
The Cecil Language
Specification and Rationale

Version 3.2

Craig Chambers and the Cecil Group

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, Washington 98195-2350 USA

February, 2004

ii

Abstract

Cecil is a purelyobject-orientedlanguageintendedto supportrapidconstructionof high-quality,
extensiblesoftware.Cecilcombinesmulti-methodswith asimpleclasslessobjectmodel,akind of
dynamicinheritance,modules,andoptionalstatictype checking.Instancevariablesin Cecil are
accessedsolely throughmessages,allowing instancevariablesto be replacedor overriddenby
methodsand vice versa.Cecil’s predicateobjectsmechanismallows an object to be classified
automaticallybasedon its run-time (mutable) state.Cecil’s static type systemdistinguishes
betweensubtypingandcodeinheritance,but Cecil enablesthesetwo graphsto bedescribedwith
asinglesetof declarations,streamliningthecommoncasewherethetwo graphsareparallel.Cecil
includesa fairly flexible form of parameterization,including explicitly parameterizedobjects,
types, and methods,as well as implicitly parameterizedmethodsrelatedto the polymorphic
functionscommonlyfound in functionallanguages.By makingtypedeclarationsoptional,Cecil
aimsto allow mixing of andmigrationbetweenexploratoryandproductionprogrammingstyles.
Cecil supportsa module mechanismthat enablesindependently-developedsubsystemsto be
encapsulated,allowing them to be type-checked and reasonedabout in isolation despitethe
presenceof multi-methodsandsubclassing.Objectscanbe extendedexternally with additional
methodsandinstancevariables,oftenencapsulatedin separatemodules,supportingakind of role-
based or subject-oriented programming style.

This documentmixes the specificationof the languagewith discussionsof designissuesand
explanations of the reasoning that led to various design decisions.

iii

Table of Contents

1 Introduction. 6

1.1 Design Goals and Major Features 6

1.2 Overview 9

2 Dynamically-Typed Core . 10

2.1 Objects and Inheritance 10
2.1.1 Inheritance 11
2.1.2 Object Instantiation 11
2.1.3 Extension Declarations 12
2.1.4 Predefined Objects 12
2.1.5 Closures 13

2.2 Methods 13
2.2.1 Argument Specializers and Multi-Methods 14
2.2.2 Method Bodies 15
2.2.3 Primitive Methods 16

2.3 Fields 17
2.3.1 Read-Only vs. Mutable Fields 18
2.3.2 Fields and Methods 18
2.3.3 Copy-Down vs. Shared Fields 19
2.3.4 Field Initialization 20

2.4 Predicate Objects 21
2.4.1 Predicate Objects and Inheritance 23
2.4.2 Predicate Objects and Fields 26

2.5 Statements and Expressions 27
2.5.1 Declaration Blocks 28
2.5.2 Variable Declarations 28
2.5.3 Variable References 29
2.5.4 Assignment Statements 29
2.5.5 Literals 29
2.5.6 Message Sends 29
2.5.7 Object Constructors 31
2.5.8 Vector Constructors 31
2.5.9 Closures 31
2.5.10 Parenthetical Subexpressions 32

2.6 Precedence Declarations 32
2.6.1 Previous Approaches 33
2.6.2 Precedence and Associativity Declarations in Cecil 34

iv

2.7 Method Lookup 35
2.7.1 Philosophy 35
2.7.2 Semantics 36
2.7.3 Examples 37
2.7.4 Strengths and Limitations 38
2.7.5 Multiple Inheritance of Fields 39
2.7.6 Cyclic Inheritance 40
2.7.7 Method Lookup and Lexical Scoping 40
2.7.8 Method Invocation 41

2.8 Resends 41

2.9 Files and Include Declarations 43

2.10 Pragmas 43

3 Static Types. 45

3.1 Goals 45

3.2 Types and Signatures 46

3.3 Type and Signature Declarations 48
3.3.1 Type Declarations 49
3.3.2 Representation and Object Declarations 49
3.3.3 Type and Object Extension Declarations 51
3.3.4 Signature Declarations 51
3.3.5 Implementation and Method Declarations 52
3.3.6 Field Implementation Declarations 52
3.3.7 Other Type Declarations 53
3.3.8 Discussion 53

3.4 Special Types and Type Constructors 54
3.4.1 Named Types 54
3.4.2 Closure Types 55
3.4.3 Least-Upper-Bound Types 55
3.4.4 Greatest-Lower-Bound Types 55

3.5 Object Role Annotations 56

3.6 Type Checking Messages 58
3.6.1 Checking Messages Against Signatures 58
3.6.2 Checking Signatures Against Method Implementations 59
3.6.3 Comparison with Other Type Systems 61
3.6.4 Type Checking Inherited Methods 62

3.7 Type Checking Expressions, Statements, and Declarations 64

3.8 Type Checking Subtyping Declarations 69

3.9 Type Checking Predicate Objects 69

3.10 Mixed Statically- and Dynamically-Typed Code 71

v

4 Parameterization and Bounded Parametric Polymorphism 73

4.1 Parameterized Declarations 73
4.1.1 Type Parameters, Type Variables, and Instantiating Types 73
4.1.2 Explicit and Implicit Parameterization 74
4.1.3 Omitting the Explicit forall Clause: the Backquote Sugar 75

4.2 Bounded Polymorphism and Type Constraints 75

4.3 Constraint Solving and Type Inference 77

4.4 F-bounded Polymorphism 79

4.5 Related Work 81
4.5.1 Languages Based on F-Bounded Polymorphism 81
4.5.2 Languages Based on SelfType or Matching 83
4.5.3 Languages Based on Signature Constraints and Implicit Structural Subtyping83
4.5.4 Languages Based on Instantiation-Time Checking 85
4.5.5 Languages Based on Covariant Redefinition 85
4.5.6 Languages Offering Local Type Inference 85

5 Modules. 87

6 Related Work. 89

7 Conclusion . 92

References . 93

Appendix A Annotated Cecil Syntax . 99

A.1 Grammar 99

A.2 Tokens 105

A.3 White Space 105

6

1 Introduction

This documentdescribesthe currentdesignof Cecil, an object-orientedlanguageintendedto
supportthe rapid constructionof high-quality, reusable,extensiblesoftwaresystems[Chambers
92b, Chambers93b, Chambers& Leavens94]. Cecil is unusualin combininga pure,classless
objectmodel,multiple dispatching(multi-methods),modules,andmixedstaticanddynamictype
checking.Cecil was inspired initially by Self [Ungar & Smith 87, Hölzle et al. 91a], CLOS
[Bobrow etal. 88,Gabrieletal. 91],andTrellis [Schaffert etal. 85,Schaffert etal. 86].Thecurrent
versionof Cecil extendstheearlierversion[Chambers93a]with predicateobjects,modules,and
efficient typechecking algorithms.

1.1 Design Goals and Major Features

Cecil’s design results from several goals:

• Maximizethe programmer’s ability to develop software quickly and to reuseand modify
existing software easily.

In responseto thisgoal,Cecil is basedonapureobjectmodel:all dataareobjectsandobjects
aremanipulatedsolely by passingmessages.A pureobjectmodelensuresthat the power of
object-orientedprogrammingis uniformly availablefor all dataandall partsof programs.The
run-time performance disadvantage traditionally associatedwith pure object-oriented
languages is diminishing with the advent of advanced implementations.

Our experiencealsoleadsusto developa classless(prototype-based)objectmodelfor Cecil.
Wefeel thataclasslessobjectmodelis simplerandmorepowerful thantraditionalclass-based
objectmodels.Cecil’sobjectmodelis somewhatmorerestrictedthanthosein otherprototype-
basedlanguages[Borning86,Lieberman86,LaLondeetal. 86,Ungar& Smith87,Lieberman
et al. 87], in response to other design goals.

Since messagepassingis the cornerstoneof the power of object-orientedsystems,Cecil
includesa fairly generalform of dynamic binding basedon multiple dispatching.Multi-
methodsaffect many aspectsof therestof the languagedesign,andmuchof theresearchon
Cecilaimsto combinemulti-methodswith traditionalobject-orientedlanguageconcepts,such
as encapsulation and static type checking, not found in other multiple dispatching languages.

Inheritancealsoplaysakey role in organizingsoftwareandfactoringoutcommonalities.Cecil
extendstraditionalinheritancemechanismswith predicateobjectstosupportanautomaticform
of classificationof objectsinto specializedsubclassesbasedon their run-timestate.Sincethis
statecanbemutable,anobject’s classificationcanchangeover time.This mechanismenables
inheritanceandclassificationto beappliedevenwhenmodellingtime-varyingpropertiesof an
object.For example,a rectanglecan be automaticallyclassifiedas the predicatesubobject
squarewhenever it satisfiesthepredicatethatits lengthequalsits width, evenif therectangle’s
length and width are mutable.

Instancevariables(called fields in Cecil) are also accessedsolely by sendingmessages,
enablingfields to be replacedor even overriddenwith methods,and vice versa,without
affecting clients. Fields can be given default initial valuesas part of their declaration.An
initialization expressionis evaluatedlazily, whenthefield is first referenced,actingasa kind
of memoizedconstantfunction. By allowing the initialization expressionto referencethe

7

object that it will becomea part of, circular datastructurescan be constructed,and more
generally, the value of one field can be computed from the values of other fields of an object.

• Support production of high-quality, reliable software.

To help in the constructionof high-quality programs,programmerscan add statically-
checkabledeclarationsand assertionsto Cecil programs.One important kind of static
declarationspecifiesthe typesof (i.e., the interfacesto) objectsand methods.Cecil allows
programmersto specifythetypesof methodarguments,results,andlocal variables,andCecil
performstypecheckingstaticallywhenastatically-typedexpressionis assignedto astatically-
typedvariableor formal argument.Thetypesspecifiedby programmersdescribetheminimal
interfacesrequiredof legal objects,not their representationsor implementations, to support
maximumreuseof typed code.In Cecil, the subtypegraphis distinguishedfrom the code
inheritancegraph,sincetype checkinghasdifferentgoalsandrequirementsthanhave code
reuse and module extension [Snyder 86, Halbert & O’Brien 86, Cooket al. 90].

To supportthe independentconstructionof subsystems,Cecil includesa modulesystem.A
moduleencapsulatesits internalimplementationdetailsandpresentsan interfaceto external
clients.This encapsulationmechanismis speciallydesignedto work in thepresenceof multi-
methodsand inheritance/subtypingacrossmodule boundaries.Modules can be used to
encapsulate“roles” [Andersen& Reenskaug92] or “subjects” [Harrison & Ossher93],
programmingidioms where piecesof the total interface of an object are split apart into
application-specificfacets.A given modulecan include methodand field declarationsthat
extend one or more previously-defined objects with additional specialized state and behavior.

Cecil includesotherkinds of staticdeclarations.An object canbe annotatedasan abstract
object (providing sharedbehavior but not manipulableby programs),as a templateobject
(providing behavior suitablefor direct instantiationbut otherwisenot manipulableby the
program),or asaconcreteobject(fully manipulableandinstantiatedasis). Objectannotations
inform thetypecheckerhow theprogrammerintendsto useobjects,enablingthetypechecker
to be more flexible for objects used in only a limited fashion.

Cecil encouragesa functionalprogrammingstyle by default, asthis is likely to be easierto
understandand more robust in the face of programmingchanges.By default, both local
variablesandfields are initialize-only; an explicit var keyword is requiredto assertthat a
variableor field canbemutated.An objectcanbecreatedandits fields initialized to desired
valuesin asingleatomicoperation;therearenopartially-initializedstatesasarefoundduring
execution of a constructor in C++.

Finally, Cecil omits certaincomplex languagefeaturesthat can have the effect of masking
programmingerrors.For example,in Cecil,multiple dispatchingandmultiple inheritanceare
bothunbiasedwith respectto argumentorderandparentorder;any resultingambiguitiesare
reportedbackto theprogrammeraspotentialerrors.This designdecisionis squarelyat odds
with thedecisionin CLOSandrelatedlanguages.Additionally, subtypingin Cecil is explicit
ratherthanimplicit, so that the behavioral specificationinformationimplied by typescanbe
incorporated into the decision about whether one type is a behavioral subtype of another.

8

• Supportboth exploratory programmingand production programming, and enablesmooth
migration of parts of programs from one style to the other.

Central to achieving this goal in Cecil is the ability to omit type declarationsand other
annotationsin initial exploratoryversionsof asubsystemandincrementallyaddannotationsas
thesubsystemmaturesto productionquality. Cecil’s typesystemis intendedto beflexible and
expressive, so that typedeclarationscanbeaddedto anexisting dynamically-typedprogram
andachievestatictypecorrectnesswithoutmajorreorganizationof theprogram.In particular,
objects,types,andmethodsmaybeexplicitly parameterizedby types,methodargumentand
resulttypesmaybedeclaredasor parameterizedby implicitly-boundtypevariablesto achieve
polymorphicfunctiondefinitions,and(asmentionedabove) thesubtypegraphcandiffer from
theinheritancegraph.Thepresenceof multipledispatchingrelievessomeof thetypesystem’s
burden,sincemultiple dispatchingsupportsin a type-safemannerwhatwould beconsidered
unsafe covariant method redefinition in a single-dispatching language.

Additionally, an environmentfor Cecil could infer on demandsomepartsof programsthat
otherwisemustbeexplicitly declared,suchasthe list of supertypesof anobjector thesetof
legal abstractmethodsof an object, so that one languagecan support both exploratory
programmers(who usethe inferencer)andproductionprogrammers(who explicitly specify
what they want). This approachresolvessomeof the tensionbetweenlanguagefeaturesin
supportof exploratoryprogrammingandfeaturesin supportof productionprogramming.In
somecases,thelanguagesupportsthemoreexplicit production-orientedfeaturedirectly, with
an environment expected to provide additional support for the exploratory-oriented feature.

• Avoid unnecessary redundancy in programs.

To avoid requiringtheprogrammerto repeatspecifyingthe interfaceof anobjector method,
Cecil allows a single object declarationto define both an implementationand a type (an
interface). Similarly, where the subtype hierarchy coincides with the code inheritance
hierarchy, a singledeclarationwill establishbothrelations.This approachgreatlyreducesthe
amountof codethatotherwisewouldberequiredin asystemthatdistinguishedsubtypingand
codeinheritance.Without this degreeof conciseness,we believe separatingsubtypingfrom
code inheritance would be impracticably verbose.

Similarly, Cecil’s classlessobjectmodel is designedso that a singleobjectdeclarationcan
definean entire datatype. This contrastswith the situationin Self, wheretwo objectsare
neededto definemostdatatypes[Ungar et al. 91]. Similarly, Cecil’s objectmodelsupports
both conciseinheritanceof representationand conciseoverriding of representation,unlike
mostclass-basedobject-orientedlanguageswhich only supporttheformerandmostclassless
object-oriented languages which only conveniently support the latter.

Finally, Cecil avoidsrequiringannotationsfor exploratoryprogramming.Annotationssuchas
type declarationsand privacy declarationsare simply omitted when programming in
exploratorymode.If thiswerenot thecase,thelanguagewould likely betooverbosefor rapid
exploratory programming.

• Be “as simple as possible but no simpler.”

Cecil attemptsto provide thesmallestsetof featuresthatmeetits designgoals.For example,
the object model is pure and classless,thus simplifying the languagewithout sacrificing
expressive power. However, somefeaturesareincludedin Cecil that make it morecomplex,

9

such as supporting multiple dispatching or distinguishing between subtyping and
implementation inheritance. Given no other alternative, our preference is for a more powerful
language which is more complex over a simpler but less powerful language. Simplicity is
important but should not override other language goals.

Cecil’s design includes a number of other features that have proven their worth in other systems.
These include multiple inheritance of both implementation and interface, closures to implement
user-defined control structures and exceptions, and, of course, automatic storage reclamation.

1.2 Overview

This document attempts to provide a fairly detailed specification of the Cecil language, together
with discussion of the various design decisions. The next section of this document describes the
basic object and message passing model in Cecil. Section 3 extends this dynamically-typed core
language with a static type system and describes a type checking algorithm, and section 4 discusses
parameterization. Section 5 describes Cecil’s module system. Section 6 discusses some related
work, and section 7 concludes. Appendix A summarizes the complete syntax for Cecil.

10

2 Dynamically-Typed Core

Cecil is a pure object-oriented language. All data are objects, and message passing is the only way
to manipulate objects. Even instance variables are accessed solely using message passing. This
purity offers the maximum benefit of object-oriented programming, allowing code to manipulate
an object with no knowledge of (and hence no dependence on) its underlying representation or
implementation.

Each Cecil implementation defines how programs are put together. The UW Cecil implementation
defines a program to be a sequence of declaration blocks and statements:

program ::= file_body

file_body ::= { top_decl_block | stmt }

Declaration blocks are comprised of a set of declarations that are introduced simultaneously;
names introduced as part of the declarations in the declaration block are visible throughout the
declaration block and also for the remainder of the scope containing the declaration block; the
names go out of scope once the scope exits. Because the name of an object is visible throughout its
declaration block, objects can inherit from objects defined later within the declaration block and
methods can be specialized on objects defined later in the declaration block. In environments where
the top-level declaration comprising the program is spread across multiple files, the ability to attach
methods to objects defined in some other file is important.

The syntax of declarations is as follows:*

top_decl_block ::= { decl | pragma }

decl ::= object_decl
| obj_ext_decl
| predicate_decl
| method_decl
| field_decl
| let_decl
| precedence_decl
| include_decl

The next four subsections describe objects, methods, fields, and predicate objects. Subsection 2.5
describes variables, statements, and expressions, and subsection 2.6 explains precedence
declarations. Subsections 2.7 and 2.8 detail the semantics of message passing in Cecil. Subsection
2.9 describes include declarations and file structure in the UW Cecil implementation, and
subsection 2.10 discusses pragmas.

2.1 Objects and Inheritance

The basic features of objects in Cecil are illustrated by the following declarations, which define a
simple shape hierarchy. Comments in Cecil either begin with “--” and extend to the end of the line
or are bracketed between “(--” and “--)” and can be nested.

object shape;

object circle isa shape;

* Ignoring type and signature declarations (section 3) and module declarations (section 5).

11

object rectangle isa shape;

object rhombus isa shape;

object square isa rectangle, rhombus;

The syntax of an object declaration, excluding features relating to static type checking and
modules, is as follows:*

object_decl ::= “object” name {relation} [field_inits] “;”

relation ::= “isa” parents

parents ::= named_object { “,” named_object }

named_object ::= name

(name is the token for regular identifiers beginning with a letter; see appendix A.2 for more details
on the lexical rules of Cecil.)

Cecil has a classless (prototype-based) object model: self-sufficient objects implement data
abstractions, and objects inherit directly from other objects to share code. Cecil uses a classless
model primarily because of its simplicity, but also because this avoids problems relating to first-
class classes and metaclasses and because it makes defining unique named objects with specialized
behavior easy. Section 2.2 shows how treating “instance” objects and “class” objects uniformly
enables CLOS-style eql specializers to be supported with no extra mechanism.

Section 2.3 describes field initializers.

2.1.1 Inheritance

Objects can inherit from other objects. Informally, this means that the operations defined for parent
objects will also apply to child objects. Inheritance in Cecil may be multiple, simply by listing more
than one parent object; any ambiguities among methods and/or fields defined on these parents will
be reported to the programmer. Inheriting from the same ancestor more than once, either directly
or indirectly, has no effect other than to place the ancestor in relation to other ancestors; Cecil has
no repeated inheritance as in Eiffel [Meyer 88, Meyer 92]. An object need not have any (explicit)
parents; all objects are considered to inherit from the predefined any object (see section 2.1.4). The
inheritance graph must be acyclic.

Inheritance in Cecil requires a child to accept all of the fields and methods defined in the parents.
These fields and methods may be overridden in the child, but facilities such as excluding fields or
methods from the parents or renaming them as part of the inheritance, as found in Eiffel, are not
present in Cecil. We have deliberately chosen to experiment with a simpler inheritance semantics.

Finally, it is important to note that inheritance of code is distinct from subtyping (“inheritance” of
interface or of specification). Section 3 explains Cecil’s support for subtyping and static type
checking.

2.1.2 Object Instantiation

Rather than introduce a distinct instantiation concept into the language, new “instances” of some
object are created solely by inheriting from the object. Object declarations allow statically-known,

* Appendix A gives the complete syntax of the language and explains the notation.

12

named“instances”to be defined,while object constructorexpressionsallow new anonymous
“instances” to be createdat run-time. An object constructorexpressionis syntactically and
semanticallysimilar to an objectdeclaration,except that thereis no namefor the objectbeing
created. For example:

let s1 := object isa square; -- create a fresh “instance” ofsquare when executed

Section2.5.7describesobjectconstructorexpressionsin moredetail.Note that the parentof an
objectmustbestaticallyknown; Cecil doesnotallow objectsto becreatedwhoseparentsarerun-
time computed expressions. This is a restriction over some other prototype-based languages.

2.1.3 Extension Declarations

The inheritancestructureof a namedobject may be augmentedseparatelyfrom the object
declaration through an object extension declaration:

obj_ext_decl ::= “extend” named_object {relation} [field_inits] “;”

In Cecil, objectextensiondeclarations,in conjunctionwith field andmethoddeclarations,enable
programmersto extendpreviously-existingobjects.Thisability canbeimportantwhenreusingand
integratinggroupsof objectsimplementedby otherprogrammers.For example,predefinedobjects
suchasint, i_vector, andm_vector aregiven additionalbehavior andancestrythrough
separateusercode.Similarly, particularapplicationsmayneedto addapplication-specificbehavior
to objectsdefinedaspartof otherapplications.For example,atext-processingapplicationmayadd
specializedtab-to-spaceconversionbehavior to stringsandothercollectionsof charactersdefined
in the standardlibrary. Other object-orientedlanguagessuch as C++ [Stroustrup86, Ellis &
Stroustrup90] andEiffel do not allow programmersto addbehavior to existing classeswithout
modifying the sourcecodeof the existing classes,andcompletelydisallow addingbehavior to
built-in classeslikestrings.Satheris anotableexception,allowing anew classto bedefinedwhich
is a superclassof someexisting classes[Omohundro93]. Section3.3.3 explains how object
extensionsareparticularlyusefultodeclarethattwoobjects,providedby two independentvendors,
aresubtypesof somethird abstracttype.Section5 describeshow modulescanbeusedto localize
extensions to particular regions of code.

2.1.4 Predefined Objects

Several objects are predefined and play special roles.

• Thevoid objectis usedto representa lack of a value.It is usedasthe resultof methodsor
expressionsthathave no usefulresult.Thesystemwill guarantee(staticallyin thepresenceof
type checking) thatvoid is never passed as an argument to a method.

• Theany objectis implicitly theancestorof all non-void objects.It supportsbehavior thatis
shared by all objects.

A Cecil implementationprovides other predefinedobjects,suchas integers,floats, characters,
booleans, and mutable and immutable vectors and strings, as part of its standard library.

13

2.1.5 Closures

Cecil includes closure objects which represent first-class anonymous functions. Closures are
lexically nested in their enclosing scope. As with methods, a closure can have formal arguments.
A closure object is “invoked” by sending it the eval message, with additional actual arguments
for each of its formal arguments. Closures are considered to inherit from the closure predefined
object.

More details on closures are given throughout the remainder of section 2. In particular, section
2.5.9 describes the syntax and semantics of closure constructor expressions and section 2.2.2
describes the evaluation rules for closure eval methods.

2.2 Methods

The following definitions expand the earlier shape hierarchy with some methods:

object shape;
method draw(s, d) { (-- draws s on display d --) }
method move_to(s, new_center) { (-- move s to new_center --) }

object circle isa shape;
method area(c@circle) { c.radius * c.radius * pi}
method circum(c@circle) { c.radius * 2 * pi }

object rectangle isa shape;
method area(r@rectangle) { r.length * r.width }
method circum(r@rectangle) { 2 * r.length + 2 * r.width }

method draw(r@rectangle, d@Xwindow) {
(-- override draw for the case of drawing rectangles on X windows --) }

object rhombus isa shape;

object square isa rectangle, rhombus; -- inherits area method, but overrides circum
method circum(s@square) { 4 * s.length }

The syntax for method declarations (again, excluding aspects relating to static typing and
encapsulation) is as follows:

method_decl ::= “method” method_name “(” [formals] “)” {pragma}
“{” (body | prim_body) “}” [“;”]

method_name ::= msg_name | op_name

msg_name ::= name

formals ::= formal { “,” formal }

formal ::= [name] specializer formal names are optional, if never referenced

specializer ::= “@” named_object specialized formal
| empty unspecialized formal

(op_name is the token for infix and prefix operators beginning with a punctuation symbol; see
appendix A.2 for more details.)

As a convention, we indent method declarations under the associated object declaration. This has
no semantic implication, but it helps to visually organize a collection of object and method

14

declarations in the absence of a more powerful graphical programming environment [Chambers
92b].

2.2.1 Argument Specializers and Multi-Methods

In Cecil, a method specifies the kinds of arguments for which its code is designed to work. For each
formal argument of a method, the programmer may specify that the method is applicable only to
actual arguments that are implemented or represented in a particular way, i.e., that are equal to or
inherit from a particular object. These specifications are called argument specializers, and
arguments with such restrictions are called specialized arguments. The r@rectangle notation
specializes the r formal argument on the rectangle object, implying that the method is intended
to work correctly with any actual argument object that is equal to or a descendant of the
rectangle object as the r formal. An unspecialized formal argument (one lacking a @...
suffix), such as s and new_center in the move_to method above, is treated as being
specialized on the predefined object any that is implicitly an ancestor of all other objects;
consequently an unspecialized formal can accept any argument object.

Methods may be overloaded, i.e., there may be many methods with the same name, as long as the
methods with the same name and number of arguments differ in their argument specializers.
Methods with different numbers of arguments are independent; the system considers the number
of arguments to be part of the method’s name. When sending a message of a particular name with
a certain number of arguments, the method lookup system (described in section 2.7) will resolve
the overloaded methods to a single most-specific applicable method based on the dynamic values
of the actual argument objects and the corresponding formal argument specializers of the methods.

Zero, one, or several of a method’s arguments may be specialized, thus enabling Cecil methods to
emulate normal undispatched functions (by leaving all formals unspecialized, as in move_to
above) and singly-dispatched methods (by specializing only the first argument, as in the area
methods) as well as true multi-methods (as in the specialized version of draw for rectangles on X
windows). Statically-overloaded functions and functions declared via certain kinds of pattern-
matching also are subsumed by multi-methods. Callers which send a particular message to a group
of arguments are not aware of the collection of methods that might handle the message or which
arguments of the methods are specialized, if any; these are internal implementation decisions that
should not affect callers. In particular, a given message can initially be implemented with a single
unspecialized procedure and then later extended or replaced with several specialized
implementations, without affecting clients of the original method, as occurs with the draw
methods in the previous example. In contrast, CLOS has a “congruent lambda list” rule that
requires all methods in a particular generic function to specialize on the same argument positions.

Argument specializers are distinct from type declarations. Argument specializers restrict the
allowed implementations of actual arguments and are used as part of method lookup to locate a
suitable method to handle a message send. Type declarations require that certain operations be
supported by argument objects, but place no constraints on how those operations are implemented.
Type declarations have no effect on method lookup.

15

The name of a formal may be omitted if it is not needed in the method’s body. Unlike singly-
dispatched languages, there is no implicit self formal in Cecil; all formals are listed explicitly.

Cecil’s classless object model combines with its definition of argument specializers to support
something similar to CLOS’s eql specializers. In CLOS, an argument to a multi-method in a
generic function may be restricted to apply only to a particular object by annotating the argument
specializer with the eql keyword. Cecil needs no extra language mechanism to achieve a similar
effect, since methods already are specialized on particular objects. Cecil’s mechanism differs from
CLOS’s in that in Cecil such a method also will apply to any children of the specializing object,
while in CLOS the method will apply only for that object. Dylan, a descendant of CLOS, has a
singleton specializer that is analogous to CLOS’s eql specializer [Apple 92].

As mentioned in subsection 2.1.3, methods can be added to existing objects without needing to
modify those existing objects. This facility, lacking in most object-oriented languages, can make
reusing existing components easier since they can be adapted to new uses by adding methods,
fields, and even parents to them.

The names of methods and fields are in a name space separate from the name space of objects and
variables. A method or field can have the same name as a variable or object without confusion.

2.2.2 Method Bodies

The syntax of the body of a method, closure, or parenthetical subexpression is as follows:

body ::= {stmt} result
| empty return void

result ::= normal_return return an expression
| non_local_rtn return from the lexically-enclosing method

normal_return ::= decl_block [“;”] return void
| assignment [“;”] return void
| expr [“;”] return result of expression

non_local_rtn ::= “^” [“;”] do a non-local return, returning void
| “^” expr [“;”] do a non-local return, returning a result

(The syntax and semantics of statements and expressions is described in section 2.5.)

When invoked, a method evaluates its statements in a new environment containing bindings for the
method’s formal parameters and nested in the method’s lexically-enclosing environment. (The
interactions among nested scopes, method lookup, and other language features is described in more
detail in section 2.7.7.)

The result of the message invoking the method is the result of the last statement in the method’s
body. If the method’s body is empty, then the method returns the special void value. Alternatively,
a method returns void if the last statement is a declaration block, an assignment statement, or an
expression that itself returns void. The void value is used to indicate that the method returns no
useful result. The system ensures that void is not accidentally used in later computation by
reporting an error (statically in the presence of type checking) if void is passed as an argument to
a message.

16

Whena closure’s eval methodis invoked,evaluationproceedsmuchlike theevaluationof any
other method.One differenceis that a closureeval methodmay force a non-local return by
prefixingtheresultexpressionwith the^ symbol;if theresultexpressionis omitted,thenvoid is
returnednon-locally. A non-localreturnreturnsto thecallerof theclosestlexically-enclosingnon-
closuremethodrather than to the caller of the eval method,just like a non-local return in
Smalltalk-80* [Goldberg& Robson83] andSelf andsimilar to a return statementin C. The
languagecurrentlyprohibits invoking a non-localreturnafter the lexically-enclosingscopeof a
closure has returned; first-class continuations are not supported.

