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Abstract.  Software connectors are increasingly recognized as an important 
consideration in the design and implementation of object-oriented software 
systems.  Connectors can be used to communicate across a distributed system, 
coordinate the activities of several objects, or adapt one object’s interface to the 
interface of another.  Mainstream object-oriented languages, however, do not 
provide explicit support for connectors.  As a result, connection code is 
intermingled with application code, making it difficult to understand, evolve, 
and reuse connection mechanisms. 
 
In this paper, we add language support for user-defined connectors to the 
ArchJava language.  Our design enables a wide range of connector abstractions, 
including caches, events, streams, and remote method calls.  Developers can 
describe both the run-time semantics of connectors and the typechecking 
semantics.  The connector abstraction supported by ArchJava cleanly separates 
reusable connection code from application logic, making the semantics of 
connections more explicit and allowing engineers to easily change the 
connection mechanisms used in a program.  We evaluate the expressiveness and 
the engineering benefits of our design in a case study applying ArchJava to the 
PlantCare ubiquitous computing application. 

1. Introduction 

Software architecture is the high-level design of a system, composed of a set of 
components and the connections through which the components interact 
[GS93,PW92].  Object-oriented languages provide a natural object abstraction for 
components, and encourage developers to compose systems out of interacting objects.  
However, mainstream object-oriented languages do not provide explicit support for 
connections.  Instead, connections are implicit in the object references in the heap, or 
are expressed indirectly using design patterns such as Proxy and Adaptor [GHJ+94]. 

Despite this lack of language support, connections are increasingly recognized as a 
crucial element of software systems.  The software architecture literature has 
proposed a connector abstraction for connections, roughly corresponding to the class 
abstraction for components.  In this context, a connector is a reusable design element 
that supports a particular style of component interactions.  In a comprehensive 
taxonomy of connectors, Mehta et al. describe the wide variety of connectors used in 



software, including method calls, events, shared variables, adaptors, streams, 
semaphores, and many others [MMP00].  Connectors are particularly important in the 
context of distributed systems, where connector attributes such as bandwidth, 
synchronicity, security, reliability, and the wire protocol used may be crucial to the 
functionality and performance of the application. 
 
Connector Libraries.  Because of the lack of language abstractions for connectors, 
developers often implement connectors using library code.  However, this 
implementation strategy often causes significant problems in the development and 
maintenance of software systems.  Because connector abstractions do not exist, 
connector code is often mixed with component code, making both the component and 
the connector more difficult to reuse or evolve.  

An improvement is to implement a connector as an Adaptor object that mediates 
between two components that may have different interface expectations.  However, in 
this case the Adaptor implementation is tied to the interface of the components it 
connects; it cannot be re-used effectively to perform the same conceptual connection 
task between components that have a different interface.  Similarly, when the Proxy 
pattern is used to implement a connector to an object that is present on a remote 
machine, a different Proxy implementation must be defined (or generated) for every 
distinct remote interface. 

The PlantCare ubiquitous computing application, the subject of the case study 
described later in this paper, illustrates many of these problems.  The PlantCare 
system is made up of sensors and robots that autonomously care for plants in a home 
or office environment [LBK+02].  This application presents a number of key research 
challenges for effectively building autonomous embedded systems. 

PlantCare services communicate using Rain, a lightweight library for sending 
asynchronous XML messages over HTTP connections.  Communication code that 
uses the Rain library is spread throughout the system, and its size and complexity 
often obscures the application logic of the system.  As shown in Figure 1, sending 
even a very simple message in Rain is a multi-step process, and it can be quite tedious 
to write code for sending larger messages.  It is difficult to identify the messages sent 
and received by PlantCare components because this information is spread throughout 
the code.  Because of this scattering, it would be very difficult to change components 
to interact using a connector other than Rain.  The situation might be somewhat 
improved by using the Proxy or Façade patterns to encapsulate communication code, 
but this improvement would come at the cost of greater code size.  Despite these 
problems, we believe that PlantCare is not a poorly engineered, straw-man system; it 
is simply representative of the difficulty of writing well-modularized distributed 
applications using mainstream programming technology. 
 
Tool Support.  Communication infrastructures such as RMI [Jav97], CORBA 
[OMG95], and COM [Mic95] address these challenges by using tools to 

    TaskLi st Quer y q = new TaskLi st Quer y( ) ;  
    q. l i s t  = " Wat er  Pl ant s" ;  
    sendMessage( t askSer ver , q, newCl osur e( ) ) ;  
 

Figure 1.  PlantCare code that sends a Rain message 



automatically generate proxies for communication with remote objects.  These 
proxies encapsulate communication code, allowing application components to make 
remote method calls using the same syntax as local calls.  Many CASE tools and code 
generation tools provide similar benefits.  However, these infrastructures and tools fix 
a particular semantics for distributed communication—semantics based on 
synchronous method calls using particular encodings and wire protocols.  While such 
tools may be ideal for applications that can accept the built-in semantics, they are 
inappropriate for applications that need different connector semantics.  For example, 
the PlantCare developers decided that they needed to write a custom communication 
layer and wire protocol to support a very lightweight and adaptive form of 
communication appropriate to the ubiquitous computing domain.  Although tools play 
an important role in implementing connectors, we believe that no single connection 
infrastructure will be sufficient for the diverse needs of all applications in the 
foreseeable future. 
 
Our Approach.  In this paper, we propose adding explicit language support for user-
defined connectors.  It is difficult to integrate user-defined connectors directly in a 
conventional object-oriented language such as Java, because connections between 
objects are not explicit in the source code, but are expressed implicitly through a pair 
of references.  Instead, we present our design in the context of ArchJava, an extension 
to Java that allows developers to specify the software architecture of a system within 
the implementation.  Because ArchJava already supports explicit connections between 
component objects, it can be easily extended to enable user-defined connectors to 
override the built-in connection semantics. 

Our design allows developers to implement connectors using arbitrary Java code, 
supporting a very wide range of connector types.  We evaluate the expressiveness of 
our design by implementing a representative subset of the connectors from Mehta et 
al.’s catalogue [MMP00].  A novel feature of our approach is that connectors define 
not just the run-time semantics of the connector, but also the typechecking strategy 
that should be used.  As long as connector developers implement typechecking 
correctly for the domain of their connectors, our system provides a static guarantee of 
type safety to connector clients while still allowing connectors to link components 
with very different interfaces. 

Our approach provides a clean separation of concerns.  Each connector is 
modularly defined in its own class.  Components interact with connectors in a clean 
way using Java’s existing method call syntax.  In our approach, the connector used to 
bind two components together is specified in a higher-level component, so that the 
communicating components are not aware and do not depend on the specific 
connector being used.  Due to this design, it is easy to change the connectors in a 
system, while changing connectors may be very difficult in languages without explicit 
support for connector abstractions. 

 
Organization.  The rest of this paper is organized as follows.  In the next section, we 
review the ArchJava language design through a simple peer-to-peer system example.  
Section 3 extends ArchJava with explicit support for connector abstractions, 
describing by example how they can be defined and used.  We evaluate the 
expressiveness and the engineering benefits of our system in section 4, both by 



implementing a wide range of connectors and by applying ArchJava to part of the 
PlantCare ubiquitous computing application.  We discuss related work in section 5 
before concluding in section 6. 

2. The ArchJava Language 

ArchJava is a small extension to Java that allows programmers to express the software 
architecture of an application within the source code [ACN02a].  ArchJava’s type 
system verifies communication integrity, the property that implementation code 
communicates only along connections declared in the architecture 
[MQR95,LV95,ACN02b].  This paper extends ArchJava by supporting much more 
flexible kinds of interactions along connections. 

