The Cecil Language
Specification and Rationale

Version 3.2
Craig Chambers and the Cecil Group

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle, Washington 98195-2350 USA

February, 2004

Abstract

Cecilis a purely object-orientedanguagédntendedto supportrapid constructiornof high-quality
extensiblesoftware.Cecil combinegnulti-methodswith asimpleclassles®bjectmodel,akind of
dynamicinheritance modules,and optional statictype checking.Instancevariablesin Cecil are
accessedolely throughmessagesallowing instancevariablesto be replacedor overriddenby
methodsand vice versa.Cecil’s predicateobjectsmechanismallows an objectto be classified
automaticallybasedon its run-time (mutable) state. Cecil’s static type systemdistinguishes
betweensubtypingandcodeinheritance put Cecil enableghesetwo graphsto be describedwith
asinglesetof declarationsstreamlininghe commoncasewherethetwo graphsareparallel.Cecil
includesa fairly flexible form of parameterizationincluding explicitly parameterizeabjects,
types, and methods,as well as implicitly parameterizednethodsrelatedto the polymorphic
functionscommonlyfoundin functionallanguagesBy makingtype declaration®ptional,Cecil
aimsto allow mixing of andmigrationbetweenexploratoryandproductionprogrammingstyles.
Cecil supportsa module mechanismthat enablesindependently-desloped subsystemdo be
encapsulatedallowing them to be type-checkd and reasonedaboutin isolation despitethe
presenceof multi-methodsand subclassingObjectscan be extendedexternally with additional
methodsandinstancevariablespftenencapsulateth separatenodulessupportingakind of role-
based or subject-oriented programming style.

This documentmixes the specificationof the languagewith discussionf designissuesand
explanations of the reasoning that led &rious design decisions.

1

Table of Contents

INtrodUCLION. o
1.1 Design Goals and Major Features
1.2 Overview

Dynamically-Typed COore e

2.1 Objects and Inheritance
2.1.1 Inheritance
2.1.2 Object Instantiation
2.1.3 Extension Declarations
2.1.4 Predefined Objects
2.1.5 Closures

2.2 Methods
2.2.1 Argument Specializers and Multi-Methods
2.2.2 Method Bodies
2.2.3 Primitive Methods

2.3 Fields
2.3.1 Read-Only vs. Mutable Fields
2.3.2 Fields and Methods
2.3.3 Copy-Down vs. Shared Fields
2.3.4 Field Initialization

2.4 Predicate Objects

2.4.1 Predicate Objects and Inheritance
2.4.2 Predicate Objects and Fields

2.5 Statements and Expressions
2.5.1 Declaration Blocks
2.5.2 Variable Declarations
2.5.3 Variable References
2.5.4 Assignment Statements
2.5.5 Literals
2.5.6 Message Sends
2.5.7 Object Constructors
2.5.8 Vector Constructors
2.5.9 Closures
2.5.10 Parenthetical Subexpressions

2.6 Precedence Declarations

2.6.1 Previous Approaches
2.6.2 Precedence and Associativity Declarations in Cecil

10
11
11
12
12
13

13
14
15
16

17
18
18
19
20

21

23
26

27
28
28
29
29
29
29
31
31
31
32

32
33
34

2.7 Method Lookup

2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7
2.7.8

Philosophy

Semantics

Examples

Strengths and Limitations

Multiple Inheritance of Fields

Cyclic Inheritance

Method Lookup and Lexical Scoping
Method Invocation

2.8 Resends
2.9 Files and Include Declarations

2.10 Pragmas

Static Types
3.1 Goals

3.2 Types and Signatures

3.3 Type and Signature Declarations

3.4

3.5
3.6

3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.3.8

Type Declarations

Representation and Object Declarations
Type and Object Extension Declarations
Signature Declarations

Implementation and Method Declarations
Field Implementation Declarations

Other Type Declarations

Discussion

Special Types and Type Constructors

341
3.4.2
3.4.3
344

Named Types

Closure Types
Least-Upper-Bound Types
Greatest-Lower-Bound Types

Object Role Annotations

Type Checking Messages

3.6.1
3.6.2
3.6.3
3.6.4

Checking Messages Against Signatures

Checking Signatures Against Method Implementations

Comparison with Other Type Systems
Type Checking Inherited Methods

35
35
36
37
38
39
40
40
41

41
43
43

45
45
46

48
49
49
51
51
52
52
53
53

54
54
55
55
55

56

58

58
59
61
62

64

3.7 Type Checking Expressions, Statements, and Declarations

3.8
3.9

3.10 Mixed Statically- and Dynamically-Typed Code

Type Checking Subtyping Declarations
Type Checking Predicate Objects

69
69
71

4 Parameterization and Bounded Parametric Polymorphism................ 73

4.1 Parameterized Declarations 73
4.1.1 Type Parameters, Type Variables, and Instantiating Types 73

4.1.2 Explicit and Implicit Parameterization 74

4.1.3 Omitting the Explicit f or al | Clause: the Backquote Sugar 75

4.2 Bounded Polymorphism and Type Constraints 75
4.3 Constraint Solving and Type Inference 77
4.4 F-bounded Polymorphism 79
4.5 Related Work 81
4.5.1 Languages Based on F-Bounded Polymorphism 81