2.2.3 Primitive Methods

prim_body ::= “prim” { language_binding }

language_binding::= language “:” code_string
| language “{” code_chars “}”

language ::= name

code_string ::= string

code_chars ::= brace_balanced_chars anycharacters,with balanceduseof “{“ and“}”

Low-level operations,such as integer arithmetic, vector indexing, looping, and file I/O, are
implementedthroughtheuseof primitivemethods.A primitivemethod’sbodyisalist of (language
name,implementationsourcecode)pairs.Thedetailsof theprotocolfor writing codein another
language inside a Cecil primitive method are implementation-specific.The UW Cecil
implementationrecognizesthec_++ andrtl languagenames,for primitiveswritten in C++ and
thecompiler’sinternalintermediatelanguage,respectively. It is fairly straightforwardtomakecalls
to routineswrittenin C++from Cecilbydefiningaprimitivemethodwhosebodyis writtenin C++.

Looping primitive behavior is provided by the loop primitive method specializedon the
closure predefinedobject. This methodrepeatedlyinvokes its argumentclosureuntil some
closureperformsanon-localreturnto breakoutof theloop.OtherlanguagessuchasScheme[Rees
& Clinger86] avoid theneedfor suchaprimitiveby relyinginsteadonuser-level tail recursionand
implementation-providedtail-recursionelimination.However, tail-recursioneliminationprecludes
completesource-level debugging[Chambers92a,Hölzleetal. 92] andconsequentlyis undesirable
in general.Theprimitiveloopmethodmaybeviewedasasimpletail-recursivemethodfor which
the implementation has been instructed to perform tail-recursion elimination.

A primitive body may be included at the top-level using a primitive body declaration:

prim_decl ::= prim_body “;”

This constructallows codefrom otherlanguagesto beincludedoutsideof any compiledroutines.
Primitivedeclarationscanbeusedto includeglobaldeclarationsusedbyprimitivemethods.Again,
the detailed semantics of this construct are implementation-specific.

* Smalltalk-80 is a trademark of ParcPlace Systems.

17

2.3 Fields

Object state, such as instance variables and class variables, is supported in Cecil through fieldsand
associated accessormethods. To define a mutable instance variable x for a particular object obj,
the programmer can declare a field of the following form:

var field x(@obj);

This declaration allocates space for an object reference in the obj object and constructs two real
methods attached to the obj object that provide the only access to the variable:

method x(v@obj) { prim rtl { <v.x> } } -- the get accessor method
method set_x(v@obj, value) { prim rtl { <v.x> := value; } } -- thesetaccessormethod

The get accessormethodreturns the contents of the hidden variable. The set accessormethod
mutates the contents of the hidden variable to refer to a new object, and returns void. Accessor
methods are specialized on the object containing the variable, thus establishing the link between
the accessor methods and the object. For example, sending the x message to the obj object will
find and invoke the get accessor method and return the contents of the hidden variable, thus acting
like a reference to obj’s x instance variable. (Section 5 describes how these accessor methods can
be encapsulated within the data abstraction implementation and protected from external
manipulation.)

To illustrate, the following declarations define a standard list inheritance hierarchy:

object list isa ordered_collection;

method is_empty(l@list) { l.length = 0 }

method prepend(x, l@list) { -- dispatch onsecond argument
object isa cons { head := x, tail := l } }

object nil isa list; -- empty list

method length(@nil) { 0 }

method do(@nil,) {} -- iterating over all elements of the empty list: do nothing

method pair_do(@nil, ,) {}
method pair_do(, @nil,) {}
method pair_do(@nil, @nil,) {}

object cons isa list; -- non-empty lists

var field head(@cons); -- defineshead(@cons) andset_head(@cons,) accessormethods
var field tail(@cons); -- definestail(@cons) andset_tail(@cons,) accessormethods

method length(c@cons) { 1 + c.tail.length }

method do(c@cons, block) {
eval(block, c.head); -- call block on head of list
do(c.tail, block); } -- recur down tail of list

method pair_do(c1@cons, c2@cons, block) {
eval(block, c1.head, c2.head);
pair_do(c1.tail, c2.tail, block); }

The cons object has two fields, only accessible through the automatically-generated accessor
methods.

The syntax of field declarations, excluding static typing aspects and encapsulation, is as follows:

18

field_decl ::= [“shared”] [“var”] “field” method_name “(” formal “)”
 {pragma} [“:=” expr] “;”

2.3.1 Read-Only vs. Mutable Fields

By default, a field is immutable: only the get accessor method is generated for it. To support
updating the value of a field, the var prefix must be used with the field declaration. The presence
of the var annotation triggers generation of the set accessor method. Immutable fields receive their
values either as part of object creation or by an initializing expression associated with the field
declaration; see section 2.3.4. Note that the contents of an immutable field can itself be mutable,
but the binding of the field to its contents cannot change. (Global and local variables in Cecil
similarly default to initialize-only semantics, with an explicit var annotation required to allow
updating of the variable’s value, as described in section 2.5.2.)

In general, we believe that it is beneficial to explicitly indicate when a field is mutable; to encourage
this indication, immutable fields are the default. Programmers looking at code can more easily
reason about the behavior of programs if they know that certain parts of the state of an object cannot
be side-effected. Similarly, immutable fields support the construction of immutable “value”
objects, such as complex numbers and points, that are easier to reason about.

Many languages, including Self and Eiffel, support distinguishing between assignable and constant
variables, but few imperative languages support initialize-only instance variables. CLOS can define
initialize-only variables in the sense that a slot can be initialized at object-creation time without a
set accessor method being defined, but in CLOS the slot-value primitive function can always
modify a slot even if the set accessor is not generated.

2.3.2 Fields and Methods

Accessing variables solely through automatically-generated wrapper methods has a number of
advantages over the traditional mechanism of direct variable access common in most object-
oriented languages. Since instance variables can only be accessed through messages, all code
becomes representation-independent to a certain degree. Instance variables can be overridden by
methods, and vice versa, allowing code to be reused even if the representation assumed by the
parent implementation is different in the child implementation. For example, in the following code,
the rectangle abstraction can inherit from the polygon abstraction but alter the representation
to something more appropriate for rectangles:

object polygon;

var field vertices(@polygon);

method draw(p@polygon, d@output_device) {
(-- draw the polygon on an output device, accessing vertices --) }

object rectangle isa polygon;

var field top(@rectangle);
var field bottom(@rectangle);
var field left(@rectangle);
var field right(@rectangle);

method vectices(r@rectangle) {
-- ++ is a binary operator, here creating a new point object

19

[r.top ++ r.left, r.top ++ r.right,
r.bottom ++ r.right, r.bottom ++ r.left] }

method set_vertices(r@rectangle, vs) {
(-- set corners of rectangle from vs list, if possible --) }

Even within a single abstraction, programmers can change their minds about what is stored and
what is computed without rewriting lots of code. Syntactically, a simple message send that accesses
an accessor method is just as concise as would be a variable access (using the p.x syntactic sugar,
described in section 2.5.6), thus imposing no burden on the programmer for the extra
expressiveness. Other object-oriented languages such as Self and Trellis have shown the
advantages of accessing instance variables solely through special get and set accessor methods.
CLOS enables get and/or set accessor methods to be defined automatically as part of the
defclass form, but CLOS also provides a lower-level slot-value primitive that can read and
write any slot directly. Dylan joins Self and Trellis in accessing instance variables solely through
accessor methods.

An object may define or inherit several fields with the same name. Just as with overloaded methods,
this is legal as long as two methods, accessor or otherwise, do not have the same name, number of
arguments, and argument specializers. A method may override a field accessor method without
removing the field’s memory location from the object, since a resend within the overriding method
may invoke the field accessor method. Implementations may optimize away the storage for a field
in an object if it cannot be accessed, as with the vertices field in the rectangle object.

2.3.3 Copy-Down vs. Shared Fields

By default, each object inheriting a field declaration receives its own space to hold its version of
the field’s contents, and the field’s accessor methods access the memory space associated with their
first argument. Such a “copy-down” field acts much like an instance variable declaration in a class-
based language, since each object gets its own local copy of the field. Alternatively, a field
declaration may be prefixed with the shared keyword, implying that all inheriting objects should
share a single memory location. A shared field thus acts like a class variable.

Supporting both copy-down and shared fields addresses weaknesses in some other prototype-based
object-oriented languages relative to class-based languages. In class-based languages, instance
variables declared in a superclass are automatically copied down into subclasses; the declaration
is inherited, not the variable’s contents. Class variables, on the other hand, are shared among the
class, its instances, and its subclasses. In some prototype-based languages, including Self and Actra
[Lieberman 86], instance variables of one object are not copied down into inheriting objects; rather,
these variables are shared, much like class variables in a class-based language. In Self, to get the
effect of object-specific state, most data types are actually defined with two objects: one object, the
prototype, includes all the instance-specific variables that objects of the data type need, while the
other object, the traits object, is inherited by the prototype and holds the methods and shared state
of the data type [Ungar et al. 91]. New Self objects are created by cloning (shallow-copying) a
prototype, thus giving new objects their own instance variables while sharing the parent traits
object and its methods and state. Defining a data type in two pieces can be awkward, especially
since it separates the declarations of instance variables from the definitions of the methods that

20

access them. Furthermore, inheriting the instance variable part of the implementation of one data
type into another is more difficult in Self than in class-based languages, relying on complex
inheritance rules and dynamic inheritance [Chambers et al. 91] or programming environment
support [Ungar 95]. Copy-down fields in Cecil solve these problems in Self without sacrificing the
simple classless object model. In Cecil, only one object needs to be defined for a given data type,
and the field declarations can be in the same place as the method declarations that access them. This
design increases both conciseness and readability, at the cost of some additional language
mechanism.

Cecil objects are created only through object declarations and object constructor expressions; these
two expressions have similar run-time effects, with the former additionally binding statically-
known names to the created objects enabling methods and fields to be associated with them and
enabling other objects to inherit from them. Cecil needs no other primitive mechanism to create or
copy objects as do other languages. Self provides a shallow-copy (clone) primitive in addition to
object literal syntax (analogous to Cecil’s object constructor expressions), in part because there are
no “copy-down” data slots in Self. Class-based languages typically include several mechanisms for
creating instances and classes and relations among them. On the other hand, creating an object by
inheriting from an existing object may not be as natural as creating an object by copying an existing
object.

2.3.4 Field Initialization

Cecil allows a field to be given an initial value when it is declared by suffixing the field declaration
with the := symbol and an initializing expression. Additionally, when an object is created, an
object-specific initial value may be specified for a non-shared field. The syntax of field initializers
for object declarations and object constructor expressions is as follows:

field_inits ::= “{” field_init { “,” field_init } “}”

field_init ::= name [location] “:=” expr

location ::= “@” named_object

For example, the following method produces a new list object with particular values for its
inherited fields:

method prepend(e, l@list) {
object isa cons { head := e, tail := l } }

For a field initialization of the form name := expr, the field to be initialized is found by
performing a lookup akin to message lookup to find a field declaration named name, starting with
the object being created. Method lookup itself cannot be used directly, since the field to be
initialized may have been overridden with a method of the same name. Instead, a form of lookup
that ignores all methods is used. If this lookup succeeds in finding a single most-specific matching
field declaration, then that field is the one given an initial value; the matching field should not be a
shared field. If no matching field or more than one matching field is found, then a “field initializer
not understood” or an “ambiguous field initializer” error, respectively, is reported. To resolve
ambiguities and to initialize fields otherwise overridden by other fields, an extended name for the
field of the form name@obj := expr may be used instead. For these kind of initializers, lookup
for a matching field begins with the object named obj rather than the object being created. The

21

obj object must be an ancestor of the object being created. Extended field names are analogous to
a similar mechanism related to directed resends, described in section 2.8.

Immutable shared fields must be initialized as part of the field declaration; there is no other way to
give them a value. Immutable copy-down fields may be initialized as part of the field declaration,
but often they are initialized as part of object constructor expressions for objects that inherit the
field, leading to a more functional programming style where data structures are (largely)
immutable.

To avoid pesky problems with uninitialized variables, all fields must be initialized before being
accessed, either by providing an initial value as part of the field declaration, by providing an object-
specific value as part of the object declaration or object constructor expression, or by assigning to
the field before reading from it. The static type checker warns when it cannot prove that at least one
of the first two options is taken for each field inherited by an object, as described in section 3.7.

In Cecil, the initializing expression for a field declaration is not evaluated until the field is first read.
If the field is a shared field, then the initializer is evaluated and the contents of the field is updated
to refer to the initial value; subsequent reads of the shared field will simply return the initial value.
This supports functionality similar to once functions in Eiffel and other languages. If the field is
a copy-down field, then the initializing expression will be evaluated separately for each object
accessed, and the result cached for that object. The initializing expression may name the formal
parameter of the field declaration, allowing the initial value of the field to reference the object of
which the field is a part. The default initializer is not evaluated if it is not needed, i.e., if the field
has already been given a contents as part of object creation or via invocation of the set accessor.

By evaluating field initializers on demand rather than at declaration time, we avoid the need to
specify some arbitrary ordering over field declarations or to resort to an unhelpful “unspecified” or
“implementation-dependent” rule. It is illegal to try to read the value of a field during execution of
the field’s initializer; no cyclic dependencies among field initializers are allowed.

Evaluating a copy-down field’s initializer expression repeatedly for each inheriting object seems to
support common Cecil programming style. This corresponds to CLOS’s :initform specifier.
An earlier version of Cecil specified caching of the results of field initializer evaluation so that other
objects evaluating the same initializer expression would end up sharing the initial value. The
initializing expression was viewed as a shared part of the field declaration, not as a separate part
copied down to each inheriting object. This earlier semantics corresponded more to CLOS’s
:default-initargs specifier. The difference in the semantics is exposed if the initializing
expression evaluates to a new mutable object. In practice, it seems that each object wants its own
mutable object rather than sharing the mutable object among all inheriting objects. Moreover, the
old semantics can be simulated with a combination of a copy-down field that accesses a shared field
to get the field’s initial value.

2.4 Predicate Objects

To enable inheritance and classes to be used to capture run-time varying object behavior, Cecil
support predicate objects [Chambers 93b]. Predicate objects are like normal objects except that

22

they have an associated predicate expression. The semantics of a predicate object is that if an object
inherits from the parents of the predicate object and also the predicate expression is true when
evaluated on the child object, then the child is considered to also inherit from the predicate object
in addition to its explicitly-declared parents. Since methods can be associated with predicate
objects, and since predicate expressions can test the value or state of a candidate object, predicate
objects allow a form of state-based dynamic classification of objects, enabling better factoring of
code. Also, predicate objects and multi-methods allow a pattern-matching style to be used to
implement cooperating methods.

For example, predicate objects could be used to implement a bounded buffer abstraction:

object buffer isa collection;

field elements(b@buffer); -- a queue of elements
field max_size(b@buffer); -- an integer

method length(b@buffer) { b.elements.length }

method is_empty(b@buffer) { b.length = 0 }

method is_full(b@buffer) { b.length = b.max_size }

predicate empty_buffer isa buffer when buffer.is_empty;

method get(b@empty_buffer) { ... } -- raise error or block caller

predicate non_empty_buffer isa buffer when not(buffer.is_empty);

method get(b@non_empty_buffer) { remove_from_front(b.elements) }

predicate full_buffer isa buffer when buffer.is_full;

method put(b@full_buffer, x) { ... } -- raise error or block caller

predicate non_full_buffer isa buffer when not(buffer.is_full);

method put(b@non_full_buffer, x) { add_to_back(b.elements, x); }

predicate partially_full_buffer isa non_empty_buffer, non_full_buffer;

The following diagram illustrates the inheritance hierarchy created by this example (the explicit
inheritance link from the buffer object to buffer is omitted):

Predicate objects increase expressiveness for this example in two ways. First, important states of
bounded buffers, e.g., empty and full states, are explicitly identified in the program and named.

buffer

a buffer object

or

non_empty_buffer non_full_buffer full_bufferempty_buffer

partially_full_buffer

23

Besides documenting the important conditions of a bounded buffer, the predicate objects remind
the programmer of the special situations that code must handle. This can be particularly useful
during maintenance phases as code is later extended with new functionality. Second, attaching
methods directly to states supports better factoring of code and eliminates if and case
statements, much as does distributing methods among classes in a traditional object-oriented
language. In the absence of predicate objects, a method whose behavior depended on the state of
an argument object would include an if or case statement to identify and branch to the
appropriate case; predicate objects eliminate the clutter of these tests and clearly separate the code
for each case. In a more complete example, several methods might be associated with each special
state of the buffer. By factoring the code, separating out all the code associated with a particular
state or behavior mode, we hope to improve the readability and maintainability of the code.

The syntax for a predicate object declaration is as follows:

predicate_decl ::= “predicate” name {relation} [field_inits] [“when” expr] “;”

2.4.1 Predicate Objects and Inheritance

For normal objects, one object is a child of another object exactly when the relationship is declared
explicitly through isa declarations by the programmer. Predicate objects, on the other hand,
support a form of automatic property-based classification: an object O is automatically considered
a child of a predicate object P exactly when the following two conditions are satisfied:

• the object O is a descendant of each of the parents of the predicate object P, and

• the predicate expression of the predicate object P evaluates to true, when evaluated in a scope
where each of the predicate object’s parent names is bound to the object O.

By evaluating the predicate expression in a context where the parent names refer to the object being
tested, the predicate expression can query the value or state of the object.

Since the state of an object can change over time (fields can be mutable), the results of predicate
expressions evaluated on the object can change. If this happens, the system will automatically
reclassify the object, recomputing its implicit inheritance links. For example, when a buffer object
becomes full, the predicates associated with the non_full_buffer and full_buffer
predicate objects both change, and the inheritance graph of the buffer object is updated. As a result,
different methods may be used to respond to messages, such as the putmessage in the filled buffer
example. Predicate expressions are evaluated lazily as part of method lookup, rather than eagerly
as the state of an object changes. Only when the value of some predicate expression is needed to
determine the outcome of method lookup is the predicate evaluated. A separate paper describes
efficient implementation schemes for predicate objects [Chambers 93].

If a predicate object inherits from another predicate object, it is a special case of that parent
predicate object. This is because the child predicate object will only be in force whenever its parent
predicate object’s predicate evaluates to true. In essence, the parent’s predicate expression is
implicitly conjoined with the child’s predicate expression. A non-predicate object also may inherit
explicitly from a predicate object, with the implication that the predicate expression will always
evaluate to true for the child object; the system verifies this assertion dynamically. For example, an
unbounded buffer object might inherit explicitly from the non_full_buffer predicate object.

24

A predicate object need not have a when clause, as illustrated by the
partially_full_buffer predicate object defined above. Such a predicate object may still
depend on a condition if at least one of its ancestors is a predicate object. In the above example, the
partially_full_buffer predicate object has no explicit predicate expression, yet since an
object only inherits from partially_full_buffer whenever it already inherits from both
non_empty_buffer and non_full_buffer, the partially_full_buffer predicate
object effectively repeats the conjunction of the predicate expressions of its parents, in this case
that the buffer be neither empty nor full.

Predicate objects are intended to interact well with normal inheritance among data abstractions. If
an abstraction is implemented by inheriting from some other implementation, any predicate objects
that specialize the parent implementation will automatically specialize the child implementation
whenever it is in the appropriate state. For example, a new implementation of bounded buffers
could be built that used a fixed-length array with insert and remove positions that cycle around the
array:*

object circular_buffer isa buffer;

field array(b@circular_buffer); -- a fixed-length array of elements
var field insert_pos(b@circular_buffer); -- an index into the array
var field remove_pos(b@circular_buffer); -- another integer index

method max_size(b@circular_buffer) { b.array.length }

method length(b@circular_buffer) {
-- % is modulus operator
(b.insert_pos - b.remove_pos) % b.array.length }

predicate non_empty_circular_buffer isa circular_buffer, non_empty_buffer;

method get(b@non_empty_circular_buffer) {
var x := fetch(b.array, b.remove_pos);
b.remove_pos := (b.remove_pos + 1) % b.array.length;
x }

predicate non_full_circular_buffer isa circular_buffer, non_full_buffer;

method put(b@non_full_circular_buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) % b.array.length; }

* This implementation overrides buffer’s max_size field with a method and then ignores the buffer’s elements
field. In practice a more efficient implementation would break up buffer into an abstract parent object and two
child objects for the queue-based implementation and the circular array implementation.

25

The following diagram illustrates the extended inheritance graph for bounded and circular buffers
(the partially_full_buffer predicate object is omitted):

Since the circular_buffer implementation inherits from the original buffer object, a
circular_buffer object will automatically inherit from the empty_buffer or
full_buffer predicate object whenever the circular_buffer happens to be in one of
those states. No empty_circular_buffer or full_circular_buffer objects need to
be implemented if specialized behavior is not needed. The non_empty_circular_buffer
and non_full_circular_buffer predicate objects are needed to override the default get
and put methods in the non-blocking states. Any object that inherits from circular_buffer
and that also satisfies the predicate associated with non_empty_buffer will automatically be
classified as a non_empty_circular_buffer.

The specification of when an object inherits from a predicate object implicitly places a predicate
object just below its immediate parents and after all other normal children of the parents. For
example, consider an empty circular buffer object. Both the buffer object and its parent, the
circular_buffer object, will be considered to inherit from the empty_buffer predicate
object. Because circular_buffer is considered to inherit from empty_buffer, any
methods attached to circular_buffer will override methods attached to empty_buffer.
Often this is the desired behavior, but at other times it might be preferable for methods attached to
predicate objects to override methods attached to “cousin” normal objects.* If this were the case,
then the buffer code could be simplified somewhat, as follows:

object buffer isa collection;

... -- elements, length, etc.

method get(b@buffer) { remove_from_front(b.elements) }

method put(b@buffer, x) { add_to_back(b.elements, x); }

predicate empty_buffer isa buffer when buffer.is_empty;

method get(b@empty_buffer) { ... } -- raise error or block caller

* One object is a cousin of another if they share a common ancestor but are otherwise unrelated.

circular_buffer

buffer

non_empty_buffer non_full_buffer full_bufferempty_buffer

or

non_full_circular_buffernon_empty_circular_buffer

a circular buffer object

or

26

predicate full_buffer isa buffer when buffer.is_full;

method put(b@full_buffer, x) { ... } -- raise error or block caller

object circular_buffer isa buffer;

... -- array, insert_pos, length, etc.

method get(b@circular_buffer) {
var x := fetch(b.array, b.remove_pos);
b.remove_pos := (b.remove_pos + 1) % b.array.length;
x }

method put(b@circular_buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) % b.array.length; }

The non-blocking versions of get and put would be associated with the buffer object directly,
and the non_empty_buffer, non_full_buffer, and partially_full_buffer
predicate objects could be removed (if desired). The non-blocking get and put routines for
circular buffers would similarly be moved up to the circular_buffer object itself, with the
non_empty_circular_buffer and non_full_circular_buffer predicate objects
being removed also. If the methods attached to the empty_buffer object were considered to
override those of the circular_buffer object, then sending get to a circular buffer that was
empty would (correctly) invoke the empty_buffer implementation. In the current semantics of
predicate objects in Cecil, however, the circular_buffer’s implementation of get would be
invoked, leading to an error. A third potential semantics would be to consider the predicate object
to be unordered with respect to “cousin” objects, and methods defined on two cousins to be
mutually ambiguous. More experience with predicate objects is needed to adequately resolve this
question.

2.4.2 Predicate Objects and Fields

Fields may be associated with a predicate object. This has the effect of reserving persistent space
for the field in any object that might be classified as a descendant of the predicate object. The value
stored in the field persists even when the field is inaccessible. At object-creation time, an initial
value may be provided for fields potentially inherited from predicate objects, even if those fields
may not be visible in the newly-created object. The semantics of accessing a field attached to a
predicate object is governed by the semantics of accessing its corresponding accessor methods.

The following example exploits this semantics to implement a graphical window object that can be
either expanded or iconified. Each of the two important states of the window remembers its own
screen location (using a field named position in both cases), plus some other mode-specific
information such as the text in the window and the bitmap of the icon, and this data persists across
openings and closings of the window:

object window isa interactive_graphical_object;

var field iconified(@window) := false;

method display(w@window) {
-- draw window using w.position
... }

27

method erase(w@window) {
-- clear space where window is
... }

method move(w@window, new_position) {
-- works for both expanded and iconified windows!
w.erase; w.position := new_position; w.display; }

predicate expanded_window isa window when not(window.iconified);

var field position(@expanded_window) := upper_left;

field text(@expanded_window);

method iconify(w@expanded_window) {
w.erase; w.iconified := true; w.display; }

predicate iconified_window isa window when window.iconified;

var field position(@iconfied_window) := lower_right;

field icon(@iconified_window);

method open(w@iconified_window) {
w.erase; w.iconified := false; w.display; }

method create_window(open_position, iconified_position,
text, icon) {

object isa window {
iconified := false,
position@open_window := open_position,
position@iconified_window := iconified_position,
text := text, icon := icon } }

A window object has two position fields, but only one is visible at a time. This allows the
display, erase, and move routines to send the message position as part of their
implementation, without needing to know whether the window is open or closed. The
create_window method initializes both position fields when the window is created, even
though the position of the icon is not visible initially. The position@object notation used in the
field initialization resolves the ambiguity between the two position fields.

2.5 Statements and Expressions

A statement is a declaration block, an assignment, or an expression:

stmt ::= decl_block
| assignment “;”
| expr “;”

An expression is either a literal, a reference to a variable or a named object, an object constructor
expression, a vector constructor expression, a closure constructor expression, a message, a resend,
or a parenthetical subexpression:

expr ::= binop_expr
binop_expr ::= binop_msg | unop_expr
unop_expr ::= unop_msg | dot_expr
dot_expr ::= dot_msg | simple_expr
simple_expr ::= literal

| ref_expr
| vector_expr

28

| closure_expr
| object_expr
| message
| resend
| paren_expr

All of these constructs are described below, except for resends which are described later in section
2.8 and declarations other than variable declarations which are described in other sections.

2.5.1 Declaration Blocks

A declaration block is an unbroken sequence of declarations:

decl_block ::= decl { decl }

Names introduced as part of the declarations in the declaration block are visible throughout the
declaration block and also for the remainder of the scope containing the declaration block; the
names go out of scope once the scope exits. Because the name of an object is visible throughout its
declaration block, objects can inherit from objects defined later within the declaration block and
methods can be specialized on objects defined later in the declaration block. Similarly, methods
declared within a single declaration block can be mutually recursive and there is no need for
forward declarations or the like. In environments where the top-level declaration block comprising
the program is spread across multiple files, as in the UW Cecil implementation, the ability to attach
methods to objects defined later in some other file is important.

2.5.2 Variable Declarations

Variable declarations have the following syntax:

let_decl ::= “let” [“var”] name {pragma} “:=” expr “;”

If the var annotation is used, the variable may be assigned a new value using an assignment
statement. Otherwise, the variable binding is constant. (The contents of the variable may still be
mutable.) Formal parameters are treated as constant variable bindings and so are not assignable.
The initializing expression is evaluated in a context where the name of the variable being declared
and any variables declared later within the same declaration block are considered undefined. This
avoids potential misunderstandings about the meaning of apparently self-referential or mutually
recursive initializers while still supporting a kind of let* [Steele 84] variable binding sequence.

Variable declarations may appear at the top level as well as inside a method. However, the ordering
of variable declarations at the top level (and consequently the order of evaluation of the initializing
expressions) is less obvious. In the current UW Cecil implementation, the textual ordering of
variable declarations is used to define an ordering for evaluating variable initializers. (Similarly,
statements interspersed with top-level declarations are evaluated in the order given.) We would
prefer a semantics that was independent of the “order” of variable declarations at the top level, so
that all top-level declarations are considered unordered. Possible alternative semantics which have
this property include restricting variable initialization expressions to be simple expressions without
side-effects (thereby making the issue of evaluation order unimportant), eliminating variable
declarations at the top level entirely, or supporting a form of on-demand at-most-once evaluation

29

of top-level variable initializers akin to the lazy evaluationsemanticsof field initializers (see
section 2.3.4).

2.5.3 Variable References

A variable or named object is referenced simply by naming the variable or object:

ref_expr ::= name

Thenamesof objectsandvariablesarein thesamenamespace.Lexical scopingis usedto locate
the closest lexically-enclosing variable or object binding for the name.

2.5.4 Assignment Statements

Assignment statements have the following syntax:

assignment ::= name “:=” expr assignment to a variable
| assign_msg assignment-like syntax for messages

If the left-hand-sideis a simplename,thentheclosestlexically-enclosingbindingof thenameis
locatedandchangedto referto theresultof evaluatingtheright-hand-sideexpression.It is anerror
to try to assignto anobject,aformalparameter, or to avariabledeclaredwithoutthevar keyword.

If theleft-hand-sidehasthesyntaxof amessage,thentheassignmentstatementis reallysyntactic
sugar for a message send, as described in section 2.5.6.

2.5.5 Literals

Cecil literal constants can be integers, floating point numbers, characters, or strings:

literal ::= integer
| float
| character
| string

Literals are immutable objects.

2.5.6 Message Sends

The syntax of a message send is as follows:

message ::= msg_name “(” [exprs] “)”

exprs ::= expr { “,” expr }

unop_msg ::= op_name unop_expr

binop_msg ::= binop_expr op_name binop_expr

A message is written in one of three forms:

• namedprefix form, with the name of the messagefollowed by a parenthesizedlist of
expressions,*

• unary operator prefix form, with the message name listed before the argument expression, or

• infix form, with the message name in between a pair of argument subexpressions.

* All arguments to the message must be listed explicitly; there is no implicitself argument.