We illustrate the ArchJava language through PoemSwap, a simple peer-to-peer 
program for sharing poetry online.  To allow programmers to describe software 
architecture, ArchJava adds new language constructs to support components, 
connections, and ports.  The next subsection describes ArchJava’s features for 
representing components and ports, while subsection 2.2 shows how developers can 
specify an architecture using components and connections.  These sections review an 
earlier presentation of ArchJava [ACN02a]. 

2.1. Components and Ports 

A component in ArchJava is a special kind of object that communicates with other 
components in a structured way.  Components are instances of component classes, 
such as the PoemPeer  component class in Figure 2.  The PoemPeer  component 
represents the network interface of the PoemSwap application. 

Components in ArchJava communicate with each other through connected ports.  
A port represents a logical communication channel between a component and one or 
more components that it is connected to.  For example, PoemPeer  has a sear ch 
port that provides search services to the PoemSwap user interface, and it has a poems  
port that it uses to access the local database of poems. 

Ports declare two sets of methods, specified using the requires and provides 
keywords.  A provided method is implemented by the component and is available to 
be called by other components connected to this port.  For example, the search port 
provides searching and downloading methods that can be invoked from the user 
interface.  Provided methods must be given definitions in the surrounding component 
class, as shown by the implementation of downl oadPoem in Figure 2. 

Conversely, each required method is provided by some other component 
connected to this port.  In Figure 2, the poems  port requires methods that get 
descriptions of all the poems in the database, retrieve a specific poem by its 
description, and add a poem to the database.  A port may have both required and 
provided methods, but as shown in the example, it is common for a port to have only 
one or the other. 



A component can invoke a required method declared in one of its ports by sending 
a message to the port.  For example, in Figure 2, after downloading a new poem from 
a peer, the downl oadPoem method adds the new poem to the poem database with 
the call poems. addPoem( newPoem) .  As this example shows, ports are concrete 
objects, and required methods can be invoked on ports using Java’s standard method 
call syntax. 

A port interface describes an interface used to communicate with multiple different 
components at run time.  Port interfaces are to ports as classes are to objects.  In fact, 
concrete port declarations such as sear ch can be thought of as a convenient 
shorthand for a port interface and a field of that interface type.  In the example, 
PoemPeer  must communicate with many other PoemSwap peers through its 
cl i ent  port interface, and it may serve requests from many peers through its 
ser ver  port interface.  The two interfaces are symmetric, as each peer may act as 
both a client and a server. 

public component class PoemPeer  {  
  public port sear ch {  
    provides PoemDesc[ ]  sear ch( PoemDesc par t i al Desc)  throws I OExcept i on;  
    provides void downl oadPoem( PoemDesc desc)  throws I OExcept i on;  
  }  
 
  public port poems {  
    requires PoemDesc[ ]  get PoemDescs( ) ;  
    requires Poem get Poem( PoemDesc desc) ;  
    requires void addPoem( Poem poem) ;  
  }  
 
  public port interface cl i ent  {  
    requires cl i ent ( I net Addr ess addr ess)  throws I OExcept i on;  
    requires PoemDesc[ ]  sear ch( PoemDesc par t i al Desc,  int hops,  Nonce n) ;  
    requires Poem downl oad( PoemDesc desc) ;  
  }  
 
  public port interface ser ver  {  
    provides PoemDesc[ ]  sear ch( PoemDesc par t i al Desc,  int hops,  Nonce n) ;  
    provides Poem downl oad( PoemDesc desc) ;  
  }  
 
  void downl oadPoem( PoemDesc desc)  throws I OExcept i on {  
    c l i ent  peer  = new cl i ent ( desc. get Addr ess( ) ) ;  
    Poem newPoem = peer . downl oad( desc) ;  
    if ( newPoem ! = null)  {  
      poems. addPoem( newPoem) ;  
    }  
  }  
  // other method definitions... 
}  
 

Figure 2.  The PoemPeer  class represents the network interface of the PoemSwap 
application.  PoemPeer  communicates with other components through its ports.  It provides a 
network search service to the rest of the application through the sear ch port, and it accesses
the poem database through the poems  port.  Finally, it communicates with other PoemSwap 
applications over a wide-area network using complimentary cl i ent  and ser ver  ports. 



The cl i ent  port interface contains a connection constructor, named cl i ent  
after the surrounding port interface, that the PoemPeer  can invoke in order to create 
a connection to a peer at the given I net Addr ess .  PoemPeer  instantiates a 
cl i ent  port using this constructor in downl oadPoem with the same new syntax 
used to create objects in Java.  The downl oadPoem method can then call the 
required method downl oad on the newly created port. 

The goal of ports is to specify both the services implemented by a component and 
the services a component needs to do its job.  Required interfaces make dependencies 
explicit, reducing coupling between components and promoting understanding of 
components in isolation.  For example, the PoemPeer  component is implemented 
without any knowledge of what connection protocol will be used to connect it to its 
peers.  PoemPeer  expects a connector that has synchronous method call semantics, 
because the methods in the cl i ent  port all return values, but any connector that 
conforms to this constraint can be used. 

2.2. Software Architecture in ArchJava 

In ArchJava, hierarchical software architecture is expressed with composite 
components, which are made up of a number of subcomponents connected together.  
A subcomponent1 is a component instance nested within another component.  For 
example, Figure 3 shows how PoemSwap, the central component of the PoemSwap 
application, is composed of three subcomponents: a user interface, a poem database, 
and the peer discussed above.  The subcomponents are declared as fields within 
PoemSwap. 

In ArchJava, architects declare the set of permissible connections in the 
architecture using connect patterns.  A connect pattern specifies two or more port 
types that may be connected together at run time.  For example, the connect patterns 
in Figure 3 specify that both the user interface and the network interface connect to 
the poems  port of the PoemSt or e, and that the sear ch port of the user interface 
connects to the corresponding port of the network interface.  The default typechecking 
rule for connect patterns ensures that for every method required by one or more of the 
connected ports, there is exactly one corresponding provided method with the same 
name and signature. 

Actual connections are made using connect expressions that appear in the methods 
of a component.  A connect expression specifies the concrete component instances to 
be connected in addition to the connected ports.  In the example, the PoemSwap 
constructor makes three connections, one for each of the connect patterns declared in 
the architecture.  A static check ensures that the types of the connected ports conform 
to the types declared in one of the connect patterns. 

                                                           
1 Note: the term subcomponent indicates composition, whereas the term component 

subclass would indicate inheritance. 



The built-in semantics of ArchJava connections binds required methods to 
provided methods, so that when a required method is called on one port, the 
corresponding provided method of the other port is invoked.  For example, when the 
PoemPeer  in Figure 2 invokes addPoem on its poems  port, the invocation will be 
forwarded across the connection made in the PoemSwap architecture.  The addPoem 
method implementation provided by the poems  port of the PoemSt or e (not shown) 
will be invoked. 

