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Abstract. Ownership types promise to provide a practical mechanism
for enforcing stronger encapsulation by controlling aliasing in object-
oriented languages. However, previous ownership type proposals have
tied the aliasing policy of a system to the mechanism of ownership.
As a result, these proposals are too weak to express many important
aliasing constraints, yet also so restrictive that they prohibit many
useful programming idioms.

In this paper, we propose ownership domains, which decouple encapsu-
lation policy from the mechanism of ownership in two key ways. First,
developers can specify multiple ownership domains for each object, per-
mitting a fine-grained control of aliasing compared to systems that pro-
vide only one ownership domain for each object. Second, developers can
specify the permitted aliasing between each pair of domains in the sys-
tem, providing more flexibility compared to systems that enforce a fixed
policy for inter-domain aliasing. Because it decouples policy from mech-
anism, our alias control system is both more precise and more flexible
than previous ownership type systems.

1 Introduction

One of the primary challenges in building and evolving large object-oriented
systems is reasoning about aliasing between objects. Unexpected aliasing can
lead to broken invariants, mistaken assumptions, security holes, and surprising
side effects, which in turn may cause defects and complicate software evolution.

Ownership types are one promising approach to addressing the problems of
uncontrolled aliasing [23, 13, 10, 4, 8, 11]. With ownership types, the developer of
an abstract data type can encapsulate objects used in the internal representation
of the ADT, and use static typechecking to ensure that clients of the ADT cannot
access its representation.

Despite the potential of ownership types, current ownership type systems
have serious limitations, both in the kinds of aliasing constraints they can express
and in their ability to support important programming idioms. These limitations



can be understood by looking at ownership types as a combination of a mecha-

nism for dividing objects into hierarchical groups, and a policy for constraining
references between objects in those groups.

In previous ownership type systems, each object defines a single group to
hold its private state. We will call these groups ownership domains. The own-
ership mechanism is useful for separating the internals of an abstract data type
from clients of the ADT, but since each object defines only one ownership do-
main, ownership types cannot be used to reason about aliasing between different
subsystems within an object.

The aliasing policy in previous ownership type systems is fixed: the private
state of an object can refer to the outside world, but the outside world may
not refer to the private state of the object. This policy is known as owners-as-
dominators, because it implies that all paths to an object in a system must go
through that object’s owner.

This fixed policy is useful for ensuring that clients cannot access the internals
of an abstract data type. However, the policy is too restrictive to support com-
mon programming idioms such as iterator objects or event callbacks. In these
idioms, the iterator or event callback objects must be outside of the ADT so that
clients can use them, but they must be able to access the internals of the ADT to
do their jobs. Thus, iterators or callbacks create paths to the inside of an ADT
that do not go through the ADT object itself, violating owners-as-dominators.

In this paper, we propose ownership domains, an extension of ownership
types that separates the alias control policy of a system from the mechanism
of ownership. Our system generalizes the mechanism of ownership to permit
multiple ownership domains in each object. Each domain represents a logically
related set of objects. Thus, developers can use the ownership domain mechanism
to divide a system object into multiple subsystems, and can separately specify
the policy that determines how those subsystems can interact.

Instead of hard-wiring an aliasing policy into the ownership mechanism, our
system allows engineers to specify in detail the permitted aliasing relationships
between domains. For example, a Sequence ADT can declare one domain for its
internal representation, and a second domain for its iterators. The aliasing policy
for the Sequence ADT can be written to allow clients to access the iterators, and
to allow the iterators to access the internal representation of the Sequence, while
prohibiting clients from accessing the internal representation directly.

As a result of separating the mechanism for dividing objects into domains
from the policy of how objects in those domains may interact, our system is
both more precise and more flexible than previous ownership type systems. It
is more precise in allowing developers to control aliasing between the sub-parts
of an object. Furthermore, while our system can be used to statically enforce
the owners-as-dominators property, it also supports more flexible alias control
policies that permit idioms like iterators or events.

The rest of this paper is organized as follows. In the next section we introduce
ownership domains by example, showing how they can express aliasing policies
and code idioms that were not expressible in previous systems. We have im-
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Fig. 1. A conceptual view of AliasJava’s ownership domain model. The rounded,
dashed rectangles represent domains, with a gray fill for private domains. Solid rectan-
gles represent objects. The top-level shared domain contains the highest-level objects
in the program. Each object may define one or more domains that in turn contain
other objects.

plemented ownership domains in the open-source AliasJava compiler [4], which
is freely available at http://www.archjava.org/. Section 3 presents our pro-
posal more formally as an extension of Featherweight Java [18], and proves that
our type system enforces the aliasing specifications given by the programmer.
Section 4 discusses related work, and Section 5 concludes.

2 Ownership Domains

We illustrate ownership domains in the context of AliasJava, an extension to the
Java programming language that adds support for a variety of alias specifications
[4]. Figure 1 illustrates the ownership domain model used in AliasJava. Every
object in the system is part of a single ownership domain. There is a top-level
ownership domain denoted by the keyword shared. In addition, each object can
declare one or more domains to hold its internal objects.

The example shows two objects in the shared domain: a bank and a
customer, denoted by rectangles. The customer declares a domain denoting the
customer’s agents; the domain has two (unnamed) agent objects in it. The bank
declares two domains: one for the tellers in the bank, and one for the bank’s
vaults. In this example, there are two tellers and two bank vaults.

Each object can declare a policy describing the permitted aliasing among
objects in its internal domains, and between its internal domains and external
domains. Our system supports two kinds of policy specifications:

– A link from one domain to another, denoted with an arrow in the diagram,
allows objects in the first domain to access objects in the second domain.

– A domain can be declared public, denoted by a thinner dashed rectangle
with no shading. Permission to access an object automatically implies per-
mission to access its public domains.



class Class {domain owned;

owned List signers;

/* clients cannot call a method returning an owned list */

owned List getSigners() {return signers;

}
}

Fig. 2. In an early version of the JDK, the Class.getSigners method returned the
internal list of signers rather than a copy, allowing untrusted clients to pose as trusted
code. In an ownership type system, the list could be declared owned, and the typechecker
would have caught this error at compile time.