30

Normally, a message whose name begins with a letter is written in named prefix form, while a
message whose name begins with a punctuation symbol is written in unary prefix form or in infix
form.* To invoke a named message as an operator, or to invoke an operator as a named message,
the name of the message is prefixed with an underscore (the leading underscore is not considered
part of the message name). For example, the following two expressions both send the + message
to 3 and 4:

3 + 4

_+(3, 4)

and the following two expressions both send the bit_and message to 3 and 4:

bit_and(3, 4)

3 _bit_and 4

The precedence and associativity of infix messages is specified through precedence declarations,
described in section 2.6. The semantics of method lookup is described in section 2.7. Resends, a
special kind of message send, are described in section 2.8.

Syntactic sugar exists for several common forms of messages. Dot notation allows the first
argument of the message to be written first:

dot_msg ::= dot_expr “.” msg_name [“(” [exprs] “)”]

If the message takes only one argument, the trailing parentheses can be omitted. Consequently, the
following three expressions all send the x message to p:

x(p)

p.x()

p.x

The following two expressions both send the bit_and message to 3 and 4:

bit_and(3, 4)

3.bit_and(4)

This syntax may suggest that the first argument is more important than the others, but in fact the
semantics is still that all arguments are treated uniformly, and any subset of the arguments might
be dispatched at method-lookup time.

Other syntactic sugars support message sends written like assignments. Any message can appear
on the left-hand-side of an assignment statement:

assign_msg ::= lvalue_msg “:=” expr sugar for set_msg(exprs...,expr)

lvalue_msg ::= message
| dot_msg
| unop_msg
| binop_msg

In each of these cases, the name of the message sent to carry out the “assignment” is set_
followed by the name of the message in the lvalue_msg expression, and the arguments to the

* Named prefix form is always used for method declarations.

31

real message are the arguments of the lvalue_msg expression followed by the expression on the
right-hand-side of the “assignment.” So the following three expressions are all equivalent:

set_foo(p, q, r);

foo(p, q) := r;

p.foo(q) := r;

as are the following two expressions:

set_top(rectangle, x);

rectangle.top := x; -- frequently used for set accessor methods

as are the following two expressions:

set_!(v, i, x);

v!i := x;

Note that these syntactic sugars are assignments in syntax only. Semantically, they are all
messages.

2.5.7 Object Constructors

New objects are created either through object declarations (as described in section 2.1) or by
evaluating object constructor expressions. The syntax of an object constructor expression is as
follows:

object_expr ::= “object” {relation} [field_inits]

This syntax is the same as for an object declaration except that no object name is specified. Object
constructor expressions are analogous to object instantiation operations found in class-based
languages. The only difference between named objects introduced through object declarations and
anonymous objects created through object constructor expressions is that named objects have
statically-known names. As a consequence, only named objects can have methods and fields
attached to them and can have descendants.

2.5.8 Vector Constructors

A vector constructor expression is written as follows:

vector_expr ::= “[” [exprs] “]”

The result of evaluating a vector constructor expression is a new immutable object that inherits
from the predefined i_vector object and is initialized with the corresponding elements.

2.5.9 Closures

The syntax of a closure constructor expression is as follows:

closure_expr ::= [“&” “(” [closure_formals] “)”] “{” body “}”
closure_formals::= closure_formal { “,” closure_formal }
closure_formal ::= [name] formal names are optional, if never referenced

This syntax is identical to that of a method declaration, except that the method keyword and
message name are replaced with the & symbol (intended to be suggestive of the λ symbol). If the
closure takes no arguments, then the &() prefix may be omitted. When evaluated, a closure
constructor produces two things:

32

• a new closure object that inherits from the predefined closure object, which is returned as
the result of the closure constructor expression, and

• a method named eval whose anonymous first argument is specialized on the newly-created
closure object and whose remaining arguments are those listed as formal parameters in the
closure constructor expression.

As with other nested method declarations, the body of a closure’s evalmethod is lexically-scoped
within the scope that was active when the closure was created. However, unlike nested method
declarations, the eval method is globally visible (as long as the connected closure object is
reachable). Closures may be invoked after their lexically-enclosing scopes have returned.*

All control structures in Cecil are implemented at user level using messages and closures, with the
sole exception of the loop primitive method described in section 2.2.3. Additionally, closures can
be used to achieve much the same effect as exceptions and multiple results, so these other
constructs are currently omitted from the Cecil language. Sometimes the use of closures is
syntactically more verbose than a built-in language construct might be, and we are considering
various alternatives for allowing programmers to define syntactic extensions to the language to
provide a cleaner syntax for their user-defined control structures.

2.5.10 Parenthetical Subexpressions

A parenthesized subexpression has the same syntax as the body of a method:

paren_expr ::= “(” body “)”

Like the body of a method or a closure, a parenthetical subexpression introduces a new nested
scope and may contain statements and local declarations.

2.6 Precedence Declarations

Cecil programmers can define their own infix binary operators. Parsing expressions with several
infix operators becomes problematic, however, since the precedence and associativity of the infix
operators needs to be known to parse unambiguously. For example, in the following Cecil
expression

foo ++ bar *&&! baz *&&! qux _max blop

the relative precedences of the ++, *&&!, and _max infix operators is needed, as is the
associativity of the *&&! infix operator. For a more familiar example, we’d like the following Cecil
expression (** represents exponentiation)

x + y * z ** e ** f * q

to parse using standard mathematical rules, as if it were parenthesized as follows:

x + ((y * (z ** (e ** f))) * q)

* In the current UW Cecil implementation, there are some caveats to the use of such non-LIFO closures. See the system
documentation for additional details.

33

2.6.1 Previous Approaches

Most languages restrict infix operators to a fixed set, with a fixed set of precedences and
associativities. This is not appropriate for Cecil, since we’d like the set of infix messages to be user-
extensible.

Smalltalk defines all infix operators to be of equal precedence and left-associative. While simple,
this rule differs from standard mathematical rules, sometimes leading to hard-to-find bugs. For
example, in Smalltalk, the expression 3 + 4 * 5 returns 35, not 23.

Self attempts to rectify this problem with Smalltalk by specifying the relative precedence of infix
operators to be undefined, requiring programmers to explicitly parenthesize their code. This avoids
problems with Smalltalk’s approach, but leads to many unsightly parentheses. For example, the
parentheses in the following Self code are all required:

(x <= y) && (y <= (z + 1))

Self makes an exception for the case where the same binary operator is used in series, treating that
case as left-associative. For example, the expression

x + y + z

parses as expected in Self. Even so, the expression
x ** y ** z

would parse “backwards” in Self, if ** were defined. (Self uses power: for exponentiation,
perhaps to avoid problems like this.) Also, expressions like

x + y - z

are illegal in Self, requiring explicit parenthesization.

Standard ML [Milner et al. 90] allows any operator to be declared prefix (called “nonfix” in SML)
or infix, and infix operators can be declared left- or right-associative. Infix declarations also specify
a precedence level, which is an integer from 0 (loosest binding) to 9 (tightest binding), with 0 being
the default. For example, the following SML declarations are standard:

infix 7 *, /, div, mod;

infix 6 +, -;

infix 4 = <> < > <= >=;

infix 3 :=;

nonfix ~;

SML also provides special syntax to use an infix operator as a prefix operator, and vice versa.

A fixity declaration can appear wherever any other declaration can appear, and affect any parsing
of expressions while the fixity declaration is in scope. Fixity declarations can be spread throughout
a program, and multiple declarations can add independent operators to the same precedence level.
Fixity declarations in one scope override any fixity declarations of the same operator from
enclosing scopes.

One disadvantage of SML’s approach is that is supports only 10 levels of precedence. It is not
possible to add a new operator that is higher precedence than some operator already defined at level
9, nor is it possible to squeeze a new operator in between operators at adjacent levels. Finally, all
operators at one level bind tighter than all operators at lower levels, even if the programmer might
have preferred that expressions mixing operators from completely different applications be
explicitly parenthesized, for readability.

34

2.6.2 Precedence and Associativity Declarations in Cecil

Cecil allows the precedence and associativity of infix operators to be specified by programmers
through precedence declarations. The syntax of these declarations is as follows:
prec_decl ::= “precedence” op_list [associativity] {precedence} “;”

associativity ::= “left_associative” | “right_associative” | “non_associative”

precedence ::= “below” op_list | “above” op_list | “with” op_list

op_list ::= op_name { “,” op_name }

For example, the following declarations might appear as part of the standard prelude for Cecil:
precedence ** right_associative; -- exponentiation

precedence *, / left_associative below ** above +;

precedence +, - left_associative below * above =;

precedence =, !=, <, <=, >=, > non_associative below * above;

precedence & left_associative below = above |;

precedence | left_associative below &;

precedence % with *;

precedence ! left_associative above =; -- array indexing

By default, an infix operator has its own unique precedence, unrelated to the precedence of any
other infix operator, and is non-associative. Expressions mixing operators of unrelated precedences
or multiple sequential occurrences of an operator that is non-associative must be explicitly
parenthesized.

The effect of a precedence declaration is to declare the relationship of the precedences of several
binary operators and/or to specify the associativity of a binary operator. Like SML, the information
provided by a precedence declaration is used during the scope of the declaration, and declarations
of the same operator at one scope override any from an enclosing scope. Two precedence
declarations cannot define the precedence of the same operator in the same scope.

A precedence declaration of the form
precedence bin-op1, ..., bin-opn

associativity
below bin-opB1, ..., bin-opBn
above bin-opA1, ..., bin-opAn
with bin-opW1, ..., bin-opWn;

declares that all the bin-opi belong to the same precedence group, and that this group is less tightly
binding than the precedence groups of any of the bin-opBi and more tightly binding than those of
the bin-opAi. If any bin-opWi are provided, then the bin-opi belong to the same precedence group
as the bin-opWi; all the bin-opWi must already belong to the same precedence group. Otherwise, the
bin-opi form a new precedence group. The associativity of the bin-opi is as specified by
associativity, if present. If absent, then the associativity of the bin-opi is the same as the bin-opWi,
if provided, and non-associative otherwise. As illustrated by the example above, the ordering of
two precedence groups may be redundantly specified. Cycles in the tighter-binding-than relation
on precedence groups are not allowed. All operators in the same precedence group must have the
same associativity.

Taken together, precedence declarations form a partial order on groups of infix operators.
Parentheses may be omitted if adjacent infix operators are ordered according to the precedence
declarations, or if adjacent infix operators are from the same precedence group and the precedence

35

grouphaseitherleft- or right-associativity. Otherwise,parenthesesmustbeincluded.For example,
in the expression

v ! (i + 1) < (v ! i) + 1

the parenthesesaroundi+1 andv!i arerequired,since! and+ arenot orderedby the above
precedencedeclarations.However, both! and+ aremoretightly bindingthan<, sono additional
parentheses are required.

In Cecil,adeclarationwithin adeclarationblock is visible throughouttheblock, includingduring
textually earlierdeclarationswithin the block. This appliesto precedencedeclarationsas well,
somewhatcomplicatingparsing.Theimplementationstrategy usedin theUW Cecilsystemparses
expressionsinvolving binary operatorsinto a list of operatorsandoperands,and theselists are
convertedinto a traditionalparsetreeform only afterall visibledeclarationshavebeenprocessed.

Precedencedeclarationsapply to infix messagenames,not to individual methods.Multiple
methodsmayimplementthesameinfix message,for differentkindsof arguments,but all methods
with a particular name share the same precedence in a given scope.

2.7 Method Lookup

This sectiondetailsthe semanticsof multi-methodlookup, beginning with a discussionof the
motivations and assumptions that led to the semantics.

2.7.1 Philosophy

All computationin Cecil is accomplishedby sendingmessagesto objects.Thelion’s shareof the
semanticsof messagepassingspecifiesmethodlookup,andthesemethodlookup rulestypically
reduceto defining a searchof the inheritancegraph.In single inheritancelanguages,method
lookupis straightforward.Mostobject-orientedlanguagestoday, includingCecil,supportmultiple
inheritanceto allow moreflexible formsof codeinheritanceand/orsubtyping.However, multiple
inheritanceintroducesthepossibilityof ambiguityduringmethodlookup: two methodswith the
same name may be inherited along different paths, thus forcing either the system or the
programmerto determinewhich methodto run or how to run the two methodsin combination.
Multiple dispatchingintroducesa similar potentialambiguity even in the absenceof multiple
inheritance,sincetwo methodswith differing argumentspecializerscouldbothbeapplicablebut
neither be uniformly more specific than the other. Consequently, the key distinguishing
characteristicof method lookup in a languagewith multiple inheritance and/or multiple
dispatching is how exactly this ambiguity problem is resolved.

Somelanguagesresolveall ambiguitiesautomatically. For example,Flavors[Moon 86] linearizes
the classhierarchy, producinga total orderingon classes,derived from eachclass’ local left-to-
right ordering of superclasses,that can be searchedwithout ambiguity just as in the single
inheritancecase.However, linearizationcanproduceunexpectedmethodlookupresults,especially
if theprogramcontainserrors[Snyder86]. CommonLoops[Bobrow et al. 86] andCLOSextend
this linearization approachto multi-methods,totally ordering multi-methodsby prioritizing
argument position, with earlier argument positions completely dominating later argument
positions.Again, this removesthepossibilityof run-timeambiguities,at thecostof automatically
resolving ambiguities that may be the result of programming errors.

36

Cecil takes a different view on ambiguity, motivated by several assumptions:

• We expect programmerswill sometimesmake mistakes during programdevelopment.The
language should help identify these mistakes rather than mask or misinterpret them.

• Our experiencewith Self leadsusto believe thatprogrammingerrorsthatarehiddenby such
automatic language mechanisms are some of the most difficult and time-consuming to find.

• Ourexperiencewith Selfalsoencouragesusto strivefor thesimplestpossibleinheritancerules
thatareadequate.Evenapparentlystraightforwardextensionscanhavesubtleinteractionsthat
make the extensions difficult to understand and use [Chamberset al. 91].

• Complex inheritancepatternscanhinderfutureprogramevolution, sincemethodlookupcan
dependon programdetailssuchasparentorderingandargumentordering,andit usually is
unclear from the program text which details are important for a particular application.

Accordingly, we have striven for a very simple systemof multiple inheritanceand multiple
dispatching for Cecil.

2.7.2 Semantics

Methodlookup in Cecil usesa form of Touretzky’s inferentialdistanceheuristic[Touretzky 86],
wherechildrenoverrideparents.Themethodlookuprulesinterpretaprogram’s inheritancegraph
asa partial orderingon objects,wherebeinglessin the partial ordercorrespondsto beingmore
specific:anobjectA is lessthan(morespecificthan)anotherobjectB in thepartial orderif and
only if A is a properdescendantof B. This orderingon objectsin turn inducesan analogous
orderingonthesetof methodsspecializedontheobjects,reflectingwhichmethodsoverridewhich
othermethods.In thepartialorderingonmethodswith aparticularnameandnumberof arguments,
onemethodM is lessthan(morespecificthan)anothermethodN if andonly if eachof theargument
specializersof M is equal to or less than (more specific than) the correspondingargument
specializerof N. Sincetwo methodscannothave the sameargumentspecializers,at leastone
argumentspecializerof M must be strictly less than (more specific than) the corresponding
specializerof N. An unspecializedargumentis consideredspecializedon theany objectwhich is
anancestorof all otherobjects;aspecializedargumentthereforeis strictly lessthan(morespecific
than)an unspecializedargument.The orderingon methodsis only partial sinceambiguitiesare
possible.

Giventhepartialorderingonmethods,methodlookupis straightforward.For aparticularmessage
send,the systemconstructsthe partial orderingof methodswith the samenameandnumberof
argumentsas the message.The systemthenthrows out of the orderingany methodthat hasan
argumentspecializerthatisnotequaltooranancestorof thecorrespondingactualargumentpassed
in themessage;sucha methodis not applicableto theactualcall. Finally, thesystemattemptsto
locatethesinglemost-specificmethodremaining,i.e., themethodthat is leastin thepartialorder
over applicablemethods.If no methodsare left in the partial order, then the systemreportsa
“messagenot understood”error. If morethanonemethodremainsin thepartialorder, but thereis
no singlemethodthatoverridesall others,thenthesystemreportsa “messageambiguous”error.
Otherwise,thereis exactly onemethodin the partial orderthat is strictly morespecificthanall
other methods, and this method is returned as the result of the message lookup.

37

2.7.3 Examples

For example, consider the following inheritance graph (containing only singly-dispatched methods
for the moment):

The partial ordering on objects in this graph defines ABC to be more specific than either AB or AC,

and both AB and AC are more specific than A. Thus, methods defined for ABC will be more specific
(will override) methods defined in A, AB, or AC, and methods defined in either AB or AC will be

more specific (will override) methods defined in A. The AB and AC objects are mutually unordered,

and so any methods defined for both AB and AC will be unordered.

If the message m1 is sent to the ABC object, both the implementation of m1whose formal argument
is specialized on the ABC object and the implementation of m1 specialized on A will apply, but the
method specialized on ABC will be more specific than the one specialized on A (since ABC is more

specific than A), and so ABC’s m1 will be chosen. If instead the m1 message were sent to the AB

object, then the version of m1 specialized on the A object would be chosen; the version of m1
specialized on ABC would be too specific and so would not apply.

If the m2message is sent to ABC, then both the version of m2whose formal argument is specialized

on A and the one whose formal is specialized on AC apply. But the partial ordering places the AC
object ahead of the A object, and so AC’s version of m2 is selected.

If the m3 message is sent to ABC, then both AB’s and AC’s versions of m3 apply. Neither AB nor

AC is the single most-specific object, however; the two objects are mutually incomparable. Since
the system cannot select an implementation of m3 automatically without having a good chance of

being wrong and so introducing a subtle bug, the system therefore reports an ambiguous message

error. The programmer then is responsible for resolving the ambiguity explicitly, typically by

writing a method in the child object which resends the message to a particular ancestor; resends are
described in section 2.8. Sends of m3 to either AB or AC would be unambiguous, since the other

method would not apply.

m1(i@A)
m2(j@A)

m3(k@AC)
m3(k@AB) m2(j@AC)

m1(i@ABC)

A

AB

ABC

AC

38

To illustrate these rules in the presence of multi-methods, consider the following inheritance graph
(methods dispatched on two arguments are shown twice in this picture):

Methods m1 in A and m3 in AB illustrate that multiple methods with the same name and number of
arguments may be associated with (specialized on) the same object, as long as some other
arguments are specialized differently. The following table reports the results of several message
sends using this inheritance graph.

2.7.4 Strengths and Limitations

The partial ordering view of multiple inheritance has several desirable properties:

• It is simple. It implements the intuitive rule that children override their parents (they are lesser
in the partial ordering), but does not otherwise order parents or count inheritance links or
invoke other sorts of complicated rules.

message invoked method or error explanation

m1(ABC, XYZ) m1(i@A, j@XZ) XZ overrides X

m2(ABC, XYZ) m2(j@AB, k) AB overrides A

m3(ABC, XYZ) m3(j@AB, k@XY) XY overrides unspecialized

m4(AB, XY) “message not understood” ABC too specific for AB ⇒ no applicable method

m5(ABC, XYZ) “message ambiguous” AB overrides A but XZ overrides X ⇒
no single most-specific applicable method

m6(ABC, XYZ) “message ambiguous” AC overrides unspecialized but XYZ overrides
unspecialized ⇒ no single most-specific method

m1(i@A, j@X)
m1(i@A, j@XZ)

m2(j@AB, k) m6(i@AC, j)

m4(k@ABC, l@X)

A

AB

ABC

AC

m1(i@A, j@X)
m4(k@ABC, l@X)

m5(n@A, p@XZ)
m3(j@AB, k@XY) m1(i@A, j@XZ)

m6(i, j@XYZ)

X

XY

XYZ

XZ

m2(j@A, k)
m5(n@A, p@XZ)

m3(j@AB, k)
m3(j@AB, k@XY)
m5(n@AB, p@X)

m5(n@AB, p@X)

39

• Ambiguities are not masked. Theseambiguitiesare reportedback to the programmerat
messagelookuptimebeforetheerrorcangethidden.If theprogrammerhasincludedstatictype
declarations, the system will report the ambiguity at type-check-time.

• This form of multiple inheritanceis robust underprogrammingchanges.Programmerscan
changeprogramsfairly easily, and the systemwill reportany ambiguitieswhich may arise
becauseof programmingerrors. More complex inheritancerules tend to be more brittle,
possiblyhinderingchangesto programsthatexploit theintricaciesof theinheritancerulesand
hiding ambiguities that reflect programming errors.

• Cecil’s partialorderingview of multiple inheritancedoesnot transformtheinheritancegraph
prior to determiningmethodlookup,asdoeslinearization.Thisallowsprogrammersto reason
about method lookup using the same inheritance graph that they use to write their programs.

Of course,theremay be times when having a priority orderingover parentsor over argument
positionswould resolve anambiguityautomaticallywith no fuss.For thesesituations,it might be
niceto beableto inform thesystemaboutsuchpreferences.Self’sprioritizedmultiple inheritance
strategy canblendorderedandunorderedinheritance,but it hassomeundesirableproperties(such
assometimespreferringamethodin anancestorto onein achild) andinteractspoorlywith resends
anddynamicinheritance.* It maybethatCecilcouldsupportsomethingakinto prioritizedmultiple
inheritance(andperhapsevenaprioritizedargumentlist), but usethesepreferencesasa lastresort
to resolvingambiguities;only if ambiguitiesremainafter favoring childrenover parentswould
preferenceson parentsor argumentpositionbeconsidered.Suchasdesignappearsto have fewer
drawbacks than Self’s approach or CLOS’s approach while gaining most of the benefits.

An alternative approachmight be to supportexplicit declarationsthatonemethodis intendedto
overrideanothermethod.Thesedeclarationswouldaddrelationsto thepartialorderovermethods,
potentiallyresolvingambiguities.This approachhastheadvantagethatit operatesdirectly on the
methodoverridingrelationshipratherthanonparentorderor thelikewhichonly indirectlyaffects
methodoverriding relationships.Moreover, this approachcanonly resolve existing ambiguities,
not changeany existing overriding relationships,therebymaking it easierto reasonabout the
resultsof methodlookup.To implementthisapproach,amechanismfor namingparticularmethods
(e.g., the method’s name and its specializers) must be added.

2.7.5 Multiple Inheritance of Fields

In other languageswith multiple inheritance,in addition to the possibility of nameclashesfor
methods,thepossibilityexists for nameclashesfor instancevariables.Somelanguagesmaintain
separatecopiesof instancevariablesinheritedfrom differentclasses,while otherlanguagesmerge
like-namedinstancevariablestogetherin thesubclass.Thesituationis simplerin Cecil, sinceall
accessto instancevariablesis throughfield accessormethods.An object(conceptuallyat least)
maintainsspacefor eachinheritedcopy-down field, independentlyof their names(distinctfields
with thesamenamearenot mergedautomatically).Accessesto thesefieldsaremediatedby their
accessormethods,andthenormalmultiple inheritancerulesareusedto resolve any ambiguities

* Recently,Self’smultipleinheritancesemanticshasbeengreatlysimplified,eliminatingprioritizedinheritance.Self’s
rulesarenowsimilarto Cecil’s,exceptthatSelfomitsthe“children-override-parents”globalrule.Thishastheeffect
of declaring as ambiguous messages such asm2(ABC) in the first example in section 2.7.3.

40

among like-named field accessor methods. In particular, a method in the child with the same name
as a field accessor method could send directed resend messages (described later in section 2.8) to
access the contents of one or the other of the ambiguous fields.

2.7.6 Cyclic Inheritance

In the current version of Cecil, inheritance is required to be acyclic. However, cycles in the
inheritance graph would be easy to allow. Instead of defining a partial order over objects,
inheritance would define a preorder, where all objects participating in a cycle are considered to
inherit from all other objects in the cycle, but not be more specific than any of them. This preorder
on inheritance induces a corresponding preorder on methods. The same rules for successful method
lookup still apply: a single most specific method must be found. If two methods are in a cycle in
the method specificity preorder, then neither is more specific than the other. In effect, objects can
participate in inheritance cycles if they define disjoint sets of methods. This design of “mutually-
recursive” objects could be used to factor a single large object into multiple separate objects, each
implementing a separate facet of the original object’s implementation.

2.7.7 Method Lookup and Lexical Scoping

Since methods may be declared both at the top level and nested inside of methods, method lookup
must take into account not only which methods are more specialized than which others but also
which methods are defined in more deeply-nested scopes. The interaction between lexical scoping
and inheritance becomes even more significant in the presence of modules as described in section
5.

The view of lexically-nested methods in Cecil is that nested methods extend the inheritance graph
defined in the enclosing scope, rather than override it. We call this “porous” lexical scoping of
methods, since the enclosing scope filters through into the nested scope. When performing method
lookup for a message within some nested scope, the set of methods under consideration are those
declared in the current scope plus any methods defined in lexically-enclosing scopes. If a local
method has the same name, number of arguments, and argument specializers as a method defined
in an enclosing scope, then the local method shadows (replaces) the method in the enclosing scope.
Additionally, any object declarations or object extension declarations in the local scope are added
to those declarations and extensions defined in enclosing scopes. Once this augmented inheritance
graph is constructed, method lookup proceeds as before without reference to the scope in which
some object or method is defined.

Other languages, such as BETA [Kristensen et al. 87], take the opposite approach, searching for a
matching method in one scope before proceeding to the enclosing scope. If a matching method is
found in one scope, it is selected even if a more specialized method is defined in an enclosing scope.
More experience is needed to judge which of these alternatives is preferable. Cecil’s approach gets
some advantage by distinguishing variable references, which always respect only the lexical scope,
from field references, which always are treated as message sends and primarily respect inheritance
links. BETA uses the same syntax to access both global variables and inherited instance variables,
making the semantics of the construct somewhat more complicated.

41

Nested methods can be used to achieve the effect of a typecase statement as found in other
languages, including Trellis and Modula-3 [Nelson 91, Harbison 92]. For example, to test the
implementation of an object, executing different code for each case, the programmer could write
something like the following:

method test(x) {
method typecase(z@obj1) { (-- code for case where x inherits from obj1 --) }
method typecase(z@obj2) { (-- code for case where x inherits from obj2 --) }
method typecase(z@obj3) { (-- code for case where x inherits from obj3 --) }
method typecase(z) { (-- code for default case --) }
typecase(x);

}

In the example, obj1 , obj2 , and obj3 may be related in the inheritance hierarchy, in which case
the most-specific case will be chosen. If no case applies or no one case is most specific, then a
“message not understood” or an “ambiguous message” error will result. These results fall out of
the semantics of method lookup. By nesting the typecase methods inside the calling method,
the method bodies can access other variables in the calling method through lexical scoping, plus
the scope of the temporary typecase methods is limited to that particular method invocation.
Eiffel’s reverse assignment attempt and Modula-3’s NARROW operation can be handled similarly.

2.7.8 Method Invocation

If method lookup is successful in locating a single target method without error, the method is
invoked. A new activation record is created, formals in the new scope are initialized with actuals,
the statements within the body of the method are executed in the context of this new activation
record (or the primitive method is executed, or the field accessor method is executed), and the result
of the method (possibly void) is returned to the caller.

2.8 Resends

Most existing object-oriented languages allow one method to override another method while
preserving the ability of the overriding method to invoke the overridden version: Smalltalk-80 has
super , CLOS has call-next-method , C++ has qualified messages using the :: operator,
Trellis has qualified messages using the ’ operator, and Self has undirected and directed resend
(integrating unqualified super -like messages and qualified messages). Such a facility allows a
method to be defined as an incremental extension of an existing method by overriding it with a new
definition and invoking the overridden method as part of the implementation of the overriding
method. This same facility also allows ambiguities in message lookup to be resolved by explicitly
forwarding the message to a particular ancestor.

Cecil includes a construct for resending messages that adapts the Self undirected and directed
resend model to the multiply-dispatched case. The syntax for a resend is as follows:

resend ::= “resend” [“(” resend_args “)”]

resend_args ::= resend_arg { “,” resend_arg }

resend_arg ::= expr corresponding formal of sender must be
 unspecialized

| name undirected resend (name is a specialized formal)
| name “@” named_object directed resend (name is a specialized formal)

42

The purpose of the resend construct is to allow a method to invoke one of the methods that the
resending method overrides. Consequently, only methods with the same name and number of
arguments as the resending method whose argument specializers are ancestors of the resending
method’s argument specializers are considered possible targets of a resend.

To invoke an overridden method, the normal prefix message sending syntax is used but with the
following changes and restrictions:

• Syntactically, the name of the message is the keyword resend; semantically, the name of the
message is implicitly the same as the name of the sending method.

• The number of arguments to the message must be the same as for the sending method.

• All specialized formal arguments of the resending method must be passed through unchanged
as the corresponding arguments to the resend.

As a syntactic convenience, if all formals of the sender are passed through as arguments to the
resend unchanged, then the simple resend keyword without an argument list is sufficient.

The semantics of a resent message are similar to a normal message, except that only methods that
are less specific than the resending method in the partial order over methods are considered
possible matches; this has the effect of “searching upwards” in the inheritance graph to find the
single most-specific method that the resending method overrides. The restrictions on the name, on
the number of arguments, and on passing specialized objects through unchanged ensures that the
methods considered as candidates are applicable to the name and arguments of the send. Single-
dispatching languages often have similar restrictions: Smalltalk-80 requires that the implicit self
argument be passed through unchanged with the super send, and CLOS’s call-next-
method uses the same name and arguments as the calling method.

For example, the following illustrates how resends may be used to provide incremental extensions
to existing methods:

object colored_rectangle isa rectangle;

field color(@colored_rectangle);

method display(r@colored_rectangle, d@output_device) {
d.color := r.color; -- set the right color for this rectangle
resend; -- do the normal rectangle drawing; sugar for resend(r, d)

}

Resends may also be used to explicitly resolve ambiguities in the method lookup by filtering out
undesired methods. Any of the required arguments to a resend (those that are specialized formals
of the resending method) may be suffixed with the @ symbol and the name of an ancestor of the
corresponding argument specializer. This restricts methods considered in the resulting partial order
to be those whose corresponding argument specializers (if present) are equal to or ancestors of the
object named as part of the resend.