 
Connection Constructors.  Each connect pattern must provide a connection 
constructor for each of the required connection constructors declared in the connected 
ports.  A connection constructor is named after the port that required the constructor, 
and the first argument is the component that requested the connection.  The other 
arguments match the ones declared in the corresponding connection constructor.  For 
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public component class PoemSwap {  
  private final SwapUI  ui  = new SwapUI ( ) ;  
  private final PoemSt or e st or e = new PoemSt or e( ) ;  
  private final PoemPeer  peer  = new PoemPeer ( ) ;  
 
  connect pattern SwapUI . poems,  PoemSt or e. poems;  
  connect pattern PoemPeer . poems,  PoemSt or e. poems;  
  connect pattern SwapUI . sear ch,  PoemPeer . sear ch;  
 
  public PoemSwap( )  {  
    TCPConnect or . r egi st er Obj ect ( peer ,  “ ser ver ” ,  POEM_PORT) ;  
 
    connect( ui . poems,  st or e. poems) ;  
    connect( peer . poems,  st or e. poems) ;  
    connect( ui . sear ch,  peer . sear ch) ;  
  }  
 
  connect pattern PoemPeer . cl i ent ,  PoemPeer . ser ver  {  
    c l i ent ( PoemPeer  sender ,  I net Addr ess addr ess)  throws I OExcept i on {  
      return connect( sender . cl i ent ,  PoemPeer . ser ver ) ;  
    }  
  } ;  
}  
 

Figure 3.  A graphical and textual description of the PoemSwap architecture.  The PoemSwap
component class contains three subcomponents—a user interface, a poem store, and the 
network peer.  Connect patterns show statically how these components may be connected, and 
the connect expressions in the constructor link the components together following these 
patterns.  A final connect pattern shows how peers on different machines communicate, and 
includes a connection constructor that creates a connection when the PoemPeer  requests one. 



example, the cl i ent  port in component class PoemPeer  requires a connection 
constructor that accepts an I net Addr ess .  Since PoemPeer . c l i ent  is one of 
the ports in this connect pattern, the pattern declares a connection constructor with 
two arguments—the PoemPeer  that requested the connection and an 
I net Addr ess .  The body of a connection constructor must return a connection that 
matches the surrounding connect pattern.  One of the connected ports must be the 
appropriate port of the component that requested the connection (sender . c l i ent  
in the example). 

3. Connector Abstractions in ArchJava 

In this section, we describe the new language features and libraries that support 
connector abstractions in ArchJava.  We extend the syntax of connect patterns and 
connect expressions to describe which connector abstractions should be used to 
typecheck and implement the connections.  Subsection 3.1 demonstrates these 
language features by examples, showing how a user-defined TCP/IP connector can be 
used to connect different PoemSwap peers across a wide-area network.  New 
connectors can be written using the ar chj ava. r ef l ect  library, described in 
Subsection 3.2, which reifies connections and required method invocations.  Finally, 
subsection 3.3 shows how the TCP/IP connector can be implemented using this 
library. 

3.1. Using Connector Abstractions 

Connector Typechecking.  Instead of using ArchJava’s default typechecking rules, 
connect patterns can specify that a user-defined connector should be used for 
typechecking instead.  For example, Figure 4 shows the syntax missing from the 
connect pattern at the end of Figure 3.  After declaring the component ports to be 
connected, the connect pattern can specify a user-defined connector class to be used 
for typechecking using the syntax with <connector class>.  The connector used can 
be any subclass of ar chj ava. r ef l ect . Connect or , which defines a 
t ypecheck  function that can be overridden by subclasses.  In the example, when 
the PoemSwap component class is compiled, the compiler loads the 

  connect pattern PoemPeer . cl i ent ,  PoemPeer . ser ver  with TCPConnect or  {  
      c l i ent ( PoemPeer  sender ,  I net Addr ess addr ess)  throws I OExcept i on {  
 return connect( sender . cl i ent ,  PoemPeer . ser ver )  
   with new TCPConnect or ( connect i on,  addr ess,  POEM_PORT) ;  
      }  
    } ;  
 
Figure 4.  The final connect pattern in PoemSwap, augmented with connector specifications.  
The connect pattern specifies that TCPConnect or  should be used to typecheck the 
connection statically.  The connect expression instantiates a TCPConnect or  object to connect 
to the remote peer, passing to the constructor a reification of the connection together with the 
address of the remote peer. 



TCPConnect or  class, creates an instance, and invokes the t ypecheck  method on 
the TCPConnect or  to check the validity of the connect pattern.  This typechecking 
replaces the default ArchJava typechecking semantics, allowing the connector 
abstraction to define arbitrary typechecking rules. 

In the case of TCPConnect or , the t ypecheck  method first invokes the 
standard ArchJava typechecker, and then additionally checks that all arguments and 
results of all methods in the connection are subtypes of the Ser i al i zabl e 
interface.  Because the TCPConnect or  uses Java’s serialization mechanism to send 
method arguments and results across a network, a run-time error will result if the 
method arguments and results are not serializable.  By defining its own typechecking 
semantics to extend those of ArchJava, the TCPConnect or  can detect this error at 
compile-time2. 
 
Instantiating Connectors.  Connectors are instantiated whenever a connect 
expression is executed at run time.  Connect expressions can use the syntax with 
<expression> to specify the connector instance that should be used for the 
connection.  The expression in the with clause must be have a type that is a subclass 
of the connector type declared in the corresponding connect pattern, to ensure that the 
connector implementation used at run time matches the connector that was used to 
typecheck the connection statically.  In the example, the expression creates a new 
TCPConnect or  object, passing the address and the TCP/IP port of the remote peer 
to the constructor of the connector.  When the connect expression is executed at run 
time, the with clause will be evaluated, creating a TCPConnect or  object to be 
used in the connection. 

Inside the with clause of a connect expression, the connection being created is 
reified in the connect i on variable, which has type 
ar chj ava. r ef l ect . Connect i on.  This object contains the types of the 
components and ports in the connection, as well as the component instances being 
connected.  Connectors need this information in order to implement their 
functionality, and so we pass the connection object to the constructor of 
TCPConnect or  along with the address and TCP/IP port. 

In the case of PoemSwap, the component to be connected to the sender is a peer 
on a remote machine, and so we cannot use a direct reference to it in the connect 
expression.  Instead, we specify the type of the remote component so that it will 
match the surrounding connect pattern, and the TCPConnect or  uses the address 
passed to the constructor to communicate with the remote component. 

3.2. The archjava.reflect Library 

Connector abstractions are defined using the ar chj ava. r ef l ect  library, whose 
most important classes and methods are shown in Figure 5.  This library defines a 
                                                           
2 This check would have been handy when testing the PoemSwap application.  Before 

customized typechecking was implemented, we got run time errors because we 
forgot to make poems serializable. 



Connect or  class that user-defined connector classes extend, as well as classes that 
reify connections, ports, and methods. 

Class Connect or  provides a hook for defining customized connectors.  
Connector abstractions can define custom typechecking semantics by overriding the 
t ypecheck  method, which is called at compile time to typecheck a connect pattern, 
returning a possibly empty array of errors.  Run-time connection behavior can be 
defined by overriding the i nvoke method, which accepts a Cal l  object reifying an 
invocation on a required method.  The default implementation finds the corresponding 
provided method and invokes it, passing the resulting return value or exception back 
to the caller. 

