
Language Support for Connector Abstractions

Jonathan Aldrich Vibha Sazawal Craig Chambers David Notkin

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, Washington, USA 98195-2350

+1 206 616-1846
{ j onal , v i bha, chamber s, not k i n} @cs. washi ngt on. edu

Abstract. Software connectors are increasingly recognized as an important
consideration in the design and implementation of object-oriented software
systems. Connectors can be used to communicate across a distributed system,
coordinate the activities of several objects, or adapt one object’s interface to the
interface of another. Mainstream object-oriented languages, however, do not
provide explicit support for connectors. As a result, connection code is
intermingled with application code, making it difficult to understand, evolve,
and reuse connection mechanisms.

In this paper, we add language support for user-defined connectors to the
ArchJava language. Our design enables a wide range of connector abstractions,
including caches, events, streams, and remote method calls. Developers can
describe both the run-time semantics of connectors and the typechecking
semantics. The connector abstraction supported by ArchJava cleanly separates
reusable connection code from application logic, making the semantics of
connections more explicit and allowing engineers to easily change the
connection mechanisms used in a program. We evaluate the expressiveness and
the engineering benefits of our design in a case study applying ArchJava to the
PlantCare ubiquitous computing application.

1. Introduction

Software architecture is the high-level design of a system, composed of a set of
components and the connections through which the components interact
[GS93,PW92]. Object-oriented languages provide a natural object abstraction for
components, and encourage developers to compose systems out of interacting objects.
However, mainstream object-oriented languages do not provide explicit support for
connections. Instead, connections are implicit in the object references in the heap, or
are expressed indirectly using design patterns such as Proxy and Adaptor [GHJ+94].

Despite this lack of language support, connections are increasingly recognized as a
crucial element of software systems. The software architecture literature has
proposed a connector abstraction for connections, roughly corresponding to the class
abstraction for components. In this context, a connector is a reusable design element
that supports a particular style of component interactions. In a comprehensive
taxonomy of connectors, Mehta et al. describe the wide variety of connectors used in

software, including method calls, events, shared variables, adaptors, streams,
semaphores, and many others [MMP00]. Connectors are particularly important in the
context of distributed systems, where connector attributes such as bandwidth,
synchronicity, security, reliability, and the wire protocol used may be crucial to the
functionality and performance of the application.

Connector Libraries. Because of the lack of language abstractions for connectors,
developers often implement connectors using library code. However, this
implementation strategy often causes significant problems in the development and
maintenance of software systems. Because connector abstractions do not exist,
connector code is often mixed with component code, making both the component and
the connector more difficult to reuse or evolve.

An improvement is to implement a connector as an Adaptor object that mediates
between two components that may have different interface expectations. However, in
this case the Adaptor implementation is tied to the interface of the components it
connects; it cannot be re-used effectively to perform the same conceptual connection
task between components that have a different interface. Similarly, when the Proxy
pattern is used to implement a connector to an object that is present on a remote
machine, a different Proxy implementation must be defined (or generated) for every
distinct remote interface.

The PlantCare ubiquitous computing application, the subject of the case study
described later in this paper, illustrates many of these problems. The PlantCare
system is made up of sensors and robots that autonomously care for plants in a home
or office environment [LBK+02]. This application presents a number of key research
challenges for effectively building autonomous embedded systems.

PlantCare services communicate using Rain, a lightweight library for sending
asynchronous XML messages over HTTP connections. Communication code that
uses the Rain library is spread throughout the system, and its size and complexity
often obscures the application logic of the system. As shown in Figure 1, sending
even a very simple message in Rain is a multi-step process, and it can be quite tedious
to write code for sending larger messages. It is difficult to identify the messages sent
and received by PlantCare components because this information is spread throughout
the code. Because of this scattering, it would be very difficult to change components
to interact using a connector other than Rain. The situation might be somewhat
improved by using the Proxy or Façade patterns to encapsulate communication code,
but this improvement would come at the cost of greater code size. Despite these
problems, we believe that PlantCare is not a poorly engineered, straw-man system; it
is simply representative of the difficulty of writing well-modularized distributed
applications using mainstream programming technology.

Tool Support. Communication infrastructures such as RMI [Jav97], CORBA
[OMG95], and COM [Mic95] address these challenges by using tools to

 TaskLi st Quer y q = new TaskLi st Quer y() ;
 q. l i s t = " Wat er Pl ant s" ;
 sendMessage(t askSer ver , q, newCl osur e()) ;

Figure 1. PlantCare code that sends a Rain message

automatically generate proxies for communication with remote objects. These
proxies encapsulate communication code, allowing application components to make
remote method calls using the same syntax as local calls. Many CASE tools and code
generation tools provide similar benefits. However, these infrastructures and tools fix
a particular semantics for distributed communication—semantics based on
synchronous method calls using particular encodings and wire protocols. While such
tools may be ideal for applications that can accept the built-in semantics, they are
inappropriate for applications that need different connector semantics. For example,
the PlantCare developers decided that they needed to write a custom communication
layer and wire protocol to support a very lightweight and adaptive form of
communication appropriate to the ubiquitous computing domain. Although tools play
an important role in implementing connectors, we believe that no single connection
infrastructure will be sufficient for the diverse needs of all applications in the
foreseeable future.

Our Approach. In this paper, we propose adding explicit language support for user-
defined connectors. It is difficult to integrate user-defined connectors directly in a
conventional object-oriented language such as Java, because connections between
objects are not explicit in the source code, but are expressed implicitly through a pair
of references. Instead, we present our design in the context of ArchJava, an extension
to Java that allows developers to specify the software architecture of a system within
the implementation. Because ArchJava already supports explicit connections between
component objects, it can be easily extended to enable user-defined connectors to
override the built-in connection semantics.

Our design allows developers to implement connectors using arbitrary Java code,
supporting a very wide range of connector types. We evaluate the expressiveness of
our design by implementing a representative subset of the connectors from Mehta et
al.’s catalogue [MMP00]. A novel feature of our approach is that connectors define
not just the run-time semantics of the connector, but also the typechecking strategy
that should be used. As long as connector developers implement typechecking
correctly for the domain of their connectors, our system provides a static guarantee of
type safety to connector clients while still allowing connectors to link components
with very different interfaces.

Our approach provides a clean separation of concerns. Each connector is
modularly defined in its own class. Components interact with connectors in a clean
way using Java’s existing method call syntax. In our approach, the connector used to
bind two components together is specified in a higher-level component, so that the
communicating components are not aware and do not depend on the specific
connector being used. Due to this design, it is easy to change the connectors in a
system, while changing connectors may be very difficult in languages without explicit
support for connector abstractions.

Organization. The rest of this paper is organized as follows. In the next section, we
review the ArchJava language design through a simple peer-to-peer system example.
Section 3 extends ArchJava with explicit support for connector abstractions,
describing by example how they can be defined and used. We evaluate the
expressiveness and the engineering benefits of our system in section 4, both by

implementing a wide range of connectors and by applying ArchJava to part of the
PlantCare ubiquitous computing application. We discuss related work in section 5
before concluding in section 6.

2. The ArchJava Language

ArchJava is a small extension to Java that allows programmers to express the software
architecture of an application within the source code [ACN02a]. ArchJava’s type
system verifies communication integrity, the property that implementation code
communicates only along connections declared in the architecture
[MQR95,LV95,ACN02b]. This paper extends ArchJava by supporting much more
flexible kinds of interactions along connections.