To illustrate, the following method resolves the ambiguity of height for vlsi_cell in favor
of the rectangle version of height:*

* This example was adapted from Ungar and Smith’s original Self paper [Ungar & Smith 87].

43

object rectangle;

field height(@rectangle);

object tree_node;

method height(t@tree_node) { 1 + height(t.parent) }

object vlsi_cell isa rectangle, tree_node;

method height(v@vlsi_cell) { resend(v@rectangle) }

This model of undirected and directed resends is a simplification of the Self rules, extended to the
multiple dispatching case. Self’s rules additionally support prioritized multiple inheritance and
dynamic inheritance, neither of which is present in Cecil. Self also allows the name and number of
arguments to be changed as part of the resend. In some cases, it appears to be useful to be able to
change the name of the message as part of the resend. For example, it might be useful to be able to
provide access to the tree_node version of the height method under some other name, but
this currently is not possible in Cecil. We are investigating possible semantics for resends where
the name of the message is changed, so that both ambiguously-inherited methods can be invoked.

As demonstrated by Self, supporting both undirected and directed resends is preferable to just
supporting directed resends as does C++ and Trellis, since the resending code does not need to be
changed if the local inheritance graph is adjusted. Since CLOS does not admit the possibility of
ambiguity, it need only support undirected resends (i.e., call-next-method); there is no need
for directed resends.

2.9 Files and Include Declarations

The current UW Cecil implementation is file-based. The compiler is given a single file name,
naming the file containing the program to compile. To include other files into the program, a file
can include an include declaration, at the global scope:

include_decl ::= “include” file_name “;”

file_name ::= string

included_file ::= file_body

The effect of an include declaration is to include the declarations from the named file into the
current scope. The named file must have the syntax of a single declaration block. File inclusion is
idempotent: redundant inclusions of a file into a particular scope have no effect.

2.10 Pragmas

Pragmas can be used by the Cecil programmer to provide additional information and
implementation directives to the Cecil implementation. The set of recognized pragmas and their
interpretation is implementation-dependent. A description of some of the pragmas supported by the
UW Cecil implementation is provided in its documentation.

Pragmas are written as follows:

pragma ::= “(**” expr “**)”

44

The body of a pragma uses the syntax of a Cecil expression, but its interpretation is different (and
implementation-dependent). Currently, pragmas may appear as part of most Cecil declarations. In
the future, pragmas will likely be able to be provided for any declaration and any expression.

45

3 Static Types

Cecilsupportsastatictypesystemwhichis layeredontopof thedynamically-typedcorelanguage.
The type system’s chief characteristics are the following:

• Type declarationsspecifythe interfacerequiredof an objectstoredin a variableor returned
from a method, without placing any constraints on its representation or implementation.

• Argumentspecializersfor methoddispatchingareseparatefromtypedeclarations,enablingthe
typesystemto containasspecialcasestypesystemsfor traditionalsingle-dispatchingandnon-
object-oriented languages.

• Codeinheritancecan be distinct from subtyping,but the commoncasewherethe two are
parallel requires only one set of declarations.

• Thetypecheckercandetectstaticallywhenamessagemightbeambiguouslydefinedasaresult
of multiple inheritanceor multiple dispatching.It doesnot rely on theabsenceof ambiguities
to be correct.

• The type system can check programs statically despite Cecil’s classless object model.

• Typedeclarationsareoptional,providing partial languagesupportfor mixedexploratoryand
production programming.

• Parameterizedobjects,types,andmethodssupportflexible formsof parametricpolymorphism,
complementing the inclusion polymorphism supported through subtyping.

This sectiondescribesCecil’s static type systemin the absenceof parameterization;section4
extendsthis sectionto copewith parameterizedobjectsand methods.Section3.1 presentsthe
major goalsfor the type system.Section3.2 presentsthe overall structureof the type system.
Sections3.3,3.4,and3.5 describethe importantkindsof declarationsprovidedby programmers
thatextendthebasedynamically-typedcorelanguagedescribedin section2.Sections3.6,3.7,3.8,
and3.9 detail the type-checkingrulesfor the language.Section3.10describeshow the language
supports mixed statically- and dynamically-typed code.

3.1 Goals

Statictypesystemshistoricallyhaveaddressedmany concerns,rangingfrom programverification
to improvedrun-timeefficiency. Oftenthesegoalsconflict with othergoalsof thetypesystemor
of thelanguage,suchastheconflictbetweentypesystemsdesignedto improveefficiency andtype
systems designed to allow full reusability of statically-typed code.

The Cecil type systemis designedto provide the programmerwith extra supportin two areas:
machine-checkabledocumentationandearlydetectionof somekindsof programmingerrors.The
first goal is addressedby allowing the programmerto annotatevariabledeclarations,method
arguments,andmethodresultswith explicit typedeclarations.Thesedeclarationshelptodocument
theinterfacesto abstractions,andthesystemcanensurethat thedocumentationdoesnot become
out-of-datewith respectto the code it is documenting.Type inferencemay be useful as a
programming environment tool for introducing explicit type declarations into untyped programs.

46

The Cecil type system also is intended to help detect programming errors at program definition
time rather than later at run-time. These statically-detected errors include “message not
understood,” “message ambiguous,” and “uninitialized field accessed.” The type system is
designed to verify that there is no possibility of any of the above errors in programs, guaranteeing
type safety but possibly reporting errors that are not actually a problem for any particular execution
of the program. To make work on incomplete or inconsistent programs easier, type errors are
considered warnings, and the programmer always is able to run a program that contains type errors.
Dynamic type checking at run-time is the final arbiter of type safety.

Cecil’s type system is not designed to improve run-time efficiency. For object-oriented languages,
the goal of reusable code is often at odds with the goal of efficiency through static type
declarations; efficiency usually is gained by expressing additional representational constraints as
part of a type declaration that artificially limit the generality of the code. Cecil’s type system strives
for specification only of those properties of objects that affect program correctness, i.e., the
interfaces to objects, and not of how those properties are implemented. To achieve run-time
efficiency, Cecil relies on advanced implementation techniques [e.g., Dean & Chambers 94, Dean
et al. 95a, Dean et al. 95b, Grove et al. 95, Grove 95].

Finally, Cecil’s type system is descriptive rather than prescriptive. The semantics of a Cecil
program are determined completely by the dynamically-typed core of the program. Type
declarations serve only as documentation and partial redundancy checks, and they do not influence
the execution behavior of programs. This is in contrast to some type systems, such as Dylan’s,
where an argument type declaration can mean a run-time type check in some contexts and act as a
method lookup specializer in other contexts.

The design of the Cecil type system is affected strongly by certain language features. Foremost of
these is multi-methods. Type systems for single dispatching languages are based on the first
argument of a message having control, consulting its static type to determine which operations are
legal. In Cecil, however, any subset of the arguments to a method may be specialized, leaving the
others unspecialized. This enables Cecil to easily model both procedure-based non-object-oriented
languages and singly-dispatched object-oriented languages as important special cases, but it also
requires the type system to treat specialized arguments differently than unspecialized arguments.

3.2 Types and Signatures

A type in Cecil is an abstraction of an object. A type represents a machine-checkable interface and
an implied but unchecked behavioral specification, and all objects that conform to the type must
support the type’s interface and promise to satisfy its behavioral specification. One type may claim
to be a subtype of another, in which case all objects that conform to the subtype are guaranteed also
to conform to the supertype. The type checker verifies that the interface of the subtype conforms
to the interface of the supertype, but the system must accept the programmer’s promise that the
subtype satisfies the implied behavioral specification of the supertype. Subtyping is explicit in
Cecil just so that these implied behavior specifications can be indicated. A type may have multiple
direct supertypes, and in general the explicit subtyping relationships form a partial order. As

47

described in subsection 3.4, additional type constructors plus a few special types expand the type
partial order to a full lattice.

A signature in Cecil is an abstraction of a collection of overloaded methods, specifying both an
interface (a name, a sequence of argument types, and a result type) and an implied but uncheckable
behavioral specification. The interface of a type is defined as the set of signatures that mention that
type as one of their argument or result types.

For example, the following types and signatures describe the interface to lists of integers:

type int_list subtypes int_collection;

signature is_empty(int_list):bool;

signature length(int_list):int;

signature do(int_list, &(int):void):void;

signature pair_do(int_list, int_list, &(int,int):void):void;

signature prepend(int, int_list):int_list;

Types and signatures represent a contract between clients and implementors that enable message
sends to be type-checked. The presence of a signature allows clients to send messages whose
argument types are subtypes of the corresponding argument types in the signature, and guarantees
that the type of the result of such a message will be a subtype of the result type appearing in the
signature. Any message not covered by some signature will produce a “message not understood”
error. Signatures also impose constraints on the implementations of methods, in order to make the
above guarantees to clients. The collection of methods implementing a signature must be
conforming, complete, and consistent:

• Conformance implies that each method implementing a signature has unspecialized argument
types that are supertypes of the corresponding argument types of the signature and a result type
that is a subtype of the signature’s result type; conformance is Cecil’s version of the standard
contravariance rule found in singly-dispatched statically-typed languages.

• Completeness implies that the methods must handle all possible argument types that might
appear at run-time as an argument to a message declared legal by the signature.

• Consistency implies that the methods must not be ambiguous for any combination of run-time
arguments.

Checking completeness and consistency is the subject of section 3.6.2.

In a singly-dispatched language, each type has an associated set of signatures that defines the
interface to the type. This association relies on the asymmetry of message passing in such
languages, where only the receiver argument impacts method lookup. When type-checking a
singly-dispatched message, the type of the receiver determines the set of legal operations, i.e., the
set of associated signatures. If a matching signature is found, then the message will be understood
at run-time; the static types of the remaining message arguments is checked against the static
argument types listed in the signature. For Cecil, we wish to avoid the asymmetry of this sort of
type system. Consequently, we view a signature as associated with each of its argument types, not
just the first, much as a multi-method in Cecil is associated with each of its argument specializer

48

objects. For example, the prepend signature above is considered part of both the int type and
the int_list type.

In most object-oriented languages, the code inheritance graph and the subtyping graph are joined:
a class is a subtype of another class if and only if it inherits from that other class. Sometimes this
constraint becomes awkward [Snyder 86], for example when a class supports the interface of some
other class or type, but does not wish to inherit any code. Other times, a class reusing another
class’s code cannot or should not be considered a subtype; covariant redefinition as commonly
occurs in Eiffel programs is one example of this case [Cook 89].

To increase flexibility and expressiveness, Cecil separates subtyping from code inheritance. Types
and signatures can be declared independently of object representations and method
implementations. However, since in most cases the subtyping graphs and the inheritance graphs are
parallel, requiring programmers to define and maintain two separate hierarchies would become too
onerous to be practical. To simplify specification and maintenance of the two graphs, in Cecil the
programmer can specify both a type and a representation, and the associated subtyping,
conformance, and inheritance relations, with a single declaration. Similarly, a single declaration
can be used to specify both a signature and a method implementation. In this way we hope to
provide the benefits of separating subtyping from code inheritance when it is useful, without
imposing additional costs when the separation is not needed.

3.3 Type and Signature Declarations

Variable declarations and formal arguments and results of methods, closures, and fields may be
annotated with type declarations. The syntax of declarations is extended to include some new
declarations:

decl ::= let_decl
| tp_decl
| type_ext_decl
| object_decl
| obj_ext_decl
| predicate_decl
| disjoint_decl
| cover_decl
| divide_decl
| signature_decl
| method_decl
| field_sig_decl
| field_decl
| precedence_decl
| include_decl
| prim_decl

In this and subsequent syntax specifications, changes to specifications as described in section 2 are
in boldface.

The following example illustrates some of the extensions:

object list;

method is_empty(l@:list):bool { l.length = 0 }

signature length(l:list):int;

49

signature do(l:list, closure:&(int):void):void;

signature pair_do(l1:list, l2:list, closure:&(int,int):void):void;

method prepend(x:int, l@:list):list {
object inherits cons { head := x, tail := l } }

method copy_reverse(l:list):list {
let var l2:list := nil;
do(l, &(x:int){ l2 := prepend(x, l2); };
l2 }

representation cons isa list;
field head(@:cons):int;
field tail(@:cons):list;

3.3.1 Type Declarations

New user-defined types are introduced with type declarations of the following form (ignoring
parameterization and encapsulation aspects):

tp_decl ::= “type” name {type_relation} “;”

type_relation ::= “subtypes” types

types ::= type { “,” type }

The new type is considered to be a subtype of each of the types listed in the subtypes clause.
The induced subtype relation over used-defined types must be a partial order (i.e., it cannot contain
cycles).*

Type names are interpreted in a name space distinct from that of objects and variables and that of
message names. A type, an object, and a method may all be named list unambiguously.

3.3.2 Representation and Object Declarations

New user-defined objects are introduced with representation declarations of the following form
(again, ignoring parameterization and encapsulation):

object_decl ::= rep_role rep_kind name {relation} [field_inits] “;”

rep_kind ::= “representation” declares an object implementation
| “object” declares an object type and implementation

relation ::= “subtypes” types impl conforms to type, type subtypes from type
| “inherits” parents impl inherits from impl
| “isa” parents impl inherits from impl, type subtypes from type

Representation roles will be described in section 3.5.

If the representation keyword is used, the declaration introduces a new object
representation. This object inherits from the objects named in each inherits clause and
conforms to the types named in each subtypes clause. As mentioned in section 2.1.1, the
inheritance graph cannot have cycles.

An isa clause is syntactic sugar for both a subtypes clause and an inherits clause, i.e.,
sugar for the case where inheritance and subtyping are parallel. So the following declaration

* It is not strictly necessary to restrict subtyping to a partial order. Cycles in the subtypes relation could be allowed,
producing a preorder over types instead of a partial order. This would have any type in a cycle being a subtype of and
therefore substitutable for every other type in the cycle. In essense, all types in a cycle would be equivalent as far as
the type checker was concerned.

50

representation cons isa list;

is syntactic sugar for the declaration

representation cons inherits list subtypes typeof(list);

where typeof(list) represents the most-specific type(s) to which the list object conforms
(typeof is not legal Cecil syntax).

If the object keyword is used, then the declaration is syntactic sugar for the pair of an object
representation declaration and a type declaration. A declaration of the form

object name inherits namei1, namei2, ..., namein
subtypes names1, names2, ..., namesm
isa nameb1, nameb2, ..., namebk ;

is syntactic sugar for the following two declarations:

type name subtypes names1, names2, ..., namesm,
typeof(nameb1), typeof(nameb2), ..., typeof(namebk) ;

representation name
inherits namei1, namei2, ..., namein, nameb1, nameb2, ..., namebk
subtypes name ;

Both the object and the type have the same name, but there is no potential for ambiguity since
object and type names are resolved in separate name spaces. The new type subtypes from all the
types listed in the subtypes clause and from the types to which the objects in the isa clause of
the original declaration conform. The new object representation conforms to the new type and
inherits from the object representations listed in the inherits and isa clauses of the original
declaration.

The object and isa syntactic sugars are designed to make it easy to specify the inheritance and
subtyping properties of an object/type pair for the common case that code inheritance and
subtyping are parallel. We expect that in most programs, only object and isa declarations will
be used; type, representation, inherits, and subtypes declarations are intended for
relatively rare cases where finer control over inheritance and subtyping are required.

Object constructor expressions are similarly extended with representation roles, representation
kinds, and subtyping relationships:

object_expr ::= rep_role rep_kind {relation} [field_inits]

In an object constructor expression, both the representation keyword and the object
keyword have the same effect; the presence or absence of an anonymous type is immaterial.

Representations often add new, implementation-specific operations. For example, the cons
representation defined earlier introduced the head and tail fields. To be able to send messages
that access these new features, a type must exist that includes the appropriate signatures. If cons
were only a representation, then a separate type would need to be defined that included signatures
for head and tail. To avoid this extra step, a representation declaration, like an object
declaration, introduces a corresponding type. Unlike an object declaration, however, the type
derived from a representation declaration is anonymous. It can only be referenced indirectly
through the typeof internal function that specifies the semantics of the isa and @: syntactic sugars

51

(section3.3.5describesthe@: sugar).Consequently, novariablesor unspecializedformalsmaybe
declaredto be of the anonymous type, and no types may be declaredto be subtypesof the
anonymoustype.Thisenablesobjectrepresentationsto bedefinedthatarenot treatedasfirst-class
types; the programmer has control over which types are intended to be used in type declarations.

3.3.3 Type and Object Extension Declarations

As describedin section2.1.3,objectscanbe extendedwith new inheritancerelationsafter they
have beendefined.In a similar fashion,typescanbeextendedwith new subtypingrelationsusing
type extension declarations of the following form:

type_ext_decl ::= “extend” “type” named_type {type_relation} “;”

Thesyntaxof objectextensiondeclarationsis extendedto supportaugmentingeitherjustanobject
representation or both an representation and a type:

obj_ext_decl ::= “extend” extend_kind named_object
{relation} [field_inits] “;”

extend_kind ::= “representation” extend representation
| [“object”] extend both type and representation

If theextensionusestherepresentation keyword,thenthenamedrepresentationis extended
with theappropriateinheritanceandconformancerelations.Otherwise,boththerepresentationand
the type that are named by the extension are updated. A declaration of the form

extend object name inherits namei1, namei2, ..., namein
subtypes names1, names2, ..., namesm
isa nameb1, nameb2, ..., namebk ;

is syntactic sugar for the following two declarations:

extend type name subtypes names1, names2, ..., namesm,
typeof(nameb1), typeof(nameb2), ..., typeof(namebk) ;

extend representation name
inherits namei1, namei2, ..., namein, nameb1, nameb2, ..., namebk
subtypes name ;

It is an error if there does not exist both a representation and a type with the corresponding name.

Allowing typesto be extendedexternally to have additionalsupertypesallows third-partiesto
integrateseparately-developedlibrarieswithout modifying theseparatelibrariesdirectly [Hölzle
93].

3.3.4 Signature Declarations

Signatures can be declared using the following syntax:

signature_decl ::= “signature” method_name
“(” [arg_types] “)” [type_decl] “;”

arg_types ::= arg_type { “,” arg_type }

arg_type ::= [[name] “:”] type

type_decl ::= “:” type

Thenamesof formalsin a signaturearefor documentationpurposesonly; they do not impactthe
meaning of the signature nor do they have any effect during type checking.

52

Signatures can also be declared in a field-like notation, as follows:

field_sig_decl ::= [“var”] “field” “signature” method_name
“(” arg_type “)” [type_decl] “;”

A field signature declaration of the form

var field signature name(type):typeR;

is syntactic sugar for the following two declarations:

signature name(type):typeR;

signature set_name(type,typeR):void;

A field signature declaration does not require that implementations of the resulting signatures be
fields, only that their interface “looks” like they could be implemented by fields. If the var
keyword is omitted, then the second set accessor signature is not generated.

3.3.5 Implementation and Method Declarations

The syntax of method implementations is extended in the following way to accommodate static
types:

method_decl ::= impl_kind method_name
“(” [formals] “)” [type_decl] {pragma}
“{” (body | prim_body) “}” [“;”]

impl_kind ::= [“method”] “implementation” declares a method implementation
| “method” declares a method signature and implementation

specializer ::= [location] [type_decl] specialized formal
| “@” “:” object sugar for @object :object

Formal parameters of the method implementation and the result of the method implementation can
be given explicit type declarations.

If the implementation keyword is used, the declaration introduces a new method
implementation. If, however, the method keyword alone is used, the declaration is syntactic sugar
for both a method implementation declaration and a signature declaration. A declaration of the
form

method name(x1@obj1:type1, ..., xN@objN:typeN):typeR { body }

is syntactic sugar for the following two declarations:

signature name(type1, ..., typeN):typeR;

implementation name(x1@obj1:type1, ..., xN@objN:typeN):typeR { body }

As explained in section 2.2.1, if any of the obji are omitted, they default to any.

A formal in a method or field declaration can be specified with the x@:object syntax. This syntax
is shorthand for x@object:typeof(object).

3.3.6 Field Implementation Declarations

Field implementation declarations are similarly extended to accommodate static types:

field_decl ::= [“shared”] [“var”] “field” field_kind method_name
“(” formal “)” [type_decl] {pragma} [“:=” expr] “;”

53

field_kind ::= empty declare accessor method impl(s) and sig(s)
| “implementation” declare just accessor method implementation(s)

If the implementation keyword is used, then the declaration introduces a field get accessor
method implementation, and also a set accessor method implementation if the field is declared with
the var keyword. The result type of the field is used as the type of the second argument of the set
accessor method; the result type of the set accessor method is void.

If the plain field keyword is used, then the field declaration is syntactic sugar for a field
implementation declaration and a field signature declaration. A field declaration of the form

shared? var? field name(x@obj:type):typeR := expr;

where shared? is either the shared keyword or empty and var? is the var keyword or empty, is
syntactic sugar for the following declarations:

shared? var? field implementation name(x@obj:type):typeR := expr;

var? field signature name(type):typeR;

The field signature declaration is itself syntactic sugar for one or two signature declarations,
depending on whether the var keyword was used.

3.3.7 Other Type Declarations

In addition to allowing the formals and results of methods and fields to be annotated with explicit
type declarations, variable declarations and closure arguments and results can be annotated with
explicit type declarations:

let_decl ::= “let” [“var”] name [type_decl] {pragma} “:=” expr “;”

closure_expr ::= [“&” “(” [closure_formals] “)” [type_decl]] “{” body “}”

closure_formal ::= [name] [type_decl] formal names are optional, if never referenced

If the result type of a closure is omitted, instead of defaulting to dynamic as described in section
3.4.1, the result type is inferred from the type of the result expression in the closure’s body.
Similarly, if the type of a constant local variable is omitted, it is inferred from the type of its
initializing expression; mutable variables and global variables should be given explicit types to
avoid dynamic type checking.

3.3.8 Discussion

Subtyping and conformance in Cecil is explicit, in that the programmer must explicitly declare that
an object conforms to a type and that a type is a subtype of another type. These explicit declarations
are verified as part of type checking to ensure that they preserve the required properties of
conformance and subtyping. Explicit declarations are used in Cecil instead of implicit inference of
the subtyping relations (structural subtyping) for two reasons. One is to provide programmers with
error-checking of their assumptions about what objects conform to what types and what types are
subtypes of what other types. Another is to allow programmers to encode additional semantic
information in the use of a particular type in additional to the information implied by the type’s
purely syntactic interface. Both of these benefits are desirable as part of Cecil’s goal of supporting
production of high-quality software. To make exploratory programming easier, a programming
environment tool could infer the greatest possible subtype relationships (i.e., the implicit

54

“structural” subtyping relationships) for a particular object and add the appropriate explicit subtype
declarations automatically.

Separating subtyping from implementation inheritance increases the complexity of Cecil. A
simpler language might provide only subtyping, and restrict objects to inherit code only from their
supertypes; Trellis takes this approach, for example. However, there is merit in clearly separating
the two concepts, and allowing inheritance of code from objects which are not legal supertypes.
Studies have found this to be fairly common in dynamically-typed languages [Cook 92]. With the
current Cecil design, the only way that an object might not be a legal (structural) subtype of an
object from which it inherits is if the child overrides a method of the parent and restricts at least
one argument type declaration, a relatively rare occurrence. However, Cecil may eventually
support filtering and transforming operations as part of inheritance, such as the ability to exclude
operations, to rename operations, or to systematically adjust the argument types of operations, and
so would create more situations in one object would inherit from another without being a subtype.

Types cannot have default implementations; only object representations can have methods
attached. In other languages, such as Axiom (formerly Scratchpad II) [Watt et al., Jenks & Sutor
92], default implementations can be stored with the type (called the category in Axiom). However,
in Axiom method lookup rules are complicated by the possibility of methods being inherited both
from superclasses and from categories, i.e., along both inheritance and subtyping links. Cecil’s
inheritance rules are simplified by only searching the inheritance graph. We expect that most type-
like entities will actually be declared using the object form so that there is a corresponding
representation to hold any default method implementations.

3.4 Special Types and Type Constructors

The syntax of types (excluding parameterization) is as follows:

type ::= named_type
| closure_type
| lub_type
| glb_type
| “(” type “)” just for grouping

3.4.1 Named Types

Types with names can be directly named:

named_type ::= name

As described in section 3.3.1, type names are resolved in a name space distinct from the names of
variables and objects and of methods.

In addition to user-defined types introduced through type and object declarations, the Cecil
type system includes four special predefined types:

• The type void is used as the result type of methods and closures that do not return a result. All
types are subtypes of void, enabling a method that returns a result to be used in a context
where none is required. The type void may only be used when declaring the result type of a
method or closure. The predefined object void has type void.

55

• The type any is implicitly a supertype of all types other than void; any may be used
whenever a method does not require any special operations of an object.

• The type none is implicitly a subtype of all other types, thus defining the bottom of the type
lattice. It is the result type of a closure that terminates with a non-local return, since such a
closure never returns to its caller. It also is the result type of the primitive loop method, which
also never returns normally. Finally, none is an appropriate argument type for closures that
will never be called.

• The type dynamic is used to indicate run-time type checking. Wherever type declarations are
omitted, dynamic is implied (with the exception of closure results and constant local variable
declarations, as described in section 3.3.7). The dynamic type selectively disables static type
checking, in support of exploratory programming, as described in section 3.10.

3.4.2 Closure Types

The type of a closure is described using the following syntax:

closure_type ::= “&” “(” [arg_types] “)” [type_decl]

(The syntax of arg_types is specified along with signatures in section 3.3.4.)

A closure type of the form

&(t1,...,tN):tR

describes a closure whose eval method has the signature:

signature eval(&(t1,...,tN):tR, t1, ..., tN):tR

Closure types are related by implicit subtyping rules that reflect standard contravariant subtyping:
a closure type of the form &(t1,...,tN):tR is a subtype of a closure type of the form
&(s1,...,sN):sR iff each ti is a supertype of the corresponding si and tR is a subtype of sR.

3.4.3 Least-Upper-Bound Types

The least upper bound of two types in the type lattice is notated with the following syntax:

lub_type ::= type “|” type

The type type1 | type2 is a supertype of both type1 and type2, and a subtype of all types that are
supertypes of both type1 and type2. Least-upper-bound types are most useful in conjunction with
parameterized types, described in section 4.

3.4.4 Greatest-Lower-Bound Types

The greatest lower bound of two types is notated with the following syntax:

glb_type ::= type “&” type

The type type1 & type2 is a subtype of both type1 and type2, and a supertype of all types that are
subtypes of both type1 and type2. Syntactically, the greatest-lower-bound type constructor has
higher precedence than the least-upper-bound type constructor.

Note that the greatest-lower-bound of two types is different than a named type that is a subtype of
the two types. For example,

type1 & type2

56

is a different type than the type introduced by the declaration

type type3 subtypes type1, type2;

The type type3 is a subtype of type1 & type2 (all types that subtype both type1 and type2
are automatically subtypes of type1 & type2), but not identical to it. The reason is that the
programmer might later define a type4 type:

type type4 subtypes type1, type2;

The type type4 is also a subtype of type1 & type2, but type3 and type4 are different and
in fact mutually incomparable under the subtype relation. The two types are different because
named types include implicit behavioral specifications, and the implication of the two separate type
declarations is that the implied behavioral specifications of type3 and type4 are different.

The void, any, and none special types and the greatest-lower-bound and least-upper-bound type
constructors serve to extend the explicitly-declared type partial order generated from type and
object declarations to a full lattice.

3.5 Object Role Annotations

Because Cecil is classless, objects are used both as run-time entities and as static, program structure
entities. Some objects, such as nil and objects created at run-time through object constructor
expressions, are manipulated at run-time and can appear as arguments to messages at run-time.
Such concrete objects are required to have all the signatures in their types be supported by
corresponding method implementations and all their fields be initialized. In contrast, objects such
as cons and list are not directly manipulated at run-time. Instead, they help organize programs,
providing repositories for shared methods and defining locations in the type lattice. In return for
restricted usage, such abstract objects are not required to have their fields fully initialized nor their
signatures fully implemented.

To inform the type checker about the part played by an object, its declaration is prefixed with an
object representation role annotation:

rep_role ::= “abstract” only inherited from by named objects;
allowed to be incomplete

| “template” only inherited from or instantiated;
uninitialized fields allowed

| “concrete” directly usable;
must be complete and initialized

| [“dynamic”] directly usable;
no static checks

Each of these role annotations appears in the list hierarchy:

abstract object list isa collection;

template representation cons isa list;

concrete representation nil isa list;

Abstract objects are potentially incomplete objects designed to be inherited from and fleshed out
by other objects. Abstract objects need not have all their signatures fully implemented nor their
fields initialized. For example, the list object is not required to implement the do signature
defined for the type list; the implementation of this operation is deferred to children. Because

57

an abstract object may be incomplete, it cannot be used directly at run-time, nor can it appear as a
parent in an object constructor declaration. Abstract objects are similar to abstract classes in class-
based languages.

Template objects are complete objects suitable for direct “instantiation” by object constructor
expressions, but are not allowed to be used directly as a value at run-time. Because new method
implementations cannot be specified for anonymous objects, all the signatures specified as part of
the type of a template object are required to be fully implemented. For example, the cons object
is required to fully implement all list operations, including do. However, because template
objects will not be sent messages at run-time, they are not required to have their fields initialized.
The cons object is not required to have its head and tail fields initialized. Template objects are
analogous to concrete classes in class-based languages.

Concrete objects are complete, initialized objects that can be manipulated at run-time. Like
template objects, all signatures must be implemented, and in addition all fields must be initialized,
either as part of the field declaration or as part of the object declaration or object constructor
expression. Like other named objects, named concrete objects can be inherited from as well. (The
child object’s role can revert to abstract or template.) Anonymous concrete objects correspond to
instances in class-based languages; named concrete objects have no direct analogue and are a
feature of Cecil’s object model.