Connect or  provides a public constructor that accepts a reified connection object.  
A second constructor creates its own connection object from the specified arrays of 

public class Connect or  {  
  public Connect or ( Connect i on c) ;  
  protected Connect or ( Obj ect  component s[ ] ,  St r i ng por t Names[ ] ) ;  
 
  public final Connect i on get Connect i on( ) ;  
 
  public Er r or [ ]  t ypecheck( ) ;  
  public Obj ect  i nvoke( Cal l  c)  throws Thr owabl e;  
}  
 
public final class Connect i on {  
  public Por t [ ]  get Por t s( )  
  public Connect or  get Connect or ( )  
}  
 
public final class Por t  {  
  public St r i ng get Name( ) ;  
  public Met hod[ ]  get Requi r edMet hods( ) ;  
  public Met hod[ ]  get Pr ovi dedMet hods( ) ;  
  public Obj ect  get Encl osi ngObj ect ( ) ;  
}  
 
public final class Met hod {  
  public St r i ng get Name( ) ;  
  public Type[ ]  get Par amet er Types( ) ;  
  public Obj ect  i nvoke( Obj ect  ar gs[ ] )  throws Thr owabl e;  
}  
 
public final class Type {  
  public St r i ng get Name( ) ;  
}  
 
public final class Cal l  {  
  public Met hod get I nvokedMet hod( ) ;  
  public Obj ect [ ]  get Ar gument s( ) ;  
}  
 

Figure 5.  The ar chj ava. r ef l ect  library includes classes reifying connectors, 
connections, ports, methods, types, and calls.  User-defined connector classes extend the 
Connect or  class, overriding the i nvoke or t ypecheck  methods to define customized 
dynamic and/or static semantics, respectively. 



components and corresponding port names.  This constructor allows connections to be 
created without being declared in a connect pattern, so it is accessible only to 
Connect or  subclasses. 

Classes Connect i on, Por t , Met hod, Type, and Cal l  reify the connection 
that is associated with the connector, along with its ports and method signatures.  
Unlike Connect or , user-defined connectors do not extend these classes, but instead 
may use them as a library for getting information about the current connection.  This 
information, accessible through the get Connect i on method of Connect or , can 
be used statically when typechecking or dynamically when dispatching a required 
method invocation.  For example, the connector can invoke provided methods by 
calling i nvoke on the relevant Met hod object. 

3.3. Implementing Connector Abstractions 

TCPConnect or  is designed to create a TCP/IP network connection between the 
local host and the remote host and TCP/IP port specified in the constructor.  When a 
method is called on the connection, the TCPConnect or  serializes the arguments of 
the method and ships them across the TCP/IP network connection.  The constructor of 
the PoemSwap component registers its PoemPeer  with the TCPConnect or , 
which starts a daemon listening at the appropriate TCP/IP port.  The daemon will read 
the method’s name and arguments, and invoke the appropriate method from the 
connected port.  The process is reversed in order to send the method’s return value 
back over the network. 

Figure 6 shows how the run-time semantics of TCPConnect or  can be defined in 
Java code.  The example shows primarily the interface of the connector and how it 
uses the ar chj ava. r ef l ect  library.  We omit the network, serialization, and 
threading code in the TCPDaemon helper class. 

The TCPConnect or  constructor passes the connection object on to the 
Connect or  superclass, and then creates a TCPDaemon object to handle the TCP/IP 
network connection.  TCPConnect or  overrides i nvoke by determining which 
required method was called, and passing the name of the method, its parameter types, 
and the actual call arguments to the TCPDaemon.  The TCPDaemon sends this data 
over the TCP/IP network connection. 

At the other side of the network, PoemSwap has used r egi st er Obj ect  to 
register a PoemPeer  object.  The r egi st er Obj ect  method starts a TCPDaemon 
listening at the assigned port.  When the daemon receives an incoming connection, it 
creates a TCPConnect or  object to represent that endpoint of the connector.  The 
daemon uses the non-public TCPConnect or  constructor, passing the object to be 
connected and the name of its connected port to the constructor.  Since the originating 
connection was created on the other machine, the constructor does not have a local 
Connect i on object to pass to the ordinary superclass constructor, so it calls a 
constructor that takes two arrays of objects and port names, respectively, and 
generates a local Connect i on object based on this information. 



When the daemon receives an incoming method, it finds the TCPConnect or  
associated with the receiver object and calls i nvokeLocal Met hod.  
i nvokeLocal Met hod uses the f i ndMet hod helper function to identify the 
provided method that matches the method name and parameter types, then invokes the 
method through a reflective call.  The result, or any exception that is thrown, will be 
packaged back up by the TCPDaemon, sent back over the network, returned to the 
implementation of i nvoke in the source TCPConnect or , and returned to the caller 
from there. 

public class TCPConnect or  extends Connect or  {  
  // data members 
  private TCPDaemon daemon;  
 
  // public interface 
  public TCPConnect or ( Connect i on conn,  I net Addr ess host ,  int pr t )  
                                            throws I OExcept i on {  
    super( conn) ;  
 
    daemon = TCPDaemon. get Daemon( host ,  pr t ,  this) ;  
  }  
 
  public Obj ect  i nvoke( Cal l  cal l )  throws Thr owabl e {  
    Met hod met h = cal l . get I nvokedMet hod( ) ;  
    return daemon. sendMet hod( met h. get Name( ) ,  met h. get Par amet er Types( ) ,  
                             cal l . get Ar gument s( ) ) ;  
  }  
 
  public static void r egi st er Obj ect ( Obj ect  o,  St r i ng por t Name,  int pr t )  
                                    throws I OExcept i on {  
    TCPDaemon. get Daemon( pr t ) . r egi st er ( o,  por t Name) ;  
  }  
 
  // interface used by TCPDaemon 
  TCPConnect or ( TCPDaemon daemon,  Obj ect  r ecei ver ,  St r i ng por t Name)  {  
    super( new Obj ect [ ]  {  r ecei ver  } ,  new St r i ng[ ]  {  por t Name } ) ;  
    this. daemon = daemon;  
  }  
 
  Obj ect  i nvokeLocal Met hod( St r i ng name,  AType par amet er Types[ ] ,  
                                  Obj ect  ar gument s[ ] )  throws Thr owabl e {  
    // find method with parameters that match parameterTypes 
    Met hod met h = f i ndMet hod( name,  par amet er Types) ;  
    return met h. i nvoke( ar gument s) ;  
  }  
 
  // typecheck defined in Figure 7 
}  
 

Figure 6.  The TCPConnect or  class extends the ar chj ava. r ef l ect . Connect or  class 
to define the dynamic semantics of a connector based on a TCP/IP network connection.  The 
i nvoke method passes the method name, parameter types, and arguments to a daemon that 
uses Java’s serialization facilities to send them over a TCP/IP network connection.  The 
daemon at the other end of the connection, created when the other peer called 
r egi st er Obj ect , calls i nvokeLocal Met hod on a TCPConnect or  object, which 
identifies the right method to call and invokes it. 



 
User-Defined Typechecking. Figure 7 shows the definition of the t ypecheck  
method of TCPConnect or .  This method, inherited from 
ar chj ava. r ef l ect . Connect or , is called at compile time for each connect 
pattern in the system that uses a TCPConnect or  for typechecking. 

Connectors that define custom typechecking must implement a constructor that 
takes a single argument of type ar chj ava. r ef l ect . Connect i on.  This object 
is initialized by the compiler to hold the list of ports in the connect pattern, and for 
each port, the types of its parameters and return value.  The TCPConnect or  ensures 
that this constructor is only used at compile time by throwing an exception if the 
Connect i on object reports that it is a run-time connection. 

Connectors define their typechecking semantics by overriding the t ypecheck  
method from TCPConnect or .  This method returns a possibly empty array of 
Er r or  objects describing any semantic errors in the connect pattern.  The Er r or  
class encapsulates a St r i ng describing the problem as well as a syntax element (a 
Connect i on, Por t , or Met hod) that describes where the error occurred, allowing 
the compiler to give the reported error an accurate line number. 