4.5.2 Languages Based on Sel f Type or Matching 83

45.3 Languages Based on Signature Constraints and Implicit Structural Subtyping 83

4.5.4 Languages Based on Instantiation-Time Checking 85

455 Languages Based on Covariant Redefinition 85

4.5.6 Languages Offering Local Type Inference 85

B MOAUIES . . .o 87
6 Related WOrK. 89
7 CONCIUSION ... 92
RefErENCES . . . 93
Appendix A Annotated Cecil Syntax. i 99
A.1 Grammar 99
A.2 Tokens 105
A.3 White Space 105

1 Introduction

This documentdescribeshe currentdesignof Cecil, an object-orientedanguageintendedto
supportthe rapid constructionof high-quality reusable gxtensiblesoftware systemgChambers
92b, Chamber993b, Chambers& Leavens94]. Cecil is unusualin combininga pure, classless
objectmodel,multiple dispatching multi-methods) modules andmixed staticanddynamictype
checking.Cecil was inspiredinitially by Self [Ungar & Smith 87, Holzle et al. 91a], CLOS
[Bobrow etal. 88,Gabrieletal. 91],andTrellis[Schafertetal. 85,Schafert etal. 86]. Thecurrent
versionof Cecil extendsthe earlierversion[Chamber®3a]with predicateobjects,modulesand
efficient typechecking algorithms.

1.1 Design Goals and Major Features
Cecil's design results fromgeral goals:

« Maximizethe programmers ability to develop softwae quickly and to reuseand modify
existing softwae easily

In responseo this goal,Cecilis basedn a pureobjectmodel:all dataareobjectsandobjects
aremanipulatedsolely by passingmessagesA pureobjectmodelensureghatthe power of
object-orientegprogrammings uniformly availablefor all dataandall partsof programsThe
run-time performance disadwantage traditionally associatedwith pure object-oriented
languages is diminishing with the aht of adanced implementations.

Our experiencealsoleadsusto develop a classlesgprototype-based)bjectmodelfor Cecil.
We feelthataclassles®bjectmodelis simplerandmorepowerful thantraditionalclass-based
objectmodels.Cecil's objectmodelis somavhatmorerestrictedhanthosein otherprototype-
basedanguage$Borning 86, LiebermarB6,LalLondeetal. 86,Ungar& Smith87,Lieberman
et al.87], in response to other design goals.

Since messagepassingis the cornerstoneof the power of object-orientedsystems,Cecil
includesa fairly generalform of dynamic binding basedon multiple dispatching.Multi-
methodsaffect mary aspectof the restof the languagedesign,andmuchof the researcion
Cecilaimsto combinemulti-methodswith traditionalobject-orientedanguageconceptssuch
as encapsulation and static type checking, not found in other multiple dispatching languages.

Inheritancealsoplaysakey rolein organizingsoftwareandfactoringoutcommonalitiesCecil
extendgraditionalinheritancenechanismsvith predicateobjectsto supporanautomatidorm
of classificatiorof objectsinto specializedsubclassebasedn their run-timestate . Sincethis
statecanbe mutable anobjects classificatiorcanchangeover time. This mechanisnenables
inheritanceandclassificatiorto beappliedevenwhenmodellingtime-varyingpropertieof an
object. For example,a rectanglecan be automaticallyclassifiedas the predicatesubobject
squarevheneerit satisfieghepredicatehatits lengthequaldts width, evenif therectangles
length and width are mutable.

Instancevariables(called fields in Cecil) are also accessedolely by sendingmessages,
enablingfields to be replacedor even overriddenwith methods,and vice versa,without
affecting clients. Fields can be given default initial valuesas part of their declaration.An
initialization expressions evaluatedazily, whenthefield is first referencedactingasa kind
of memoizedconstantfunction. By allowing the initialization expressionto referencethe

objectthat it will becomea part of, circular data structurescan be constructedand more
generally the \alue of one field can be computed from th&ues of other fields of an object.

Support poduction of high-qualityreliable softwae.