If the object role annotation is dynamic or omitted, the object is considered fully manipulable by
programs but no static checks for incomplete implementation of signatures or uninitialized fields
are performed. (The appropriate checks will be made dynamically, as messages are sent and fields
accessed.) Dynamic objects are designed to support exploratory programming, as discussed in
section 3.10.

Since object constructor expressions create objects to be used at run-time, neither abstract nor
template annotations are allowed on object constructor expressions.

Object role annotations help document explicitly the programmer’s intended uses of objects. Other
languages provide similar support. C++ indirectly supports differentiating abstract from concrete
classes through the use of pure virtual functions and private constructors. Eiffel supports a similar
mechanism through its deferred features and classes mechanism. Cecil’s abstract annotation is
somewhat more flexible than these approaches, since an object can be labeled abstract
explicitly, even if it has no abstract methods. Such a declaration can be useful to prevent direct
instantiation of the object, perhaps because the method implementations are mutually recursive in
a way where subclasses are expected to override at least one of the methods to break the recursion.

In an earlier version of Cecil, a fifth annotation, unique, could be used to document the fact that
an object was unique. For example, nil, true, and false all were annotated as unique objects.
While the exact semantics of uniquewas unclear, a plausible interpretation could be that a unique
object is like a concrete object except that it could not be used as a parent in an object constructor
expression (i.e., it could not be “instantiated” or “copied”). Unique objects could still be inherited
from in object declarations, since they might have useful code to be inherited. Unique objects were
removed because it was felt that the extra language mechanism was not worthwhile. The

58

template annotation may be removed for a similar reason, since it is not strictly necessary for
the type checker, but the distinction between abstract and template objects appears to be useful for
documenting the programmer’s intentions. The distinction between abstract objects and concrete
objects, however, is crucial to being able to write and type-check realistic Cecil code.

3.6 Type Checking Messages

This section describes Cecil’s type checking rules for message sends and method declarations.
Section 3.7 describes type checking for other, simpler kinds of expressions. Parameterized types
are described in section 4.

In Cecil, all control structures, instance variable accesses, and basic operators are implemented via
message passing, so messages are the primary kind of expression to type-check. For a message to
be type-correct, there must be a single most-specific applicable method implementation defined for
all possible argument objects that might be used as an argument to the message. However, instead
of directly checking each message occurring in the program against the methods in the program,
in Cecil we check messages against the set of signatures defined for the argument types of the
message, and then check that each signature in the program is implemented conformingly,
completely, and consistently by some group of methods.

Using signatures as an intermediary for type checking has three important advantages. First, the
type-checking problem is simplified by dividing it into two separable pieces. Second, checking
signatures enables all interfaces to be checked for conformance, completeness, and consistency
independent of whether messages exist in the program to exercise all possible argument types.
Finally, signatures enable the type checker to assign blame for a mismatch between implementor
and client. If some message is not implemented completely, the error is either “message not
understood” or “message not implemented correctly.” If the signature is absent, it is the former,
otherwise the latter. Signatures inform the type checker (and the programmer) of the intended
interfaces of abstractions, so that the system may report more informative error messages. Of
course, the “missing signature” error is sometimes the appropriate message to report, but the type
checker cannot accurately distinguish this from the “message not understood” alternative.

Subsection 3.6.1 describes checking messages against signatures, and subsection 3.6.2 describes
checking signatures against method implementations.

3.6.1 Checking Messages Against Signatures

Given a message of the form name(expr1,...,exprN), where each expri type-checks and has static
type Ti, the type checker uses the Ti to locate all signatures of the form name(S1,...,SN):SR where
each type Si is a supertype of the corresponding Ti. If this set of applicable signatures is empty, the
checker reports a “message not understood” error. Otherwise, the message send is considered type-
correct.

To determine the type of the result of the message send, the type system calculates the most-specific
result type of any applicable signature. This most-specific result type is computed as the greatest
lower bound of the result types of all applicable signatures. In the absence of other type errors, this
greatest lower bound will normally correspond to the result type of the most-specific signature.

59

To illustrate, consider the message copy(some_list), where the static type of some_list is
list. The following types and signatures are assumed to exist:

type collection;

type list subtypes collection;

type array subtypes collection;

signature copy(collection):collection;

signature copy(list):list;

signature copy(array):array;

The signature copy(array):array is not applicable, since list, the static type of
some_list, is not a subtype of array. The dynamic type of some_list might turn out to
conform to array at run-time (e.g., if there were some data structure that was both a list and
an array), but the static checker cannot assume this and so must ignore that signature. The first
two signatures do apply, so the copy message is considered legal. The type of the result is known
to be both a list and a collection. The greatest lower bound of these two is list, so the
result of the copy message is of type list.

Unlike method dispatching, it is acceptable for more than one signature to be applicable to a
message. Signatures are contracts that clients can assume, and if more than one signature is
applicable, then the client can assume more guarantees about the type of the result. The greatest
lower bound is used to calculate the message’s result type, rather than the least upper bound,
because each signature can be assumed to be in force. At run-time, a method will be selected, and
that method will be required to honor the result type guarantees of all the applicable signatures, and
so the target method implementation will return an object that conforms to the result types of all
the applicable signatures, i.e., the greatest lower bound of these signatures. In common practice,
some most-specific signature’s result type will be the greatest lower bound, such as the list type
selected above.

3.6.2 Checking Signatures Against Method Implementations

The type checker ensures that, for every signature in the program, all possible messages that could
be declared type-safe by the signature would in fact locate a single most-specific method with
appropriate argument and result type declarations, given the current set of representation and type
declarations in the program. This involves locating all methods to which the signature is applicable
(i.e., all those that could be invoked by a message covered by the signature) and ensuring that they
conformingly, completely, and consistently implement the signature.

More precisely:

• A signature is considered applicable to a method iff they have the same name and number of
arguments and there exists some sequence of argument objects that both inherits from the
specializers of the method and conforms to the argument types of the signature. Abstract
objects are not included when considering possible argument objects, since they are not
required to be complete implementations and are restricted from being manipulated at run-
time. (This is the key distinction between abstract and non-abstract objects.) Template objects
are included, since they are required to fully implement all applicable signatures.

60

• A method conforms to a signature iff

• for each formal, all objects that inherit from the formal’s specializer and conform to the
signature’s corresponding argument type also conform to the formal’s declared type (for
unspecialized formals, this constraint amounts to requiring that the formal’s type is a
supertype of the signature argument’s type), and

• the method’s result type is a subtype of the signature’s result type.

• A set of methods completely implement a signature iff, for each possible sequence of argument
objects that conforms to the argument types in the signature, there exists at least one method in
the set that is applicable to the argument objects, i.e., where the argument objects inherit from
the method’s specializers.

• A set of methods consistently implement a signature iff, for each possible sequence of argument
objects that conforms to the argument types in the signature, there exists a single most-specific
applicable method in the set.

Conformance of a method against a signature can be checked in isolation of any other methods and
signatures in the program. However, in the presence of multi-methods, it is not possible to check
individual methods in isolation for completeness and consistency, since interactions among multi-
methods can introduce ambiguities where none would exist if the multi-methods were not jointly
defined within one program.

To type-check in the presence of Cecil’s prototype-based object model, object representatives are
extracted from the program. Each named template, concrete, and dynamic object is considered a
distinct object representative, and each static occurrence of an object constructor expression is
considered an object representative. A finite number of representatives are extracted from any
given program. Representatives are then used as the potential run-time argument objects when
testing whether a signature is applicable to a method and whether a set of methods completely and
consistently implement a signature. The object representative for an object constructor expression
acts as a proxy for all the objects created at run-time by executing that object constructor
expression. Since each object created by a particular object constructor expression inherits the
same set of methods and has the same type, only one representative need be checked to ensure type
safety of all objects created by the object constructor expression at run-time. Object representatives
are analogous to concrete classes in a class-based language and maps in the Self implementation
[Chambers et al. 89].

Conceptually, for each signature, the type checker enumerates all possible message representatives
that are covered by the signature, where the arguments to the message representative are object
representatives that conform to the signature’s argument types. (A much more efficient algorithm
to perform this checking is described elsewhere [Chambers & Leavens 94].) For each message
representative, the type checker simulates method lookup and checks that the simulated message
would locate exactly one most-specific method. If no method is found, the type checker reports a
“signature implemented incompletely” error. If multiple mutually ambiguous methods are found,
the type checker reports a “signature implemented inconsistently” error. Otherwise, the single
most-specific method has been found for the message representative. In this case, the type checker
also verifies that the argument object representatives conform to the declared argument types of the
target method and that the declared result type of the method is a subtype of the signature’s result

61

type. If all these tests succeed, then all run-time messages matching the message representative are
guaranteed to execute successfully.

For example, consider type-checking the implementation of the following signature:

signature pair_do(collection, collection, &(int,int):void):void;

The type checker would first collect all object representatives that conform to collection and
all those that conform to &(int,int):void. For a small system, the collection-
conforming object representatives might be the following:

representation nil inherits list;

representation cons inherits list;

representation inherits cons;

representation array inherits collection;

The list and collection objects are not enumerated because they are abstract. The third
representative is extracted from the object constructor expression in the prepend method. A
single object representative stands for the closure object.

Once the applicable object representatives are collected, the type checker enumerates all possible
combinations of object representatives conforming to the argument types in the signature to
construct message representatives. These message representatives are the following:

pair_do(nil,nil,closure);

pair_do(nil,cons,closure);

pair_do(nil,representation inherits cons,closure);

pair_do(nil,array,closure);

pair_do(cons,nil,closure);

pair_do(cons,cons,closure);

...

pair_do(array,representation inherits cons,closure);

pair_do(array,array,closure);

For each message representative, method lookup is simulated to verify that the message is
understood, that the declared argument types are respected, and that the target method returns a
subtype of the signature’s type.

3.6.3 Comparison with Other Type Systems

For singly-dispatched languages, most type systems apply contravariant rules to argument and
result types when checking that the overriding method can safely be invoked in place of the
overridden method: argument types in the overriding method must be supertypes of the
corresponding argument types of the overridden method, while the result type must be a subtype.
Cecil’s type system does not directly compare one method against another to enforce contravariant
redefinition rules, but instead compares one method against an applicable signature to enforce
contravariant rules for non-specialized arguments. In Cecil terms, in a singly-dispatched language
a signature is inferred from the superclass’s method, and then all subclass methods (i.e., those
methods that are applicable to the signature) are checked for conformance to the signature.

62

Specialized arguments need not obey contravariant restrictions. The type of a specialized argument
for one method can be a subtype of the type of the corresponding argument for a more general
method. This does not violate type safety because run-time dispatching will guarantee that the
method will only be invoked for arguments that inherit from the argument specializer, and the static
type checker has verified that all objects that inherit from the specializer also conform to the
specialized argument’s type. Unspecialized arguments cannot safely be covariantly redefined,
because there is no run-time dispatching on such arguments ensuring that the method will only be
invoked when the type declaration is correct.

Singly-dispatched languages make the same distinction between specialized and unspecialized
arguments implicitly in the way they treat the type of the receiver. For most singly-dispatched
languages, the receiver argument is omitted from the signatures being compared, leaving only
unspecialized arguments and hence the contravariant redefinition rule. If the receiver type were
included as an explicit first argument, it would be given special treatment and allowed to differ
covariantly. (In fact, it must, since the receiver’s type determines when one method overrides
another!) For Cecil, any of the arguments can be specialized or unspecialized, requiring us to make
the distinction explicit. If all methods in a Cecil program specialized on their first argument only,
Cecil’s type checking rules would reduce to those found in a traditional singly-dispatched
language.

Few multiply-dispatched languages support static type systems. Two that are most relevant are
Polyglot [Agrawal et al. 91] and Kea [Mugridge et al. 91]. In both of these systems, type checking
of method consistency and completeness requires that all “related” methods (all methods in the
same generic function in Polyglot and all variants of a function in Kea) be available to the type
checker, just as does Cecil. Neither Polyglot nor Kea distinguishes subtyping from inheritance nor
interfaces from implementations. Additionally, neither Polyglot nor Kea supports a notion of
abstract classes that are not required to be completely implemented but that include some notion
of an operation that is expected to be implemented by subclasses; signatures play this role in Cecil.

3.6.4 Type Checking Inherited Methods

Cecil does not require that a method be re-type-checked when inherited by a descendant, even if
that descendant is not a subtype. This feat is accomplished by verifying that all descendant objects
conform to the declared type of the corresponding formal of the inherited method. If the declared
type is the type of the specializer, such as would arise with a type declaration using the @: syntax,
then all descendant objects are required to be subtypes of the specializer as well. This may be
constraining. For example, consider the following set and bag implementation fragments:

template object bag isa unordered_collection;
field elems(@:bag):list;
method add(b@:bag, x:int):void {

b.elems := cons(b.elems, x); }
method includes(b@:bag, x:int):bool {

b.elems.includes(x) }
...

template object set isa unordered_collection inherits bag;
method add(s@:set, x:int):void {

if_not(includes(s, x), { resend(s, x) }) }

63

Here the type checker would report an error, since set inherits from bag but is not a subtype,
violating the conformance requirements for bag’s elems, add, and includesmethods.* In this
case, a new type bag_like_object could be created that understood the elems and
set_elems messages and the b formal of the bag add and includes methods should be
changed to be of this type:

abstract object bag_like_object;
field elems(@:bag_like_object):list;

template object bag isa unordered_collection, bag_like_object;
method add(b@bag:bag_like_object, x:int):void {

b.elems := cons(b.elems, x); }
method includes(b@bag:bag_like_object, x:int):bool {

b.elems.includes(x) }
...

template object set isa unordered_collection, bag_like_object inherits bag;
method add(s@set:bag_like_object, x:int):void {

if_not(includes(s, x), { resend(s, x) }) }

The programmer could go further and move many of the bag operations into the
bag_like_object. Eventually, set would simply inherit from bag_like_object, not
bag. In this situation, all inheritance links would parallel subtyping links, and the two would not
need to be distinguished.

If such reorganizations can always be made satisfactorily, with the resulting inheritance and
subtyping graphs parallel, then it may not be necessary to separate inheritance from subtyping in
the language. However, such an approach may not always be feasible. Creating the intermediate
bag_like_object is somewhat tedious; the original code was easy to read and dynamically
type-safe. Moreover, the implementation of bag might be written independently and not under
control of the programmer building set. In these cases, simply reusing the implementation of bag
for set is convenient. Unfortunately, Cecil’s type rules currently seem to prevent the simple
solution. One alternative would simply be to re-type-check a method whenever it was inherited by
an object that was not also a subtype. The @: notation could be interpreted as indicating that this
sort of re-type-checking was to be done. Re-type-checking would require access to at least part of
the inherited method’s source code, however. Another alternative would be to relax the
conformance constraint for any object that inherited an overriding method. In this example, the
bag add method would not need to be rewritten, since the set add method “shadows” it for the
only descendant object that is not also a subtype; the includes method would still need to be
rewritten. Also, the resend in the set add method would become type-incorrect, since it is passing
an argument of type set to a method expecting an argument of type bag. This alternative is close
to the idea of encapsulating the use of inheritance from clients, as with private inheritance in C++.
We consider the separation of subtyping from inheritance, when coupled with the desire to avoid
retypechecking methods when inherited, to be an important area for future work.

* Sets are not subtypes of bags since sets do not support the behavioral specification of bags. A client could detect the
difference between a set and a bag by adding the same element twice to an unordered collection and testing how much
the size of the collection changed.

64

3.7 Type Checking Expressions, Statements, and Declarations

Type checking an expression or statement determines whether it is type-correct, and if type-correct
also determines the type of its result. Type checking a declaration simply checks for type
correctness. All constructs are type-checked in a typing context containing the following
information:

• a binding for each variable or object name in scope to either:

• the variable’s declared type and an indication of whether the variable binding is assignable
or constant, or

• to an object with a role annotation and a set of conformed-to types.

• the set of inheritance relations currently in scope;

• a binding for each type name in scope to the corresponding type;

• the set of subtyping relations currently in scope;

• the set of signatures currently in scope (for type checking messages);

• the set of method declarations currently in scope (for type checking resends).

The type checking rules for expressions are as follows:

• A literal constant is always type-correct. The type of the result of a literal constant is the
corresponding predefined type.

• A reference nameis type-correct iff nameis defined in the typing context (i.e., if there exists a
declaration of that name earlier in the same scope or in a lexically-enclosing scope) as either a
variable or an object. If a variable, then the reference is type-correct, with the type of the result
being the associated type of the variable in the typing context. If an object, then the reference
is type-correct iff the object is a concrete or dynamic object, with the type of the result being
the type of the named object.

• An object constructor expression of the general form
role-annotation object inherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct iff:

• each parenti name is bound to a non-abstract non-void object in the typing context;
• each supertypei notates a type other than none in the current typing context;
• each parent-and-supertypej name is bound to a non-abstract non-void object in the typing

context;
• if @obji is present, then obji names an ancestor of the newly created object (if absent, it is

considered to be the same as the newly created object);
• each fieldi names a field Fi specialized on or inherited unambiguously by obji, ignoring any

overriding methods, and Fi is not shared;
• each expri is type-correct, returning an object of static type Ti, and Ti is a subtype of the type

of the contents of the field Fi;
• no field Fi is initialized more than once;

65

• role-annotation is neither abstract nor template; and
• if role-annotation is concrete, then there do not exist any fields specialized on or

inherited by the newly created object that do not have a default initial value and are not
initialized as part of the object creation expression.

The representation keyword may be used in place of the object keyword without
effect. The type of the result of an object constructor expression is a new anonymous type that
is a subtype of each of the supertypei types and each of the types of the parent-and-supertypej
objects.

• A closure constructor expression of the general form
&(x1:type1, ..., xN:typeN):typeR { body }

is type-correct iff:

• the xi, where provided, are distinct;
• each of the typei, if provided, notates a non-void type in the current typing context;
• typeR, if provided, notates a type in the current typing context;
• body is type-correct, checked in a typing context constructed by extending the current

typing context with constant variable bindings for each of the xi to the corresponding type
typei; and

• the type of the result of body is a subtype of typeR, if provided; if :typeR is omitted, then
typeR is inferred to be the type of the result of body.

The type of the result of a closure constructor expression of the above form is
&(type1, ..., typeN):typeR.

• A vector constructor expression of the general form [expr1,...,exprN] type-correct iff each of
the expri is type-correct, with static type Ti which is not void. The type of the result of a vector
constructor expression is the predefined parameterized type i_vector instantiated with the
least upper bound of the Ti. (See section 4 for information on parameterized types.)

• A message expression of the general form name(expr1, ..., exprN) is type-correct iff:

• each of the expri is type-correct, with static type Ti which is not void;* and
• the set S = {S1, ..., SM} of applicable signatures is non-empty, where S is the set of

signatures in the current typing context of the form Si = signature name(ti1, ...,
tiN):tiR where each Ti is a subtype of ti.

The type of the result of a message is the greatest lower bound of each of the result types tiR of
the applicable signatures. Verifying correctness of the implementation of signatures is
described in subsection 3.6.2.

• A resend expression of the general form
resend(..., xi@parenti, ..., exprj, ...)

is type-correct iff:

• each of the arguments xi or expri is type-correct, with static type Ti which is not void;
• the resend is nested textually in the body of a method M;
• M takes the same number of arguments, N, as does the resend;

* The check that the argument type is not void is not strictly necessary, since no signature will have an argument type
that is a supertype of void.

66

• for each specialized formal parameter formali of M, specialized on objecti, the ith argument
to the resend is formali, possibly suffixed with @parenti, and formali is not shadowed with
a local variable of the same name;

• for each unspecialized formal parameter formalj of M, the jth argument to the resend is not
be suffixed with @parentj;

• for each resend argument of the form formali@parenti, parenti is a proper ancestor of
objecti, the specializer of formali, other than void; and

• when method lookup is simulated with a message name the same as M and with N
arguments, where argument i is either any (if formali of M is unspecialized), parenti (if the
argument of the resend is directed using the @parenti suffix notation), or objecti, the
specializer of formali (otherwise), and where the resending method M is removed from the
set of applicable methods in the current typing context, exactly one most-specific target
method R is located, and the argument type declarations of this target method Si are
supertypes of the corresponding Ti.

The type of the result of a resend expression is the declared result type of the target method R.

• A parenthetical expression of the form (body) is type-correct iff body is type-correct. The
type of the result of a parenthetical expression is the type of the result of body.

The following rules define type-correctness of statements:

• An assignment statement of the form name := expr is type-correct iff:

• expr is type-correct, with static type Texpr;
• name is bound to an assignable variable of type Tname in the current typing context; and
• Texpr is a subtype of Tname.

The type of the result of an assignment statement is void.

• A declaration block is type-correct iff its declarations are type-correct, when checked in a
typing context where all names in the declaration block are available throughout the declaration
block. The type of the result of a declaration block is void.

• An expression statement is type-correct iff the expression is type-correct, with static type T. The
type of the result of the expression statement is T.

• A non-local return statement, of the form ^ expr, is type-correct iff:

• expr is type-correct, with static type T;
• the non-local return statement is nested textually inside the body of a method M; and
• T is a subtype of the declared result type of M.

The type of the (local) result of a non-local return is none.

The body of a method, closure, or parenthetical expression is type-correct iff its statements are
type-correct. The type of the result of a body is the type of its last statement, if present, or void,
otherwise.

The following rules define type-correctness of declarations:

• A variable declaration of the form let var name:type := expr, where var is either var or
empty, is type-correct iff:

• name is not otherwise defined in the same scope;

67

• type notates a type in the current typing context; and
• expr is type-correct in a typing context where name and all variables defined later in the

same declaration block are unbound, resulting in static type T, and T is a subtype of type.

The typing context is extended to include a variable binding for name to the type type that is
assignable if var is var and constant otherwise.

• A type declaration of the form
type name subtypes supertype1, ..., supertypeN

is type-correct iff each of the supertypei notates a type other than none in the current typing
context and no cycles are introduced into the subtyping graph as a result of the declaration. As
a result of the declaration, the typing context is extended to include a type binding from name
to a new type that is a subtype of each of the supertypei types.

• A representation declaration of the form
role-annotation kind name inherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct under the same conditions as the analogous object constructor expression, with
the following changes:

• abstract objects may be named in inherits and isa clauses;
• the abstract and template role annotations are allowed; and
• no cycles are allowed to be introduced into the inheritance and subtyping graphs.

The typing context is extended to include an object binding from name to a new object with
role role-annotation that inherits from the parenti objects and the parent-and-supertypej
objects. If kind is the representation keyword, then the new object conforms to the
supertypek types. Otherwise, kind is the keyword object, and the typing context is also
extended with a type binding from name to a new type that is a subtype of each of the supertypei
types, and the new object conforms to the new type.

• A type extension declaration of the form
extend type name subtypes supertype1, ..., supertypeN

is type-correct iff:

• name is bound in the typing context to a type other than void, any, none, and dynamic;
and

• the same constraints on the subtypes clause as with the type declaration are satisfied.

As a result of the declaration, the typing context is extended to reflect that the type name is a
subtype of each of the supertypei types.

• A representation extension declaration of the form
extend kind name inherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct iff:

• name is bound in the typing context to an object other than void and any;

68

• if kind is object or omitted, then name also is bound in the typing context to a type other
than void, any, none, and dynamic;

• the same constraints on the inherits, subtypes, isa, and field initialization clauses
as with the object representation declaration are satisfied; and

• none of the fieldi@obji initialize fields already specialized on or inherited by the object before
the extension.

As a result of the declaration, the typing context is extended to reflect that the object name
inherits from the parenti objects and the parent-and-supertypej objects. If kind is the
representation keyword, then the typing context is extended to reflect that the object
conforms to the supertypek types. Otherwise, kind is the keyword object, and the typing
context is extended to reflect that the name type is a subtype of each of the supertypei types and
that the name object conforms to the name type.

• A signature declaration of the form
signature name(x1:type1,...,xN:typeN):typeR

is type-correct iff:

• the xi, when provided, are distinct;
• each of the typei notates a type other than void in the typing context; and
• typeR notates a type in the typing context.

The typing context is extended to include the corresponding signature.

• A field signature declaration of the form
var field signature name(x:type):typeR

is type-correct iff:

• type notates a type other than void in the typing context; and
• typeR notates a type other than void in the typing context.

The typing context is extended to include the signature
signature name(type):typeR

and, if var is var, the signature
signature set_name(type,typeR):void

• A method implementation declaration of the general form
method kind name(x1@obj1:type1,...,xN@objN:typeN):typeR { body }

is type-correct iff:

• the xi, when provided, are distinct;
• each of the typei notates a type other than void in the typing context;
• if @obji is present, then obji conforms to typei;
• typeR notates a type in the typing context;
• body is type-correct when checked in a typing context constructed by extending the current

typing context with constant variable bindings for each of the xi to the corresponding type
typei; and

• the type of the result of body is a subtype of typeR.

The typing context is extended to include the declared method implementation. If kind is not
implementation, then the typing context is also extended to include the signature

69

signature name(type1,...,typeN):typeR

• A field implementation declaration of the general form
shared var field kind name(x@obj:type):typeR := expr;

is type-correct iff:

• type notates a type other than void in the typing context;
• if @obj is present, then obj conforms to type;
• typeR notates a type other than void in the typing context;
• if := expr is provided, then expr is type-correct, with static type T, and T is a subtype of

typeR; and
• if shared is shared, then := expr is provided.

The typing context is extended to include the declared field get accessor method
implementation, plus the set accessor method implementation if var is var, plus the get (and
possibly set) signature(s) if kind is not implementation.

3.8 Type Checking Subtyping Declarations

When the programmer declares that an object conforms to a type (via a subtypes or isa clause),
the type system trusts this declaration and uses it when checking conformance and subtyping.
However, it is possible that the programmer’s claim is wrong, and that the object in fact does not
faithfully implement the interface of the types to which it supposedly conforms. In this case, the
signature implementation checking, described in section 3.6.2, is sufficient to detect and report the
error, so no additional checking is required. When enumerating and checking message
representatives matching a signature defined on the supertype, the object in question, if not
abstract, will be enumerated, and the error will be detected because some signature will not be
implemented properly for that object. If the object is abstract, no type error will be reported. This
will not affect running programs since the abstract object cannot be used in a message. Also, since
abstract objects are allowed to be incomplete, it is unclear whether a type error really exists.

3.9 Type Checking Predicate Objects

Predicate objects are intended to represent alternative ways of implementing an object’s interface.
Accordingly, it should be possible to type-check programs using predicate objects, under the
assumption that the particular state of the object does not affect its external interface. In particular,
to guarantee type safety in the presence of predicate objects, the type checker must verify that for
each message declared in the interface of some object O:

• at all times there is an implementation of the message inherited by the object O; and

• at no time are there several mutually ambiguous implementations of the message inherited by
the object O.

These two tests correspond to extending the tests of completeness and consistency of method
implementations to cope with the presence of predicate objects.

The set of methods inherited by the object O from normal objects is fixed at program-definition
time and can be type-checked in the standard way. Methods inherited from predicate objects pose
more of a problem. If two predicate objects might be inherited simultaneously by an object, either

70

one predicate object must be known to override the other or they must have disjoint method names.
For example, in the bounded buffer implementation described in section 2.4, since an object can
inherit from both the non_empty_buffer and the non_full_buffer predicate objects, the
two predicate objects should not implement methods with the same name. Similarly, if the only
implementations of some message are in some set of predicate objects, then one of the predicate
objects must always be inherited for the message to be guaranteed to be understood. In other words,
the checker needs to know when one predicate object implies another, when two predicate objects
are mutually exclusive, and when a group of predicate objects is exhaustive. Once these
relationships among predicate objects are determined, the rest of type-checking becomes
straightforward.

Ideally, the system would be able to determine all these relationships automatically by examining
the predicate expressions attached to the various predicate objects. However, predicate expressions
in Cecil can run arbitrary user-defined code, and consequently the system would have a hard time
automatically inferring implication, mutual exclusion, and exhaustiveness. Consequently, we rely
on explicit user declarations to determine the relationships among predicate objects; the system can
verify dynamically that these declarations are correct.

A declaration already exists to describe when one predicate object implies another: the isa
declaration. If one predicate object explicitly inherits from another, then the first object’s predicate
is assumed to imply the second object’s predicate. Any methods in the child predicate object
override those in the ancestor, resolving any ambiguities between them.

Mutual exclusion and exhaustiveness are specified using declarations of the following form:

disjoint_decl ::= “disjoint” named_objects “;”

cover_decl ::= “cover” named_object “by” named_objects “;”

divide_decl ::= “divide” named_object “into” named_objects “;”

named_objects ::= named_object { “,” named_object }

The disjoint declaration

disjoint object1, ..., objectn;

implies to the static type checker that the predicate objects named by each of the objecti will never
be inherited simultaneously, i.e., that at most one of their predicate expressions will evaluate to true
at any given time. Mutual exclusion of two predicate objects implies that the type checker should
not be concerned if both predicate objects define methods with the same name, since they cannot
both be inherited by an object. To illustrate, the following declarations extend the earlier bounded
buffer example with mutual exclusion information:

disjoint empty_buffer, non_empty_buffer;
disjoint full_buffer, non_full_buffer;

The system can infer that empty_buffer and full_buffer are mutually exclusive with
partially_full_buffer. Note that empty_buffer and full_buffer are not
necessarily mutually exclusive.

