricts the use of idioms like shared data
structures and limits the scope of C2’s applicability.
Communication integrity relies on programmers following C2’s
implementation guidelines.

7. FUTURE WORK AND CONCLUSION
There are a number of possible directions for future work in
integrating programming languages and software architecture:

§ Supporting distributed software architectures with
components implemented in multiple languages

§ Applying temporal specifications to components during
design and model-checking the implementation to
verify that it conforms to the architecture

§ Applying linear and enclosing types to enforce a
dataflow version of communication integrity

§ Developing tools like Reflexion Models to support
migration from Java to ArchJava

§ Applying ArchJava to large real applications, to test
how well it can express architecture and support
program evolution

In conclusion, ArchJava allows programmers to effectively
express software architecture and then seamlessly fill in the
implementation with Java code. At every stage of development
and evolution, programmers can have confidence that the
implementation conforms to the specified architecture, because
ArchJava enforces communication integrity. Therefore, ArchJava
enables effective design, better program understanding, and a
cleaner evolutionary path than existing alternatives.

8. ACKNOWLEDGMENTS
Thank members of the Cecil group and others for their feedback.

Craig’s funding

Notkin (if not co-author)

Appendix A: ArchJava Grammar Extensions
We add the following new keywords to Java:

component
port
provides
requires
dynamic
connect
sender

The following grammar elements have been added to the Java
grammar described in the Java Language Specification [GJS97]:
type_decl ::= ...
 | component_decl

component_decl ::=
 modifier* component class idtype component_body

component_body ::= { component_body_decl* }

component_body_decl ::= class_body_decl
 | port_decl
 | connect_decl

port_decl ::= modifier* port id port_body

port_body ::= { port_body_decl* }

port_body_decl ::= providesopt method_declaration
 | requires method_header ;

connect_decl ::= dynamicopt connect port_list;

port_list ::= name
 | port_list , name

method_invocation ::= ...
 | connect_expression

connect_expression ::= connect (argument_list)

primary_no_new_array ::= ...
 | sender

qualified_name ::= ...
 | name # id

9. REFERENCES
[AC01] Jonathan Aldrich and Craig Chambers. The ArchJava

Language and Runtime System Reference Manual.
Available at:
http://www.cs.washington.edu/homes/jonal/archjava/

[AG97] Robert Allen and David Garlan. A Formal Basis for
Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213---249, July 1997.

[GJS97] Gosling J., Joy B., & Steele G., The Java Language
Specification, Addison Wesley, 1997.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Reading, Massachusetts: Addison-
Wesley, 1994.

[GMW97] David Garlan, Robert T. Monroe, and David Wile.
Acme: An Architecture Description Interchange Language.
Proceedings of CASCON '97, November 1997.

[GS93] David Garlan and Mary Shaw. An Introduction to
Software Architecture. In Advances in Software
Engineering and Knowledge Engineering, I (Ambriola V,
Tortora G, Eds.) World Scientific Publishing Company,
1993.

[IPW99] Atsushi Igarishi, Benjamin Pierce, and Philip
Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In Proceedings of ACM Conference
on Object Oriented Languages and Systems,
November 1999.

[Kom98] Andrew Kompanek. AcmeStudio User’s Manual.
Tools and manual available at
http://www.cs.cmu.edu/~acme/.

[LHL77] Lampson, B.W., Horning, J.J., Mitchell, J.G. and
Popek, G.J. Report on the Programming Language Euclid,
ACM SIGPLAN Notices 12, 2 (February 1977), 1-79.

[LV95] D.C. Luckham, J. Vera. An Event Based Architecture
Definition Language. IEEE Transactions on Software
Engineering Vol. 21, No 9, September 1995.

[Mad96] N. Madhav. Testing Ada 95 Programs for Conformance
to Rapide Architectures. In Proceedings of Ada-Europe '96,
number 1088 in Lecture Notes in Computer Science, pages
123--134. Springer-Verlag, June 1996.

[Min96] Naftaly Minsky. Towards Alias-Free Pointers. Proc. of
the 10th European Conference on Object Oriented
Programming (ECOOP96), Linz, Austria July 1996.

[MNS95] Gail C. Murphy, David Notkin, Kevin Sullivan.
"Software Reflexion Models: Bridging the Gap between
Source and High-Level Models." ACM SIGSOFT 95
Symposium on the Foundations of Software Engineering,
October 1995.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, Jason E.
Robbins, and Richard N. Taylor. Using Object-Oriented
Typing to Support Architectural Design in the C2 Style.
Proceedings of SIGSOFT'96: The Fourth Symposium on the
Foundations of Software Engineering (FSE-4), San
Francisco, CA, October 16-18, 1996.

[MQR95] M. Moriconi, X. Qian, A.A. Riemenschneider. Correct
Architecture Refinement. IEEE Transactions on Software
Engineering, Vol. 21, No 4, April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A
Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on
Software Engineering, vol. 26, no. 1, pp. 70-93, January
2000.

[NVP98] James Noble, Jan Vitek, and John Potter.
Flexible alias protection. Proc. 12th European
Conference on Object-Oriented Programming,
Brussels, Belgium, 1998.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations
for the Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17:40--52, October 1992.

[SDK+95] M. Shaw, R. DeLine, V. Klein, T.L. Ross, D.M.
Young, G. Zelesnik. Abstractions for Software Architecture
and Tools to Support Them. IEEE Transactions on Software
Engineering, Vol. 21, No 4, April 95.