To help in the constructionof high-quality programs, programmerscan add statically-
checkabledeclarationsand assertionsto Cecil programs.One important kind of static
declarationspecifiesthe typesof (i.e., the interfacesto) objectsand methods.Cecil allows
programmerso specifythetypesof methodargumentsyesults,andlocal variablesandCecll
performstypecheckingstaticallywhenastatically-typedexpressions assignedo astatically-
typedvariableor formal agument.Thetypesspecifiedoy programmerslescribehe minimal
interfacesrequiredof legal objects,not their representationor implementationsto support
maximum reuseof typed code.In Cecil, the subtypegraphis distinguishedfrom the code
inheritancegraph,sincetype checkinghasdifferentgoalsand requirementshan have code
reuse and modulextension [Sgder 86, Halbert & O’Brien 86, Coakt al. 90].

To supportthe independentonstructionof subsystemsCecil includesa modulesystem.A
moduleencapsulate#s internalimplementatiordetailsand presentsan interfaceto external
clients.This encapsulatiomechanisms speciallydesignedo work in the presencef multi-
methodsand inheritance/subtypingacross module boundaries.Modules can be used to
encapsulatéroles” [Andersen& Reenskaug?2] or “subjects” [Harrison & Ossher93],
programmingidioms where piecesof the total interface of an object are split apartinto
application-specifidacets.A given module caninclude methodand field declarationghat
extend one or more pvusly-defined objects with additional specialized state andvimeha

Cecil includesotherkinds of static declarationsAn objectcan be annotatedas an abstract
object (providing sharedbehaior but not manipulableby programs),as a templateobject

(providing behavior suitablefor direct instantiationbut otherwisenot manipulableby the

program),or asaconcreteobject(fully manipulableandinstantiatedasis). Objectannotations
inform thetype checler how the programmeintendsto useobjects.enablingthetypechecler

to be more fleible for objects used in only a limitedshion.

Cecil encourages functional programmingstyle by default, asthis is likely to be easierto
understandand more robust in the face of programmingchangesBy default, both local
variablesandfields areinitialize-only; an explicit var keyword is requiredto assertthat a
variableor field canbe mutated An objectcanbe createdandits fieldsinitialized to desired
valuesin asingleatomicoperationthereareno partially-initializedstatesasarefoundduring
execution of a constructor in C++.

Finally, Cecil omits certaincomplex languagefeaturesthat can have the effect of masking
programmingerrors.For example,in Cecil, multiple dispatchingandmultiple inheritanceare
both unbiasedwith respecto argumentrderandparentorder;ary resultingambiguitiesare
reportedbackto the programmeiaspotentialerrors.This designdecisionis squarelyat odds
with the decisionin CLOS andrelatedlanguagesAdditionally, subtypingin Cecil is explicit
ratherthanimplicit, sothatthe behaioral specificationnformationimplied by typescanbe
incorporated into the decision about whether one type is aibeslasubtype of another

» Supportboth exploratory programmingand production programming and enable smooth
migration of parts of psgrams fom one style to the other

Centralto achieving this goal in Cecil is the ability to omit type declarationsand other
annotationsn initial exploratoryversionsof asubsystenandincrementallyaddannotationss
thesubsystenmaturego productionquality. Cecil’s type systemis intendedo beflexible and
expressve, sothattype declarationanbe addedto an existing dynamically-typedorogram
andachieve statictype correctnessvithout majorreoganizationof the program.n particular
objects,types,andmethodsmay be explicitly parameterizedy types,methodargumentand
resulttypesmaybedeclaredasor parameterizefly implicitly-boundtypevariableso achieve
polymorphicfunctiondefinitions,and(asmentionedabore) the subtypegraphcandiffer from
theinheritancegraph.The presencef multiple dispatchingelievessomeof thetype systems
burden,sincemultiple dispatchingsupportsn a type-safemannerwhatwould be considered
unsafe cwariant method redefinition in a single-dispatching language.

Additionally, an ervironmentfor Cecil could infer on demandsomepartsof programsthat
otherwisemustbe explicitly declaredsuchasthelist of supertype®f anobjector the setof
legal abstractmethodsof an object, so that one languagecan supportboth exploratory
programmergwho usethe inferencer)and productionprogrammergwho explicitly specify
what they want). This approachresoles someof the tensionbetweenlanguagefeaturesin
supportof exploratory programmingandfeaturesin supportof productionprogramming.in
somecasesthelanguagesupportghe moreexplicit production-orientedeaturedirectly, with
an ewironment @pected to prade additional support for thexgloratory-oriented feature.

» Avoid unnecessaredundancy in grams.

To avoid requiringthe programmeto repeatspecifyingthe interfaceof an objector method,
Cecil allows a single object declarationto define both an implementationand a type (an

interface). Similarly, where the subtype hierarcly coincides with the code inheritance
hierarcly, a singledeclaratiorwill establishbothrelations.This approachgreatlyreducegshe

amountof codethatotherwisewould berequiredin a systemhatdistinguishedsubtypingand
codeinheritance Without this degree of concisenessye believe separatingsubtypingfrom

code inheritance auld be impracticablyerbose.