The cover declaration

cover object by object1, ..., objectn;

71

implies that whenever an object O descends from object, the object O will also descend from at
least one of the objecti predicate objects; each of the objecti are expected to descend from object
already. Exhaustiveness implies that if all of the objecti implement some message, then any object
inheriting from object will understand the message. For example, the following coverage
declaration extends the bounded buffer predicate objects:

cover buffer by empty_buffer, partially_full_buffer, full_buffer;

Often a group of predicate objects divide an abstraction into a set of exhaustive, mutually-exclusive
subcases. The divide syntactic sugar makes specifying such situations easier. A declaration of the
form

divide object into object1, ..., objectn;

is syntactic sugar for the following two declarations:

disjoint object1, ..., objectn;

cover object by object1, ..., objectn;

Since fields are accessed solely through accessor methods, checking accesses to fields in predicate
objects reduces to checking legality of messages in the presence of predicate objects, as described
above. To ensure that fields are always initialized before being accessed, the type checker simply
checks that the values of all fields potentially inherited by an object are initialized either at the
declaration of the field or at the creation of the object.

3.10 Mixed Statically- and Dynamically-Typed Code

One of Cecil’s major design goals is to support both exploratory programming and production
programming and in particular to support the gradual evolution from programs written in an
exploratory style to programs written in a production programming style. Both styles benefit from
object-oriented programming, a pure object model, user-defined control structures using closures,
and a flexible, interactive development environment. The primary distinction between the two
programming styles relates to how much effort programmers want to put into polishing their
systems. Programmers in the exploratory style want the system to allow them to experiment with
partially-implemented and partially-conceived systems, with a minimum of work to construct and
subsequently revamp systems; rapid feedback on incomplete and potentially inconsistent designs
is crucial. The production programmer, on the other hand, is concerned with building reliable,
high-quality systems, and wants as much help from the system as possible in checking and
polishing systems.

To partially support these two programming styles within the same language, type declarations and
type checking are optional. Type declarations may be omitted for any argument, result, or local
variable. Programs without explicit type declarations are smaller and less redundant, maximizing
the exploratory programmer’s ability to rapidly construct and modify programs. Later, as a
program (or part of a program) matures, the programmer may add type declarations incrementally
to evolve the system into a more polished and reliable production form.

Omitted type declarations are treated as dynamic; dynamic may also be specified explicitly as
the type of some argument, result, or variable. An expression of type dynamic may legally be

72

passed as an argument, returned as a result, or assigned to a variable of any type. Similarly, an
expression of any type may be assigned to, passed to, or returned from a variable, argument, or
result, respectively, of type dynamic. This approach to integrating dynamically-typed code with
statically-typed code has the effect of checking type safety statically wherever two statically-typed
expressions interact (assuming that at run-time the objects resulting from evaluating the statically-
typed expressions actually conform to the given types), and deferring to run-time checking at
message sends whenever a dynamically-typed expression is used.

A consequence of this semantics for the dynamic type is that the static type safety of statically-
typed expressions can be broken by passing an incorrect dynamically-typed value to a statically-
typed piece of the program. Dynamic type checking will catch errors eventually, but run-time type
errors can occur inside statically-typed code even if the code passes the type checker. An alternative
approach would check types dynamically at the “interface” between dynamically- and statically-
typed code: whenever a dynamically-typed value is assigned to (or passed to, or returned as) a
statically-typed variable or result, the system could perform a run-time type check of the
dynamically-typed value as part of the assignment. This approach would then ensure the integrity
of statically-typed code: no run-time type errors can occur within statically-typed code labeled
type-correct by the typechecker, even when mixed with buggy dynamically-typed code.
Unfortunately, this approach has some difficulties. One problem is that objects defined in
exploratory mode should not be required to include explicit subtyping declarations; such
declarations could hinder the free-flowing nature of exploratory programming. However, if such an
object were passed to statically-typed code, the run-time type check at the interface would fail,
since the object had not been declared to be a subtype of the expected static type. We have chosen
for the moment to skip the run-time check at the interface to statically-typed code in order to
support use of statically-typed code from exploratory code, relying on dynamic checking at each
message send to ensure that the dynamically-typed object supports all required operations. An
alternative might be to perform some form of inference of the subtyping relationships of
dynamically-typed objects, like that incorporated in object-oriented systems based on implicit
structural subtyping, and use these inferred subtyping relationships for the run-time type check.

Cecil supports the view that static type checking is a useful tool for programmers willing to add
extra annotations to their programs, but that all static efficiently-decidable checking techniques are
ultimately limited in power, and programmers should not be constrained by the inherent limitations
of static type checking. The Cecil type system has been designed to be flexible and expressive (in
particular by supporting multi-methods, separating the subtype and code inheritance graphs, and
supporting explicit and implicit parameterization) so that many reasonable programs will
successfully type-check statically, but we recognize that there may still be reasonable programs
that either will be awkward to write in a statically-checkable way or will be difficult if not
impossible to statically type-check in any form. Accordingly, error reports do not prevent the user
from executing the suspect code; users are free to ignore any type checking errors reported by the
system, relying instead of dynamic type checks. Static type checking is a useful tool, not a
complete solution.

73

4 Parameterization and Bounded Parametric Polymorphism

Practical statically-typed languages need bounded parametric polymorphism. Without some
mechanism for type parameterization, programmers must either resort to multiple similar
implementations of the same abstraction that differ only in type annotations, or insert type casts,
often at the client side, to indicate the more precise types of expressions than the type checker
infers. For example, if parameterization is not available, several nearly identical implementations
of list or arraymay be needed for lists or arrays of integers, strings, etc., and control structures
such as if and map could not be reused for a variety of argument types. Accordingly, Cecil
supports the definition of parameterized object representations, method and field implementations,
types, signatures, and subtype and inheritance relations. The programmer is allowed to express the
assumptions on the type parameters in such declarations using mixed subtype and signature type
constraints. For example, a type parameter may be restricted to be a subtype of a certain type or to
be any type such that a certain signature holds. Type constraints in Cecil generalize F-bounded
polymorphism [Canning et al. 89] and Theta-style where clauses [Day et al. 95, Liskov et al. 94].

This section presents type parameterization and type constraints in Cecil. A more formal
development, although in a simpler setting and using a slightly different notation, appears
elsewhere [Litvinov 98]. The next subsection introduces parameterization. Subsection 4.2 adds
constraints to achieve bounded polymorphism. Subsection 4.3 describes constraint solving and
type inference. Subsection 4.4 describes an advanced use of the type system to express F-bounded
polymorphism. The last subsection reviews related work.

4.1 Parameterized Declarations

4.1.1 Type Parameters, Type Variables, and Instantiating Types

Cecil supports parametric polymorphism by allowing declarations to be parameterized with type
variables. (This facility is not provided for variable declarations, for which it would be unsound.)
A forall T1, ... ,Tn prefix introduces type variables T1, ... ,Tn in a declaration. The scope of
these type variables is the declaration that has this prefix, within which the type variables may be
used as regular types:

tp_decl ::= [type_cxt] “type” name [formal_params]
{type_relation} “;”

object_decl ::= [type_cxt] rep_role rep_kind name [formal_params]
{relation} [field_inits] “;”

predicate_decl ::= [type_cxt] [privacy] “predicate” name [formal_params]
{relation} [field_inits] [“when” expr] “;”

type_ext_decl ::= [type_cxt] [privacy] “extend” “type” named_type
{type_relation} “;”

obj_ext_decl ::= [type_cxt] [privacy] “extend” extend_kind named_object
{relation} [field_inits] “;”

signature_decl ::= [type_cxt] [privacy] “signature” method_name
“(” [arg_types] “)” [type_decl] “;”

method_decl ::= [type_cxt] [privacy] impl_kind method_name
“(” [formals] “)” [type_decl] {pragma}
“{” (body | prim_body) “}” [“;”]

74

field_sig_decl ::= [type_cxt] [field_privacy] [“var”] “field” “signature”
msg_name [formal_params] “(” arg_type “)”

 [type_decl] “;”

field_decl ::= [type_cxt] [field_privacy] [“shared”] [“var”] “field”
field_kind msg_name [formal_params] “(” formal “)”

 [type_decl] {pragma} [“:=” expr] “;”

method_name ::= msg_name [formal_params] | op_name

type_cxt ::= “forall” formal_param { “,” formal_param }

formal_params ::= “[” formal_param { “,” formal_param } “]”

formal_param ::= [“‘”] name_binding

name_binding ::= name declares a type variable called name

To use a polymorphic declaration, it must be instantiated by providing the instantiating type for
each type variable. Type variables are “formals” and instantiating types are “actuals” of a
parameterized declaration. In the following example an immutable vector object i_vector ,
method fetch , and an extend declaration are parameterized with type variable T (intended to
denote the type of the vector elements):

forall T: template object i_vector[T];
forall T: extend i_vector[T] isa collection[T];
forall T: method fetch(a@:i_vector[T], index:int):T { ... }

var my_vec:i_vector[num] := concrete object isa i_vector[num];
var result:num := fetch(my_vec, 5);

Note that parameterization is unsound and is disallowed in the following cases:

• Variable (let) declarations cannot be parameterized.

• The type of a field cannot reference any type parameters except those of the object to which the
field is attached. Moreover, the type of a field attached to a concrete object cannot reference
any type parameters.

4.1.2 Explicit and Implicit Parameterization

A type parameter is explicit if the corresponding instantiating type is to be explicitly provided by
clients of the declaration, or implicit if it is to be inferred automatically by the typechecker. A
polymorphic object or method declaration specifies which parameters are explicit by listing the
corresponding type variables in brackets following the name of the declared entity. The explicitly
instantiating types should be similarly given in brackets whenever the object, type, or message is
referenced:

named_object ::= name [params]

named_type ::= name [params]

message ::= msg_name [params] “(” [exprs] “)”

dot_msg ::= dot_expr “.” msg_name [params] [“(” [exprs] “)”]

params ::= “[” types “]”

In the previous example, the i_vector object is explicitly parameterized and requires all clients
to provide instantiating types, as in i_vector[num] . Method fetch , in contrast, is
parameterized implicitly; in the expression fetch(my_vec, 5) the instantiating type for T is
inferred to be num. Inference allows the programmer to avoid writing the often obvious
instantiating types; it is a key feature of Cecil. It is described in more details in Section 4.3.

75

Thenumberof explicit typeparametersis consideredpartof the“name”of thedeclaredentity. For
example,multiple objectscanbedeclaredwith thesamename,aslong asthey aredeclaredwith
differentnumbersof explicit type parameters.* Also, methodlookup is extendedto includethe
numberof explicit parametersof candidatemethods(whichmustmatchthatat thecallsite)aspart
of the methodselectionprocess.Method lookup doesnot dependon the instantiatingtypes,
however. For example,messagesendsfoo[int]() and foo[string]() will always be
dispatchedto thesamemethodimplementation,but foo[int,string]() will bedispatched
to a different implementation.

Parameterizedextensiondeclarationsareonly instantiatedinternally by the typechecker. Their
type parameters therefore are always implicit.

4.1.3 Omitting the Explicit forall Clause: the Backquote Sugar

Typevariablescanbe introducedimplicitly — without listing themin the forall clause.This
providesamoreconcisenotationfor parameterizeddeclarationsby omitting theexplicit forall
prefix. A type variable is introduced implicitly in a declaration if:

• it is precededby abackquote(‘) somewherein its header(seemoreonthebackquotesugar in
Section4.2), or

• it appearsinsidethesquarebracketsfollowing thenameof aparameterizedobjector message
being introducedin an object or methoddeclaration,in which casethe type variableis an
explicit type parameter of that object or method.

So the declarations from the previous example can be rewritten more concisely as:

template object i_vector[T];
extend i_vector[‘T] isa collection[T];
method fetch(a@:i_vector[‘T], index:int):T { ... }

Theexpressionsremainthesamesincethebackquotesugar doesnot affect whetheror not a type
parameteris explicit. Notethatthenamesof typevariablesshadow namesof globallyvisibletypes,
whetherthe variablesare introducedin a forall clause,using the backquotesugar, or asan
explicit type parameter. For example,if a declarationintroducesa type variablecalled int , all
occurrencesof int in thatdeclarationwill referto thattypevariableandnotthepredefinedinteger
type.

4.2 Bounded Polymorphism and Type Constraints

It is oftennecessaryto expresssomeassumptionsor restrictionson typeparameters.For example,
a sort methodcanonly sort collectionswhoseelementscanbe comparedwith eachother. A
matrix_multiply methodmay requirethat matrix elementsbe numbers.This situationis
known asboundedpolymorphism[Cardelli& Wegner85].Cecilsupportsboundedpolymorphism
by allowing type constraints on type parameters.

* This featuredoesnot interactwell with mixeddynamicandstatictyping,sincethenumberof parametersaffectsthe
executionbehaviorof theprogram,violating theprinciplethatstatictypesdo not affecttheexecutionsemantics.In
thefuture,thenumberof parametersmayberemovedfrom the“name” of anobjector method,sothatparameters
are confined to the (optional) static type system.

76

There are two kinds of type constraints in Cecil. A subtype constraint specifies the requirement that
one type be a subtype of another. A common use of subtype constraints is to specify upper or lower
bounds of type variables. In the following example, the type of matrix elements is constrained to
be a subtype of num:

method matrix_multiply(a:matrix[‘T], b:matrix[‘T]):matrix[T]
where T<=num

{
...

}

A signature constraint specifies the requirement that the given signature hold. A common use of
signature constraints is to require certain operations to be provided for the type parameters. In the
following example, the message send of <= in the body of sort is guaranteed to be legal as long
as the constraint is satisfied:

method sort(a:array[‘T]):void
where signature <=(T,T):bool

{
...
let a_i:T := a!i;
let a_j:T := a!j;
if(a_i <= a_j, { ... swap a!i and a!j ... });
...

}

Type constraints are allowed in the where part of the forall clause and in a where clause
following the header of a declaration. The common case of the subtype constraints, type variables’
upper bounds, are also allowed wherever that type variable is introduced (in a forall clause,
using the backquote sugar, or as an explicit type parameter).

type_cxt ::= “forall” formal_param { “,” formal_param } [type_cons] “:”

type_cons ::= “where” type_constraint { “,” type_constraint }

type_constraint::= sub_constraint | sig_constraint

sub_constraint ::= type (“<=” | “>=”) type

sig_constraint ::= “signature” (msg_name [params] | op_name)
“(” [arg_types] “)” type_decl

name_binding ::= name [“>=” type] [“<=” type]

tp_decl ::= [type_cxt] [privacy] “type” name [formal_params]
{type_relation} [type_cons] “;”

object_decl ::= [type_cxt] [privacy] rep_role rep_kind name [formal_params]
{relation} [type_cons] [field_inits] “;”

predicate_decl ::= [type_cxt] [privacy] “predicate” name [formal_params]
{relation} [type_cons] [field_inits] [“when” expr] “;”

type_ext_decl ::= [type_cxt] [privacy] “extend” “type” named_type
[type_cons] {type_relation} “;”

obj_ext_decl ::= [type_cxt] [privacy] “extend” extend_kind named_object
{relation} [type_cons] [field_inits] “;”

signature_decl ::= [type_cxt] [privacy] “signature” method_name
“(” [arg_types] “)” [type_decl] [type_cons] “;”

method_decl ::= [type_cxt] [privacy] impl_kind method_name
“(” [formals] “)” [type_decl] [type_cons] {pragma}
“{” (body | prim_body) “}” [“;”]

77

field_sig_decl ::= [type_cxt] [field_privacy] [“var”] “field” “signature”
msg_name [formal_params] “(” arg_type “)”
[type_decl] [type_cons] “;”

field_decl ::= [type_cxt] [field_privacy] [“shared”] [“var”] “field”
field_kind msg_name [formal_params] “(” formal “)”
 [type_decl] [type_cons] {pragma} [“:=” expr] “;”

The matrix_multiply method in the above example can be re-written more concisely as
follows (this sacrifices the visual symmetry between the arguments a and b, but is semantically
equivalent, because it introduces exactly the same type variable and constraint):

method matrix_multiply(a:matrix[‘T<=num], b:matrix[T]):matrix[T]
{ ... }

The @: syntactic sugar is extended to allow a type variable with an upper bound. This idiom is used
when it is desirable to give a more precise type to a formal that is specialized on some object (and
the type of the formal is expected to subtype the specializer object). For example,

method foo(x@:‘T<=bar):T { ... }

desugars into

method foo(x@bar:‘T<=bar):T { ... }

It is a useful programming idiom to associate constraints with parameterized types. For example,
the type of a binary search tree may require that the comparison operation be defined on the type
of the tree element, similarly to the sorting method above:

template object binary_tree[T] where signature <=(T,T):bool;

Cecil provides a syntactic sugar that automatically inserts these associated constraints. If a
backquoted type variable is used as an explicit instantiating parameter of a parameterized type, the
constraints that the type associates with its explicit parameter in the corresponding position are
imposed on the type variable. For example, in the following method:

method insert(t@:binary_tree[‘T], elm:T):void { ... }

the constraint where signature <=(T,T):bool is automatically added, so in the body of
insert it is legal to send the message <= to tree elements and elm.

4.3 Constraint Solving and Type Inference

The following typechecking tasks in Cecil lead to constraint solving:

• To typecheck a message send m[T1′,...,Tm′](E1,...,En), where the types of E1,...,En are T1,...,Tn,
the signature constraint signature m[T1′,...,Tm′] (T1,...,Tn):Tresult is solved. Here Tresult is a
fresh type variable and can be instantiated with some type. The type of the message send is the
most specific type that Tresult can take on while the signature constraint can be solved
successfully.

• To check whether S1 is a subtype of S2, the subtype constraint S1 <= S2 is solved. S1 is a subtype
of S2 iff the constraint can be solved successfully.

• Whenever a declaration with constraints in its header is instantiated, the instantiated constraints
must be solved. If they cannot be solved successfully, such instantiation is not legal and so is
disallowed.

78

Given a constraint to solve, constraint solving proceeds as follows. A “set-to-be-solved” of
constraints is created, initially containing this one constraint. One constraint at a time is picked and
removed from this set. A matching constraint is produced from the program declarations, if
possible, otherwise constraint solving fails. Two constraints match if they have the same structure
(e.g., both are signature constraints for the same message name and number of arguments) and the
types in the corresponding positions are the same; fresh type variables may be instantiated with
types during matching. While producing the matching constraint, new constraints to be solved may
arise, in which case they are added to the set-to-be-solved. Constraint solving succeeds when the
set-to-be-solved becomes empty.

The matching constraint can be produced either by taking a constraint or declaration available in
the program, or by combining other constraints produced from the program declarations. More
specifically:

• A polymorphic subtype or signature declaration present in the program can be instantiated by
substituting types or fresh type variables for its type variables; its constraints, if any, need to be
solved and are added to the set-to-be-solved. A subtype of signature declaration with no type
variables is treated as an available constraint itself.

• When typechecking the body of a polymorphic declaration, the constraints in its header are
available.

• Constraints can be combined based on the standard properties of subtyping, such as transitivity,
and of signatures, such as contravariance. For example, if the program contains declarations
signature =(num,num):bool and extend int isa num, they can be combined to
yield the constraint signature =(int,num):bool. Matching of types and substitutions
of types for fresh type variables are performed as needed.

Inference of instantiating types is the part of constraint solving whereby the typechecker decides
how to instantiate polymorphic declarations, i.e., what types to substitute for type variables.
Intuitively, when typechecking a message send, the typechecker tries to find the “best”
instantiations of declarations involved in solving the signature constraint, i.e., the instantiations
that lead to the most precise result type. When checking whether a type is a subtype of another, the
typechecker only needs to prove that some appropriate instantiations exist.

Consider, for example, typechecking the message send print(my_coll) in the context of the
following declarations:

abstract object printable;
signature print(p:printable):void;

abstract object collection[T];
extend collection[‘T <= printable] isa printable;

method print(a@:collection[‘T <= printable]):void
{ print("["); a.do(&(e:T){ print(e) }); print("]") }

extend string isa printable; -- assume string implements print

let my_coll:collection[string] := ...;
print(my_coll);

79

Sincemy_coll hastypecollection[string], in orderto checkthissend,thetypechecker
needsto solve the constraintsignature print(collection[string]):Tresult where
Tresult is a fresh type variable; this is the first constraintin the set-to-be-solved. A matching
constraintcan be producedby instantiatingthe signaturecorrespondingto method print
(collection[‘T<=printable]):void. Two substitutionsneedto take placeto achieve
matching:void for Tresult andstring for T. Also, thesignature’s instantiatedsubtypeconstraint
string <= printable is added to the set-to-be-solved. This time, the program already
containsan exactly matchingdeclaration(the subtypedeclarationcorrespondingto extend
string isa printable). No moreconstraintsareaddedto theset-to-be-solved,soconstraint
solving is complete.The instantiatingtype string was automaticallyinferred for the type
variableT of the polymorphic method declaration.

4.4 F-bounded Polymorphism

This subsectiondescribesan example of advanceduse of the Cecil type system,F-bounded
polymorphism.As we will see,no specialsupportfor this powerful idiom is neededin the type
system— it is madepossibleby allowing constraintsto berecursive,wherebya typevariablecan
appear in its own bound.

For ourfirst example,let usconsideranabstractobjectordered andabinarymethod>. A binary
method is a methodthatexpectstwo argumentsof similar types;the> methodcanbeapplied,for
example,to two numbersor two strings,but notastringandanumber. Wewouldliketo definethis
methodonce,in theordered object,andhave otherobjects,suchasnum andstring, inherit
it. The simplest way to achieve it seems to be as follows:

abstract object ordered;
signature <=(x:ordered, y:ordered):bool;
method >(x:ordered, y:ordered):bool { not(x <= y) }

extend num isa ordered;
extend string isa ordered;

This code,however, leadsto anundesirableeffect.Since> and<= aredefinedfor ordered and
num andstring areits subclasses,wearerequiredto write implementationsof <= to comparea
num andastring, whichwemaynotwant.To avoid mixing of subclassesof ordered, wecan
apply F-bounded polymorphism as follows:

abstract object ordered[T] where T <= ordered[T];
signature <=(x:‘T, y:‘T):bool where T <= ordered[T];
method >(x:‘T, y:‘T):bool where T <= ordered[T]

{ not(x <= y) }

extend num isa ordered[num];
method <=(x@:num, y@:num):bool { ... }

extend string isa ordered[string];
method <=(x@:string, y@:string):bool { ... }

Now method > can be instantiatedwith num for T (becausethe instantiatedconstraint
num <= ordered[num] canbesolved: thereis a correspondingdeclarationin theprogram)or
with string for T, but cannotwith (string|num) for T (whichwouldberequiredin orderto
compare anum and astring).

80

With this scheme, in addition to defining binary methods itself, ordered and all its subtypes can
inherit binary methods from other objects, for example:

abstract object comparable[T] where T <= comparable[T];
signature =(x:‘T, y:‘T):bool where T <= comparable[T];
method !=(x:‘T, y:‘T):bool where T <= comparable[T]

{ not(x = y) }

extend ordered[‘T] isa comparable[T];
method =(x@:num, y@:num):bool { ... }
method =(x@:string, y@:string):bool { ... }

Moreover, num can have subtypes, such as int or float, which can be compared with each
other, but not with string or its subtypes:

extend int isa num;
extend float isa num;

3 != 3.14 -- legal

F-bounded polymorphism can be applied similarly to express families of two or more mutually
recursive types. For example, consider a simplified model-view framework, where the model and
the view must be able refer to each other and invoke operations on each other.* Moreover, instances
of the model-view framework, such as a drawing model and a drawing view, must be able to invoke
specific operations on each other without loss of type safety. The following code shows how the
generic model-view framework can be defined:

abstract object model[‘M <= model[M,V], ‘V <= view[M,V]];

field views(@:model[‘M,‘V]):set[V] := new_set[V]();

method register_view(m@:model[‘M,‘V], view:V):void {
m.views.add(view); }

method update(m@:model[‘M,‘V]):void {
m.views.do(&(v:V){

v.update();
}); }

abstract object view[‘M <= model[M,V], ‘V <= view[M,V]];

field model(@:view[‘M,‘V]):M;

signature update(v@:view[‘M,‘V]):void;

Both model and view are parameterized by the type of the model and the view with the
corresponding upper bounds on these two parameters. Correspondingly, the code for the model
and view objects is parameterized by the actual types of the instantiation of the framework. For
example, the following code instantiates the generic model-view framework to construct a bitmap
drawing model and view:

template object drawing isa model[drawing,drawing_view];

field bitmap(@:drawing):bitmap;

method set_pixel(m@:drawing, pos:position, value:color):void {
bitmap.pixel(pos) := value;
m.views.do(&(v:drawing_view){

v.update_pixel(pos, value);

* Thanks to Gail Murphy for suggesting this problem to us.

81

}); }

template object drawing_view isa view[drawing,drawing_view];

method update(v@:drawing_view):void {
screen.plot(v.model.bitmap); }

method update_pixel(v@:drawing_view, pos:position, value:color):void {
screen.plot_pixel(pos, value); }

method new_drawing_view(m@:drawing):drawing_view {
concrete object isa drawing_view { model := m } }

Both drawing and drawing_view add new operations that need to be called by the other type.
By parameterizing model as was done, the type of the views field in drawing is known
statically to be set of (subtypes of) drawing_view. This knowledge allows the set_pixel
operation in drawing to invoke the update_pixel operation without generating either a static
type-error or requiring a dynamic “typecase” or “narrow” operation. Similarly, because of the way
view is parameterized, the model field in its child drawing_view will be known statically to
refer to a (subtype of) drawing, allowing the update operation of drawing_view to access
the bitmap field of the model in a statically type-safe manner. Note that it is legal to instantiate
model and view with drawing and drawing_view, because the instantiated subtype
constraints can be solved successfully.

Alternatively to the unparameterized drawing and drawing_view, the programmer could
parameterize them in a way similar to how model and view are parameterized, in order to allow
further refinement of these two types. This is similar to having the parameterized ordered
subtype of comparable, as opposed to the unparameterized num and string subtypes of
ordered, in our earlier examples.

4.5 Related Work

We categorize related work on polymorphic type systems for object-oriented languages into several
groups: languages based on F-bounded polymorphism and explicit subtyping, languages based on
SelfType or matching, languages based on signature constraints and implicit structural
subtyping, languages based on instantiation-time checking, languages based on covariant
redefinition, and languages offering local type inference. Cecil includes the core expressiveness of
both F-bounded polymorphism (and its restrictions SelfType and matching) and signature
constraints, provided uniformly over a wide range of declarations. Except where noted below, other
languages based on these ideas support strict subsets of the expressiveness of Cecil, although
sometimes with more compact syntax. Also, the other languages do not support multi-methods,
complete separation of inheritance from subtyping, and least-upper-bound and greatest-lower-
bound type expressions, except where noted below. In most other systems, classes corresponds to
Cecil’s abstract or template objects with parallel subtype and inheritance hierarchies.

4.5.1 Languages Based on F-Bounded Polymorphism

Pizza is an extension to Java based on F-bounded polymorphism [Odersky & Wadler 97]. Like
Cecil, Pizza supports classes with mutually recursive bounds, crucial for supporting interrelated
families of classes such as the model-view example from section 4.4. Also like Cecil, Pizza
automatically infers instantiating type parameters of polymorphic methods and constructors,

82

although the instantiating parameters must match the actual argument types exactly, which is more
restrictive than Cecil which can infer appropriate supertypes of the argument types. Pizza lacks
signature constraints and the resulting implicit structural subtyping. Pizza does not support any
subtyping between different instances of a parameterized type, such as the desirable and legal
subtyping between different read-only interfaces to collection types as in our i_vector example.
Pizza also inherits several restrictions from its Java base, including that it does not allow
contravariant method overriding. Pizza extends Java with first-class, lexically nested functions and
with algebraic data types and pattern-matching. The authors justify introducing algebraic data
types by claiming that classes allow new representations to be added easily but not new operations,
while algebraic data types support the reverse. Cecil’s multi-methods enable both new
representations and new operations to be added easily, avoiding the need for new language
constructs.

Bruce, Odersky, and Wadler [Bruce et al. 98] recently proposed to extend Pizza with special
support for declaring families of mutually recursive classes. They argue that pure F-bounded
polymorphism is too cumbersome for programmers to use in practice. We have not found pure F-
bounded polymorphism to be untenable, however; the model-view example from section 4.4
illustrates our approach. Our experience may be better than theirs because our multi-method
framework encourages us to treat each argument and parameter symmetrically and uniformly,
while their model is complicated by the asymmetry between the implicit receiver and the explicit
arguments. Nevertheless, we are working on syntactic sugars that would make the more
sophisticated uses of F-bounded polymorphism simpler.

Agesen, Freund, and Mitchell propose a similar extension to Java [Agesen et al. 97]. It differs from
Pizza and Cecil in being able to parameterize a class over its superclass. However, this feature
cannot be typechecked when the abstraction is declared, but instead must be rechecked at each
instantiation.

Haskell’s type classes can be viewed as a kind of F-bounded polymorphism [Wadler & Blott 89].
Haskell automatically infers the most-general parameterization and constraints on functions that
take polymorphic arguments, as well as automatically inferring instantiations on calls to such
functions; Cecil requires polymorphic methods to explicitly declare type variables and constraints
over these variables. (In some cases, Haskell cannot unambiguously infer instantiations.) However,
Haskell is not truly object-oriented, in that after instantiation, no subtype polymorphism remains;
values of different classes but a common supertype cannot be mixed together at run-time,
preventing for instance lists of mixed integers and floats.

ML≤ is a powerful polymorphic object-oriented language supporting multi-methods [Bourdoncle
& Merz 97]. ML≤ supports subtyping directly, but treats inheritance as a separate syntactic sugar
(which must follow the subtyping relation). Similarly to Cecil, ML≤ constrains type variables using
sets of potentially recursive subtype constraints, supports inference of type parameters to methods,
and supports least-upper-bound type expressions (although not greatest-lower-bound type
expressions). ML≤ also supports parameterization over type constructors, while in Cecil type
constructors must be instantiated before use. ML≤ supports explicit declarations of co- and
contravariant type parameters of type constructors, while Cecil uses polymorphic subtype

83

declarations to achieve more general effects. ML≤ only allows subtyping between types in the same
type constructor “class,” however, which for instance restricts subtyping to be between types with
the same number of type parameters with the same variance properties, and ML≤ does not support
other forms of constrained subtyping, conformance, or inheritance. Cecil supports multiple
polymorphic signature declarations for the same message, while ML≤ allows only a single
signature declaration per message. ML≤ is purely functional and side-effect-free.