For example, the customer object declares a link from its agent domain
to the shared domain, allowing the customer’s agents to access the bank. The
bank declares a link from its tellers domain to its vaults domain, allowing the
tellers to access the vaults. Finally, the bank declares its tellers domain to be
public, allowing the customer and the customer’s agents (and any other object
that can access the bank) to also access the tellers. Note that permissions in
our model are not transitive, so that the customer and the agents cannot access
the bank’s vaults directly; they must go through the bank or its tellers.

In addition to the explicit policy specifications mentioned above, our system
includes the following implicit policy specifications:

– An object has permission to access other objects in the same domain.
– An object has permission to access objects in the domains that it declares.

The first rule allows the customer to access the bank (and vice versa), while
the second rule allows the customer to access its agents and the bank to access
its tellers and vaults. Any aliasing relationship not explicitly permitted by one
of these rules is prohibited, according to the principle of least privilege.

2.1 Domain Declarations

Figure 2 illustrates ownership domains by showing how they could have been
used to catch a security hole in an early release of the JDK, version 1.1. In this
somewhat simplified example1, the security system function Class.getSigners

returns a pointer to an internal list, rather than a copy. Clients can then modify
the list, compromising the Java security model and potentially allowing malicious
applets to pose as trusted code.

1 The real bug was of the same form but involved native code and arrays, not Java
code and lists. In an earlier paper, we show how ownership can be integrated with
arrays [4].



The code in Figure 2 has been annotated with ownership domain information
in order to document the permitted aliasing relationships and prevent bugs like
the one described above. Each Class instance contains a private domain owned

that is distinct from the owned domain of all other Class instances.

In our system, the owner of an object is expressed as part of its type, ap-
pearing before the class part of the type. For example, the signers field refers
to a list that is in the owned domain, expressing the fact that the list must not
be shared with clients.

According to the typing rules of ownership domains, only objects that have
access to the owned domain of a Class object can access its signers field or
call the getSigners method. Since the owned domain is private, only the Class

object itself can access these members–it would be a typechecking error if client
code tried to call getSigners.

Although the signers field is intended to be private, we would like clients to
be able to get the signers of a class, as long as they cannot modify the internal
list holding the signers. Thus, a more appropriate return type for getSigners

would be shared List, where the shared domain represents a set of globally
visible objects. If we were to give getSigners this return type and leave the
implementation as is, we would get a type error, because the actual list returned
by the function has domain owned, not shared. The correct solution is the one
used to fix this bug in the actual JDK: allocating a new list each time getSigners
is called, copying the signers into the new list and returning the result.

This example shows that using ownership domains to protect internal state
from clients enforces a stronger invariant than private declarations, because the
latter only protect the field, not the object in the field. Thus, ownership domains
are a useful tool for enforcing the internal invariants of a system, including
security invariants like the one in this example.

2.2 Parameterized Types

Figure 3 illustrates how a Sequence abstract data type can be expressed with
ownership domains. The Sequence must have internal references to the elements
in the sequence, but the elements are typically part of the domain of some
client. Following Flexible Alias Protection [23] and Featherweight Generic Con-
finement [24], we leverage Java’s generics mechanism to specify the ownership
information of a type parameter along with the name. Therefore, we parameter-
ize the Sequence class by some type T, which includes the class of the elements
as well as the domain they are in.

Since the sequence must maintain internal pointers to its elements, the com-
piler must typecheck it assuming that the sequence object has permission to
access the domain of T. This assumption is expressed with an assumes clause
stating that the special domain owner (meaning the owner of the current ob-
ject) has permission to access T.owner, the domain of T. Whenever Sequence is
instantiated with type parameter T, and is placed in some owner domain, this as-
sumption is checked. For example, in Figure 5 a client instantiates the sequence,



class Sequence<T> assumes owner -> T.owner /* default */ {domain owned; /* default */link owned -> T.owner; /* default */

owned Cons<T> head; /* owned is default here */void add(T o) {
head = new Cons<T>(o,head)

}public domain iters;link iters -> T.owner, iters -> owned;

iters Iterator<T> getIter() {return new SequenceIterator<T, owned>(head);

}
}class Cons<T> assumes owner -> T.owner /* default */ {
Cons(T obj, owner Cons<T> next) { this.obj=obj; this.next=next; }
T obj;owner Cons<T> next;

}

Fig. 3. A Sequence abstract data type that uses a linked list for its internal repre-
sentation. The Sequence declares a publicly accessible iters domain representing its
iterators, as well as a private owned domain to hold the linked list. The link declara-
tions specify that iterators in the iter domain have permission to access objects in the
owned domain, and that both domains can access owner of the type parameter T.

passing in the type state Object for the type parameter T and placing the se-
quence in the state domain. Since the state domain (like every other domain)
is considered to be linked to itself, the assumption is valid in this example.

In practice, nearly all objects need assume clauses linking their owner domain
to their domains of their parameter types, so these clauses are defaults in our
system and may be omitted.

The code in Figure 3 represents the sequence internally as a linked list. Clients
of the Sequence should not be able to access the list directly, so the Sequence

stores the linked list in a private domain called owned. Because the links in the
list need to be able to refer to the elements of the sequence, the code includes a
link declaration specifying that objects in the owned domain can refer to objects
in the T.owner domain.

The Cons class represents a link in the linked list. In the example, Cons is
also parameterized by the element type T. The cons cell declares that the next

field is owned by the owner of the current cell, so that all the links in the list
have the same owning domain. Back in the Sequence class, the head field has
type owned Cons<T>, meaning that the field refers to a Cons object in the owned
domain with the type parameter T.



interface Iterator<T> {
T next();boolean hasNext();

}class SequenceIterator<T, domain list> implements Iterator<T>assumes list -> T.owner {
SequenceIterator<T, domain list>(list Cons<T> head) { current = head; }
list Cons<T> current;boolean hasNext() { return current != null; }
T next() {

T obj = current.obj;

current = current.next;return obj;

}
}

Fig. 4. An iterator interface and a sequence iterator that implements the interface

In our proposed system, not only is the assumption owner -> T.owner a
default, but every object has a owned domain by default that is linked to each
of the domains of type parameters (such as T.owner). Also, every field of an
object is owned by default. This means that in Figure 3, most of the ownership
declarations may be omitted. The only declarations that are necessary are the
owner annotations on next in Cons, and the declarations that have to do with
iterators (discussed below). Thus, in the common case where a single domain per
object is sufficient, and where domain parameters match the type parameters of
Generic Java, there is very little programming overhead to using our system.