We illustrate the ArchJava language through PoemSwap, a simple peer-to-peer
program for sharing poetry online. To allow programmers to describe software
architecture, ArchJava adds new language constructs to support components,
connections, and ports. The next subsection describes ArchJava’s features for
representing components and ports, while subsection 2.2 shows how developers can
specify an architecture using components and connections. These sections review an
earlier presentation of ArchJava [ACN02a].

2.1. Components and Ports

A component in ArchJava is a special kind of object that communicates with other
components in a structured way. Components are instances of component classes,
such as the PoemPeer component class in Figure 2. The PoemPeer component
represents the network interface of the PoemSwap application.

Components in ArchJava communicate with each other through connected ports.
A port represents a logical communication channel between a component and one or
more components that it is connected to. For example, PoemPeer has a sear ch
port that provides search services to the PoemSwap user interface, and it has a poems
port that it uses to access the local database of poems.

Ports declare two sets of methods, specified using the requires and provides
keywords. A provided method is implemented by the component and is available to
be called by other components connected to this port. For example, the search port
provides searching and downloading methods that can be invoked from the user
interface. Provided methods must be given definitions in the surrounding component
class, as shown by the implementation of downl oadPoem in Figure 2.

Conversely, each required method is provided by some other component
connected to this port. In Figure 2, the poems port requires methods that get
descriptions of all the poems in the database, retrieve a specific poem by its
description, and add a poem to the database. A port may have both required and
provided methods, but as shown in the example, it is common for a port to have only
one or the other.

A component can invoke a required method declared in one of its ports by sending
a message to the port. For example, in Figure 2, after downloading a new poem from
a peer, the downl oadPoem method adds the new poem to the poem database with
the call poems. addPoem(newPoem) . As this example shows, ports are concrete
objects, and required methods can be invoked on ports using Java’s standard method
call syntax.

A port interface describes an interface used to communicate with multiple different
components at run time. Port interfaces are to ports as classes are to objects. In fact,
concrete port declarations such as sear ch can be thought of as a convenient
shorthand for a port interface and a field of that interface type. In the example,
PoemPeer must communicate with many other PoemSwap peers through its
cl i ent port interface, and it may serve requests from many peers through its
ser ver port interface. The two interfaces are symmetric, as each peer may act as
both a client and a server.

public component class PoemPeer {
 public port sear ch {
 provides PoemDesc[] sear ch(PoemDesc par t i al Desc) throws I OExcept i on;
 provides void downl oadPoem(PoemDesc desc) throws I OExcept i on;
 }

 public port poems {
 requires PoemDesc[] get PoemDescs() ;
 requires Poem get Poem(PoemDesc desc) ;
 requires void addPoem(Poem poem) ;
 }

 public port interface cl i ent {
 requires cl i ent (I net Addr ess addr ess) throws I OExcept i on;
 requires PoemDesc[] sear ch(PoemDesc par t i al Desc, int hops, Nonce n) ;
 requires Poem downl oad(PoemDesc desc) ;
 }

 public port interface ser ver {
 provides PoemDesc[] sear ch(PoemDesc par t i al Desc, int hops, Nonce n) ;
 provides Poem downl oad(PoemDesc desc) ;
 }

 void downl oadPoem(PoemDesc desc) throws I OExcept i on {
 c l i ent peer = new cl i ent (desc. get Addr ess()) ;
 Poem newPoem = peer . downl oad(desc) ;
 if (newPoem ! = null) {
 poems. addPoem(newPoem) ;
 }
 }
 // other method definitions...
}

Figure 2. The PoemPeer class represents the network interface of the PoemSwap
application. PoemPeer communicates with other components through its ports. It provides a
network search service to the rest of the application through the sear ch port, and it accesses
the poem database through the poems port. Finally, it communicates with other PoemSwap
applications over a wide-area network using complimentary cl i ent and ser ver ports.

The cl i ent port interface contains a connection constructor, named cl i ent
after the surrounding port interface, that the PoemPeer can invoke in order to create
a connection to a peer at the given I net Addr ess . PoemPeer instantiates a
cl i ent port using this constructor in downl oadPoem with the same new syntax
used to create objects in Java. The downl oadPoem method can then call the
required method downl oad on the newly created port.

The goal of ports is to specify both the services implemented by a component and
the services a component needs to do its job. Required interfaces make dependencies
explicit, reducing coupling between components and promoting understanding of
components in isolation. For example, the PoemPeer component is implemented
without any knowledge of what connection protocol will be used to connect it to its
peers. PoemPeer expects a connector that has synchronous method call semantics,
because the methods in the cl i ent port all return values, but any connector that
conforms to this constraint can be used.

2.2. Software Architecture in ArchJava

In ArchJava, hierarchical software architecture is expressed with composite
components, which are made up of a number of subcomponents connected together.
A subcomponent1 is a component instance nested within another component. For
example, Figure 3 shows how PoemSwap, the central component of the PoemSwap
application, is composed of three subcomponents: a user interface, a poem database,
and the peer discussed above. The subcomponents are declared as fields within
PoemSwap.

In ArchJava, architects declare the set of permissible connections in the
architecture using connect patterns. A connect pattern specifies two or more port
types that may be connected together at run time. For example, the connect patterns
in Figure 3 specify that both the user interface and the network interface connect to
the poems port of the PoemSt or e, and that the sear ch port of the user interface
connects to the corresponding port of the network interface. The default typechecking
rule for connect patterns ensures that for every method required by one or more of the
connected ports, there is exactly one corresponding provided method with the same
name and signature.

Actual connections are made using connect expressions that appear in the methods
of a component. A connect expression specifies the concrete component instances to
be connected in addition to the connected ports. In the example, the PoemSwap
constructor makes three connections, one for each of the connect patterns declared in
the architecture. A static check ensures that the types of the connected ports conform
to the types declared in one of the connect patterns.

1 Note: the term subcomponent indicates composition, whereas the term component

subclass would indicate inheritance.

The built-in semantics of ArchJava connections binds required methods to
provided methods, so that when a required method is called on one port, the
corresponding provided method of the other port is invoked. For example, when the
PoemPeer in Figure 2 invokes addPoem on its poems port, the invocation will be
forwarded across the connection made in the PoemSwap architecture. The addPoem
method implementation provided by the poems port of the PoemSt or e (not shown)
will be invoked.

Connection Constructors. Each connect pattern must provide a connection
constructor for each of the required connection constructors declared in the connected
ports. A connection constructor is named after the port that required the constructor,
and the first argument is the component that requested the connection. The other
arguments match the ones declared in the corresponding connection constructor. For

poems

PoemSwap
sear ch sear ch

store

ui peer

poems
poems

cl i ent

ser ver
network

public component class PoemSwap {
 private final SwapUI ui = new SwapUI () ;
 private final PoemSt or e st or e = new PoemSt or e() ;
 private final PoemPeer peer = new PoemPeer () ;

 connect pattern SwapUI . poems, PoemSt or e. poems;
 connect pattern PoemPeer . poems, PoemSt or e. poems;
 connect pattern SwapUI . sear ch, PoemPeer . sear ch;

 public PoemSwap() {
 TCPConnect or . r egi st er Obj ect (peer , “ ser ver ” , POEM_PORT) ;

 connect(ui . poems, st or e. poems) ;
 connect(peer . poems, st or e. poems) ;
 connect(ui . sear ch, peer . sear ch) ;
 }

 connect pattern PoemPeer . cl i ent , PoemPeer . ser ver {
 c l i ent (PoemPeer sender , I net Addr ess addr ess) throws I OExcept i on {
 return connect(sender . cl i ent , PoemPeer . ser ver) ;
 }
 } ;
}

Figure 3. A graphical and textual description of the PoemSwap architecture. The PoemSwap
component class contains three subcomponents—a user interface, a poem store, and the
network peer. Connect patterns show statically how these components may be connected, and
the connect expressions in the constructor link the components together following these
patterns. A final connect pattern shows how peers on different machines communicate, and
includes a connection constructor that creates a connection when the PoemPeer requests one.

example, the cl i ent port in component class PoemPeer requires a connection
constructor that accepts an I net Addr ess . Since PoemPeer . c l i ent is one of
the ports in this connect pattern, the pattern declares a connection constructor with
two arguments—the PoemPeer that requested the connection and an
I net Addr ess . The body of a connection constructor must return a connection that
matches the surrounding connect pattern. One of the connected ports must be the
appropriate port of the component that requested the connection (sender . c l i ent
in the example).