The TCPConnect or  begins by running the standard t ypecheck  method 
defined in its superclass.  It returns any errors found by this method.  If standard 

// extension of the code in Figure 6 
public class TCPConnect or  extends Connect or  {  
  public TCPConnect or ( Connect i on c)  {  
    super( c) ;  
    // this constructor may only be used for compile time typechecking 
    if ( ! c. i sCompi l eTi me( ) )  {  
      throw new Runt i meExcept i on( " Must  pass a r emot e por t  at  r un t i me" ) ;  
    }  
  }  
 
  public Er r or [ ]  t ypecheck( )  {  
    / /  Fi r st  i nvoke Java’ s t ypechecki ng 
    Er r or  [ ]  er r or s = super. t ypecheck( ) ;  
    if ( er r or s. l engt h > 0)  
      return er r or s;  
 
    // ensure that there are exactly two connected ports 
    Connect i on c = get Connect i on( ) ;  
    if ( c. get Por t s( ) . l engt h ! = 2)  {  
      return new Er r or [ ]  {  
        new Er r or ( " TCPConnect or s must  connect  2 por t s” ,  c) ;  
      } ;  
    }  
 
    // ensure all arguments and results are Serializable 
    ... 
  }  
}  
 

Figure 7.  Overriding t ypecheck  in the TCPConnect or  class to ensure that TCP
connectors only connect two ports. 



typechecking succeeds, the TCPConnect or  next ensures that there are only two 
ports in the connection, because TCPConnect or  is not designed to handle the 
multi-way connections that are allowed by the ArchJava syntax.  Finally, code (not 
shown) visits every required and provided method in the connection, making sure that 
all method arguments and results are either primitive types or are Ser i al i zabl e, 
so that the TCPDaemon will be able to serialize them successfully at run time. 

4. Evaluation 

We have implemented language support for connector abstractions in the ArchJava 
compiler, available for download at the ArchJava web site [Arc02].  Thus, all 
examples in this paper, including PoemSwap and PlantCare, are simplified versions of 
live code.   

We evaluate our design in two ways.  In the next subsection, we evaluate the 
expressiveness of our connector abstraction mechanism by describing how a wide 
range of connectors can be implemented.  In the following subsection, we evaluate the 
engineering benefits of connector abstractions with a case study on the PlantCare 
ubiquitous computing application.  Subsection 4.3 analyzes the case study and reports 
feedback from the developers of PlantCare. 

4.1. Expressiveness 

In order to evaluate the expressiveness of our connector abstraction mechanisms, we 
use Mehta et al.’s taxonomy of connectors as a benchmark for our design [MMP00].  
The taxonomy describes eight major types of connectors: procedure call, event, data 
access, linkage, stream, arbitrator, adaptor, and distributor connectors.  We discuss 
each connector type in turn, describing which species of that connector can benefit 
from using connector abstractions, and giving examples of their definition or use 
where appropriate. 

 
Connector Implementation.  Connectors can be implemented in a wide variety of 
ways, each with its own benefits and drawbacks.  For example, in addition to our 
connector abstractions, connectors could be built into the language, expressed 
idiomatically through a design pattern, or described using ArchJava’s component 
construct. 

The key benefit of using connector abstractions is that the same connector can be 
reused to support the same interaction semantics across many different interfaces, 
while still providing a strong, static guarantee of type safety to clients.  For example, 
the TCPConnect or  is able to connect any two compatible ports, as long as the 
arguments to methods in those ports are Ser i al i zabl e.  Other solutions that 
guarantee type safety require separate stub and skeleton code to be written for each 
interface, causing considerable code duplication and hindering reuse and evolution.  
Alternatively, a generic library interface for sending objects across a TCP/IP 
connection could be used, but this solution does not guarantee that the messages sent 



and received across the connection have compatible types, so run-time errors are 
possible. 

The main drawback of using connector abstractions is that they are defined using a 
reflective mechanism.  Although connectors can define typechecking rules for their 
clients, there is no way to statically check that a connector’s implementation performs 
the communication in a type-safe way.  Also, there is some run-time overhead 
associated with reifying a method call so that a connector can process it dynamically.  
Thus, in situations where a connector is not reused across different interfaces, it may 
be better to use objects or components to implement the connector. 

We now go through the eight connector types identified by Mehta et al., analyzing 
the situations in which the use of connector abstractions might be beneficial.  All of 
the connector abstraction examples described here are available for download as part 
of the ArchJava distribution [Arc02]. 

 
Procedure Call.  Procedure call connectors enable the transfer of control and data 
through various forms of invocation.  Although most programming languages provide 
explicit support for procedure calls, there are a number of semantic issues that justify 
user-defined procedure call connectors.  For example, parameters could be passed by 
reference, by value, by (deep) copy, etc.; calls could be synchronous or asynchronous; 
calls could use one to many broadcast semantics, many-to-one collecting semantics, 
or conceivably even many-to-many semantics.  

ArchJava’s connector abstractions are well-suited to implementing procedure call 
connectors, because of the procedure-call syntax used in ports and because the 
mechanism allows connectors to define many different kinds of method-call 
semantics, which are then reusable across different port interfaces. 

As an example, we have implemented an Asynchr onousConnect or  that 
accepts incoming required method calls, returns to the sender immediately, and then 
invokes the corresponding provided method asynchronously in another thread.  We 
have also implemented a Summi ngBr oadcast Connect or  that accepts a 
incoming method call, broadcasts it to all connected components, and sums the results 
of all the invocations before returning the sum to the original caller.  This second 
connector relies on ArchJava’s n-way connections, which can connect more than two 
ports.  Both connectors implement appropriate typechecking; for example, the 
Asynchr onousConnect or  ensures that all methods in connected ports return 
void, while the Summi ngBr oadcast Connect or  ensures that all of the methods 
return a number.  The TCPConnect or  described above is a procedure call 
connector that connects components running on different virtual machines. 

 
Event.  Event connectors support the transfer of data and control using an implicit 
mechanism, where the producer and consumer of an event are not aware of each 
other’s identity.  Semantic issues with event connectors include the cardinality of 
producers and consumers, event priority, synchronicity, and the event notification 
mechanism. 

Events are often implemented as inner-class callbacks in languages such as Java, 
but this technique can make programs very difficult to reason about and evolve, as it 
is hard to see which components might be communicating through an event channel.  
ArchJava’s explicit support for connections makes it easy to use events for 



communication between loosely coupled components, while showing the connection 
in the program’s software architecture to aid in program understanding and evolution.  
Connector abstractions provide additional benefit by allowing components to 
communicate using different event semantics.  For example, we have implemented a 
Event Di spat chConnect or  that enqueues event notifications and dispatches 
them to consumers based on their priority. 

The PlantCare application, described below in subsection 4.2, uses a user-defined 
connector to support asynchronous event-based communication across a loosely 
coupled ad-hoc network. 

 
Data Access.  Data access connectors are used to access a data store, such as a SQL 
database, the file system, or a repository such as the Windows registry.  Issues in data 
access components include initialization and cleanup of connections to data sources, 
and the conversion and presentation of data.  Conventional library-based techniques 
are appropriate for implementing many kinds of data access connectors.  However, 
connector abstractions can be used to provide a convenient view of the data source, or 
adding semantic value to a data source in a reusable way.  For example, one could 
imagine a connector that provides an object-oriented view of a relational database, 
translating each row of each table into an object and providing a collection-like access 
to clients.  We have implemented a Cachi ngConnect or , which caches the results 
of method calls to a data store and returns the same result if the method is called again 
with identical arguments. 