4.5.2 Languages Based on SelfType or Matching

Some languages provide only restricted forms of F-bounded polymorphism. In TOOPLE [Bruce
et al. 93] and Strongtalk [Bracha & Griswold 93], a special type SelfType is introduced, which
can be used as the type of method arguments, results, or variables; roughly speaking, a class C with
references to SelfType can be modeled with the F-bounded declaration

forall SelfType where SelfType <= C[SelfType]:
template object C[SelfType];

SelfType supports binary methods like <= and methods like copy that return values of exactly
the same type as their receiver, but it does not support other kinds of F-bounded parameterization.
Other languages provide a related notion called matching, which allows a kind of F-bounded
polymorphism where a single type variable is bounded by a function of itself (but of no other type
variables); languages with matching include PolyTOIL [Bruce et al. 95b] and LOOM [Bruce et al.
97]. The key advantage of SelfType and matching is convenient syntactic support for a common
idiom, but it is less powerful than F-bounded polymorphism. Additionally, the LOOM language
drops subtyping altogether in favor of matching, which costs it the ability to support run-time
mixing of values of different classes but common supertypes, such as performing binary operations
on the elements of a list of mixed integers and floats. SelfType and matching also are weaker
than F-bounded polymorphism in that they force subclasses to continually track the more specific
type; they cannot stop narrowing at some subclass and switch to normal subtyping below that point.
For example, with F-bounded polymorphism, the parameterized ordered type can have its type
parameter “narrowed” and then fixed (say at ordered[num]), allowing subtypes of the fixed
type (such as int and float) to be freely mixed. This open/closed distinction for recursive
references to a type was noted previously by Eifrig et al. [Eifrig et al. 94].

4.5.3 Languages Based on Signature Constraints and Implicit Structural Subtyping

Some languages use collections of signatures to constrain polymorphism, where any type which
supports the required signatures can instantiate the parameterized declaration. These systems can
be viewed as treating the signature constraints as defining “protocol” types and then inferring a
structural subtyping relation over user-defined and protocol types. This inference is in contrast to
the systems described earlier which require that the protocol types be declared explicitly, and that
legal instantiations of the protocols be declared as explicit subtypes. Implicit structural subtyping
can be more convenient, easier to understand, more adaptable to program evolution, and better
suited to combining separately written code without change, while explicit by-name subtyping
avoids inferring subtyping relations that ignore behavioral specifications, and may interact better
with inheriting default implementations of protocol types. Neither is clearly better than the other;
Cecil supports both easily. In addition, Cecil allows new supertypes to be added to previously

84

declared types, avoiding one limitation of explicit subtyping when adding new explicit protocol
types and adapting previously written objects to conform to them.

Strongtalk is a type system for Smalltalk where programmers define protocol types explicitly, use
protocols to declare the types of arguments, results, and variables, and let the system infer subtype
and conformance relations between protocols and classes; like Cecil, subtyping and inheritance are
separated. Precise details of the type system are not provided, but it appears that Strongtalk
supports explicit parameterization (but without constrained polymorphism) for protocols and
classes, a kind of parametric typing with dependent types and type inference for methods, least-
upper-bound type expressions, and a form of SelfType. To avoid accidental subtyping, a class
may be branded with one or more protocols. Like Cecil, type declarations and typechecking are
optional in Strongtalk.

Interestingly, a later version of Strongtalk appears to have dropped inferred structural subtyping
and brands in favor of explicit by-name subtyping [Bracha 96]. This later version also introduces
the ability to declare that different instantiations of a parameterized type are subtype-related either
co- or contravariantly with respect to its parameter types. Both Strongtalk systems are subsets of
Cecil’s type system.

Theta [Day et al. 95, Liskov et al. 94] and PolyJ [Myers et al. 97] support signature constraints
called where clauses. Unlike Cecil, only explicit type variables are supported, and clients must
provide instantiations of all type variables when using a parameterized abstraction. No subtype
relation holds between different instantiations of the same parameterized type, preventing idioms
such as the covariantly related read-only collection interfaces.

Recursively constrained types are the heart of a very sophisticated type system [Eifrig et al. 95]. In
this system, type variables and sets of constraints over them are automatically inferred by the
system. Subtyping is inferred structurally, viewing objects as records and using standard record
subtyping rules. Technically, the constraints on type variables are (mutually recursive) subtype
constraints, but anonymous types may be introduced as part of the subtype constraints, providing
a kind of signature constraint. Instead of instantiating polymorphic entities and inferring ground
types for expressions, their system simply checks whether the inferred constraints over the whole
program are satisfiable, without ever solving the constraints. For example, when computing the
type of the result of a message, their system may return a partially constrained type variable, while
Cecil must infer a unique, most-specific ground type. As a result, their system can typecheck
programs Cecil cannot. On the other hand, because Cecil computes named types for all
subexpressions, it can give simpler type error messages for incorrect programs; recursively
constrained types can provide only the constraint system that was unsatisfiable as the error
message, and this constraint system may be as large as the program source code itself. Their system
limits syntactically where least-upper-bound and greatest-lower-bound subtype constraints can
appear to ensure that such constraints can always be solved, while Cecil places no syntactic limits
but may report a type error due to incompleteness of the particular deterministic algorithm used by
the typechecker.

85

4.5.4 Languages Based on Instantiation-Time Checking

Somelanguages,including C++ [Stroustrup86] andModula-3[SRC], dispensewith specifying
constraintson type variablesentirely, relying insteadon checkingeachinstantiationseparately.
Theselanguagesarevery flexible in what sort of parameterizeddeclarationsandclientscanbe
written,astheonly constraintsthatneedbemetarethattheindividual instantiationsmadein some
programtypecheck,andthey aresimplefor programmersto use.(C++alsoallowsconstantvalues
asparametersin additionto types.)However, droppingexplicit constraintson instantiatingtype
variableslosestheability to checka parameterizeddeclarationfor typecorrectnessonceandfor
all separatelyfrom its (potentiallyunknown) clients,losesthespecificationbenefitto programmers
abouthow parameterizeddeclarationsshouldbeused,andforcesthesourcecodeof parameterized
entities to be made available to clients in order for them to typecheck instantiations.

4.5.5 Languages Based on Covariant Redefinition

Somelanguagessupportboundedpolymorphicclassesthroughcovariantredefinitionof typesor
operations:a polymorphicclassis definedasa regular classthat hasan “anchor” type member
initializedto theupperboundof thetypeparameter, andinstancesaremadeby definingsubclasses
that redefinesome anchor types to selectedsubtypes.Instancesmay themselves be further
subclassedandtheir anchortypesnarrowed.Eiffel supportscovariantoverridingof methodsand
instancevariables,andusesthelike constructto referto anchors[Meyer92]; Eiffel alsosupports
unboundedparameterizedclassesaswell. Betasupportsvirtual patternsasanchorclasses[Madsen
& Møller-Pedersen89, Madsenet al. 93], andThorupadaptedthis idea in his proposedvirtual
typesextensionto Java [Thorup97]. While all of thesemechanismsseemnaturalto programmers
in many casesandaresyntacticallyconcise,they suffer from alossof statictypesafety. In contrast,
Cecilcandirectlysupportall of thestandardexamplesusedto justify suchmechanisms(including
binarymethodsandthemodel-view example),for instanceusingoneor moremutuallyrecursive
F-boundedtype parameters,without sacrificingstatic type safety. We areworking on syntactic
supportfor the generalpatternof mutually recursive F-boundedtype parameters,in hopesof
achieving the same syntactic conciseness and programmer comprehensibility as well.

4.5.6 Languages Offering Local Type Inference

Thework on local typeinferencein anextensionof F≤ [Pierce& Turner98], especiallythe“local
typeargumentsynthesis,” is very similar to inferenceof instantiatingtypesin Cecil: they address
asimilarproblemanduseasimilarinferencealgorithm.Theirsettingis differentfrom Cecil’s:they
work within an impredicative type systemwhereasCecil’s is essentiallypredicative. In contrast
with their system, Cecil handles F-boundedquantification, signature constraints,by-name
subtyping,and overloading(with multiple dispatch).An earlier work on type inferencein F≤
[Cardelli93] presentsafasteralgorithmwhichis morerestrictive in somecasesdueto asymmetric
treatment of method arguments.

A similarkind of typeinferenceis alsoofferedby GJ,a languagethataddsparameterizedtypesto
Java [Brachaet al. 98]. Comparedto its predecessor, Pizza,in GJthe typeof anexpressiondoes
not dependon its context, and the type inferencesupportssubsumptionand empty collections
(which may be consideredashaving multiple incomparablecollectiontypes).GJ only provides

86

non-variant type parameters whereas in Cecil covariant or contravariant type parameters can be
expressed using polymorphic subtype declarations and are supported by type inference. Type
inference in GJ seeks to find the smallest instantiating types for type variables, whereas the goal of
type inference in Cecil is to infer the most specific type of an expression (which may be achieved,
for example, with the biggest instantiating type for a contravariant type parameter). GJ supports F-
bounded polymorphism, but does not provide other advanced language constructs, such as
signature constraints, independently parameterized subtype declarations, and multi-methods. The
authors of GJ report on the positive experience with their 20,000-line GJ compiler (written in GJ,
too) which extensively uses parameterization for container classes and the Visitor pattern. The
125,000-line Vortex compiler written in Cecil [Dean et al. 96] also uses parameterization
extensively for container classes as well as in heavily parameterized optimization and
interprocedural analysis frameworks [Litvinov 98]. Since Cecil allows additions of new multi-
methods and new branches of multi-methods to the existing code, there is no need to use the Visitor
pattern in Vortex.

87

5 Modules

Object-oriented methods encourage programmers to develop reusable libraries of code. However,
multi-methods can pose obstacles to smoothly integrating code that was developed independently.
Unlike with singly-dispatched systems, if two classes that subclass a common class are included
into a program, it is possible for incompleteness or inconsistency to result. The additional
expressiveness and flexibility of multi-methods creates new pitfalls for integration.

Encapsulation and modularity of multi-methods is a related problem. To enable easier program
reuse and maintenance, it is often desirable to encapsulate a data structure’s implementation.
However, in a multiply-dispatched language achieving this encapsulation is less straightforward
than it would be in either an abstract data type based language, such as CLU, or a singly dispatched
object-oriented language, such as C++ or Smalltalk. In ADT-based or singly-dispatched languages,
direct access to an object’s representation can be limited to a statically-determined region of the
program.

An early approach to encapsulation in Cecil suffered from the problem that privileged access could
always be gained by writing methods that specialized on the desired data structures [Chambers
92b]. A newer module system for Cecil was designed [Chambers and Leavens 94], but there are
unsolved challenges with allowing different multi-methods of the same generic function to have
different visibility. A still newer module system has been designed, and a prototype implemented,
as part of the next-generation Diesel language. This design shows promise, but it is not yet ready
for “prime time.”

For now, Cecil’s syntax has been extended to support module and encapsulation declarations, but
these declarations are not enforced; they are merely advisory stylized comments. The syntax of
declarations is extended to support modules as follows:

decl ::= module_decl
| import_decl
| let_decl
| tp_decl
| type_ext_decl
| object_decl
| obj_ext_decl
| predicate_decl
| disjoint_decl
| cover_decl
| divide_decl
| signature_decl
| method_decl
| field_sig_decl
| field_decl
| precedence_decl
| include_decl
| prim_decl

privacy ::= “public” | “protected” | “private”

module_decl ::= [privacy] “module” module_name [extension] “{”
{friendship | decl} “}” [“;”]

extension ::= “extends” module_names

friendship ::= “friend” module_names “;”

88

module_names ::= module_name {“,” module_name}
module_name ::= name
import_decl ::= [privacy] “import” [“friend”] module_names “;”

Also, most declarations have an optional privacy annotation allowed.

89

6 Related Work

Cecilbuildsuponmuchof thework donewith theSelfprogramminglanguage[Ungar& Smith87,
Hölzleet al. 91a].Selfoffersasimple,pure,classlessobjectmodelwith stateaccessedvia message
passingjust like methods.Cecil extendsSelf with multi-methods,copy-down andinitialize-only
dataslots,lexically-scopedlocalmethodsandfields,objectextensions,statictyping,andamodule
system.Cecil hassimplermethodlookupandencapsulationrules,at leastwhenconsideringonly
thesingledispatchingcase.Cecil’smodelof objectcreationis differentthanSelf’s.However, Cecil
doesnot incorporatedynamicinheritance,oneof themostinterestingfeaturesof Self; predicate
objects are Cecil’s more structuredbut more restricted alternative to dynamic inheritance.
Freeman-Bensonindependentlydevelopedaproposalfor addingmulti-methodsto Self [Freeman-
Benson 89].

CommonLoops[Bobrow et al. 86] andCLOS [Bobrow et al. 88, Gabrielet al. 91] incorporate
multi-methodsin dynamically-typedclass-basedobject-orientedextensionsto Lisp. Method
specializations(at leastin CLOS)canbeeitheron theclassof theargumentobjector on its value.
One significant difference between Cecil’s design philosophy and that in CLOS and its
predecessorsis thatCecil’s multiple inheritanceandmultiple dispatchingrulesareunorderedand
report any ambiguitiesin the sourceprogramas messageerrors,while in CLOS left-to-right
linearizationof theinheritancegraphandleft-to-rightorderingof theargumentdispatchingserves
to resolveall messageambiguitiesautomatically, potentiallymaskingrealprogrammingerrors.We
feel stronglythattheprogrammershouldbemadeawareof potentialambiguitiessinceautomatic
resolutionof theseambiguitiescaneasilyleadto obscureerrorsin programs.Ceciloffersasimpler,
purerobjectmodel,optionalstatictypechecking,andencapsulation.CLOSandits predecessors
includeextensive supportfor methodcombinationrulesandreflective operations[Kiczaleset al.
91] not present in Cecil.

Dylan [Apple 92] is a new languagewhich canbeviewedasa slimmed-down CLOS,basedin a
Scheme-like languageinsteadof CommonLisp. Dylan is similar to CLOSin mostof therespects
describedabove,exceptthatDylanalwaysaccessesstatethroughmessages.Dylansupportsaform
of typedeclarations,but thesearenot checkedstatically, cannotbeparameterized,andaretreated
bothasargumentspecializersandtypedeclarations,unlikeCecilwhereargumentspecializersand
argument type declarations are distinct.

Polyglotis aCLOS-like languagewith astatictypesystem[Agrawal et al. 91]. However, thetype
systemfor Polyglotdoesnotdistinguishsubtypingfrom codeinheritance(classesarethesameas
types in Polyglot), doesnot supportparameterizedor parametricallypolymorphic classesor
methods,anddoesnotsupportabstractmethodsor signatures.To checkconsistency amongmulti-
methodswithin agenericfunction,at leasttheinterfacesto all multi-methodsof agenericfunction
mustbe availableat type-check-time.This requirementis similar to that of Cecil that the whole
programbe availableat type-check-timeto guaranteethat two multi-methodsarenot mutually
ambiguous for some set of argument objects.

Keais ahigher-orderpolymorphicfunctionallanguagesupportingmulti-methods[Mugridgeet al.
91]. Like Polyglot (andmostotherobject-orientedlanguages),inheritanceandsubtypingin Kea

90

are unified. Kea’s type checking of multi-methods is similar to Cecil’s in that multi-methods must
be both complete and consistent. It appears that Kea has a notion of abstract methods as well.

Leavens describes a statically-typed applicative language NOAL that supports multi-methods
using run-time overloading on the declared argument types of methods [Leavens 89, Leavens &
Weihl 90]. NOAL was designed primarily as a vehicle for research on formal verification of
programs with subtyping using behavioral specifications, and consequently omits theoretically
unnecessary features that are important for practical programming, such as inheritance of
implementation, mixed static and dynamic type checking, and mutable state. Other theoretical
treatments of multi-methods have been pursued by Rouaix [Rouaix 90], Ghelli [Ghelli 91],
Castagna [Castagna et al. 92, Castagna 95], and Pierce and Turner [Pierce & Turner 92, Pierce &
Turner 93].

The RPDE3 environment supports subdivided methods where the value of a parameter to the
method or of a global variable helps select among alternative method implementations [Harrison
& Ossher 90]. However, a method can be subdivided only for particular values of a parameter or
global variable, not its class; this is much like supporting only CLOS’s eql specializers.

A number of languages, including C++ [Stroustrup 86, Ellis & Stroustrup 90], Ada [Barnes 91],
and Haskell [Hudak et al. 90], support static overloading on function arguments, but all
overloading is resolved at compile-time based on the static types of the arguments (and results, in
the case of Ada) rather than on their dynamic types as would be required for true multiple
dispatching.

Trellis* supports an expressive, safe static type system [Schaffert et al. 85, Schaffert et al. 86].
Cecil’s parameterized type system includes features not present in Trellis, such as implicitly-bound
type variables and uniform treatment of constrained type variables. Trellis restricts the inheritance
hierarchy to conform to the subtype hierarchy; it only supports isa-style superclasses.

POOL is a statically-typed object-oriented language that distinguishes inheritance of
implementation from inheritance of interface [America & van der Linden 90]. POOL generates
types automatically from all class declarations (Cecil allows the programmer to restrict which
objects may be used as types). Subtyping is implicit (structural) in POOL: all possible legal subtype
relationships are assumed to be in force. Programmers may add explicit subtype declarations as a
documentation aid and to verify their expectations. One unusual aspect of POOL is that types and
classes may be annotated with properties, which are simple identifiers that may be used to capture
distinctions in behavior that would not otherwise be expressed by a purely syntactic interface. This
ameliorates some of the drawbacks of implicit subtyping.

Emerald is another classless object-oriented language with a static type system [Black et al. 86,
Hutchinson 87, Hutchinson et al. 87, Black & Hutchinson 90]. Emerald is not based on multiple
dispatching and in fact does not include support for inheritance of implementation. Types in
Emerald are arranged in a subtype lattice, however.

* Formerly known as Owl and Trellis/Owl.

91

Rapide [Mitchell et al. 91] is an extension of Standard ML modules [Milner et al. 90] with
subtyping and inheritance. Although Rapide does not support multi-methods and relies on implicit
subtyping, many other design goals for Rapide are similar to those for Cecil.

Some more recent languages support some means for distinguishing subtyping from inheritance.
These languages include Theta [Day et al. 95], Java [Sun 95], and Sather [Omohundro 93]. Theta
additionally supports an enhanced CLU-like where-clause mechanism that provides an alternative
to F-bounded polymorphism. C++’s private inheritance supports a kind of inheritance without
subtyping.

Several languages support some form of mixed static and dynamic type checking. For example,
CLU [Liskov et al. 77, Liskov et al. 81] allows variables to be declared to be of type any. Any
expression may be assigned to a variable of type any, but any assignments of an expression of type
any to an expression of another type must be explicitly coerced using the parameterized force
procedure. Cedar supports a similar mechanism through its REF ANY type [Teitelman 84]. Modula-
3 retains the REFANY type and includes several operations including NARROW and TYPECASE
that can produce a more precisely-typed value from a REFANY type [Nelson 91, Harbison 92].
Cecil provides better support for exploratory programming than these other languages since there
is no source code “overhead” for using dynamic typing: variable type declarations are simply
omitted, and coercions between dynamically-typed expressions and statically-typed variables are
implicit. On the other hand, in Cecil it sometimes can be subtle whether some expression is
statically-typed or dynamically-typed.

92

7 Conclusion

Cecil is a pure object-orientedlanguageintendedto supportthe rapid constructionof reliable,
extensiblesystems.It incorporatesa relatively simpleobjectmodelwhich is basedon multiple
dispatching.Cecil complimentsthis object model with a static type systemthat describesthe
interfacesto objectsinsteadof their representationsandamodulesystemto groupandencapsulate
objectsandmethods.Cecil’s typesystemdistinguishessubtypingfrom codeinheritance,but uses
notationthat strives to minimize the burdenon the programmerof maintainingtheseseparate
objectand type relationships.The type systemsupportsexplicitly and implicitly parameterized
typesandmethodsto preciselycapturetherelationshipsamongargumenttypesandresulttypesin
a convenient and conciseway. Cecil supportsboth an exploratory programmingstyle and a
productionprogrammingstyle, in part by allowing a programto matureincrementallyfrom a
dynamically-typedsystemtoastatically-typedsystem.Someareasof Cecil’sdesignarethesubject
of currentwork, includingthedetailsof theparameterizationmechanismin thestatictypesystem,
theprecisesemanticsof themodulesystem,anda formal specificationof thestaticanddynamic
semantics of the language.

Acknowledgments

The Cecil languagedesignand the presentationin this documenthave benefittedgreatly from
discussionswith membersof theSelf groupincludingDavid Ungar, Urs Hölzle,Bay-Wei Chang,
OleAgesen,RandySmith,JohnMaloney, andLarsBak,with membersof theKaleidoscopegroup
including Alan Borning, Bjorn Freeman-Benson,Michael Sannella,Gus Lopez, and Denise
Draper, with theCecil groupincludingClaudiaChiang,Jeff Dean,CharlesGarrett,David Grove,
VassilyLitvinov, Vitaly Shmatikov, andStuartWilliams, andothersincludingPeterDeutsch,Eliot
Moss,JohnMitchell, JensPalsberg, DougLea,Rick Mugridge,JohnChapin,BarbaraLerner, and
ChristineAhrens.GaryLeavenscollaboratedwith theauthorto refinethestatictypesystem,devise
themodulesystem,anddevelopanefficienttypecheckingalgorithm.ClaudiaChiangimplemented
thefirst versionof theCecil interpreter, in Self.StuartWilliams augmentedthis interpreterwith a
type checker for the monomorphicsubsetof the Cecil type system.Jeff Dean,Greg DeFouw,
CharlesGarrett, David Grove, MaryAnn Joy, Vassily Litvinov, Phiem Huynh Ngoc, Vitaly
Shmatikov, Ben Teitelbaum,and Tina Wong have worked on various aspectsof the Vortex
optimizing compiler for object-orientedlanguages,a.k.a. the UW Cecil implementation.A
conversationwith Danny Bobrow and David Ungar at OOPSLA ’89 provided the original
inspiration for the Cecil language design effort.

This researchhasbeensupportedby a NationalScienceFoundationResearchInitiation Award
(contract number CCR-9210990),a NSF Young Investigator Award (contract number CCR-
945767),a University of WashingtonGraduateSchoolResearchFund grant, a grant from the
Officeof Naval Research(contractnumberN00014-94-1-1136),andgifts from SunMicrosystems,
IBM Canada, Xerox PARC, Edison Design Group, and Pure Software.

More informationontheCecil languageandVortex optimizingcompilerprojectsareavailablevia
http://www.cs.washington.edu/research/projects/cecil and via
anonymous ftp fromcs.washington.edu:pub/chambers.

93

References

[Agesenetal. 97] OleAgesen,StephenN. Freund,andJohnC.Mitchell. AddingTypeParameterizationto
the Java Language. InProceedings OOPSLA ’97, Atlanta, GA, October 1997.

[Agrawal et al. 91] RakeshAgrawal, Linda G. DeMichiel,andBruceG. Lindsay. StaticTypeCheckingof
Multi-Methods.In OOPSLA’91 ConferenceProceedings, pp. 113-128,Phoenix,AZ, October, 1991.
Published asSIGPLAN Notices 26(11), November, 1991.

[America & van der Linden 90] PierreAmerica and Frank van der Linden. A Parallel Object-Oriented
Languagewith InheritanceandSubtyping.In OOPSLA/ECOOP’90 ConferenceProceedings, pp.161-
168, Ottawa, Canada, October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Andersen& Reenskaug92] Egil P. Andersenand Trygve Reenskaug.SystemDesignby Composing
Structuresof InteractingObjects.In ECOOP’92 ConferenceProceedings, pp. 133-152,Utrecht,the
Netherlands,June/July1992.PublishedasLecture Notesin ComputerScience615, Springer-Verlag,
Berlin, 1992.

[Apple 92]Dylan, an Object-Oriented Dynamic Language. Apple Computer, April, 1992.

[Barnes91] J. G. P. Barnes.Programmingin Ada, 3rd Edition. Addison-Wesley, Wokingham,England,
1991.

[Black et al. 86] Andrew Black, NormanHutchinson,Eric Jul, andHenry Levy. ObjectStructurein the
EmeraldSystem.In OOPSLA’86 ConferenceProceedings, pp.78-86,Portland,OR,September, 1986.
Published asSIGPLAN Notices 21(11), November, 1986.

[Black & Hutchinson90] Andrew P. Black andNormanC. Hutchinson.TypecheckingPolymorphismin
Emerald. Technical report TR 90-34, Departmentof ComputerScience,University of Arizona,
December, 1990.

[Bobrow et al. 86] DanielG. Bobrow, KennethKahn,Gregor Kiczales,Larry Masinter, Mark Stefik,and
Frank Zdybel. CommonLoops:Merging Lisp and Object-OrientedProgramming.In OOPSLA’86
ConferenceProceedings, pp. 17-29,Portland,OR, September, 1986.PublishedasSIGPLANNotices
21(11), November, 1986.

[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,S. E. Keene,G. Kiczales,D. A. Moon.
CommonLisp ObjectSystemSpecificationX3J13.In SIGPLANNotices23(SpecialIssue), September,
1988.

[Borning 86] A. H. Borning.ClassesVersusPrototypesin Object-OrientedLanguages.In Proceedingsof
the 1986 Fall Joint Computer Conference, pp. 36-40, Dallas, TX, November, 1986.

[Bourdoncle & Merz 97] François Bourdoncle and StephanMerz. Type Checking Higher-Order
PolymorphicMulti-Methods.In ConferenceRecord of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 302–315, January 1997.

[Bracha & Griswold 93] Gilad Brachaand David Griswold. Strongtalk:TypecheckingSmalltalk in a
ProductionEnvironment.In OOPSLA’93 ConferenceProceedings, pp. 215-230,Washington,D.C.,
September 1993. Published asSIGPLAN Notices 28(10), October 1993.

[Bracha96] Gilad Bracha.TheStrongtalkTypeSystemfor Smalltalk,1996.OOPSLA’96 Workshopon
Extending the Smalltalk Language, available from http://java.sun.com/people/gbracha/nwst.html.

[Brachaet al. 98] Gilad Bracha,Martin Odersky, David Stoutamire,andPhilip Wadler. Making theFuture
Safefor thePast:Adding Genericityto theJava ProgrammingLanguage.In OOPSLA’98 Conference
Proceedings, Vancouver, B.C., October, 1998.

[Bruceet al. 93] Kim B. Bruce,JonCrabtree,ThomasP. Murtagh,RobertvanGent,Allyn Dimock, and
Robert Muller. Safe and decidabletype checking in an object-orientedlanguage.In Proceedings
OOPSLA’93, pages29–46,October1993.PublishedasACM SIGPLAN Notices,volume28,number
10.

94

[Bruceetal.95b] Kim B. Bruce,AngelaSchuett,andRobertvanGent.PolyToil: A Type-SafePolymorphic
Object-OrientedLanguage.In Proceedings ECOOP ’95, Aarhus,Denmark,August1995.Springer-
Verlag.

[Bruce et al. 97] Kim B. Bruce,Adrian Fiech,andLeaf Petersen.Subtypingis not a good“Match” for
object-oriented languages. InProceedings ECOOP ’97. Springer-Verlag, June 1997.

[Bruceetal. 98] Kim B. Bruce,Martin Odersky, andPhilip Wadler. A StaticallySafeAlternativeto Virtual
Types. InProceedings ECOOP ’98, Brussels, Belgium, July 1998. Springer-Verlag.

[Canninget al. 89] PeterS. Canning,William R. Cook, Walter L. Hill, JohnC. Mitchell, and William
Olthoff. F-Bounded Quantification for Object-Oriented Programming. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture, 1989.

[Cardelli & Wegner85] LucaCardelliandPeterWegner. On UnderstandingTypes,DataAbstraction,and
Polymorphism. InComputing Surveys 17(4), pp. 471-522, December, 1985.

[Cardelli 93] Luca Cardelli. An implementationof Fsub. ResearchReport97, Digital Equipment
Corporation Systems Research Center, 1993.

[Castagnaet al. 92] GiuseppeCastagna,Giorgio Ghelli, andGiuseppeLongo.A Calculusfor Overloaded
Functionswith Subtyping.In Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pp.182-192,SanFrancisco,June,1992.PublishedasLisp Pointers 5(1), January-March,
1992.

[Castagna95] GiuseppeCastagna.Covarianceand Contravariance:Conflict without a Cause.In ACM
Transactions on Programming Languages and Systems 17(3), pp. 431-447, May 1995.

[Chamberset al. 89] CraigChambers,David Ungar, andElgin Lee.An Efficient Implementationof Self,a
Dynamically-Typed Object-OrientedLanguageBasedon Prototypes.In OOPSLA ’89 Conference
Proceedings, pp. 49-70, New Orleans,LA, October, 1989. Publishedas SIGPLAN Notices 24(10),
October, 1989.Also publishedin Lisp and Symbolic Computation 4(3), Kluwer AcademicPublishers,
June, 1991.

[Chamberset al. 91] CraigChambers,David Ungar, Bay-Wei Chang,andUrs Hölzle. ParentsareShared
Parts:InheritanceandEncapsulationin Self.In Lisp and Symbolic Computation 4(3), KluwerAcademic
Publishers, June, 1991.

[Chambers& Ungar 91] Craig Chambersand David Ungar. Making PureObject-OrientedLanguages
Practical.In OOPSLA ’91 Conference Proceedings, pp. 1-15,Phoenix,AZ, October,1991.Published
asSIGPLAN Notices 26(10), October, 1991.