Similarly, Cecil’'s classlesbjectmodelis designedso that a single objectdeclarationcan
define an entire datatype. This contrastswith the situationin Self, wheretwo objectsare
neededo definemostdatatypes[Ungar et al. 91]. Similarly, Cecil’s objectmodelsupports
both conciseinheritanceof representatiorand conciseoverriding of representationynlike
mostclass-basedbject-orientedanguagesvhich only supportthe formerandmostclassless
object-oriented languages which only geniently support the latter

Finally, Cecil avoidsrequiringannotationgor exploratoryprogrammingAnnotationssuchas
type declarationsand privagy declarationsare simply omitted when programming in
exploratorymode.If thiswerenotthe casethelanguagevouldlikely betoo verbosedor rapid
exploratory programming.

* Be “as simple as possibleibno simplet

Cecil attemptgo provide the smallestsetof featureghat meetits designgoals.For example,
the object model is pure and classlessthus simplifying the languagewithout sacrificing
expressve power. However, somefeaturesareincludedin Cecil thatmake it more comple,

such as supporting multiple dispatching or distinguishing between subtyping and
implementation inheritance. Given no other alternative, our preference is for a more powerful
language which is more complex over a simpler but less powerful language. Simplicity is
important but should not override other language goals.

Cecil’s design includes a number of other features that have proven their worth in other systems.
These include multiple inheritance of both implementation and interface, closures to implement
user-defined control structures and exceptions, and, of course, automatic storage reclamation.

1.2 Overview

This document attempts to provide a fairly detailed specification of the Cecil language, together
with discussion of the various design decisions. The next section of this document describes the
basic object and message passing model in Cecil. Section 3 extends this dynamically-typed core
language with a static type system and describes atype checking a gorithm, and section 4 discusses
parameterization. Section 5 describes Cecil’s module system. Section 6 discusses some related
work, and section 7 concludes. Appendix A summarizes the complete syntax for Cecil.

2 Dynamically-Typed Core

Cecil isapure object-oriented language. All data are objects, and message passing is the only way
to manipulate objects. Even instance variables are accessed solely using message passing. This
purity offers the maximum benefit of object-oriented programming, alowing code to manipulate
an object with no knowledge of (and hence no dependence on) its underlying representation or
implementation.

Each Cecil implementation defines how programs are put together. The UW Cecil implementation
defines a program to be a sequence of declaration blocks and statements:

program
file_body

file_body
{ top_decl _block | stnt }

Declaration blocks are comprised of a set of declarations that are introduced simultaneously;
names introduced as part of the declarations in the declaration block are visible throughout the
declaration block and also for the remainder of the scope containing the declaration block; the
names go out of scope once the scope exits. Because the name of an object is visible throughout its
declaration block, objects can inherit from objects defined later within the declaration block and
methods can be specialized on objects defined later in the declaration block. In environmentswhere
the top-level declaration comprising the program is spread across multiplefiles, the ability to attach
methods to objects defined in some other file isimportant.

The syntax of declarationsis as follows.”

top_decl block ::= { decl | pragnma }
decl .= object_decl

| obj ext decl

| predi cat e_decl

| met hod_decl

| field_decl

| | et _decl

| pr ecedence_decl
| i ncl ude_decl

The next four subsections describe objects, methods, fields, and predicate objects. Subsection 2.5
describes variables, statements, and expressions, and subsection 2.6 explains precedence
declarations. Subsections 2.7 and 2.8 detail the semantics of message passing in Cecil. Subsection
2.9 describes include declarations and file structure in the UW Cecil implementation, and
subsection 2.10 discusses pragmas.

2.1 Objects and Inheritance

The basic features of objectsin Cecil areillustrated by the following declarations, which define a
simple shape hierarchy. Commentsin Cecil either begin with “- - ” and extend to the end of theline
or are bracketed between “(- - ” and “- -) ” and can be nested.

obj ect shape;
object circle isa shape;

" Ignoring type and signature declarations (section 3) and module declarations (section 5).

10

obj ect rectangle i sa shape;
obj ect rhombus i sa shape;
obj ect square i sa rectangle, rhombus;

The syntax of an object declaration, excluding features relating to static type checking and
modules, is as follows:”

object_decl ;= ‘“object” name {relation} [field_inits] “;"
relation = ‘“isa” parents

parents := named_object { “,” named_object }
named_object ‘= name

(nameisthetoken for regular identifiers beginning with aletter; see appendix A.2 for more details
on the lexical rules of Cecil.)