2.3 Expressing Iterators

It is typical for abstract data types like Sequence to provide a way for clients to
iterate over their contents, but expressing iterators in previous ownership type
systems presents a problem. If the iterator is part of a client’s ownership domain,
then it cannot access the links in the list, and so it cannot be implemented.
However, if the iterator is part of the internal owned domain, the iterator will
be useless because clients cannot access it. Previous solutions to this problem
have been ad-hoc and often restrictive: for example, allowing iterators on the
stack but not on the heap [11] or supporting iterator-like functionality only if
the iterators are implemented as inner classes [10, 8].

Intuitively, the iterators are part of the public interface of the sequence: they
should be accessible to clients, but they should also be able to access the internals
of the sequence [22]. With ownership domains, this intuition can be expressed
in a straightforward manner. A second domain, iters, is declared to hold the



class SequenceClient {domain state;final state Sequence<state Object> seq = new Sequence<state Object>();void run() {
state Object obj = ...

seq.add(obj);

seq.iters Iterator<state Object> i = seq.getIter();while (i.hasNext()) {
state Object cur = i.next();

doSomething(cur);

}
}

}

Fig. 5. A client of the Sequence

iterators of the sequence. So that clients can use the iterator objects, we make the
iters domain public. In our system, permission to access the sequence implies
permission to access its public domains.

In order to allow the iterator to access the elements and links in the sequence,
we link the iters domain to the T.owner and owned domains. Then we can write
a getIter method that creates a new SequenceIterator object and returns it
as part of the iters domain.

The definitions of the Iterator interface and the concrete
SequenceIterator class are shown in Figure 4. The Iterator interface
has a single type parameter T to capture the class and owner of the elements
over which it iterates. The SequenceIterator class has the type parameter T

and also a domain parameter list, because its internal implementation must
be able to refer to the Cons objects in the sequence. The domain parameter is
just like a type parameter except it holds only a domain, not a full type. The
list domain is used within the SequenceIterator to refer to the owner of the
Cons cells.

The SequenceIterator class assumes that the list domain parameter has
permission to refer to objects in the T.owner domain. This assumption is needed
to fulfill the assumptions that Cons makes.

2.4 Using Sequence

Figure 5 shows a client of the Sequence ADT. The client declares some domain,
state, which holds both the sequence and its elements. Thus the Sequence type
is parameterized by the type state Object, meaning objects of class Object

that are part of the state domain. The run method creates an object in the
state domain, and adds it to the sequence. It then calls getIter to get an
iterator for the sequence. The iterator is in the iters domain of the sequence.



Since each sequence has its own iters domain, we need to prefix the domain
name by the object that declared it. In order to ensure type safety, the program
source can only refer to domains of final variables such as seq–otherwise, we
could assign another sequence to the seq variable and the type system would
lose track of the relationship between a sequence object and its iterators.

2.5 Properties: Link Soundness

Our type system ensures link soundness, the property that the domain and
link declarations in the system conservatively describe all aliasing that could
take place at run time. Here we define link soundness in precise but informal
language; section 3.5 defines link soundness formally and proves that our type
system enforces the property.

To state link soundness precisely, we need a few preliminary definitions. First,
we say that object o refers to object o′ if o has a field that points to o′, or
else a method with receiver o is executing and some expression in that method
evaluates to o′. We will say that object o declares a domain d or a link between
domains d and d′ if the class of o declares a domain or a link between domains
that, when o is instantiated, refer to d and d′. Finally, we say that object o has

permission to access domain d if one of the following conditions holds:

1. o is in domain d′, and some object declares a link of the form link d′ -> d.
2. o has permission to access object o′, and o′ declares a public domain d.
3. o is part of domain d.
4. d is a domain declared by o.

These rules simply state the conditions in the introduction to section 2 more
precisely. We can now define link soundness using the definitions above:

Definition 1 (Link Soundness). If an object o refers to object o′ and o′ is in

domain d, then o has permission to access domain d.

Discussion. In order for link soundness to be meaningful, we must ensure that
objects can’t use link declarations or auxiliary objects to violate the intent of
linking specifications. For example, in Figure 1, the customer should not be able
to give itself access to the bank’s vaults domain. We can ensure this with the
following restriction:

– Each link declaration must include a locally-declared domain.

Furthermore, even though the agents domain is local to the customer object,
the customer should not be able to give the agents any privileges that the
customer does not have itself. The following rules ensure that local domains
obey the same restrictions as their enclosing objects or domains:

– An object can only link a local domain to an external domain d if the this
object has permission to access d.

– An object can only link an external domain d to a local domain if d has
permission to access the owner domain.



Finally, the customer should not be able to get to the bank’s vaults domain
by creating its own objects in the tellers domain:

– An object o can only create objects in domains declared by o, or in the owner
domain of o, or in the shared domain.

Unlike many previous ownership type systems, our system does not have a
rule giving an object permission to access all enclosing domains. This permission
can be granted using link declarations if needed, but developers can constrain
aliasing more precisely by leaving this permission out.

Relation to Previous Work. Previous ownership type systems have enforced
the owners-as-dominators property: all paths to an object in a system must
go through that object’s owner. The link soundness property is more flexible
than owners-as-dominators, since it can express examples like the Iterator in
section 2.3 that violate the owners-as-dominators constraint. However, ownership
domains can be used to enforce owners-as-dominators if programmers obey the
following guidelines:

– Never declare a public domain.
– Never link a domain parameter to an internal domain.