3. Connector Abstractions in ArchJava

In this section, we describe the new language features and libraries that support
connector abstractions in ArchJava. We extend the syntax of connect patterns and
connect expressions to describe which connector abstractions should be used to
typecheck and implement the connections. Subsection 3.1 demonstrates these
language features by examples, showing how a user-defined TCP/IP connector can be
used to connect different PoemSwap peers across a wide-area network. New
connectors can be written using the ar chj ava. r ef l ect library, described in
Subsection 3.2, which reifies connections and required method invocations. Finally,
subsection 3.3 shows how the TCP/IP connector can be implemented using this
library.

3.1. Using Connector Abstractions

Connector Typechecking. Instead of using ArchJava’s default typechecking rules,
connect patterns can specify that a user-defined connector should be used for
typechecking instead. For example, Figure 4 shows the syntax missing from the
connect pattern at the end of Figure 3. After declaring the component ports to be
connected, the connect pattern can specify a user-defined connector class to be used
for typechecking using the syntax with <connector class>. The connector used can
be any subclass of ar chj ava. r ef l ect . Connect or , which defines a
t ypecheck function that can be overridden by subclasses. In the example, when
the PoemSwap component class is compiled, the compiler loads the

 connect pattern PoemPeer . cl i ent , PoemPeer . ser ver with TCPConnect or {
 c l i ent (PoemPeer sender , I net Addr ess addr ess) throws I OExcept i on {
 return connect(sender . cl i ent , PoemPeer . ser ver)
 with new TCPConnect or (connect i on, addr ess, POEM_PORT) ;
 }
 } ;

Figure 4. The final connect pattern in PoemSwap, augmented with connector specifications.
The connect pattern specifies that TCPConnect or should be used to typecheck the
connection statically. The connect expression instantiates a TCPConnect or object to connect
to the remote peer, passing to the constructor a reification of the connection together with the
address of the remote peer.

TCPConnect or class, creates an instance, and invokes the t ypecheck method on
the TCPConnect or to check the validity of the connect pattern. This typechecking
replaces the default ArchJava typechecking semantics, allowing the connector
abstraction to define arbitrary typechecking rules.

In the case of TCPConnect or , the t ypecheck method first invokes the
standard ArchJava typechecker, and then additionally checks that all arguments and
results of all methods in the connection are subtypes of the Ser i al i zabl e
interface. Because the TCPConnect or uses Java’s serialization mechanism to send
method arguments and results across a network, a run-time error will result if the
method arguments and results are not serializable. By defining its own typechecking
semantics to extend those of ArchJava, the TCPConnect or can detect this error at
compile-time2.

Instantiating Connectors. Connectors are instantiated whenever a connect
expression is executed at run time. Connect expressions can use the syntax with
<expression> to specify the connector instance that should be used for the
connection. The expression in the with clause must be have a type that is a subclass
of the connector type declared in the corresponding connect pattern, to ensure that the
connector implementation used at run time matches the connector that was used to
typecheck the connection statically. In the example, the expression creates a new
TCPConnect or object, passing the address and the TCP/IP port of the remote peer
to the constructor of the connector. When the connect expression is executed at run
time, the with clause will be evaluated, creating a TCPConnect or object to be
used in the connection.

Inside the with clause of a connect expression, the connection being created is
reified in the connect i on variable, which has type
ar chj ava. r ef l ect . Connect i on. This object contains the types of the
components and ports in the connection, as well as the component instances being
connected. Connectors need this information in order to implement their
functionality, and so we pass the connection object to the constructor of
TCPConnect or along with the address and TCP/IP port.

In the case of PoemSwap, the component to be connected to the sender is a peer
on a remote machine, and so we cannot use a direct reference to it in the connect
expression. Instead, we specify the type of the remote component so that it will
match the surrounding connect pattern, and the TCPConnect or uses the address
passed to the constructor to communicate with the remote component.

3.2. The archjava.reflect Library

Connector abstractions are defined using the ar chj ava. r ef l ect library, whose
most important classes and methods are shown in Figure 5. This library defines a

2 This check would have been handy when testing the PoemSwap application. Before

customized typechecking was implemented, we got run time errors because we
forgot to make poems serializable.

Connect or class that user-defined connector classes extend, as well as classes that
reify connections, ports, and methods.

Class Connect or provides a hook for defining customized connectors.
Connector abstractions can define custom typechecking semantics by overriding the
t ypecheck method, which is called at compile time to typecheck a connect pattern,
returning a possibly empty array of errors. Run-time connection behavior can be
defined by overriding the i nvoke method, which accepts a Cal l object reifying an
invocation on a required method. The default implementation finds the corresponding
provided method and invokes it, passing the resulting return value or exception back
to the caller.

Connect or provides a public constructor that accepts a reified connection object.
A second constructor creates its own connection object from the specified arrays of

public class Connect or {
 public Connect or (Connect i on c) ;
 protected Connect or (Obj ect component s[] , St r i ng por t Names[]) ;

 public final Connect i on get Connect i on() ;

 public Er r or [] t ypecheck() ;
 public Obj ect i nvoke(Cal l c) throws Thr owabl e;
}

public final class Connect i on {
 public Por t [] get Por t s()
 public Connect or get Connect or ()
}

public final class Por t {
 public St r i ng get Name() ;
 public Met hod[] get Requi r edMet hods() ;
 public Met hod[] get Pr ovi dedMet hods() ;
 public Obj ect get Encl osi ngObj ect () ;
}

public final class Met hod {
 public St r i ng get Name() ;
 public Type[] get Par amet er Types() ;
 public Obj ect i nvoke(Obj ect ar gs[]) throws Thr owabl e;
}

public final class Type {
 public St r i ng get Name() ;
}

public final class Cal l {
 public Met hod get I nvokedMet hod() ;
 public Obj ect [] get Ar gument s() ;
}

Figure 5. The ar chj ava. r ef l ect library includes classes reifying connectors,
connections, ports, methods, types, and calls. User-defined connector classes extend the
Connect or class, overriding the i nvoke or t ypecheck methods to define customized
dynamic and/or static semantics, respectively.

components and corresponding port names. This constructor allows connections to be
created without being declared in a connect pattern, so it is accessible only to
Connect or subclasses.

Classes Connect i on, Por t , Met hod, Type, and Cal l reify the connection
that is associated with the connector, along with its ports and method signatures.
Unlike Connect or , user-defined connectors do not extend these classes, but instead
may use them as a library for getting information about the current connection. This
information, accessible through the get Connect i on method of Connect or , can
be used statically when typechecking or dynamically when dispatching a required
method invocation. For example, the connector can invoke provided methods by
calling i nvoke on the relevant Met hod object.

3.3. Implementing Connector Abstractions

TCPConnect or is designed to create a TCP/IP network connection between the
local host and the remote host and TCP/IP port specified in the constructor. When a
method is called on the connection, the TCPConnect or serializes the arguments of
the method and ships them across the TCP/IP network connection. The constructor of
the PoemSwap component registers its PoemPeer with the TCPConnect or ,
which starts a daemon listening at the appropriate TCP/IP port. The daemon will read
the method’s name and arguments, and invoke the appropriate method from the
connected port. The process is reversed in order to send the method’s return value
back over the network.