Cecil has a classless (prototype-based) object model: self-sufficient objects implement data
abstractions, and objects inherit directly from other objects to share code. Cecil uses a classless
model primarily because of its ssmplicity, but also because this avoids problems relating to first-
class classes and metacl asses and because it makes defining unique named objects with specialized
behavior easy. Section 2.2 shows how treating “instance” objects and “class’ objects uniformly
enables CLOS-style eql specializers to be supported with no extra mechanism.

Section 2.3 describes field initializers.

2.1.1 Inheritance

Objects can inherit from other objects. Informally, this means that the operations defined for parent
objectswill also apply to child objects. Inheritancein Cecil may be multiple, simply by listing more
than one parent object; any ambiguities among methods and/or fields defined on these parents will
be reported to the programmer. Inheriting from the same ancestor more than once, either directly
or indirectly, has no effect other than to place the ancestor in relation to other ancestors; Cecil has
no repeated inheritance asin Eiffel [Meyer 88, Meyer 92]. An object need not have any (explicit)
parents; all objectsare considered to inherit from the predefined any object (seesection2.1.4). The
inheritance graph must be acyclic.

Inheritance in Cecil requires a child to accept all of the fields and methods defined in the parents.
These fields and methods may be overridden in the child, but facilities such as excluding fields or
methods from the parents or renaming them as part of the inheritance, as found in Eiffel, are not
present in Cecil. We have deliberately chosen to experiment with a simpler inheritance semantics.

Finaly, it isimportant to note that inheritance of code is distinct from subtyping (“inheritance” of
interface or of specification). Section 3 explains Cecil’s support for subtyping and static type
checking.

2.1.2 Object Instantiation

Rather than introduce a distinct instantiation concept into the language, new “instances’ of some
object are created solely by inheriting from the object. Object declarations allow statically-known,

" Appendix A gives the complete syntax of the language and explains the notation.

11

named“instances”to be defined,while object constructorexpressionsallow nenv anorymous
“instances”to be createdat run-time. An object constructorexpressionis syntactically and
semanticallysimilar to an objectdeclaration exceptthat thereis no namefor the objectbeing
created. Br example:

let sl := object isa square; -- create afresh “instance” aiquar e when executed

Section2.5.7 describebjectconstructorexpressionsn moredetail. Note that the parentof an
objectmustbe staticallyknown; Cecil doesnot allow objectsto be createdvhoseparentsarerun-
time computed pressions. This is a restrictiomey some other prototype-based languages.

2.1.3 Extension Declarations

The inheritancestructure of a namedobject may be augmentedseparatelyfrom the object
declaration through an objecttension declaration:

obj ext _decl ;.= “extend” naned_object {relation} [field inits]

In Cecil, objectextensiondeclarationsin conjunctionwith field andmethoddeclarationsenable
programmerso extendpreviously-existing objects Thisability canbeimportantwhenreusingand
integratinggroupsof objectsmplementedy otherprogrammers-or example predefinedbjects
suchasi nt,i_vector, andm vect or aregivenadditionalbehaior and ancestrythrough
separateisercode.Similarly, particularapplicationsnayneedto addapplication-specifibehaior
to objectsdefinedaspartof otherapplicationsFor example atext-processin@pplicationmayadd
specializedab-to-spaceornversionbehaior to stringsandothercollectionsof characterslefined
in the standardlibrary. Other object-orientedanguagessuch as C++ [Stroustrup86, Ellis &
Stroustrup90] and Eiffel do not allow programmergo addbehaior to existing classeswithout
modifying the sourcecodeof the existing classesand completelydisallov addingbehaior to
built-in classedik e strings.Sathelis anotableexception,allowing anew classto bedefinedwhich
is a superclasof someexisting classeOmohundro93]. Section3.3.3 explains how object
extensionsareparticularlyusefulto declareghattwo objects providedby two independentendors,
aresubtypesf somethird abstractype.Section5 describeshiow modulescanbe usedto localize
extensions to particular ggons of code.

2.1.4 Predefined Objects
Several objects are predefined and play special roles.

» Thevoi d objectis usedto represent lack of avalue.lt is usedasthe resultof methodsor
expressionghathave no usefulresult. The systemwill guarantedstaticallyin the presencef
type checking) thatoi d is never passed as angaiment to a method.

» Theany objectis implicitly theancestoof all nonvoi d objects.It supportdehaior thatis
shared by all objects.

A Cecil implementationprovides other predefinedobjects,such as integers, floats, characters,
booleans, and mutable and immutal#eters and strings, as part of its standard library

12

2.1.5 Closures

Cecil includes closure objects which represent first-class anonymous functions. Closures are
lexically nested in their enclosing scope. As with methods, a closure can have formal arguments.
A closure object is “invoked” by sending it the eval message, with additional actual arguments
for each of itsformal arguments. Closures are considered to inherit from the cl osur e predefined
object.