These guidelines ensure that the rules for link declarations and public do-
mains (rules #1 and #2 above) cannot be used to access internal domains. Rule
#3 does not apply, and the only other way to access internal domains is through
the object that declared them (rule #4), which is what owners-as-dominators
requires.

These guidelines show that previous ownership type systems are essentially a
special case of ownership domains. Thus, ownership domains provide a tradeoff
between reasoning and expressiveness. Engineers can use ownership domains to
enforce owners-as-dominators when this property is needed, but can also use a
more flexible alias-control policy in order to express idioms like iterators.

2.6 Listener Callbacks

The listener idiom, an instance of the subject-observer design pattern [14], is very
common in object-oriented libraries such as the Java Swing GUI. This pattern
is often implemented as shown in Figure 6, where a Listener object creates a
callback object that is invoked when some event occurs in the event Generator
being observed. Expressing this idiom is impossible in ownership type systems
that enforce owners-as-dominators, since the callback object is visible from the
Generator but keeps internal references to the state of the Listener.

Using ownership domains, we can express this example as shown in Fig-
ure 6. The ListenerSystem declares domains representing the generator and
listener, and links the generator domain to the listener domain so that it
can pass the listener’s callback to the generator. The Generator class needs to



class ListenerSystem {domain generator, listener;link generator->listener;

generator Generator<l.callbacks Callback> s;final listener Listener l;

... s.callback = l.getCallback(); ...

}class Generator<CB> {
CB callback;

... callback.notify(data) ...

}class Listener {public domain callbacks;domain state;link callbacks -> state;

callbacks Callback getCallback() {return new ListenerCB<state>(...)

}
}interface Callback { void notify(int data); }class ListenerCB<domain state> implements Callback {void notify(int data) { /* modify state */ }
}

Fig. 6. A Listener system.

store a reference to the callback object, so it is parameterized by the callback
type CB.

Like the Sequence class described earlier, the Listener declares a private
domain for its internal state and a public one for its callback objects, linking
the callback domain to the state domain. The ListenerCB object implements
the Callback interface, storing a reference to the listener’s state and performing
some action on that state when the notify method is invoked.

2.7 Expressing Architectural Constraints

One of our goals in designing ownership domains was to express aliasing con-
straints between different components in the architecture of a program. Figure 7
shows how the aliasing constraints in two different architectural styles can be
expressed with ownership domains. The code in the first example represents a
layered architecture [15] by creating an ownership domain for each layer. The
link specifications express the constraint that objects in each layer can only refer
to objects in the layer below.



class LayeredArchitecture {domain layer1, layer2, layer3;link layer2->layer1, layer3->layer2;

...

}class MediatorArchitecture {domain component1, component2, component3;domain mediator;link component1->mediator, component2->mediator, component3->mediator;link mediator->component1, mediator->component2, mediator->component3;

}

Fig. 7. A layered architecture and a mediator architecture

The second example shows an architecture in which three different compo-
nents communicate through a mediator component [26]. Again, the three com-
ponents and the mediator are represented with domains. However, in this case,
the aliasing pattern forms a star with the mediator in the center and the compo-
nents as the points of the star. The link soundness property can then be used to
guarantee that the individual components communicate only indirectly through
the mediator. This property is crucial to gain the primary benefit of the medi-
ator style: components in the system can be developed, deployed, and evolved
independently from each other.

In both examples, the ability to create multiple ownership domains in one
object and to specify aliasing constraints between them is crucial for specifying
the architectural structure of the system. The use of ownership domains to spec-
ify architectural aliasing complements our earlier work specifying architectural
interfaces and control flow in a different extension of Java [3].

2.8 Extensions

The AliasJava compiler includes an implementation of ownership domains as
well as a number of useful extensions. A unique annotation indicates that there
is only one persistent external reference to an object (we allow internal references
to unique objects, providing external uniqueness [12] in the more flexible setting
of ownership domains). Unique objects can later be assigned to a domain, at
which point the type system verifies the object’s linking assumptions that relate
the owner domain to the parameter domains (in order to do this check soundly,
we also verify that the domain parameters of a unique object are not “forgotten”
by subsumption).

A lent annotation indicates a temporary reference to an object. A unique or
owned object can be passed as a lent argument of a function, giving that func-
tion temporary access to the object but ensuring that the function does not store
a persistent reference to the object. AliasJava supports method parameterization



(and the corresponding assumes clauses) in addition to class parameterization.
In the future, we may add support for package-level domains (generalizing con-
finement [7]) and for readonly types [21].

3 Formalizing Ownership Domains

We would like to use formal techniques to prove that our type system is safe and
preserves the intended aliasing invariants. A standard technique, exemplified by
Featherweight Java [18], is to formalize a core language that captures the key
typing issues while ignoring complicating language details. We have formalized
ownership domains as Featherweight Domain Java (FDJ), a core language based
on Featherweight Java (FJ).

Featherweight Domain Java makes a number of simplifications relative to the
full Java language. As in FJ, the model omits interfaces, inner classes, and some
statement and expression forms, since these constructs can be written in terms
of more fundamental ones. In order to focus exclusively on ownership domains,
FDJ omits other constructs like shared that can be modeled with syntactic
sugar. These omissions make the formal system simple enough to permit effective
reasoning, while still capturing the core constructs of ownership domains.

Although Featherweight Java has been extended with type parameters [18],
we model only domain parameters in order to simplify the system. The user-level
system can be translated into the formal one by replacing each type parameter
with a domain parameter, by replacing uses of the type parameter with the do-
main parameter applied to class Object, and by inserting casts where necessary.

3.1 Syntax

Figure 8 shows the syntax of FDJ. The metavariable C ranges over class names;
T ranges over types; f ranges over fields; v ranges over values; e ranges over
expressions; x ranges over variable and domain names; n ranges over values and
variable names; S ranges over stores; ` ranges over locations in the store, α and
β range over formal ownership domain parameters, and m ranges over method
names. As a shorthand, an overbar is used to represent a sequence.