Figure 6 shows how the run-time semantics of TCPConnect or can be defined in
Java code. The example shows primarily the interface of the connector and how it
uses the ar chj ava. r ef l ect library. We omit the network, serialization, and
threading code in the TCPDaemon helper class.

The TCPConnect or constructor passes the connection object on to the
Connect or superclass, and then creates a TCPDaemon object to handle the TCP/IP
network connection. TCPConnect or overrides i nvoke by determining which
required method was called, and passing the name of the method, its parameter types,
and the actual call arguments to the TCPDaemon. The TCPDaemon sends this data
over the TCP/IP network connection.

At the other side of the network, PoemSwap has used r egi st er Obj ect to
register a PoemPeer object. The r egi st er Obj ect method starts a TCPDaemon
listening at the assigned port. When the daemon receives an incoming connection, it
creates a TCPConnect or object to represent that endpoint of the connector. The
daemon uses the non-public TCPConnect or constructor, passing the object to be
connected and the name of its connected port to the constructor. Since the originating
connection was created on the other machine, the constructor does not have a local
Connect i on object to pass to the ordinary superclass constructor, so it calls a
constructor that takes two arrays of objects and port names, respectively, and
generates a local Connect i on object based on this information.

When the daemon receives an incoming method, it finds the TCPConnect or
associated with the receiver object and calls i nvokeLocal Met hod.
i nvokeLocal Met hod uses the f i ndMet hod helper function to identify the
provided method that matches the method name and parameter types, then invokes the
method through a reflective call. The result, or any exception that is thrown, will be
packaged back up by the TCPDaemon, sent back over the network, returned to the
implementation of i nvoke in the source TCPConnect or , and returned to the caller
from there.

public class TCPConnect or extends Connect or {
 // data members
 private TCPDaemon daemon;

 // public interface
 public TCPConnect or (Connect i on conn, I net Addr ess host , int pr t)
 throws I OExcept i on {
 super(conn) ;

 daemon = TCPDaemon. get Daemon(host , pr t , this) ;
 }

 public Obj ect i nvoke(Cal l cal l) throws Thr owabl e {
 Met hod met h = cal l . get I nvokedMet hod() ;
 return daemon. sendMet hod(met h. get Name() , met h. get Par amet er Types() ,
 cal l . get Ar gument s()) ;
 }

 public static void r egi st er Obj ect (Obj ect o, St r i ng por t Name, int pr t)
 throws I OExcept i on {
 TCPDaemon. get Daemon(pr t) . r egi st er (o, por t Name) ;
 }

 // interface used by TCPDaemon
 TCPConnect or (TCPDaemon daemon, Obj ect r ecei ver , St r i ng por t Name) {
 super(new Obj ect [] { r ecei ver } , new St r i ng[] { por t Name }) ;
 this. daemon = daemon;
 }

 Obj ect i nvokeLocal Met hod(St r i ng name, AType par amet er Types[] ,
 Obj ect ar gument s[]) throws Thr owabl e {
 // find method with parameters that match parameterTypes
 Met hod met h = f i ndMet hod(name, par amet er Types) ;
 return met h. i nvoke(ar gument s) ;
 }

 // typecheck defined in Figure 7
}

Figure 6. The TCPConnect or class extends the ar chj ava. r ef l ect . Connect or class
to define the dynamic semantics of a connector based on a TCP/IP network connection. The
i nvoke method passes the method name, parameter types, and arguments to a daemon that
uses Java’s serialization facilities to send them over a TCP/IP network connection. The
daemon at the other end of the connection, created when the other peer called
r egi st er Obj ect , calls i nvokeLocal Met hod on a TCPConnect or object, which
identifies the right method to call and invokes it.

User-Defined Typechecking. Figure 7 shows the definition of the t ypecheck
method of TCPConnect or . This method, inherited from
ar chj ava. r ef l ect . Connect or , is called at compile time for each connect
pattern in the system that uses a TCPConnect or for typechecking.

Connectors that define custom typechecking must implement a constructor that
takes a single argument of type ar chj ava. r ef l ect . Connect i on. This object
is initialized by the compiler to hold the list of ports in the connect pattern, and for
each port, the types of its parameters and return value. The TCPConnect or ensures
that this constructor is only used at compile time by throwing an exception if the
Connect i on object reports that it is a run-time connection.

Connectors define their typechecking semantics by overriding the t ypecheck
method from TCPConnect or . This method returns a possibly empty array of
Er r or objects describing any semantic errors in the connect pattern. The Er r or
class encapsulates a St r i ng describing the problem as well as a syntax element (a
Connect i on, Por t , or Met hod) that describes where the error occurred, allowing
the compiler to give the reported error an accurate line number.

The TCPConnect or begins by running the standard t ypecheck method
defined in its superclass. It returns any errors found by this method. If standard

// extension of the code in Figure 6
public class TCPConnect or extends Connect or {
 public TCPConnect or (Connect i on c) {
 super(c) ;
 // this constructor may only be used for compile time typechecking
 if (! c. i sCompi l eTi me()) {
 throw new Runt i meExcept i on(" Must pass a r emot e por t at r un t i me") ;
 }
 }

 public Er r or [] t ypecheck() {
 / / Fi r st i nvoke Java’ s t ypechecki ng
 Er r or [] er r or s = super. t ypecheck() ;
 if (er r or s. l engt h > 0)
 return er r or s;

 // ensure that there are exactly two connected ports
 Connect i on c = get Connect i on() ;
 if (c. get Por t s() . l engt h ! = 2) {
 return new Er r or [] {
 new Er r or (" TCPConnect or s must connect 2 por t s” , c) ;
 } ;
 }

 // ensure all arguments and results are Serializable
 ...
 }
}

Figure 7. Overriding t ypecheck in the TCPConnect or class to ensure that TCP
connectors only connect two ports.

typechecking succeeds, the TCPConnect or next ensures that there are only two
ports in the connection, because TCPConnect or is not designed to handle the
multi-way connections that are allowed by the ArchJava syntax. Finally, code (not
shown) visits every required and provided method in the connection, making sure that
all method arguments and results are either primitive types or are Ser i al i zabl e,
so that the TCPDaemon will be able to serialize them successfully at run time.

4. Evaluation

We have implemented language support for connector abstractions in the ArchJava
compiler, available for download at the ArchJava web site [Arc02]. Thus, all
examples in this paper, including PoemSwap and PlantCare, are simplified versions of
live code.

We evaluate our design in two ways. In the next subsection, we evaluate the
expressiveness of our connector abstraction mechanism by describing how a wide
range of connectors can be implemented. In the following subsection, we evaluate the
engineering benefits of connector abstractions with a case study on the PlantCare
ubiquitous computing application. Subsection 4.3 analyzes the case study and reports
feedback from the developers of PlantCare.

4.1. Expressiveness

In order to evaluate the expressiveness of our connector abstraction mechanisms, we
use Mehta et al.’s taxonomy of connectors as a benchmark for our design [MMP00].
The taxonomy describes eight major types of connectors: procedure call, event, data
access, linkage, stream, arbitrator, adaptor, and distributor connectors. We discuss
each connector type in turn, describing which species of that connector can benefit
from using connector abstractions, and giving examples of their definition or use
where appropriate.