[Chambers92a] Craig Chambers.The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. Ph.D. thesis, Departmentof Computer
Science, Stanford University, March, 1992.

[Chambers92b] Craig Chambers.Object-OrientedMulti-Methods in Cecil. In ECOOP ’92 Conference
Proceedings, pp. 33-56, Utrecht, the Netherlands,June/July, 1992. Publishedas Lecture Notes in
Computer Science 615, Springer-Verlag, Berlin, 1992.

[Chambers93a]CraigChambers.TheCecil Language:SpecificationandRationale.Technicalreport#93-
03-05, Department of Computer Science and Engineering, University of Washington, March, 1993.

[Chambers93b]CraigChambers.PredicateClasses.In ECOOP ’93 Conference Proceedings, pp.268-296,
Kaiserslautern,Germany, July, 1993.PublishedasLecture Notes in Computer Science 707, Springer-
Verlag, Berlin, 1993.

[Chambers& Leavens94] Craig ChambersandGary T. Leavens.TypecheckingandModulesfor Multi-
Methods.In OOPSLA ’94 Conference Proceedings, pp. 1-15,Portland,OR, October1994.Published
as SIGPLAN Notices 29(10), October1994. An expandedand revised version to appearin ACM
Transactions on Programming Languages and Systems.

[Chang& Ungar 90] Bay-Wei Changand David Ungar. ExperiencingSelf Objects:An Object-Based
Artificial Reality. Unpublished manuscript, 1990.

95

[Cook 89] W. R. Cook.A Proposalfor Making Eiffel Type-Safe.In ECOOP ’89 Conference Proceedings,
pp. 57-70, Cambridge University Press, July, 1989.

[Cooket al. 90] William Cook,WalterHill, andPeterCanning.Inheritanceis notSubtyping.In Conference
Record of the 17th Annual ACM Symposium on Principles of Programming Languages, SanFrancisco,
CA, January, 1990.

[Cook 92] William R. Cook. InterfacesandSpecificationsfor the Smalltalk-80CollectionClasses.In In
OOPSLA ’92 Conference Proceedings, pp. 1-15, Vancouver,Canada,October,1992. Publishedas
SIGPLAN Notices 27(10), October, 1992.

[Day et al. 95] Mark Day, RobertGruber, BarbaraLiskov, andAndrew C. Meyers.Subtypesvs. Where
Clauses:ConstrainingParametricPolymorphism.In Proceedings of the 1995 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’95), pp. 156-168,
Austin, TX, October 1995.

[Dean & Chambers94] Jeffrey Dean and Craig Chambers.Towards Better Inlining DecisionsUsing
Inlining Trials. In Proceedings of the ACM Symposium on Lisp and Functional Programming, pp.273-
282, Orlando, FL, June 1994. Published asLisp Pointers 7(3), July-September 1994.

[Dean et al. 95a] Jeffrey Dean,Craig Chambers,and David Grove. Selective Specializationin Object-
OrientedLanguages.In Proceedings of the 1995 SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’95), La Jolla, CA, June 1995.

[Dean et al. 95b] Jeffrey Dean,David Grove, and Craig Chambers.Optimization of Object-Oriented
ProgramsUsing Static ClassHierarchy Analysis. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’95), Århus, Denmark, August 1995.

[Deanet al. 96] Jeffrey Dean,Greg DeFouw, Dave Grove,VassilyLitvinov, andCraigChambers.Vortex:
An OptimizingCompilerfor Object-OrientedLanguages.In OOPSLA’96 Conference Proceedings, San
Jose, CA, October 1996.

[Eifrig etal. 95] JonathanEifrig, ScottSmith,andValeryTrifonov. SoundPolymorphicTypeInferencefor
Objects. InOOPSLA’95 Conference Proceedings, pages 169–184, Austin, TX, October 1995.

[Ellis & Stroustrup90] MargaretA. Ellis andBjarneStroustrup.The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA, 1990.

[Freeman-Benson89] Bjorn N. Freeman-Benson.A Proposalfor Multi-Methods in Self. Unpublished
manuscript, December, 1989.

[Gabriel et al. 91] RichardP. Gabriel,JonL White, andDaniel G. Bobrow. CLOS: IntegratingObject-
OrientedandFunctionalProgramming.In Communications of the ACM 34(9), pp. 28-38,September,
1991.

[Ghelli 91] Giorgio Ghelli. A Static Type Systemfor MessagePassing.In OOPSLA ’91 Conference
Proceedings, pp. 129-145,Phoenix,AZ, October, 1991. Publishedas SIGPLAN Notices 26(11),
November, 1991.

[Goldberg & Robson83] Adele Goldberg and David Robson.Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA, 1983.

[Goldberg 84] AdeleGoldberg.Smalltalk-80: The Interactive Programming Environment. Addison-Wesley,
Reading, MA, 1984.

[Groveet al. 95] David Grove,Jeffrey Dean,CharlesGarrett,andCraigChambers.Profile-GuidedReceiver
ClassPrediction.In Proceedings of the 1995 ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’95), Austin, TX, October 1995.

[Grove95] David Grove.TheImpactof InterproceduralClassAnalysisonOptimization.In Proceedings of
CASCON ’95, pp. 195-203, Toronto, Canada, November 1995.

[Halbert& O’Brien 86] DanielC. HalbertandPatrick D. O’Brien. UsingTypesandInheritancein Object-
Oriented Languages. Technical report DEC-TR-437, Digital Equipment Corp., April, 1986.

96

[Harbison 92]Samuel P. Harbison.Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1992.

[Harrison & Ossher90] William Harrison and Harold Ossher. Subdivided Procedures:A Language
ExtensionSupportingExtensibleProgramming.In Proceedingsof the1990InternationalConference
on Computer Languages, pp. 190-197, New Orleans, LA, March, 1990.

[Harrison& Ossher93] William HarrisonandHaroldOssher. Subject-OrientedProgramming(A Critique
of PureObjects).In OOPSLA’93 ConferenceProceedings, pp.411-428,Washington,D.C.,September
1993. Published asSIGPLAN Notices 28(10), October 1993.

[Hölzle et al. 91a]Urs Hölzle, Bay-Wei Chang,CraigChambers,Ole Agesen,andDavid Ungar. TheSelf
Manual, Version 1.1. Unpublished manual, February, 1991.

[Hölzle etal. 91b]UrsHölzle,CraigChambers,andDavid Ungar. OptimizingDynamically-TypedObject-
Oriented ProgrammingLanguageswith Polymorphic Inline Caches.In ECOOP ’91 Conference
Proceedings, pp. 21-38, Geneva, Switzerland, July, 1991.

[Hölzleetal. 92]UrsHölzle,CraigChambers,andDavid Ungar. DebuggingOptimizedCodewith Dynamic
Deoptimization.To appearin Proceedingsof theSIGPLAN’92 ConferenceonProgrammingLanguage
Design and Implementation, San Francisco, CA, June, 1992.

[Hölzle 93] UrsHölzle. IntegratingIndependently-DevelopedComponentsin Object-OrientedLanguages.
In ECOOP’93 ConferenceProceedings, pp.36-56,Kaiserslautern,Germany, July 1993.Publishedas
Lecture Notes in Computer Science 707, Springer-Verlag, Berlin, 1993.

[Hudak et al. 90] Paul Hudak,Philip Wadler, Arvind, Brian Boutel, JonFairbairn,JosephFasel,Kevin
Hammond,JohnHughes,ThomasJohnsson,Dick Kieburtz, Rishiyur Nikhil, Simon Peyton Jones,
MikeReeve,David Wise,JonathanYoung.ReportontheProgrammingLanguageHaskell, Version1.0.
Unpublished manual, April, 1990.

[Hutchinson 87] Norman C. Hutchinson. Emerald: An Object-BasedLanguage for Distributed
Programming. Ph.D. thesis, University of Washington, January, 1987.

[Hutchinsonetal. 87] NormanC. Hutchinson,RajendraK. Raj,Andrew P. Black,HenryM. Levy, andEric
Jul. The Emerald ProgrammingLanguageReport. Technical Report 87-10-07, Departmentof
Computer Science, University of Washington, October, 1987.

[Ingalls 86] DanielH. H. Ingalls.A SimpleTechniquefor HandlingMultiple Polymorphism.In OOPSLA
’86 ConferenceProceedings, pp. 347-349,Portland,OR, September, 1986.Publishedas SIGPLAN
Notices 21(11), November, 1986.

[Jenks& Sutor92]RichardD. JenksandRobertS.Sutor. Axiom:theScientificComputingSystem. Springer-
Verlag. 1992.

[Kiczalesetal. 91] GregorKiczales,JamesdesRivières,andDanielG.Bobrow. TheArt of theMeta-Object
Protocol. MIT Press, Cambridge, MA, 1991.

[Kristensenet al. 87] B. B. Kristensen,Ole LehrmannMadsen,Birger Møller-Pedersen,and Kristen
Nygaard. The BETA Programming Language. In Research Directions in Object-Oriented
Programming, MIT Press, Cambridge, MA, 1987.

[LaLondeetal. 86] Wilf R. LaLonde,DaveA. Thomas,andJohnR. Pugh.An ExemplarBasedSmalltalk.
In OOPSLA’86 ConferenceProceedings,pp. 322-330,Portland,OR, September, 1986.Publishedas
SIGPLAN Notices 21(11), November, 1986.

[Leavens89] Gary Todd Leavens.Verifying Object-OrientedProgramsthat useSubtypes. Ph.D. thesis,
MIT, 1989.

[Leavens& Weihl 90] GaryT. LeavensandWilliam E. Weihl. ReasoningaboutObject-OrientedPrograms
that useSubtypes.In OOPSLA/ECOOP’90 ConferenceProceedings, pp. 212-223,Ottawa,Canada,
October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

97

[Lieberman86] Henry Lieberman.Using PrototypicalObjectsto ImplementSharedBehavior in Object-
OrientedSystems.In OOPSLA’86 ConferenceProceedings, pp. 214-223,Portland,OR, September,
1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Liebermanet al. 87] HenryLieberman,Lynn AndreaStein,andDavid Ungar. TheTreatyof Orlando.In
Addendumto the OOPSLA’87 ConferenceProceedings, pp. 43-44, Orlando,FL, October, 1987.
Published asSIGPLAN Notices 23(5), May, 1988.

[Liskov et al. 77] BarbaraLiskov, Alan Snyder, RussellAtkinson, and J. Craig Schaffert. Abstraction
Mechanisms in CLU. InCommunications of the ACM 20(8), pp. 564-576, August, 1977.

[Liskov et al. 81] BarbaraLiskov, RussellAtkinson,Toby Bloom, Eliot Moss,J. CraigSchaffert, Robert
Scheifler, and Alan Snyder. CLU Reference Manual. Springer-Verlag, Berlin, 1981.

[Liskov et al. 94] BarbaraLiskov, Dorothy Curtis,Mark Day, SanjayGhemawhat,RobertGruber, Paul
Johnson, and Andrew C. Myers. Theta Reference Manual. Technical Report Programming
Methodology Group Memo 88, MIT Laboratory for Computer Science, February 1994.

[Litvinov 98] VassilyLitvinov. Constraint-BasedPolymorphismin Cecil:Towardsa PracticalandStatic
Type System. InOOPSLA ’98 Conference Proceedings, Vancouver, B.C., October, 1998.

[Madsen& Møller-Pedersen89] OleLehrmannMadsenandBirgerMøller-Pedersen.Virtual Classes:A
Powerful Mechanismin Object-OrientedProgramming.In ProceedingsOOPSLA’89, pages397–406,
October 1989. Published as ACM SIGPLAN Notices, volume 24, number 10.

[Madsenetal.93] OleLehrmannMadsen,BirgerMøller-Pedersen,andKrystenNygaard.Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading, MA, 1993.

[Meyer 86] BertrandMeyer. GenericityversusInheritance.In OOPSLA’86 ConferenceProceedings, pp.
391-405, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Meyer 88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, New York, 1988.

[Meyer 92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, New York, 1992.

[Milner etal. 90] RobinMilner, MadsTofte,andRobertHarper. TheDefinitionof Standard ML. MIT Press,
Cambridge, MA, 1990.

[Mitchell etal. 91] JohnMitchell, SigurdMeldal,andNeelHadhav. An Extensionof StandardML Modules
with Subtypingand Inheritance.In ConferenceRecord of the ACM Symposiumon Principles of
Programming Languages, Williamsburg, VA, January, 1991.

[Moon 86] David A. Moon. Object-OrientedProgrammingwith Flavors. In OOPSLA’86 Conference
Proceedings,pp. 1-8, Portland, OR, September, 1986. Publishedas SIGPLAN Notices 21(11),
November, 1986.

[Mugridgeet al. 91] W. B. Mugridge,J. G. Hosking,andJ. Hamer. Multi-Methodsin a Statically-Typed
ProgrammingLanguage.Technical report #50, Departmentof ComputerScience,University of
Auckland, 1991. Also inECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991.

[Myersetal. 97] Andrew C. Myers,JosephA. Bank,andBarbaraLiskov. ParameterizedTypesfor Java.In
ConferenceRecord of the 24th ACM SIGPLAN-SIGACT Symposiumon Principlesof Programming
Languages, pages 132–145, January 1997.

[Nelson91] Greg Nelson,editor. SystemsProgrammingwith Modula-3. PrenticeHall, EnglewoodCliffs,
NJ, 1991.

[Odersky & Wadler 97] Martin Odersky and Philip Wadler. Pizza into Java: TranslatingTheory into
Practice.In ConferenceRecord of the 24th ACM SIGPLAN-SIGACT Symposiumon Principles of
Programming Languages, pages 146–159, January 1997.

[Omohundro 93] Stephen Omohundro.The Sather 1.0 Specification. Unpublished manual, June 1993.

[Pierce& Turner92] BenjaminC.PierceandDavid N. Turner. StaticallyTypedMulti-Methodsvia Partially
Abstract Types. Unpublished manuscript, October, 1992.

98

[Pierce& Turner93] BenjaminC. PierceandDavid N. Turner. Object-OrientedProgrammingWithout
Recursive Types. In Conference Record of the 20th Annual ACM Symposium on Principles of
Programming Languages, January, 1993.

[Pierce& Turner98] BenjaminC.PierceandDavid N. Turner. LocalTypeInference.In Conference Record
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages252–
265, January 1998.

[Rees& Clinger 86] JonathanReesand William Clinger, editors.Revised3 Report on the Algorithmic
Language Scheme. In SIGPLAN Notices 21(12), December, 1986.

[Rouaix90] FrancoisRouaix.SafeRun-TimeOverloading.In Conference Record of the 17th Annual ACM
Symposium on Principles of Programming Languages, pp.355-366,SanFrancisco,CA, January, 1990.

[SRC] DEC SRCModula-3Implementation.Digital EquipmentCorporationSystemsResearchCenter.
http://www.research.digital.com/SRC/modula-3/html/home.html.

[Santas93] Philip S. Santas.A Type Systemfor ComputerAlgebra. In International Symposium on
Symbolic and Algebraic Computation. 1993.

[Schaffert et al. 85] CraigSchaffert,TopherCooper, andCarrieWilpolt. Trellis Object-BasedEnvironment,
Language Reference Manual. Technical report DEC-TR-372, November, 1985.

[Schaffert et al. 86] Craig Schaffert, TopherCooper, BruceBullis, Mike Kilian, andCarrieWilpolt. An
Introduction to Trellis/Owl. In OOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR,
September, 1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Snyder86] Alan Snyder. EncapsulationandInheritancein Object-OrientedProgrammingLanguages.In
OOPSLA ’86 Conference Proceedings, pp. 38-45, Portland,OR, September, 1986. Publishedas
SIGPLAN Notices 21(11), November, 1986.

[Steele 84] Guy L. Steele Jr. Common LISP. Digital Press, 1984.

[Stroustrup86] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, Reading,MA,
1986.

[Sun 95] Sun Microsystems.The Java Language Specification. Unpublished manual, May 1995.

[Teitelman 84] Warren Teitelman. The Cedar Programming Environment: A Midterm Report and
Examination. Xerox PARC technical report CSL-83-11, June, 1984.

[Thorup 97] KrestenKrab Thorup.Genericityin Java with Virtual Types.In Proceedings ECOOP ’97,
Jyvaskyla, Finland, June 1997. Springer-Verlag.

[Touretzky 86] D. Touretzky. The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.

[Ungar & Smith87] David Ungar andRandallB. Smith.Self: ThePower of Simplicity. In OOPSLA ’87
Conference Proceedings, pp. 227-241,Orlando,FL, October, 1987.PublishedasSIGPLAN Notices
22(12), December, 1987.Also publishedin Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Ungar et al. 91] David Ungar, Craig Chambers,Bay-Wei Chang,andUrs Hölzle. OrganizingPrograms
without Classes. InLisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Ungar 95] David Ungar. AnnotatingObjectsfor Transportto OtherWorlds. In Proceedings of the 1995
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’95), pp. 73-87, Austin, TX, October 1995.

[Wadler& Blott 89] Philip WadlerandStephenBlott. How to Make ad-hoc PolymorphismLessad-hoc.
In Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 60–76, January 1989.

[Wattet al. 88] StevenM. Watt,RichardD. Jenks,RobertS.Sutor, andBarryM. Trager. TheScratchpadII
Type System:DomainsandSubdomains.In Proceedings of the International Workshop on Scientific
Computation, Capri, Italy, 1988.Publishedin Computing Tools for Scientific Problem Solving, A. M.
Miola, ed., Academic Press, 1990.

99

Appendix A Annotated Cecil Syntax

In our EBNF notation, vertical bars (|) are used to separate alternatives. Braces ({...}) surround
strings that can be repeated zero or more times. Brackets ([...]) surround an optional string.
Parentheses are used for grouping. Literal tokens are included in quotation marks (“...”).

A.1 Grammar
a program is a sequence of declaration blocks and statements

program ::= file_body

file_body ::= { top_decl_block | stmt }

a declaration block is an unbroken sequence of declarations where names are available throughout;
declaration blocks at the top level can be interspersed with pragmas

top_decl_block ::= { decl | pragma }

decl_block ::= decl { decl }

a declaration is a variable, a field, or a method declaration

decl ::= module_decl
| import_decl
| let_decl
| tp_decl
| type_ext_decl
| object_decl
| obj_ext_decl
| predicate_decl
| disjoint_decl
| cover_decl
| divide_decl
| signature_decl
| method_decl
| field_sig_decl
| field_decl
| precedence_decl
| include_decl
| prim_decl

privacy of a declaration defaults to public

privacy ::= “public” | “protected” | “private”

modules package up independent subsystems

module_decl ::= [privacy] “module” module_name [extension] “{”
{friendship | decl} “}” [“;”]

extension ::= “extends” module_names

friendship ::= “friend” module_names “;”

module_names ::= module_name {“,” module_name}

module_name ::= name

import declarations specify used modules

import_decl ::= [privacy] “import” [“friend”] module_names “;”

100

variable declarations bind names to objects; if “var” is present then variable is assignable
let_decl ::= [privacy] “let” [“var”] name [type_decl] {pragma}

“:=” expr “;”

type, representation, and object declarations create new implementations and/or types
tp_decl ::= [type_cxt] [privacy] “type” name [formal_params]

{type_relation} [type_cons] “;” declares an object type
object_decl ::= [type_cxt] [privacy] rep_role rep_kind name [formal_params]

{relation} [type_cons] [field_inits] “;”

rep_role ::= “abstract” only inherited from by named objects;
allowed to be incomplete

| “template” only inherited from or instantiated;
uninitialized fields allowed

| “concrete” completely usable;
must be complete and initialized

| [“dynamic”] completelyusable;accessescheckeddynamically
rep_kind ::= “representation” declares an object implementation

| “object” declares an object type and implementation
type_relation ::= “subtypes” type_patterns

relation ::= type_relation type subtypes from type, or impl conforms to type
| “inherits” parents impl inherits from impl
| “isa” parents impl inherits from impl, type subtypes from type

parents ::= named_object_p { “,” named_object_p }

field_inits ::= “{” field_init { “,” field_init } “}”

field_init ::= msg_name [location] “:=” expr

location ::= “@” named_object

predicate object declaration
predicate_decl ::= [type_cxt] [privacy] “predicate” name [formal_params]

{relation} [type_cons] [field_inits] [“when” expr] “;”

declarations of the relationships among predicate objects
disjoint_decl ::= [privacy] “disjoint” named_objects “;”

cover_decl ::= [privacy] “cover” named_object “by” named_objects “;”

divide_decl ::= [privacy] “divide” named_object “into” named_objects “;”

named_objects ::= named_object { “,” named_object }

extensions adjust the declaration of an existing object and/or type
type_ext_decl ::= [type_cxt] [privacy] “extend” “type” named_type_p

[type_cons] {type_relation} “;”

obj_ext_decl ::= [type_cxt] [privacy] “extend” extend_kind named_object_p
{relation} [type_cons] [field_inits] “;”

extend_kind ::= “representation” extend representation
| [“object”] extend both type and representation

signature declarations declare method signatures
signature_decl ::= [type_cxt] [privacy] “signature” method_name

“(” [arg_type_ps] “)” [type_decl_p] [type_cons] “;”

arg_type_ps ::= arg_type_p { “,” arg_type_p }

arg_type_p ::= [[name] “:”] type_pattern

method_name ::= msg_name [formal_params] | op_name

msg_name ::= name

101

implementation declarations define new method implementations; method decls define signatures, too
method_decl ::= [type_cxt] [privacy] impl_kind method_name

“(” [formals] “)” [type_decl_p] [type_cons] {pragma}
“{” (body | prim_body) “}” [“;”]

impl_kind ::= [“method”] “implementation” declares a method implementation
| “method” declares a method signature and implementation

formals ::= formal { “,” formal }
formal ::= [name] specializer formal names are optional, if never referenced
specializer ::= location [type_decl_p] specialized formal

| [type_decl_p] unspecialized formal
| “@” “:” named_object_p sugar for@named_obj_p :named_obj_p

field declarations declare accessor method signatures and/or implementations
field_sig_decl ::= [type_cxt] [field_privacy] [“var”] “field” “signature”

msg_name [formal_params] “(” arg_type_p “)”
[type_decl_p] [type_cons] “;”

field_decl ::= [type_cxt] [field_privacy] [“shared”] [“var”] “field”
field_kind msg_name [formal_params] “(” formal “)”
 [type_decl_p] [type_cons] {pragma} [“:=” expr] “;”

field_kind ::= empty declare accessor method impl(s) and sig(s)
| “implementation” declare just accessor method implementation(s)

field_privacy ::= privacy [(“get” [privacy “set”] | “set”)]

precedence declarations control the precedence and associativity of binary operators
prec_decl ::= [privacy] “precedence” op_list

[associativity] {precedence} “;”
associativity ::= “left_associative” | “right_associative” | “non_associative”
precedence ::= “below” op_list | “above” op_list | “with” op_list
op_list ::= op_name { “,” op_name }

include declarations control textual file inclusions (implementation specific)
include_decl ::= “include” file_name “;”
file_name ::= string

primitive body declarations include an arbitrary piece of code in the compiled file (implementation specific)
prim_decl ::= prim_body “;”

primitive method bodies support access to code written in other languages (implementation specific)
prim_body ::= “prim” { language_binding }
language_binding::= language “:” code_string

| language “{” code_chars “}”
language ::= name currently recognizertl andc_++
code_string ::= string
code_chars ::= brace_balanced_chars anycharacters,with balanceduseof “{“ and“}”

body of a method or closure
body ::= {stmt} result

| empty returnvoid
stmt ::= decl_block

| assignment “;”
| expr “;”

102

result ::= normal_return return an expression
| non_local_rtn return from the lexically-enclosing method

normal_return ::= decl_block return void
| assignment [“;”] return void
| expr [“;”] return result of expression

non_local_rtn ::= “^” [“;”] do a non-local return, returning void
| “^” expr [“;”] do a non-local return, returning a result

assignment only allowed if name is assignable; returns void
assignment ::= qualified_name “:=” expr

| assign_msg assignment-like syntax for messages
assign_msg ::= lvalue_msg “:=” expr sugar for set_msg(exprs...,expr)
lvalue_msg ::= message

| dot_msg
| unop_msg
| binop_msg

expressions
expr ::= binop_expr

binary msgs have lowest precedence
binop_expr ::= binop_msg | unop_expr

binop_msg ::= binop_expr op_name binop_expr
predecence and associativity as declared

unary msgs have second-lowest precedence
unop_expr ::= unop_msg | dot_expr

unop_msg ::= op_name unop_expr & and ^ are not allowed as unary operators

dotted messages have second-highest precedence
dot_expr ::= dot_msg | simple_expr

dot_msg ::= dot_expr “.” msg_name [params] [“(” [exprs] “)”]
sugar for msg_name[params](dot_expr,exprs...)

simple messages have highest precedence
simple_expr ::= literal

| ref_expr
| vector_expr
| closure_expr
| object_expr
| message
| resend
| paren_expr

literal constants
literal ::= integer

| float
| character
| string

reference a variable or a named object implementation
ref_expr ::= qualified_name reference a local or global variable

| named_object reference a named object

103

build a vector
vector_expr ::= “[” [exprs] “]”

exprs ::= expr { “,” expr }

build a closure
closure_expr ::= [“&” “(” [closure_formals] “)” [type_decl]] “{” body “}”

closure_formals::= closure_formal { “,” closure_formal }

closure_formal ::= [name] [type_decl] formal names are optional, if never referenced

build a new object
object_expr ::= rep_role rep_kind {relation} [field_inits]

send a message
message ::= msg_name [params] “(” [exprs] “)”

resend the message
resend ::= “resend” [“(” resend_args “)”]

resend_args ::= resend_arg { “,” resend_arg }

resend_arg ::= expr corresponding formal of sender must be
 unspecialized

| name undirected resend (name is a specialized formal)
| name location directed resend (name is a specialized formal)

introduce a new nested scope
paren_expr ::= “(” body “)”

name something perhaps in another module
qualified_name ::= [module_name “$”] name

name an object
named_object ::= qualified_name [params]

named_object_p ::= qualified_name [param_patterns]

type contexts and constraints
type_cxt ::= “forall” formal_param { “,” formal_param }

[type_cons] “:”

type_cons ::= “where” type_constraint { “,” type_constraint }

type_constraint::= sub_constraint | sig_constraint

sub_constraint ::= type_pattern (“<=” | “>=”) type_pattern

sig_constraint ::= “signature” (msg_name [param_patterns] | op_name)
“(” [arg_type_ps] “)” type_decl_p

104

syntax of types

types ::= type { “,” type }

type ::= named_type
| closure_type
| lub_type
| glb_type
| paren_type

named_type ::= qualified_name [params]

closure_type ::= “&” “(” [arg_types] “)” [type_decl]

arg_types ::= arg_type { “,” arg_type }

arg_type ::= [[name] “:”] type

lub_type ::= type “|” type

glb_type ::= type “&” type

paren_type ::= “(” type “)”

type patterns are types that can contain binding occurrences of implicit type parameters

type_patterns ::= type_pattern { “,” type_pattern }

type_pattern ::= binding_type_p
| named_type_p
| closure_type_p
| lub_type_p
| glb_type_p
| paren_type_p

binding_type_p ::= “‘” name_binding

named_type_p ::= qualified_name [param_patterns]

closure_type_p ::= “&” “(” [arg_type_ps] “)” [type_decl_p]

lub_type_p ::= type_p “|” type_p

glb_type_p ::= type_p “&” type_p

paren_type_p ::= “(” type_p “)”

name_binding introduces a type variable called name
name_binding ::= name [“>=” type_pattern] [“<=” type_pattern]

type_decl ::= “:” type

type_decl_p ::= “:” type_pattern

formal type parameters for objects and methods

formal_params ::= “[” formal_param { “,” formal_param } “]”

formal_param ::= [“‘”] name_binding

actual type parameters for objects and methods

params ::= “[” types “]”

actual type parameters for types that may contain binding occurrences of implicit type variables

param_patterns ::= “[” type_patterns “]”

pragmas can be added at various points in a program to provide implementation-specific hints/commands

pragma ::= “(**” exprs “**)”

105

A.2 Tokens

Bold-faced non-terminals in this grammar are the tokens in the full grammar of A.1. As usual,
tokens are defined as the longest possible sequence of characters that are in the language defined
by the grammar given below. The meta-notations “one of “...””, “any but x,” and “x..y”
are used to concisely list a range of alternative characters. space, tab, and newline stand for
the corresponding characters.

name ::= letter {letter | digit} [id_cont]
| “_” {“_”} op_name the first underscore is not part of the msg name

op_name ::= punct {punct} [id_cont]
| “_” {“_”} name the first underscore is not part of the msg name

id_cont ::= “_” {“_”} [name | op_name]

integer ::= [radix] hex_digits a leading “-” is considered a unary operator

radix ::= digits “_”

hex_digits ::= hex_digit {hex_digit}

hex_digit ::= digit | one of “a..fA..F”

float ::= integer “.” hex_digits [exponent]
| integer exponent

exponent ::= “^” [“+” | “-”] digits

digits ::= digit {digit}

character ::= “'” char “'”

string ::= “"” { char | line_break } “"”

char ::= any | “\” escape_char

escape_char ::= one of “abfnrtv'"\?0”
| [“o”|“d”] digit [digit [digit]]
| [“o”] digit [digit [digit]]
| “x” hex_digit [hex_digit]

line_break ::= “\” {whitespace} new_line {whitespace} “\”
characters between \’s are not part of the string

brace_balanced_chars ::=
{any but “{”} [“{” brace_balanced_chars “}” {any but “}”}]

letter ::= one of “a..zA..Z”

digit ::= one of “0..9”

punct ::= one of “!#$%^&*-+=<>/?~\|”

A.3 White Space

Whitespace is allowed between any pair of tokens in the grammar in A.1.

whitespace ::= space | tab | newline | comment

comment ::= “--” {any but newline} newline comment to end of line
| “(--” {any} “--)” bracketed comment; can be nested