In FDJ, classes are parameterized by a list of ownership domains, and ex-
tend another class that has a subsequence of its domain parameters. An assumes

clause states the linking assumptions that a class makes about its domain pa-
rameters. Our formal system does not have the default linking assumptions that
are present in the real system; thus all assumptions must be specified explicitly.
Each class defines a constructor and sets of fields, domains, link specifications,
and methods. The canonical class constructor just assigns the constructor ar-
guments to the fields of the class, while methods use standard Java syntax. We
assume a predefined class Object that has no fields, domains, or methods.

Source-level expressions es include object creation expressions, field reads,
casts, and method calls. Although FDJ is a pure language without field assign-
ment, we want to reason about aliasing, and so we use locations to represent



CL ::= class C<α, β> extends C′<α> assumes γ → δ { T f ; K D L M }

K ::= C(T ′ f ′, T f){super(f ′); this.f = f ; }

D ::= [public] domain x;

L ::= link d → d′;

M ::= TR m(T x) { return e; } v, ` ∈ locations

es ::= x | new C<α>(e) S ::= ` 7→ C<`.x>(v)
| e.f | (T )e | e.m(e)

e ::= es | ` | ` > e | error Γ ::= x 7→ T

Σ ::= ` 7→ T

n ::= x | v

T ::= C<d> | ERROR

d ::= α | n.x

Fig. 8. Featherweight Domain Java Syntax

object identity. A store S maps locations ` to their contents: the class of the
object, the actual ownership domain parameters, and the values stored in its
fields. We will write S[`] to denote the store entry for ` and S[`, i] to denote
the value in the ith field of S[`]. Adding an entry for location ` to the store is
abbreviated S[` 7→ C<`.x>(`′)].

Several method calls may be executing on the stack at once, and to reason
about ownership we will need to know the receiver of each executing call. There-
fore, there are additional expression forms e that can occur during reduction,
including locations `. The expression form ` > e represents a method body e
executing with a receiver `. An explicit error expression is used to represent
the result of a failed cast.

The result of computation is a location `, which is sometimes referred to as
a value v. The class of names n includes both values and variables. The set of
variables includes the distinguished variable this used to refer to the receiver
of a method. A domain is either one of the domain parameters α of the class, or
else a pair of a name n (which can be this) and a domain name x. Neither theerror expression, nor locations, nor ` > e expressions may appear in the source
text of the program; these forms are only generated during reduction.

A type in FDJ is a class name and a set of actual ownership domain pa-
rameters. We simplify the formal system slightly by treating the first domain
parameter of a class as its owning domain. We use a slightly different syntax



l 6∈ domain(S) S′ = S[` 7→ C<d>(v)]

S ` new C<d>(v) 7→ `, S′
R-New

S[`] = C<d>(v) fields(C<d>) = T f

S ` `.fi 7→ vi, S
R-Read

S[`] = C<d>(v) C<d> <: T

S ` (T )` 7→ `, S
R-Cast

S[`] = C<d>(v) C<d> 6<: T

S ` (T )` 7→ error, S
E-Cast

S[`] = C<d>(v) mbody(m,C<d>) = (x, e0)

S ` `.m(v) 7→ ` > [v/x, `/this]e0, S
R-Invk

S ` ` > v 7→ v, S
R-Context

Fig. 9. Dynamic Semantics

in the practical system to emphasize the semantic difference between the owner
domain of an object and its domain parameters.

We assume a fixed class table CT mapping classes to their definitions. A
program, then, is a tuple (CT, S, e) of a class table, a store, and an expression.

Expressiveness. While FDJ has been simplified considerably from the full se-
mantics of ownership domains in Java, it is still quite expressive. The example
code in Figures 3-7 can be expressed in FDJ with some minor rewriting. For
example, the FDJ Cons class below differs from the code in Figure 3 in that
the owner parameter is explicit; the type parameter T is replaced with domain
parameter elemOwner; and the extends clause is explicit. In addition, the owner
domain of the field and method argument types is specified as the first parameter
instead of appearing before the type name.class Cons<owner, elemOwner> extends Object<owner>assumes owner -> elemOwner {
Cons(Object<elemOwner> obj, Cons<owner,elemOwner> next) {this.obj=obj; this.next=next;
}
Object<elemOwner> obj;

Cons<owner,elemOwner> next;

}



CT (C) = class C<α, β> extends C′<α> . . .

C<d, d′> <: C′<d>
Subtype-Class

T <: T
Subtype-Reflex

T <: T ′ T ′ <: T ′′

T <: T ′′
Subtype-Trans

ERROR <: T
Subtype-Error

Fig. 10. Subtyping Rules

3.2 Reduction Rules

The evaluation relation, defined by the reduction rules given in Figure 9, is of
the form S ` e 7→ e′, S′, read “In the context of store S, expression e reduces
to expression e′ in one step, producing the new store S′.” We write 7→∗ for the
reflexive, transitive closure of 7→. Most of the rules are standard; the interesting
features are how they track ownership domains.

The R-New rule reduces an object creation expression to a fresh location. The
store is extended at that location to refer to a class with the specified ownership
parameters, with the fields set to the values passed to the constructor.

The R-Read rule looks up the receiver in the store and identifies the ith field
using the fields helper function (defined in Figure 14). The result is the value
at field position i in the store. As in Java (and FJ), the R-Cast rule checks that
the cast expression is a subtype of the cast type. Note, however, that in FDJ
this check also verifies that the ownership domain parameters match, doing an
extra run-time check that is not present in Java. If the run-time check in the
cast rule fails, however, then the cast reduces to the error expression, following
the cast error rule E-Cast. This rule shows how the formal system models the
exception that is thrown by the full language when a cast fails.

The method invocation rule R-Invk looks up the receiver in the store, then
uses the mbody helper function (defined in Figure 14) to determine the correct
method body to invoke. The method invocation is replaced with the appropriate
method body, where all occurrences of the formal method parameters and this
are replaced with the actual arguments and the receiver, respectively. Here, the
capture-avoiding substitution of values v for variables x in e is written [v/x]e.
Execution of the method body continues in the context of the receiver location.