Connector Implementation. Connectors can be implemented in a wide variety of
ways, each with its own benefits and drawbacks. For example, in addition to our
connector abstractions, connectors could be built into the language, expressed
idiomatically through a design pattern, or described using ArchJava’s component
construct.

The key benefit of using connector abstractions is that the same connector can be
reused to support the same interaction semantics across many different interfaces,
while still providing a strong, static guarantee of type safety to clients. For example,
the TCPConnect or is able to connect any two compatible ports, as long as the
arguments to methods in those ports are Ser i al i zabl e. Other solutions that
guarantee type safety require separate stub and skeleton code to be written for each
interface, causing considerable code duplication and hindering reuse and evolution.
Alternatively, a generic library interface for sending objects across a TCP/IP
connection could be used, but this solution does not guarantee that the messages sent

and received across the connection have compatible types, so run-time errors are
possible.

The main drawback of using connector abstractions is that they are defined using a
reflective mechanism. Although connectors can define typechecking rules for their
clients, there is no way to statically check that a connector’s implementation performs
the communication in a type-safe way. Also, there is some run-time overhead
associated with reifying a method call so that a connector can process it dynamically.
Thus, in situations where a connector is not reused across different interfaces, it may
be better to use objects or components to implement the connector.

We now go through the eight connector types identified by Mehta et al., analyzing
the situations in which the use of connector abstractions might be beneficial. All of
the connector abstraction examples described here are available for download as part
of the ArchJava distribution [Arc02].

Procedure Call. Procedure call connectors enable the transfer of control and data
through various forms of invocation. Although most programming languages provide
explicit support for procedure calls, there are a number of semantic issues that justify
user-defined procedure call connectors. For example, parameters could be passed by
reference, by value, by (deep) copy, etc.; calls could be synchronous or asynchronous;
calls could use one to many broadcast semantics, many-to-one collecting semantics,
or conceivably even many-to-many semantics.

ArchJava’s connector abstractions are well-suited to implementing procedure call
connectors, because of the procedure-call syntax used in ports and because the
mechanism allows connectors to define many different kinds of method-call
semantics, which are then reusable across different port interfaces.

As an example, we have implemented an Asynchr onousConnect or that
accepts incoming required method calls, returns to the sender immediately, and then
invokes the corresponding provided method asynchronously in another thread. We
have also implemented a Summi ngBr oadcast Connect or that accepts a
incoming method call, broadcasts it to all connected components, and sums the results
of all the invocations before returning the sum to the original caller. This second
connector relies on ArchJava’s n-way connections, which can connect more than two
ports. Both connectors implement appropriate typechecking; for example, the
Asynchr onousConnect or ensures that all methods in connected ports return
void, while the Summi ngBr oadcast Connect or ensures that all of the methods
return a number. The TCPConnect or described above is a procedure call
connector that connects components running on different virtual machines.

Event. Event connectors support the transfer of data and control using an implicit
mechanism, where the producer and consumer of an event are not aware of each
other’s identity. Semantic issues with event connectors include the cardinality of
producers and consumers, event priority, synchronicity, and the event notification
mechanism.

Events are often implemented as inner-class callbacks in languages such as Java,
but this technique can make programs very difficult to reason about and evolve, as it
is hard to see which components might be communicating through an event channel.
ArchJava’s explicit support for connections makes it easy to use events for

communication between loosely coupled components, while showing the connection
in the program’s software architecture to aid in program understanding and evolution.
Connector abstractions provide additional benefit by allowing components to
communicate using different event semantics. For example, we have implemented a
Event Di spat chConnect or that enqueues event notifications and dispatches
them to consumers based on their priority.

The PlantCare application, described below in subsection 4.2, uses a user-defined
connector to support asynchronous event-based communication across a loosely
coupled ad-hoc network.

Data Access. Data access connectors are used to access a data store, such as a SQL
database, the file system, or a repository such as the Windows registry. Issues in data
access components include initialization and cleanup of connections to data sources,
and the conversion and presentation of data. Conventional library-based techniques
are appropriate for implementing many kinds of data access connectors. However,
connector abstractions can be used to provide a convenient view of the data source, or
adding semantic value to a data source in a reusable way. For example, one could
imagine a connector that provides an object-oriented view of a relational database,
translating each row of each table into an object and providing a collection-like access
to clients. We have implemented a Cachi ngConnect or , which caches the results
of method calls to a data store and returns the same result if the method is called again
with identical arguments.

Linkage. Linkage connectors bind a name in one module to the implementation
provided by another module. Examples of linkage connectors include imported
names and references to names defined in other source files. ArchJava’s connector
abstractions are intended to connect object instances at run time, not link names at
compile time. Therefore, Linkage connectors are outside of the scope of ArchJava’s
connector abstraction design.

Stream. Stream connectors support the exchange of a sequence of data between
loosely-coupled producer and consumer components. Semantic issues with streams
include buffering, bounding, synchronicity, data types, data conversion, and the
cardinality of the producers and consumers. Many of these issues can be
encapsulated within a reusable connector abstraction. For example, we have
developed a Buf f er edSt r eamConnect or that implements a stream with a
bounded buffer size, supporting one producer but an arbitrary number of consumers.
The Buf f er edSt r eamConnect or is reusable for streams of many different data
types, but checks that the types of data produced and consumed match.

Arbitrator. Arbitrator connectors provide services that coordinate and facilitate
interactions among components. Examples of arbitrators include semaphores, locks,
transactions, fault handling connectors with failover, and load balancing connectors.
Semaphores and locks typically have the same interface no matter which components
they connect, and so they are probably best implemented using ordinary objects or as
ArchJava components. However, more sophisticated arbitrators can benefit from
ArchJava’s connector abstraction mechanism. For example, we have built a

LoadBal anci ngConnect or that accepts incoming method calls from a client and
distributes them to a bank of server components based on the current server loads.
The LoadBal anci ngConnect or is reusable across any client interface, while
still providing typechecking between clients and services. We have also implemented
a barrier synchronization connector. Components invoke a different method on the
barrier after each stage of work, and the barrier ensures that all its clients have called
a given barrier method before it allows any of the method calls to return.

Adaptor. Adaptor components retrofit components with different interfaces so that
they can interact. Adaptors may convert data formats, adapt to different invocation
mechanisms, transform protocols, or even make presentation changes like
internationalization conversions. Well-known design patterns such as Adaptor,
Wrapper, and Façade are often used to implement adaptors. However, connector
abstractions can be useful for performing similar adaptations to different interfaces.
For example, the Rai nConnect or in section 4.2 below adapts data types using
structural subtyping, so that two components can communicate with different
datatypes as long as the data sent in a message has all of the information expected by
the receiver.

Distributor. Distributor connectors identify paths between components and routes
communication along those paths. Distributors are not first-class connectors, but
provide routing services to other connectors. Both the
Event Di spat chConnect or described above and the Rai nConnect or
described below include distributor functionality.

Summary. As the discussion above makes clear, ArchJava’s connector abstractions
are very flexible, supporting a very wide range of different connector types. Some
kinds of connectors are most clearly expressed using conventional mechanisms such
as objects and components. However, connector abstractions provide a unique level
of reusability across port interfaces while still providing clients with a strong static
guarantee of type safety.

4.2. PlantCare Case Study

In order to evaluate the engineering benefits of user-defined connector abstractions,
we performed a case study with the PlantCare ubiquitous computing application
[LBK+02]. PlantCare is a project at Intel Research Seattle that uses a collection of
sensors and a robot to care for houseplants autonomously in a home or office
environment. This application illustrates many of the challenges of ubiquitous
computing systems: it must be able to configure itself and react robustly to failures
and changes in its environment.