More details on closures are given throughout the remainder of section 2. In particular, section
2.5.9 describes the syntax and semantics of closure constructor expressions and section 2.2.2
describes the evaluation rules for closure eval methods.

2.2 Methods
The following definitions expand the earlier shape hierarchy with some methods:

obj ect shape;
nmet hod draw(s, d) { (-- drawss ondisplayd --) }
net hod nove to(s, new center) { (-- movestonew center --) }

object circle isa shape;
nmet hod area(c@ircle) { c.radius * c.radius * pi}
method circumc@ircle) { c.radius * 2 * pi }

obj ect rectangl e i sa shape;
net hod area(r@ectangle) { r.length * r.width }
nmet hod circunm(r@ectangle) { 2 * r.length + 2 * r.width }

nmet hod draw(r @ ect angl e, d@wi ndow) {
(-- overridedr awfor the case of drawing rectangleson X windows --) }

obj ect rhonmbus isa shape;

obj ect square isa rectangle, rhonmbus; --inheritsarea method, but overridesci r cum
nmet hod circunm(s@quare) { 4 * s.length }
The syntax for method declarations (again, excluding aspects relating to static typing and
encapsulation) is as follows:
nmet hod_decl ::= “nmethod” nethod_nanme “(” [formals] “)” {pragma}
“{” (body | primbody) “}" [*}"
nsg_hane | op_nane

nmet hod_nane

neg_nane J:= nanme
formal s o= formal { *,” formal }
f or mal ::= [nane] specializer formal names are optional, if never referenced
speci al i zer = “@ naned_obj ect specialized formal

| empty unspecialized formal

(op_nane isthe token for infix and prefix operators beginning with a punctuation symbol; see
appendix A.2 for more details.)

As a convention, we indent method declarations under the associated object declaration. This has
no semantic implication, but it helps to visualy organize a collection of object and method

13

declarations in the absence of a more powerful graphical programming environment [Chambers
92b].

2.2.1 Argument Specializers and Multi-Methods

In Cecil, amethod specifiesthe kinds of argumentsfor which its code is designed to work. For each
formal argument of a method, the programmer may specify that the method is applicable only to
actual arguments that are implemented or represented in a particular way, i.e., that are equal to or
inherit from a particular object. These specifications are called argument specializers, and
arguments with such restrictions are called specialized arguments. Ther @ ect angl e notation
specializesther formal argument onther ect angl e object, implying that the method isintended
to work correctly with any actual argument object that is equal to or a descendant of the
rect angl e object as the r formal. An unspecialized formal argument (one lacking a @ . .

suffix), such as s and new _center in the nove_t o method above, is treated as being
specialized on the predefined object any that is implicitly an ancestor of all other objects;
consequently an unspecialized formal can accept any argument object.

Methods may be overloaded, i.e., there may be many methods with the same name, as long as the
methods with the same name and number of arguments differ in their argument specializers.
Methods with different numbers of arguments are independent; the system considers the number
of argumentsto be part of the method's name. When sending a message of a particular name with
a certain number of arguments, the method lookup system (described in section 2.7) will resolve
the overloaded methods to a single most-specific applicable method based on the dynamic values
of the actual argument objects and the corresponding formal argument specializers of the methods.

Zero, one, or several of amethod’s arguments may be specialized, thus enabling Cecil methods to
emulate normal undispatched functions (by leaving all formals unspecialized, as in nove_t o
above) and singly-dispatched methods (by specializing only the first argument, as in the ar ea
methods) as well as true multi-methods (as in the specialized version of dr awfor rectangleson X
windows). Statically-overloaded functions and functions declared via certain kinds of pattern-
matching also are subsumed by multi-methods. Callers which send a particular message to agroup
of arguments are not aware of the collection of methods that might handle the message or which
arguments of the methods are specialized, if any; these are internal implementation decisions that
should not affect callers. In particular, a given message can initially be implemented with asingle
unspecialized procedure and then later extended or replaced with several specialized
implementations, without affecting clients of the original method, as occurs with the dr aw
methods in the previous example. In contrast, CLOS has a “congruent lambda list” rule that
requires all methods in a particular generic function to specialize on the same argument positions.

Argument specializers are distinct from type declarations. Argument specializers restrict the
allowed implementations of actual arguments and are used as part of method lookup to locate a
suitable method to handle a message send. Type declarations require that certain operations be
supported by argument objects, but place no constraints on how those operations are implemented.
Type declarations have no effect on method lookup.

14

The name of a forma may be omitted if it is not needed in the method’s body. Unlike singly-
dispatched languages, thereisno implicit sel f formal in Cecil; all formals are listed explicitly.