When a method expression reduces to a value, the R-Context rule propagates
the value outside of its method context and into the surrounding method expres-
sion. As this rule shows, expressions of the form ` > e do not affect program
execution, and are used only for reasoning about invariants that are necessary for
link soundness. The full definition of FDJ, in a companion technical report [2],
also includes congruence rules that allow reduction to proceed within an expres-
sion in the the order of evaluation defined by Java. For example, the read rule
states that an expression e.f reduces to e′.f whenever e reduces to e′.



Γ, Σ, nthis ` x : Γ (x)
T-Var

Γ, Σ, nthis ` ` : Σ(`)
T-Loc

Γ, Σ, nthis |= assumptions(C<d>) Γ, Σ, nthis ` e : T ′

fields(C<d>) = T f T ′ <: T Γ, Σ, nthis ` nthis : Tthis

owner(C<d>) ∈ (domains(Tthis) ∪ owner(Tthis))

Γ, Σ, nthis ` new C<d>(e) : C<d>
T-New

Γ, Σ, nthis ` error : ERROR
T-Error

Γ, Σ, nthis ` e0 : T0 fields(T0) = T f

Γ, Σ, nthis ` e0.fi : Ti
T-Read

Γ, Σ, nthis ` e : T ′

Γ, Σ, nthis ` (T ) e : T
T-Cast

Γ, Σ, nthis ` e0 : T0 Γ, Σ, nthis ` e : Ta

mtype(m,T0) = T → TR Ta <: [e/x, e0/this] T

Γ, Σ, nthis ` e0.m(e) : [e/x, e0/this] TR
T-Invk

Γ, Σ, ` ` e : T

Γ, Σ, nthis ` ` > e : T
T-Context

Fig. 11. Typechecking

3.3 Typing Rules

FDJ’s subtyping rules are given in Figure 10. Subtyping is derived from the
immediate subclass relation given by the extends clauses in the class table CT .
The subtyping relation is reflexive and transitive, and it is required that there
be no cycles in the relation (other than self-cycles due to reflexivity). The ERROR
type is a subtype of every type.

Typing judgments, shown in Figure 11, are of the form Γ, Σ, nthis ` e : T ,
read, “In the type environment Γ , store typing Σ, and receiver nthis, expression
e has type T .”

The T-Var rule looks up the type of a variable in Γ . The T-Loc rule looks up
the type of a location in Σ. The object creation rule verifies that any assump-
tions (see Figure 14) that the class being instantiated makes about its domain
parameters are justified based on the current typing environment. The entail-
ment relation |= for linking assumptions will be defined below in Figure 13. The
creation rule also checks that the parameters to the constructor have types that
match the types of that class’s fields. Finally, it verifies that the object being
created is part of the same domain as nthis or else is part of the domains declared
by nthis (the domains function is defined in Figure 14, and the owner function
gets the owner of nthis by extracting the first owner parameter from T).



M OK in C fields(C′<α>) = T ′ g L OK in C<α, β>

{this : C<α, β>}, ∅, this |= (this → owner(T ))

K = C<α, β>(T ′ g, T f) { super(g); this.f = f ; }class C<α, β> extends C′<α> assumes γ → δ { T f ; K D; L; M ; } OK
ClsOK

CT (C) = class C<α, β> extends C′<α> . . .

override(m,C′<α>, T → TR)

{x : T , this : C<α, β>}, ∅, this ` e : TR TR <: T

{x : T , this : C<α, β>}, ∅, this |= (this → owner(T ))

TR m(T x) { return e; } OK in C
MethOK

{d1, d2} ∩ domains(C<α>) 6= ∅
d1 6∈ domains(C<α>) =⇒ (this : C<α>, ∅, this |= d1 → owner(C<α>))

d2 6∈ domains(C<α>) =⇒ (this : C<α>, ∅, this |= this → d2)link d1 → d2 OK in C<α>
LinkOK

∀` ∈ domain(Σ) ∅, Σ, ` |= assumptions(Σ[`]))

Σ OK
T-Assumptions

domain(S) = domain(Σ) S[`] = C<`′.x>(v) ⇐⇒ Σ[`] = C<`′.x>

(S[`, i] = `′′) ∧ (fields(Σ[`]) = T f) =⇒ (Σ[`′′] <: Ti) Σ OK
(S[`, i] = `′′) =⇒ (∅, Σ, ` |= ` → owner(Σ[`′′]))

Σ ` S
T-Store

Fig. 12. Class, Method and Store Typing

The typing rule for error assigns it the type ERROR. The rule for field reads
looks up the declared type of the field using the fields function defined in Fig-
ure 14. The cast rule simply checks that the expression being cast is well-typed;
a run-time check will determine if the value that comes out of the expression
matches the type of the cast. Our cast rule is simpler than Featherweight Java’s
in that we omit the check for “stupid casts.”

Rule T-Invk looks up the invoked method’s type using the mtype function
defined in Figure 14, and verifies that the actual argument types are subtypes of
the method’s argument types. The method’s nominal argument and result types
must have actual parameter values substituted for formals, so that domain names
that are qualified by a formal parameter are compared properly in the calling
context. Finally, the T-Context typing rule for an executing method checks the
method’s body in the context of the new receiver `.

Finally, for each rule of the form Γ, Σ, nthis ` e : T we include an implicit
check that T 6= ERROR =⇒ Γ, Σ, nthis |= nthis → owner(T ). This implicit check
verifies that the current object named by nthis has permission to access the
owning domain of the expression.



(d1 → d2) ∈ links(Σ[`])

Γ, Σ, nthis |= (d1 → d2)
T-DynamicLink

Γ, Σ, nthis ` nthis : T (d1 → d2) ∈ linkdecls(T )

Γ, Σ, nthis |= (d1 → d2)
T-DeclaredLink

Γ, Σ, nthis |= (n → n.x)
T-ChildRef

Γ, Σ, nthis |= (d → d)
T-SelfLink

Γ, Σ, nthis ` n : T Γ, Σ, nthis |= (owner(T ) → d)

Γ, Σ, nthis |= (n → d)
T-LinkRef

Γ, Σ, nthis ` n : T Γ, Σ, nthis |= (d → owner(T )) public(x)

Γ, Σ, nthis |= (d → n.x)
T-PublicLink

Γ, Σ, nthis ` n : T Γ, Σ, nthis |= (ns → owner(T )) public(x)

Γ, Σ, nthis |= (ns → n.x)
T-PublicRef

Fig. 13. Link Permission Rules

Figure 12 shows the rules for typing classes, declarations within classes, and
the store. The typing rules for classes and declarations have the form “class C is
OK,” and “method/link declaration is OK in C.” The class rule checks that the
methods and links in the class are well-formed, and that the “this” references is
allowed to access the domains of the fields in the class.