The Gardening Service. Figure 8 shows the architecture of the gardening service,
one of several services in the PlantCare system. The gardening service consists of a
central gardener component that uses three external services as well as a client for a
well-known discovery service. The gardener periodically executes a cycle of code

that cares for plants as follows. First, the gardener requests from the Pl ant St or e a
list of all the plants in the system and the sensor readings from each plant. For each
plant, it queries the Encycl opedi a to determine how that plant should be cared for.
After comparing the recommended and actual plant humidity levels, it adds or
removes watering tasks from the TaskSer ver so that each plant remains in good
health.

We have chosen to include the interfaces of relevant external services as part of the
gardening service architecture, because then we can use the connectors in the
architecture to reason about the protocols used to communicate with these services. A

Gardener DiscoveryClient

TaskServer

GardeningService

Encyclopedia

PlantStore

public component class Gar deni ngSer vi ce {
 private final Gar dener gar dener = new Gar dener (get Ser vi ceI D()) ;
 private final Di scover yCl i ent c l i ent = new Di scover yCl i ent () ;

 connect cl i ent . di scover y, gar dener . di scover y;

 connect pattern Gar dener . Pl ant I nf o, Pl ant St or e. Pl ant I nf o
 with Rai nConnect or {
 Pl ant I nf o(Gar dener sender , Ser vi ceI D i d) {
 return connect(sender . Pl ant I nf o, Pl ant St or e. Pl ant I nf o)
 with new Rai nConnect or (connect i on, i d) ;
 }
 }
 // other architectural connections not shown
}

public component class Gar dener extends St at eMachi neNode {
 public port di scover y {
 requires Ser vi ceI D f i nd(St r i ng ser vi ceType) ;
 }
 public port interface Pl ant I nf o {
 requires Pl ant I nf o(Ser vi ceI D i d) ;
 requires void st at usQuer y() ;
 provides void st at usRepl y(Pl ant St at us dat a) ;
 }
 private Pl ant I nf o pl ant I nf oPor t ;

 public st ar t St at eCycl e() {
 Ser vi ceI D I D = di scover y. f i nd(“ Pl ant St or e”) ;
 pl ant I nf oPor t = new Pl ant I nf o(I D) ;
 pl ant I nf oPor t . st at usQuer y() ;
 . . .
 // remaining Gardener implementation not shown
}

Figure 8. The architecture of the PlantCare gardening service

more conventional architectural depiction would represent these protocols as
connectors in an enclosing architecture. However, in ubiquitous computing systems,
there is no way to statically specify the entire enclosing architecture, because the
services available in a system may change frequently as devices move and
connections fail. Instead, the gardening service architecture includes a partial view of
the surrounding architecture, including the external components with which the
gardener communicates.

Below the visual architectural diagram in Figure 8 is the ArchJava code describing
the architecture. The concrete Gar dener and Di scover yCl i ent component
instances are declared with final fields. The connect declaration linking the
di scover y ports of the cl i ent and the gar dener is syntactic sugar for a
connect pattern and a corresponding connect expression.

The connect pattern links the Pl ant I nf o ports of the gardener and the plant
store. When the gardener requests a new connection, the provided connection
constructor specifies that it should be connected with a Rai nConnect or , using a
Ser vi ceI D to identify the location of the remote Pl ant St or e component. The
other connect patterns, although omitted from this diagram, are similar.

 The Rai nConnect or class implements the Rain communication protocol used
in the PlantCare system. When methods are invoked through connections of type
Rai nConnect or , the user-defined connector code will package the method name
and arguments as an XML message, send them over a HTTP connection, and call the
appropriate provided method on the other side. Since Rain messages are
asynchronous and do not return a response, Rai nConnect or also defines a custom
typechecker that verifies that methods in the connected ports have a void return
type. Although Rai nConnect or is similar to TCPConnect or in that both
connect components that may be located on different hosts, it provides very different
semantics (asynchronous messages vs. synchronous method calls), demonstrating the
versatility of ArchJava’s connector abstractions.

The Rai nConnect or implementation is similar to the TCPConnect or defined
earlier. The connector uses the name of the method called as the name of the XML
message to be sent. The method arguments are serialized and sent over the network
using the same Rain library that is currently used by the PlantCare application.
Because Rain messages are asynchronous, the Rai nConnect or returns
immediately after sending a message, without waiting for an acknowledgement or
response.

The Gar dener class has a concrete port for discovery, but port interfaces for
communicating with other components. This is a natural choice, because discovery is
a fundamental service that must be in place in order for the Gar dener to
dynamically discover other available services. The discovery interface allows the
Gar dener to look up a service by its type. It returns a Ser vi ceI D data structure
that can then be used in a connection constructor to connect to other components.

The code in st ar t St at eCycl e shows the beginning of the cycle of code that
the Gar dener executes when caring for plants. The code uses the discovery service
to find the Ser vi ceI D of an available Pl ant St or e service. It then allocates a
new Pl ant I nf o port and stores it in a variable. The final line of code shown sends
an asynchronous message through the newly allocated port, querying the status of the

plants in the system. The Pl ant St or e will reply with another asynchronous
message, which will be translated by the Rai nConnect or into a call to the
st at usRepl y method, which carries out the next stage in the cycle. If an internal
timer expires before the st at usRepl y message is received, the gardener assumes
that the Pl ant St or e component (or an intervening network link) has failed, and
restarts the state cycle, using the discovery service once again to connect to a
functioning Pl ant St or e.

4.3. Discussion

In this section, we analyze the results of our case study according to a number of
criteria: program adaptivity, program understanding, program correctness, and
software evolution. Finally, we report feedback from the developers of the PlantCare
application.

Adaptivity. Ubiquitous computing services must be robust to communication
failures and to failures in other services. The gardening service uses a simple strategy
for handling failure: if it does not receive a response to a query within a timeout
interval, it begins the state cycle again, re-establishing connections to the components
it depends on. ArchJava supports this adaptive strategy by providing customizable
connectors that can be created and configured at run time.

Program Understanding. The ArchJava version of the gardening service code has a
number of characteristics that make it easier to understand the service’s
implementation. In the Java version, the information about which messages are sent
and received is spread throughout the source code. Figure 8 shows how the ArchJava
architecture documents the sent and received messages explicitly as required and
provided methods in the ports of Gar dener , making it easier to understand the
interactions between the gardener and other services.

Figure 8 also shows how the ArchJava source code documents the architecture of
the service, showing which other services the gardener depends on. This information
is obscured in the original gardener source code; it would have to be deduced from the
types of messages exchanged. Another benefit is that the connector specification
explicitly documents that the Rain communication protocol is used between
components. This would be especially valuable if the gardener used different
protocols to communicate with different external services, as may often be the case in
heterogeneous ubiquitous computing systems.