 
Linkage.  Linkage connectors bind a name in one module to the implementation 
provided by another module.  Examples of linkage connectors include imported 
names and references to names defined in other source files.  ArchJava’s connector 
abstractions are intended to connect object instances at run time, not link names at 
compile time.  Therefore, Linkage connectors are outside of the scope of ArchJava’s 
connector abstraction design. 

 
Stream.  Stream connectors support the exchange of a sequence of data between 
loosely-coupled producer and consumer components.  Semantic issues with streams 
include buffering, bounding, synchronicity, data types, data conversion, and the 
cardinality of the producers and consumers.  Many of these issues can be 
encapsulated within a reusable connector abstraction.  For example, we have 
developed a Buf f er edSt r eamConnect or  that implements a stream with a 
bounded buffer size, supporting one producer but an arbitrary number of consumers.  
The Buf f er edSt r eamConnect or  is reusable for streams of many different data 
types, but checks that the types of data produced and consumed match. 

 
Arbitrator.  Arbitrator connectors provide services that coordinate and facilitate 
interactions among components.  Examples of arbitrators include semaphores, locks, 
transactions, fault handling connectors with failover, and load balancing connectors.  
Semaphores and locks typically have the same interface no matter which components 
they connect, and so they are probably best implemented using ordinary objects or as 
ArchJava components.  However, more sophisticated arbitrators can benefit from 
ArchJava’s connector abstraction mechanism.  For example, we have built a 



LoadBal anci ngConnect or  that accepts incoming method calls from a client and 
distributes them to a bank of server components based on the current server loads.  
The LoadBal anci ngConnect or  is reusable across any client interface, while 
still providing typechecking between clients and services.  We have also implemented 
a barrier synchronization connector.  Components invoke a different method on the 
barrier after each stage of work, and the barrier ensures that all its clients have called 
a given barrier method before it allows any of the method calls to return. 

 
Adaptor.  Adaptor components retrofit components with different interfaces so that 
they can interact.  Adaptors may convert data formats, adapt to different invocation 
mechanisms, transform protocols, or even make presentation changes like 
internationalization conversions.  Well-known design patterns such as Adaptor, 
Wrapper, and Façade are often used to implement adaptors.  However, connector 
abstractions can be useful for performing similar adaptations to different interfaces.  
For example, the Rai nConnect or  in section 4.2 below adapts data types using 
structural subtyping, so that two components can communicate with different 
datatypes as long as the data sent in a message has all of the information expected by 
the receiver. 

 
Distributor.  Distributor connectors identify paths between components and routes 
communication along those paths.  Distributors are not first-class connectors, but 
provide routing services to other connectors.  Both the 
Event Di spat chConnect or  described above and the Rai nConnect or  
described below include distributor functionality. 

 
Summary.  As the discussion above makes clear, ArchJava’s connector abstractions 
are very flexible, supporting a very wide range of different connector types.  Some 
kinds of connectors are most clearly expressed using conventional mechanisms such 
as objects and components.  However, connector abstractions provide a unique level 
of reusability across port interfaces while still providing clients with a strong static 
guarantee of type safety. 

4.2. PlantCare Case Study 

In order to evaluate the engineering benefits of user-defined connector abstractions, 
we performed a case study with the PlantCare ubiquitous computing application 
[LBK+02].  PlantCare is a project at Intel Research Seattle that uses a collection of 
sensors and a robot to care for houseplants autonomously in a home or office 
environment.  This application illustrates many of the challenges of ubiquitous 
computing systems: it must be able to configure itself and react robustly to failures 
and changes in its environment. 
 
The Gardening Service.  Figure 8 shows the architecture of the gardening service, 
one of several services in the PlantCare system.  The gardening service consists of a 
central gardener component that uses three external services as well as a client for a 
well-known discovery service.  The gardener periodically executes a cycle of code 



that cares for plants as follows.  First, the gardener requests from the Pl ant St or e a 
list of all the plants in the system and the sensor readings from each plant.  For each 
plant, it queries the Encycl opedi a to determine how that plant should be cared for.  
After comparing the recommended and actual plant humidity levels, it adds or 
removes watering tasks from the TaskSer ver  so that each plant remains in good 
health. 

We have chosen to include the interfaces of relevant external services as part of the 
gardening service architecture, because then we can use the connectors in the 
architecture to reason about the protocols used to communicate with these services.  A 

Gardener DiscoveryClient 

TaskServer 

GardeningService 

Encyclopedia 

PlantStore 

 
public component class Gar deni ngSer vi ce {  
  private final Gar dener  gar dener  = new Gar dener ( get Ser vi ceI D( ) ) ;  
  private final Di scover yCl i ent  c l i ent  = new Di scover yCl i ent ( ) ;  
 
  connect cl i ent . di scover y,  gar dener . di scover y;  
 
  connect pattern Gar dener . Pl ant I nf o,  Pl ant St or e. Pl ant I nf o 
    with Rai nConnect or  {  
      Pl ant I nf o( Gar dener  sender ,  Ser vi ceI D i d)  {  
        return connect( sender . Pl ant I nf o,  Pl ant St or e. Pl ant I nf o)  
                 with new Rai nConnect or ( connect i on,  i d) ;  
      }  
    }  
  // other architectural connections not shown 
}  
 
public component class Gar dener  extends St at eMachi neNode {  
  public port di scover y {  
    requires Ser vi ceI D f i nd( St r i ng ser vi ceType) ;  
  }  
  public port interface Pl ant I nf o {  
    requires Pl ant I nf o( Ser vi ceI D i d) ;  
    requires void st at usQuer y( ) ;  
    provides void st at usRepl y( Pl ant St at us dat a) ;  
  }  
  private Pl ant I nf o pl ant I nf oPor t ;  
 
  public st ar t St at eCycl e( )  {  
    Ser vi ceI D I D = di scover y. f i nd( “ Pl ant  St or e” ) ;  
    pl ant I nf oPor t  = new Pl ant I nf o( I D) ;  
    pl ant I nf oPor t . st at usQuer y( ) ;  
    . . .  
  // remaining Gardener implementation not shown 
}  
 

Figure 8.  The architecture of the PlantCare gardening service 



more conventional architectural depiction would represent these protocols as 
connectors in an enclosing architecture.  However, in ubiquitous computing systems, 
there is no way to statically specify the entire enclosing architecture, because the 
services available in a system may change frequently as devices move and 
connections fail.  Instead, the gardening service architecture includes a partial view of 
the surrounding architecture, including the external components with which the 
gardener communicates. 

Below the visual architectural diagram in Figure 8 is the ArchJava code describing 
the architecture.  The concrete Gar dener  and Di scover yCl i ent  component 
instances are declared with final fields.  The connect declaration linking the 
di scover y  ports of the cl i ent  and the gar dener  is syntactic sugar for a 
connect pattern and a corresponding connect expression. 

The connect pattern links the Pl ant I nf o ports of the gardener and the plant 
store.  When the gardener requests a new connection, the provided connection 
constructor specifies that it should be connected with a Rai nConnect or , using a 
Ser vi ceI D to identify the location of the remote Pl ant St or e component.  The 
other connect patterns, although omitted from this diagram, are similar. 

  The Rai nConnect or  class implements the Rain communication protocol used 
in the PlantCare system.  When methods are invoked through connections of type 
Rai nConnect or , the user-defined connector code will package the method name 
and arguments as an XML message, send them over a HTTP connection, and call the 
appropriate provided method on the other side.  Since Rain messages are 
asynchronous and do not return a response, Rai nConnect or  also defines a custom 
typechecker that verifies that methods in the connected ports have a void return 
type.  Although Rai nConnect or  is similar to TCPConnect or  in that both 
connect components that may be located on different hosts, it provides very different 
semantics (asynchronous messages vs. synchronous method calls), demonstrating the 
versatility of ArchJava’s connector abstractions. 