The rule for methods checks that the method body is well typed, and uses the
override function (defined in Figure 14) to verify that methods are overridden
with a method of the same type. It also verifies that the “this” reference has
permission to access the domains of the arguments of the method.

The link rule verifies that one of the two domains in the link declaration was
declared locally, preventing a class from linking two external domains together.
The rule also ensures that if the declaration links an internal and an external
domain, there is a corresponding linking relationship between this and the
external domain.

The store typing rule ensures that the store type gives a type to each location
in the store’s domain that is consistent with the classes and ownership param-
eters in the actual store. For every value in a field in the store, the type of the
value must be a subtype of the declared type of the field. The check Σ OK, de-
fined by the T-Assumptions rule, verifies that all the linking assumptions made
for each object in the store are justified based on actual link declarations in the
source code. Finally, the last check verifies link soundness for the store: if object
` refers to object `′′ in it’s ith field, then the link declarations implied by the
store type Σ imply that ` has permission to access the domain of `′′.

Figure 13 shows the rules for determining whether an object named by n or
a domain d has permission to access another domain d′. These rules come in two



forms: Γ, Σ, nthis |= (n → d) and Γ, Σ, nthis |= (d → d′). The first form of rule
is read, “Given the type environment Γ , the store type Σ, and a name for the
current object nthis, the object named by n has permission to access domain
d.” The second form is similar, except that the conclusion is that any object in
domain d has permission to access domain d′. The two forms allow us to reason
about access permission both on a per-object basis and on a per-domain basis.

The T-DynamicLink rule can be used to conclude that two domains are linked
if there is an object in the store that explicitly linked them. The T-DeclaredLink

rule allows the type system to rely on any links that are declared or assumed
in the context of the class of nthis. The T-ChildRef rule states that any object
named by n has permission to access one of its own domains n.x. The T-SelfLink

rule states that every domain can access itself. The T-LinkRef rule allows the
object named by n to access a domain if the owner of n can access that domain.
The T-PublicLink and T-PublicRef rules allow objects and domains to access
the public domain of some object in a domain they already have access to.

Figure 14 shows the definitions of many auxiliary functions used earlier in the
semantics. These definitions are straightforward and in many cases are derived
directly from rules in Featherweight Java. The Aux-Public rule checks whether
a domain is public. The next few rules define the domains, links, assumptions,
and fields functions by looking up the declarations in the class and adding them
to the declarations in superclasses. The linkdecls function just returns the union
of the links and assumptions in a class, while the owner function just returns
the first domain parameter (which represents the owning domain in our formal
system).

The mtype function looks up the type of a method in the class; if the method
is not present, it looks in the superclass instead. The mbody function looks up
the body of a method in a similar way. Finally, the override function verifies
that if a superclass defines method m, it has the same type as the definition of
m in a subclass.

3.4 Properties

In this section, we state type soundness and link soundness for Featherweight
Domain Java. The full proofs are straightforward but tedious, and so we relegate
them to a companion technical report [2].

Theorem 1 (Type Preservation).
If ∅, Σ, nthis ` e : T , Σ ` S, and S ` e 7→ e′, S′, then there exists Σ′ ⊇ Σ

and T ′ <: T such that ∅, Σ′, nthis ` e′ : T ′ and Σ′ ` S′.

Proof. By induction over the derivation of S ` e 7→ e′, S′.

Theorem 2 (Progress).
If ∅, Σ, nthis ` e : T and Σ ` S then either e is a value or e has an error

subexpression or S ` e 7→ e′, S′.

Proof. By induction over the derivation of ∅, Σ, nthis ` e : T .



CT (C) = class C<α, β> . . . { T f ; D; L; M ; }
(public domain x) ∈ D

public(x)
Aux-Public

CT (C) = class C<α, β> extends C′<α> . . . { T f ; D; L; M ; }
D = publicopt domain x domains(C′<d>) = d′

domains(C<d, d′>) = this.x, d′

Aux-Domains

CT (C) = class C<α, β> extends C′<α> . . . { T f ; D; L; M ; }
L = link dc → d′

c links(C′<d>) = ds → d′
s

links(C<d, d′>) = ([d/α, d′/β] (dc → d′

c)), ds → d′

s

Aux-Links

CT (C) = class C<α, β> extends C′<α> assumes γ → δ . . .

assumptions(C′<d>) = ds → d′

s

assumptions(C<d, d′>) = ([d/α, d′/β] (γ → δ)), ds → d′
s

Aux-Assume

CT (C) = class C<α, β> extends C′<α> . . . { T f ; D; L; M ; }
fields(C′<d>) = T ′ f ′

fields(C<d, d′>) = ([d/α, d′/β] T f), T ′ f ′

Aux-Fields

linkdecls(C<d>) = links(C<d>) ∪ assumptions(C<d>)
Aux-LinkDecls

owner(C<d>) = d1

Aux-Owner

CT (C) = class C<α> . . . { T f ; D; L; M ; }
(TR m(T x) { return e; }) ∈ M

mtype(m,C<d>) = [d/α] T → TR

Aux-MType1

CT (C) = class C<α, β> extends C′<α> . . . { T f ; D; L; M ; }
m is not defined in M

mtype(m,C<d, d′>) = mtype(m,C′<d>)
Aux-MType2

CT (C) = class C<α> . . . { T ′ f ; D; L; M ; }
(TR m(T x) { return e; }) ∈ M

mbody(m,C<d>) = [d/α] (x, e)
Aux-MBody1

CT (C) = class C<α, β> extends C′<α> . . . { T f ; D; L; M ; }
m is not defined in M

mbody(m,C<d, d′>) = mbody(m,C′<d>)
Aux-MBody2

(mtype(m,C<d>) = T ′ → T ′) =⇒ (T = T ′ ∧ T = T ′)

override(m,C<d>, T → T )
Aux-Override

Fig. 14. Auxiliary Definitions



Together, Type Preservation and Progress imply that the type system for
FDJ is sound. We also wish to state a link soundness property for FDJ. First,
we define link soundness for the heap: if one object refers to another, then it has
permission to do so.