Figure 9 compares the Java and ArchJava versions of the code that responds to a
Pl ant I nf oRepl y message from the encyclopedia. Here, ArchJava’s abstraction
mechanisms for inter-component communication make the application logic of the
gardener clearer. In the original Java code, a single handl eMessageI n method
responds to all incoming messages. The Pl ant I nf oRepl y message is one case in
a long list of messages; the code stores the plant care information in an internal data
structure and then calls a separate sendTasksRequest function to send out the
next batch of messages. In the ArchJava version, this response code is more cleanly
encapsulated in a single method, which responds to the original message and then
sends the next set of messages through the task port. The process of sending a
message is also simpler and cleaner in ArchJava. The programmer simply calls a

Java Version:

 protected void handl eMessageI n(Message m) {
 if . . . { . . . // cases for plant status messages above...
 } else if (msg instanceof Pl ant I nf oRepl y) {
 // case for plant info message
 Pl ant I nf oRepl y p = (Pl ant I nf oRepl y) msg;
 car eMap. put (p. name, p) ;
 st at e = AWAI TI NG_TASKS;
 sendTasksRequest () ;
 return;
 } else if (msg instanceof TaskLi st Repl y) {
 // case for task reply message below...
 }

 protected void sendTasksRequest () {
 try {
 TaskLi st Quer y q = new TaskLi st Quer y() ;
 q. l i st = " Wat er Pl ant s" ;
 sendMessage(t askSer ver , q, newCl osur e()) ;
 } catch (Except i on ex) {
 // an error occurred, restart the cycle
 ex. pr i nt St ackTr ace() ;
 r eset St at e() ;
 }
 }

ArchJava Version:

 void i nf oRepl y(Pl ant I nf oRepl y dat a) {
 car eMap. put (dat a. name, dat a) ;
 st at e = AWAI TI NG_TASKS;
 try {
 t ask. t askQuer y(" Wat er Pl ant s") ;
 } catch (Except i on ex) {
 // an error occurred, restart the cycle
 ex. pr i nt St ackTr ace() ;
 r eset St at e() ;
 }
 }

Figure 9. A comparison of the old and new versions of the Gar dener code that responds to
the Pl ant I nf oRepl y message.

method in the t askPor t , rather than constructing a custom message and sending it
using the Rain library.

Correctness. The ArchJava language performs a number of checks that help to
ensure the correctness of the Gar dener Ser vi ce implementation. For example,
the Rai nConnect or typechecker verifies interface compatibility between the ports
of Gar dener and the connected ports of the external services at compile time. In
the original Java code, this problem would show up as a run time error when a
component does not recognize a message that was sent to it.

ArchJava also verifies communication integrity [MQR95,LV95,ACN02b], a
property which guarantees that the Gar dener only communicates with the services
declared in the Gar deni ngSer vi ce architecture (We assume that the gardener
does not directly use Java’s networking library, a property that could also be checked
in a straightforward way). This property guarantees that the architecture can be relied
on as an accurate representation of the communication in the system, increasing the
program understanding benefits of architecture.

Software Evolution. Because of ArchJava’s explicit abstractions for ports and
connectors, some evolutionary steps are easier to perform. For example, if a service
needs to interact with a device that cannot generate XML messages, we can replace
Rai nConnect or with a new connector type that can communicate with the more
restricted device. Also, we can reuse an existing service in a new environment by
simply inserting adaptor components or connectors that retrofit the old service to the
message protocol expected by the new environment. In both cases, ArchJava’s
explicit descriptions of component interfaces and connections make architectural
evolution easier.

An important criterion to consider in the evolvability of a system is the degree to
which the system’s modularization hides information within a single module. One
benefit of the ArchJava version of the gardening service is that the gardener’s
functionality is encapsulated in Gar dener while the communication protocol used is
encapsulated in Gar deni ngSer vi ce. The ports of Gar dener serve as the
interfaces used to hide this information. Thus, in the ArchJava code, the gardening
functionality can be changed independently of the communication protocol,
facilitating evolution of this service.

Developer Feedback. Perhaps the most important evaluation criterion is feedback
from the developers of PlantCare. We found that the developers were able to
understand the ArchJava notation fairly quickly. They said that the
Gar deni ngSer vi ce architecture captured their informal architectural view of the
system well. Finally, they agreed that ArchJava was able to provide the benefits
describe in the analysis above. We are currently working with them to put ArchJava
to production use in a future ubiquitous computing system.

5. Related Work

Software Architecture. Connectors have been studied most extensively in the
context of the software architecture literature. Mehta et al. provide a thorough
classification of software connectors [MMP00]. They categorize connectors based on
the services they provide for communication, coordination, conversion, and
facilitation. Their study also identifies many common types of connectors, and the
dimensions of variability within each connector type. In section 4, we use this study
as a benchmark for our design, choosing representative connectors from each major
category, and evaluating how well our design supports the implementation of these
connectors.

Most architecture description languages (ADLs) support the specification or
implementation of software connectors [MT00]. For example, Wright specifies the
temporal relationship of events on a connector and provides tools for checking
properties such as freedom from deadlock [AG97]. SADL formalizes connectors in
terms of theories and describes how abstract connectors in a design can be iteratively
refined into concrete connectors in an implementation [MQR95]. Rapide specifies
connectors within a reactive system using event traces [LV95].

Several ADLs provide tools that can generate executable code from an
architectural description. UniCon’s tools use an architectural specification to generate
connector code that links components together [SDK+95]. C2 provides runtime
libraries in C++ and Java that implement C2 connectors [MOR+96]. Darwin provides
infrastructure support for implementing distributed systems specified in the Darwin
ADL [MK96]. These code generation tools, however, support a limited number of
built-in connector types, and developers cannot easily define connectors with custom
semantics.

User-Defined Connectors. The work most similar to our own is a specification of
how user-defined connector types can be added to the UniCon compiler [SDZ96].
Their design is fairly heavyweight, as connector developers must understand the
details of several phases of the compiler. However, it allows new connectors to be
tightly integrated into the compiler system, potentially allowing new kinds of
architectural analysis to be defined over these connectors. In contrast, ArchJava’s
connector abstractions are lightweight, and a wide range of connectors can be
implemented with knowledge of a small library interface.

Dashofy et al. describe how off-the-shelf middleware can be used to implement C2
connectors [DMT99]. Their work differs from ours in that the semantics of the
connectors is fixed by the C2 architectural style, while our connector abstractions are
intended to support a wide range of architectural styles.

Mezini and Ostermann describe language support for adaptor connections that
allow components with different data models to work together [MO02]. Their
language makes wrapper code less tedious to write, and provides support for the
difficult problem of maintaining consistent wrapper identity. ArchJava’s connector
abstractions provide weaker support for adaptor connections, but facilitate a range of
connector types beyond just adaptors.

Object-Oriented Languages. A number of proposals have added connection support
to object-oriented languages such as Java. For example, ComponentJ [SC00] and
ACOEL [Sre02] as well as the original design of ArchJava [ACN02a] all provide
primitives for linking components together with connections. However, these
languages all fix the semantics of connections to the same synchronous method call
semantics used by Java.

Many languages have also provided support for distributed applications in the
context of an object-oriented programming language. Perhaps the first such system
was Emerald, which provides a pure object model with support for remote method
call and mobile objects within a local area network [JLH+88]. More recent systems
include Lana, which provides an asynchronous method call primitive for designing
autonomous distributed systems [BRP02]. The Cells project builds a distributed
system out of Cell modules with language-level support for remote method calls,
mobile objects, and a security model [RS02]. Each one of these systems defines its
own semantics for network communication, rather than defining a connector
abstraction mechanism that can encompass a broad range of connector semantics.

Hydro is a language under development at the University of Washington that
explicitly supports ubiquitous computing applications [LC02]. Because ubiquitous
computing is an interesting and challenging domain, we use a ubiquitous computing
application as a case study in this paper. Hydro’s support for ubiquitous computing
goes beyond distributed connectors to include a semi-structured data model. In
contrast, ArchJava provides a connector abstraction that can be used in ubiquitous
computing applications and in many other domains as well.

Aspect-Oriented Programming. Aspect-oriented programming (AOP) languages
allow programmers to separate code that implements different application concerns.
Hannemann and Kiczales showed how the AspectJ language can be used [HK02] to
implement distribution in a classroom support application. Aspect-oriented
programming developed out of meta-object protocols, which allow programmers to
define how an object should react to events like method calls [KRB91]. The
composition filters approach to AOP allows developers to interpose filter objects that
can inspect incoming method calls and perform operations like translation, adaptation,
and forwarding on the messages [BA01]. ArchJava’s connector abstractions are
similar to composition filters, but instead of processing all messages called on a single
object, they process messages exchanged between two component objects in an
architecture.