The Rai nConnect or  implementation is similar to the TCPConnect or  defined 
earlier.  The connector uses the name of the method called as the name of the XML 
message to be sent.  The method arguments are serialized and sent over the network 
using the same Rain library that is currently used by the PlantCare application.  
Because Rain messages are asynchronous, the Rai nConnect or  returns 
immediately after sending a message, without waiting for an acknowledgement or 
response. 

The Gar dener  class has a concrete port for discovery, but port interfaces for 
communicating with other components.  This is a natural choice, because discovery is 
a fundamental service that must be in place in order for the Gar dener  to 
dynamically discover other available services.  The discovery interface allows the 
Gar dener  to look up a service by its type.  It returns a Ser vi ceI D data structure 
that can then be used in a connection constructor to connect to other components. 

The code in st ar t St at eCycl e shows the beginning of the cycle of code that 
the Gar dener  executes when caring for plants.  The code uses the discovery service 
to find the Ser vi ceI D of an available Pl ant St or e service.  It then allocates a 
new Pl ant I nf o port and stores it in a variable.  The final line of code shown sends 
an asynchronous message through the newly allocated port, querying the status of the 



plants in the system.  The Pl ant St or e will reply with another asynchronous 
message, which will be translated by the Rai nConnect or  into a call to the 
st at usRepl y  method, which carries out the next stage in the cycle.  If an internal 
timer expires before the st at usRepl y  message is received, the gardener assumes 
that the Pl ant St or e component (or an intervening network link) has failed, and 
restarts the state cycle, using the discovery service once again to connect to a 
functioning Pl ant St or e. 

4.3. Discussion 

In this section, we analyze the results of our case study according to a number of  
criteria: program adaptivity, program understanding, program correctness, and 
software evolution.  Finally, we report feedback from the developers of the PlantCare 
application. 

 
Adaptivity.  Ubiquitous computing services must be robust to communication 
failures and to failures in other services.  The gardening service uses a simple strategy 
for handling failure: if it does not receive a response to a query within a timeout 
interval, it begins the state cycle again, re-establishing connections to the components 
it depends on.  ArchJava supports this adaptive strategy by providing customizable 
connectors that can be created and configured at run time. 
 
Program Understanding.  The ArchJava version of the gardening service code has a 
number of characteristics that make it easier to understand the service’s 
implementation.  In the Java version, the information about which messages are sent 
and received is spread throughout the source code.  Figure 8 shows how the ArchJava 
architecture documents the sent and received messages explicitly as required and 
provided methods in the ports of Gar dener , making it easier to understand the 
interactions between the gardener and other services. 

Figure 8 also shows how the ArchJava source code documents the architecture of 
the service, showing which other services the gardener depends on.  This information 
is obscured in the original gardener source code; it would have to be deduced from the 
types of messages exchanged.  Another benefit is that the connector specification 
explicitly documents that the Rain communication protocol is used between 
components.  This would be especially valuable if the gardener used different 
protocols to communicate with different external services, as may often be the case in 
heterogeneous ubiquitous computing systems. 



Figure 9 compares the Java and ArchJava versions of the code that responds to a 
Pl ant I nf oRepl y  message from the encyclopedia.  Here, ArchJava’s abstraction 
mechanisms for inter-component communication make the application logic of the 
gardener clearer.  In the original Java code, a single handl eMessageI n method 
responds to all incoming messages.  The Pl ant I nf oRepl y  message is one case in 
a long list of messages; the code stores the plant care information in an internal data 
structure and then calls a separate sendTasksRequest  function to send out the 
next batch of messages.  In the ArchJava version, this response code is more cleanly 
encapsulated in a single method, which responds to the original message and then 
sends the next set of messages through the task port.  The process of sending a 
message is also simpler and cleaner in ArchJava.  The programmer simply calls a 

Java Version: 
 
  protected void handl eMessageI n( Message m)  {  
    if . . .  {  . . .  // cases for plant status messages above... 
    }  else if ( msg instanceof Pl ant I nf oRepl y)  {  
      // case for plant info message 
      Pl ant I nf oRepl y p = ( Pl ant I nf oRepl y)  msg;  
      car eMap. put ( p. name, p) ;  
      st at e = AWAI TI NG_TASKS;  
      sendTasksRequest ( ) ;  
      return;  
    }  else if ( msg instanceof TaskLi st Repl y)  {  
      // case for task reply message below... 
  }  
 
  protected void sendTasksRequest ( )  {  
    try {  
      TaskLi st Quer y q = new TaskLi st Quer y( ) ;  
      q. l i st  = " Wat er  Pl ant s" ;  
      sendMessage( t askSer ver , q, newCl osur e( ) ) ;  
    }  catch ( Except i on ex)  {  
      // an error occurred, restart the cycle 
      ex. pr i nt St ackTr ace( ) ;  
      r eset St at e( ) ;  
    }  
  }  
 

ArchJava Version: 
 
  void i nf oRepl y( Pl ant I nf oRepl y dat a)  {  
    car eMap. put ( dat a. name,  dat a) ;  
    st at e = AWAI TI NG_TASKS;  
    try {  
      t ask. t askQuer y( " Wat er  Pl ant s" ) ;  
    }  catch ( Except i on ex)  {  
      // an error occurred, restart the cycle 
      ex. pr i nt St ackTr ace( ) ;  
      r eset St at e( ) ;  
    }  
  }  
 

Figure 9.  A comparison of the old and new versions of the Gar dener  code that responds to 
the Pl ant I nf oRepl y  message. 



method in the t askPor t , rather than constructing a custom message and sending it 
using the Rain library. 
 
Correctness.  The ArchJava language performs a number of checks that help to 
ensure the correctness of the Gar dener Ser vi ce implementation.  For example, 
the Rai nConnect or  typechecker verifies interface compatibility between the ports 
of Gar dener  and the connected ports of the external services at compile time.  In 
the original Java code, this problem would show up as a run time error when a 
component does not recognize a message that was sent to it. 

ArchJava also verifies communication integrity [MQR95,LV95,ACN02b], a 
property which guarantees that the Gar dener  only communicates with the services 
declared in the Gar deni ngSer vi ce architecture (We assume that the gardener 
does not directly use Java’s networking library, a property that could also be checked 
in a straightforward way).  This property guarantees that the architecture can be relied 
on as an accurate representation of the communication in the system, increasing the 
program understanding benefits of architecture. 

 
Software Evolution.  Because of ArchJava’s explicit abstractions for ports and 
connectors, some evolutionary steps are easier to perform.  For example, if a service 
needs to interact with a device that cannot generate XML messages, we can replace 
Rai nConnect or  with a new connector type that can communicate with the more 
restricted device.  Also, we can reuse an existing service in a new environment by 
simply inserting adaptor components or connectors that retrofit the old service to the 
message protocol expected by the new environment.  In both cases, ArchJava’s 
explicit descriptions of component interfaces and connections make architectural 
evolution easier. 

An important criterion to consider in the evolvability of a system is the degree to 
which the system’s modularization hides information within a single module.  One 
benefit of the ArchJava version of the gardening service is that the gardener’s 
functionality is encapsulated in Gar dener  while the communication protocol used is 
encapsulated in Gar deni ngSer vi ce.  The ports of Gar dener  serve as the 
interfaces used to hide this information.  Thus, in the ArchJava code, the gardening 
functionality can be changed independently of the communication protocol, 
facilitating evolution of this service. 