Cecil’s classless object model combines with its definition of argument specializers to support
something similar to CLOS's eql specializers. In CLOS, an argument to a multi-method in a
generic function may be restricted to apply only to a particular object by annotating the argument
specializer with the eql keyword. Cecil needs no extra language mechanism to achieve asimilar
effect, since methods already are specialized on particular objects. Cecil’s mechanism differsfrom
CLOS's in that in Cecil such a method also will apply to any children of the specializing object,
while in CLOS the method will apply only for that object. Dylan, a descendant of CLOS, has a
si ngl et on specializer that isanalogousto CLOS'seql specializer [Apple 92].

As mentioned in subsection 2.1.3, methods can be added to existing objects without needing to
modify those existing objects. This facility, lacking in most object-oriented languages, can make
reusing existing components easier since they can be adapted to new uses by adding methods,
fields, and even parents to them.

The names of methods and fields are in a name space separate from the name space of objects and
variables. A method or field can have the same name as a variable or object without confusion.

2.2.2 Method Bodies

The syntax of the body of a method, closure, or parenthetical subexpression is asfollows:

body o= {stm} result
| empty returnvoi d
result ::= normal _return return an expression
| non_l ocal _rtn return from the lexically-enclosing method
normal _return ::= decl_block [*;"] returnvoi d
| assignnent [“;"] returnvoi d
| expr [*;"] return result of expression
non_local _rtn A do a non-local return, returning voi d
| “nroexpr [“7] do a non-local return, returning a result

(The syntax and semantics of statements and expressions is described in section 2.5.)

When invoked, amethod evaluates its statements in anew environment containing bindingsfor the
method’s formal parameters and nested in the method's lexically-enclosing environment. (The
interactions among nested scopes, method |ookup, and other language featuresis described in more
detail in section 2.7.7.)

The result of the message invoking the method is the result of the last statement in the method's
body. If the method’ s body isempty, then the method returnsthe special voi d value. Alternatively,
amethod returnsvoi d if the last statement is a declaration block, an assignment statement, or an
expression that itself returnsvoi d. Thevoi d valueis used to indicate that the method returns no
useful result. The system ensures that voi d is not accidentally used in later computation by
reporting an error (statically in the presence of type checking) if voi d is passed as an argument to

amessage.

15

Whena closures eval methodis invoked, evaluationproceedsnuchlik e the evaluationof any
other method.One differenceis that a closureeval methodmay force a non-local return by
prefixingtheresultexpressiorwith the”™ symbol;if theresultexpressions omitted,thenvoi d is
returnedhon-locally A non-localreturnreturnsto thecallerof theclosestexically-enclosinghon-
closuremethodratherthan to the caller of the eval method,just like a non-localreturnin
Smalltalk-80 [Goldberg& Robson83] and Self andsimilarto ar et ur n statementn C. The
languagecurrently prohibitsinvoking a non-localreturn after the lexically-enclosingscopeof a
closure has returned; first-class continuations are not supported.

2.2.3 Primitive Methods

pri m body = “print { language_binding }
| anguage_bi ndi ng:: =1 anguage “:” code_string
| | anguage “{” code_chars “}”
| anguage :1= name
code_string ©:= string
code_chars .. = brace_bal anced_chars anycharacterswith balanceduseof “{* and“}"

Low-level operations,such as integer arithmetic, vector indexing, looping, and file 1/0O, are
implementedhroughtheuseof primitive methodsA primitive methodsbodyis alist of (language
name,implementatiorsourcecode)pairs. The detailsof the protocolfor writing codein another
language inside a Cecil primitive method are implementation-specific.The UW Cecil
implementatiormecognizeshec _++ andr t | languagenamesfor primitiveswrittenin C++and
thecompilersinternalintermediatéanguagerespecitrely. It is fairly straightforvardto make calls
to routineswrittenin C++from Cecilby defininga primitive methodwhosebodyis writtenin C++.

Looping primitive behaior is provided by the | oop primitive method specializedon the
cl osur e predefinedobject. This methodrepeatedlyinvokes its argumentclosureuntil some
closureperformsanon-localreturnto breakoutof theloop. OtherlanguagesuchasSchemgRees
& Clinger86] avoid theneedfor sucha primitive by relyinginsteadon userlevel tail recursiorand
implementation-praidedtail-recursiorelimination.However, tail-recursioreliminationprecludes
completesource-leel delugging[Chamber®92a,Hdlzle etal. 92] andconsequentlys undesirable
in generalTheprimitivel oop methodmaybeviewedasasimpletail-recursve methodfor which
the implementation has been instructed to perform tail-recursion elimination.

A primitive body may be included at the topdEusing a primitre body declaration:

This constructallows codefrom otherlanguageso beincludedoutsideof ary compiledroutines.
Primitive declarationganbeusedo includeglobaldeclarationsisedby primitive methodsAgain,
the detailed semantics of this construct are implementation-specific.

" Smalltalk-80 is a trademark of ParcPlace Systems.