Distributed System Infrastructures. A number of libraries and tools have been
defined to support distributed programming. Commercial examples include RPC as
well as COM [Mic95], CORBA [OMG95], and RMI [Jav97]. These systems offer a
convenient method-call interface for remote communication, much like the interface
provided by ArchJava’s connector abstractions. Furthermore, these systems check
statically that communication through their connections is well-typed. Infrastructures
support some flexibility—for example, RMI allows the developer to specify the wire
protocol to be used, and CORBA provides an event service that can be used in place
of remote method calls. However, each of these systems defines a particular
semantics (usually synchronous method call) for the connections it supports, rather

than providing a general interface that programmers can implement in various ways to
support their application-specific needs.

CASE Tools. Several computer-aided software engineering tools, including
Consystant and Rational Rose RealTime, generate code to connect components
together. This connection code can range from stubs and skeletons for an
infrastructure like CORBA or RMI to wires that connect different processors in an
embedded system. Like many of the technologies discussed above, these tools
typically support a fixed set of connectors.

6. Conclusion

This paper described a technique for adding explicit support for connector
abstractions to the ArchJava programming language. In our system, connector
abstractions can be defined using a very flexible reflective library-based mechanism.
We have evaluated the expressiveness of our technique by implementing
representative connectors from a wide range of connector types, and we have
evaluated the engineering consequences in a case study on the PlantCare ubiquitous
computing application. The benefits of connector abstractions include separating
communication code from application logic, documenting and checking connector
interfaces, and reusing connector abstractions more effectively compared with
alternative techniques

In future work, we intend to implement more connectors and evaluate their
expressiveness on a wider variety of systems. We also hope to develop a library-
based framework for composing connectors together so that complex connectors can
be easily created from simple building blocks. Another important area of future work
is more effective support for adaptor-style connections, extending recently developed
adaptation techniques such as on-demand remodularization [MO02]. Finally, we
would like to provide specification and checking of connector properties that go
beyond typechecking techniques. We believe that enhanced language and system
support for connectors is crucial to the effective development and evolution of many
classes of software systems.

Acknowledgements

We would like to thank members of the Cecil and 590N seminars at the University of
Washington, as well as Anthony LaMarca, Stefan Sigurdsson, Matt Lease, and other
members of the PlantCare group at Intel Research Seattle for their help, comments,
and suggestions. This work was supported in part by NSF grants CCR-9970986 and
CCR-0073379, NEW GRANT, and gifts from Sun Microsystems and IBM.

References

[ACN02a] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. Proc. International Conference on Software
Engineering, Orlando, Florida, May 2002.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural Reasoning in
ArchJava. Proc. European Conference on Object-Oriented Programming, Málaga,
Spain, June 2002.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3), July 1997.

[Arc02] ArchJava web site. http://www.archjava.org/

[BA01] Lodewijk Bergmans and Mehmet Aksit, Composing Crosscutting Concerns Using
Composition Filters, Communications of the ACM 44(10):51-57, October 2001.

[BRP02] Chrislain Razafimahefa, Ciaran Bryce, and Michel Pawlak. Lana: An Approach to
Programming Autonomous Systems. Proc. European Conference on Object-Oriented
Programming, Malaga, Spain, June 2002.

[BS98] Boris Bokowski and André Spiegel. Barat—A Front-End for Java. Freie Universität
Berlin Technical Report B-98-09, December 1998.

[DMT99] Eric M. Dashofy, Nenad Medvidovic, and Richard N. Taylor. Using Off-the-Shelf
Middleware to Implement Connectors in Distributed Software Architectures. Proc.
International Conference on Software Engineering, Los Angeles, California, May 1999.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture. In Advances
in Software Engineering and Knowledge Engineering, I (Ambriola V, Tortora G, Eds.)
World Scientific Publishing Company, 1993.

[HK02] Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java and
AspectJ. Proc. Object-Oriented Programming Systems, Languages, and Applications,
Seattle, Washington, November 2002.

[Jav97] Javasoft Java RMI Team. Java Remote Method Invocation Specification, Sun
Microsystems, 1997.

[JLH88] Eric Jul, Hank Levy, Norman Hutchinson, and Andrew Black. Fine-Grained Mobility
in the Emerald System. ACM Trans. Computer Systems 6(1):109-133, February 1988.

[KRB91] Gregor Kiczales, James des Rivières, and Daniel G. Bobrow. The Art of the Meta-
Object Protocol. MIT Press, Cambridge, MA, 1991.

[LBK+02] A. LaMarca, W. Brunette, D. Koizumi, M. Lease, S. B. Sigurdsson, K. Sikorski, D.
Fox, and G. Borriello. PlantCare: An Investigation in Practical Ubiquitous Systems. In
UbiComp ’02.

[LC02] Keunwoo Lee and Craig Chambers. Hydro: A Language for Loosely Coupled
Ubiquitous Systems. Submitted for publication, 2002.

[LV95] David C. Luckham and James Vera. An Event Based Architecture Definition
Language. IEEE Trans. Software Engineering 21(9), September 1995.

[MFH01] Sean McDirmid, Matthew Flatt and Wilson C. Hsieh. Jiazzi: New-Age Components
for Old-Fashioned Java. Proc. Object Oriented Programming Systems, Languages, and
Applications, Tampa, Florida, October 2001.

[Mic95] Microsoft Corporation. The Component Object Model Specification, Version 0.9.
October 1995.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. Proc.
Foundations of Software Engineering, San Francisco, California, October 1996.

[MMP00] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a Taxonomy of
Software Connectors. Proc. International Conference on Software Engineering,
Limerick, Ireland, June 2000.

[MO02] Mira Mezini and Klaus Ostermann. Integrating Independent Components with On-
Demand Remodularization. Proc. Object-Oriented Programming Systems, Languages,
and Applications, Seattle, Washington, November 2002.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
Using Object-Oriented Typing to Support Architectural Design in the C2 Style. Proc.
Foundations of Software Engineering, San Francisco, California, October 1996.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A. Riemenschneider. Correct Architecture
Refinement. IEEE Trans. Software Engineering, 21(4), April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans. Software
Engineering, 26(1), January 2000.

[OMG95] Object Management Group. The Common Object Request Broker: Architecture and
Specification (CORBA), revision 2.0. 1995.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, 17:40-52, October 1992.

[RN00] David S. Rosenblum and Rema Natarajan. Supporting Architectural Concerns in
Component-Interoperability Standards. IEE Proceedings-Software 147(6), 2000.

[RS02] Ran Rinat and Scott Smith. Modular Internet Programming with Cells. Proc. European
Conference on Object-Oriented Programming, Malaga, Spain, June 2002.

[SC00] João C. Seco and Luís Caires. A Basic Model of Typed Components. Proc. European
Conference on Object-Oriented Programming, Cannes, France 2000.

[SDK+95] Mary Shaw, Rob DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and
Gregory Zelesnik. Abstractions for Software Architecture and Tools to Support Them.
IEEE Trans. Software Engineering, 21(4), April 1995.

[SDZ96] Mary Shaw, Rob DeLine, and Gregory Zelesnik. Abstractions and Implementations
for Architectural Connections. Proc. International Conference on Configurable
Distributed Systems, Annapolis, Maryland, May 1996.

[Sre02] Vugranam C. Sreedhar. Mixin’ Up Components. Proc. International Conference on
Software Engineering, Orlando, Florida, May 2002.