 
Developer Feedback.  Perhaps the most important evaluation criterion is feedback 
from the developers of PlantCare.  We found that the developers were able to 
understand the ArchJava notation fairly quickly.  They said that the 
Gar deni ngSer vi ce architecture captured their informal architectural view of the 
system well.  Finally, they agreed that ArchJava was able to provide the benefits 
describe in the analysis above.  We are currently working with them to put ArchJava 
to production use in a future ubiquitous computing system. 



5. Related Work 

Software Architecture.  Connectors have been studied most extensively in the 
context of the software architecture literature.  Mehta et al. provide a thorough 
classification of software connectors [MMP00].  They categorize connectors based on 
the services they provide for communication, coordination, conversion, and 
facilitation.  Their study also identifies many common types of connectors, and the 
dimensions of variability within each connector type.  In section 4, we use this study 
as a benchmark for our design, choosing representative connectors from each major 
category, and evaluating how well our design supports the implementation of these 
connectors. 

Most architecture description languages (ADLs) support the specification or 
implementation of software connectors [MT00].  For example, Wright specifies the 
temporal relationship of events on a connector and provides tools for checking 
properties such as freedom from deadlock [AG97].  SADL formalizes connectors in 
terms of theories and describes how abstract connectors in a design can be iteratively 
refined into concrete connectors in an implementation [MQR95]. Rapide specifies 
connectors within a reactive system using event traces [LV95]. 

Several ADLs provide tools that can generate executable code from an 
architectural description.  UniCon’s tools use an architectural specification to generate 
connector code that links components together [SDK+95]. C2 provides runtime 
libraries in C++ and Java that implement C2 connectors [MOR+96].  Darwin provides 
infrastructure support for implementing distributed systems specified in the Darwin 
ADL [MK96].  These code generation tools, however, support a limited number of 
built-in connector types, and developers cannot easily define connectors with custom 
semantics. 
 
User-Defined Connectors.  The work most similar to our own is a specification of 
how user-defined connector types can be added to the UniCon compiler [SDZ96].  
Their design is fairly heavyweight, as connector developers must understand the 
details of several phases of the compiler.  However, it allows new connectors to be 
tightly integrated into the compiler system, potentially allowing new kinds of 
architectural analysis to be defined over these connectors.  In contrast, ArchJava’s 
connector abstractions are lightweight, and a wide range of connectors can be 
implemented with knowledge of a small library interface. 

Dashofy et al. describe how off-the-shelf middleware can be used to implement C2 
connectors [DMT99].  Their work differs from ours in that the semantics of the 
connectors is fixed by the C2 architectural style, while our connector abstractions are 
intended to support a wide range of architectural styles. 

Mezini and Ostermann describe language support for adaptor connections that 
allow components with different data models to work together [MO02].  Their 
language makes wrapper code less tedious to write, and provides support for the 
difficult problem of maintaining consistent wrapper identity.  ArchJava’s connector 
abstractions provide weaker support for adaptor connections, but facilitate a range of 
connector types beyond just adaptors. 

 



Object-Oriented Languages.  A number of proposals have added connection support 
to object-oriented languages such as Java.  For example, ComponentJ [SC00] and 
ACOEL [Sre02] as well as the original design of ArchJava [ACN02a] all provide 
primitives for linking components together with connections.  However, these 
languages all fix the semantics of connections to the same synchronous method call 
semantics used by Java.   

Many languages have also provided support for distributed applications in the 
context of an object-oriented programming language.  Perhaps the first such system 
was Emerald, which provides a pure object model with support for remote method 
call and mobile objects within a local area network [JLH+88].  More recent systems 
include Lana, which provides an asynchronous method call primitive for designing 
autonomous distributed systems [BRP02].  The Cells project builds a distributed 
system out of Cell modules with language-level support for remote method calls, 
mobile objects, and a security model [RS02].  Each one of these systems defines its 
own semantics for network communication, rather than defining a connector 
abstraction mechanism that can encompass a broad range of connector semantics. 

Hydro is a language under development at the University of Washington that 
explicitly supports ubiquitous computing applications [LC02].  Because ubiquitous 
computing is an interesting and challenging domain, we use a ubiquitous computing 
application as a case study in this paper.  Hydro’s support for ubiquitous computing 
goes beyond distributed connectors to include a semi-structured data model.  In 
contrast, ArchJava provides a connector abstraction that can be used in ubiquitous 
computing applications and in many other domains as well. 

 
Aspect-Oriented Programming.  Aspect-oriented programming (AOP) languages 
allow programmers to separate code that implements different application concerns.  
Hannemann and Kiczales showed how the AspectJ language can be used [HK02] to 
implement distribution in a classroom support application.  Aspect-oriented 
programming developed out of meta-object protocols, which allow programmers to 
define how an object should react to events like method calls [KRB91].  The 
composition filters approach to AOP allows developers to interpose filter objects that 
can inspect incoming method calls and perform operations like translation, adaptation, 
and forwarding on the messages [BA01].  ArchJava’s connector abstractions are 
similar to composition filters, but instead of processing all messages called on a single 
object, they process messages exchanged between two component objects in an 
architecture. 

 
Distributed System Infrastructures.  A number of libraries and tools have been 
defined to support distributed programming.  Commercial examples include RPC as 
well as COM [Mic95], CORBA [OMG95], and RMI [Jav97].  These systems offer a 
convenient method-call interface for remote communication, much like the interface 
provided by ArchJava’s connector abstractions.  Furthermore, these systems check 
statically that communication through their connections is well-typed.  Infrastructures 
support some flexibility—for example, RMI allows the developer to specify the wire 
protocol to be used, and CORBA provides an event service that can be used in place 
of remote method calls.  However, each of these systems defines a particular 
semantics (usually synchronous method call) for the connections it supports, rather 



than providing a general interface that programmers can implement in various ways to 
support their application-specific needs. 

 
CASE Tools.  Several computer-aided software engineering tools, including 
Consystant and Rational Rose RealTime, generate code to connect components 
together.  This connection code can range from stubs and skeletons for an 
infrastructure like CORBA or RMI to wires that connect different processors in an 
embedded system.  Like many of the technologies discussed above, these tools 
typically support a fixed set of connectors. 

6. Conclusion 

This paper described a technique for adding explicit support for connector 
abstractions to the ArchJava programming language.  In our system, connector 
abstractions can be defined using a very flexible reflective library-based mechanism.  
We have evaluated the expressiveness of our technique by implementing 
representative connectors from a wide range of connector types, and we have 
evaluated the engineering consequences in a case study on the PlantCare ubiquitous 
computing application.  The benefits of connector abstractions include separating 
communication code from application logic, documenting and checking connector 
interfaces, and reusing connector abstractions more effectively compared with 
alternative techniques 

In future work, we intend to implement more connectors and evaluate their 
expressiveness on a wider variety of systems.  We also hope to develop a library-
based framework for composing connectors together so that complex connectors can 
be easily created from simple building blocks.  Another important area of future work 
is more effective support for adaptor-style connections, extending recently developed 
adaptation techniques such as on-demand remodularization [MO02].  Finally, we 
would like to provide specification and checking of connector properties that go 
beyond typechecking techniques.  We believe that enhanced language and system 
support for connectors is crucial to the effective development and evolution of many 
classes of software systems. 
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