Theorem 3 (Heap Link Soundness).
If Σ ` S and S[`, i] = `′′ then ∅, Σ, ` |= ` → owner(Σ[`′′]).

Proof. This property is enforced by the store typing rule T-Store.

In practice, it is important that link soundness hold not only for field refer-
ences in the system, but also for expressions in methods. The intuition behind
expression link soundness is that if a method with receiver object nthis is cur-
rently executing, it should only be able to compute with objects that nthis has
permission to access.

Theorem 4 (Expression Link Soundness).
If ∅, Σ, nthis ` e : T and T 6= ERROR then ∅, Σ, nthis |= (nthis → owner(T )).

Proof. As stated earlier, this condition is implicitly enforced by each typing rule
of the form ∅, Σ, nthis ` e : T .

As a result of link soundness, developers using ownership domains can be
confident that the linking specifications are an accurate representation of run
time aliasing in the system.

4 Related Work

Ownership type systems. A number of early research projects, including
Islands [17] and Balloons [5], provided a way to encapsulate one object within
another. The term “ownership” is due to the Flexible Alias Protection project
[23, 13], which added ownership parameters in order to support object-oriented
idioms like collection classes. These early systems all enforced the owners-as-
dominators property (or even more restrictive properties).

A number of researchers have proposed solutions to the long-recognized prob-
lem of expressing iterators in ownership type systems. One solution is to allow
dynamic aliases to internal ownership domains [11], breaking the owners-as-
dominators property for variables on the stack. Since iterators are generally
used only on the stack, this solution is sufficient for most uses of iterators. How-
ever, it has two drawbacks: any external object–not only trusted iterators–can
access objects in private domains. In addition, this solution does not support id-
ioms like event callback objects, which are generally used in a way that requires
references to callback objects on the heap.

A more expressive, but somewhat ad-hoc solution was proposed by Clarke
[10] and later adopted by Boyapati et al. [8]. This solution allows inner classes
to violate the owners-as-dominators property, while enforcing it for all regular
classes. This technique supports both iterators and event callbacks, but places



some restrictions on implementors, because all iterators and callbacks must be
implemented as inner classes (as they often, but not always, are in practice).

Our own previous work, AliasJava, uses a capability-based encapsulation
model instead of owners-as-dominators [4]. In this model, the domain param-
eters of an object are capabilities allowing the object to access the objects in
that domain. Thus, developers can reason about access permission by examin-
ing the parameterization of objects. Although this solution is more flexible than
either of the solutions described above, reasoning about capabilities is not as
straightforward as reasoning about object containment.

More recently, Potanin et al. propose a way to provide capability-based en-
capsulation with no changes to Java’s syntax, instead enforcing a stylized use
of Java’s generics [24]. We build on their ideas (as well as those of Noble et al.
[23]) to integrate genericity with ownership, but we introduce some new syntax
in order to support stronger and more flexible alias-control policies.

Ownership domains, as presented in this paper, represent the first solution
that supports flexible implementations of iterator and event idioms while also
preserving clear reasoning about inter-domain aliasing. In addition, the ability
to define multiple ownership domains per object and specify a fine-grained policy
controlling inter-domain aliasing allows ownership domains to express architec-
tural constraints that cannot be described in previous systems.

Several systems build on the owners-as-dominators property to provide sec-
ondary properties including safe concurrency [8], safe memory management [9],
reasoning about effects [11], and abstraction [6]. Since ownership domains can
be used to enforce owners-as-dominators, our system can support similar kinds
of reasoning in a more flexible setting.

Clarke’s thesis presents an object calculus that allows multiple ownership

contexts to be defined for each object, similar to our ownership domains [10]. We
build on this work with a concrete language design and increase expressiveness
by by specifying aliasing policy separately from containment.

Other related work. Our previous work on ArchJava allows developers to
document architectural designs similar to those described in Figure 7 [3]. The
original ArchJava system provided a more detailed description of component
interactions than ownership domains do, but did not constrain aliasing between
components. The first author’s dissertation demonstrates adding ownership do-
mains to ArchJava in order to reason about data sharing between components
as well [1]. Lam and Rinard express design information using tokens that are
somewhat similar to ownership domains, but their system does not support hi-
erarchical designs or important object-oriented constructs like inheritance [19].

Confined types [7] restrict aliases of an object to within a particular pack-
age, a weaker but more lightweight notion compared to the object-based encap-
sulation provided by ownership domains. The Universes system provides both
object-based encapsulation and package-based encapsulation [21]. Systems like
alias types [27] and separation logic [25] provide a finer control of aliasing com-



pared to ownership domains, but are also much more heavyweight, requiring
many more declarations to gain the same level of reasoning about aliasing.

Leino et al.’s data groups [20] and Greenhouse et al.’s regions [16] are similar
to ownership domains. Here groups and regions refer to sets of fields rather than
sets of objects, and are used to reason about effects rather than aliasing.

5 Conclusion and Future Work

This paper generalizes previous work on ownership type systems to support own-
ership domains. By separating alias-control policy from the ownership mecha-
nism, we gain two primary benefits. First, programmers can express more flexible
aliasing policies that naturally support common object-oriented idioms such as
iterators and events. Second, programmers can specify high-level design infor-
mation by declaring multiple ownership domains per object and specifying the
aliasing relationship among these domains. Thus, ownership domains are both
more flexible and more precise than previous ownership-based encapsulation
mechanisms. In the future, we intend to perform case studies that will provide
insights into the usability and benefits of ownership domains.
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