16

2.3 Fields

Object state, such asinstance variables and class variables, is supported in Cecil through fieldsand
associated accessomethodsTo define a mutable instance variable x for a particular object obj ,
the programmer can declare af i el d of the following form:

var field x(@bj);

This declaration allocates space for an object reference in the obj object and constructs two real
methods attached to the obj object that provide the only access to the variable:

met hod x(v@bj) { primrtl { <v.x> } } --the getaccessor method

net hod set _x(v@bj, value) { primrtl { <v.x>:=value; } } --thesetaccessomethod
The get accessomethodreturns the contents of the hidden variable. The setaccessomethod
mutates the contents of the hidden variable to refer to a new object, and returns voi d. Accessor
methods are specialized on the object containing the variable, thus establishing the link between
the accessor methods and the object. For example, sending the x message to the obj object will
find and invoke the get accessor method and return the contents of the hidden variable, thus acting
likeareferenceto obj 'sx instance variable. (Section 5 describes how these accessor methods can
be encapsulated within the data abstraction implementation and protected from external
manipulation.)

To illustrate, the following declarations define a standard list inheritance hierarchy:
object list isa ordered _collection;
method is_empty(l @ist) { I.length = 0 }
nmet hod prepend(x, | @ist) { --dispatch orsecondargument

object isa cons { head := x, tail :=1 } }
object nil isa list; --emptylist
nmet hod length(@il) { 0 }
nmet hod do(@il,) {} --iterating over all elements of the empty list: do nothing
nmet hod pair_do(@il, ,) {}

nmet hod pair_do(, @il,) {}
met hod pair_do(@il, @il,) {}

obj ect cons isa list; --non-empty lists
var field head(@ons); --defineshead(@ons) andset _head(@ons,) accessomethods
var field tail (@ons); --definegail (@ons) andset _tail (@ons,) accessomethods

nethod |l ength(c@ons) { 1 + c.tail.length }

nmet hod do(c@ons, block) {
eval (bl ock, c.head); --callblock on head of list
do(c.tail, block); } --recurdown tail of list

nmet hod pair_do(cl@ons, c2@ons, block) {
eval (bl ock, cl1.head, c2.head);
pair_do(cl.tail, c2.tail, block); }

The cons object has two fields, only accessible through the automatically-generated accessor
methods.

The syntax of field declarations, excluding static typing aspects and encapsulation, is as follows:

17

field_decl ::= [“shared”] [“var”] “field” nethod_nane “(” formal ")~
{pragma} [“:=" expr] “;”

2.3.1 Read-Only vs. Mutable Fields

By default, a field is immutable: only the get accessor method is generated for it. To support
updating the value of afield, thevar prefix must be used with the field declaration. The presence
of thevar annotation triggers generation of the set accessor method. Immutablefieldsreceive their
values either as part of object creation or by an initializing expression associated with the field
declaration; see section 2.3.4. Note that the contents of an immutable field can itself be mutable,
but the binding of the field to its contents cannot change. (Globa and local variables in Cecil
similarly default to initialize-only semantics, with an explicit var annotation required to allow
updating of the variable's value, as described in section 2.5.2.)

Ingeneral, webelievethat it isbeneficial to explicitly indicate when afield is mutable; to encourage
this indication, immutable fields are the default. Programmers looking at code can more easily
reason about the behavior of programsif they know that certain parts of the state of an object cannot
be side-effected. Similarly, immutable fields support the construction of immutable “value’
objects, such as complex numbers and points, that are easier to reason about.

Many languages, including Self and Eiffel, support distinguishing between assignable and constant
variables, but few imperative languages support initialize-only instance variables. CL OS can define
initialize-only variables in the sense that a slot can be initialized at object-creation time without a
set accessor method being defined, but in CLOS the sl ot - val ue primitive function can always
modify aslot even if the set accessor is not generated.

2.3.2 Fields and Methods

Accessing variables solely through automatically-generated wrapper methods has a number of
advantages over the traditional mechanism of direct variable access common in most object-
oriented languages. Since instance variables can only be accessed through messages, al code
becomes representation-independent to a certain degree. Instance variables can be overridden by
methods, and vice versa, allowing code to be reused even if the representation assumed by the
parent implementation is different in the child implementation. For example, in the following code,
ther ect angl e abstraction caninherit fromthepol ygon abstraction but alter the representation
to something more appropriate for rectangles:

obj ect pol ygon;
var field vertices(@ol ygon);

nmet hod draw(p@ol ygon, d@ut put _device) {
(-- draw the polygon on an output device, accessingverti ces --) }

obj ect rectangl e isa pol ygon;

var field top(@ectangle);
var field bottom(@ectangle);
var field left(@ectangle);
var field right(@ectangle);

nmet hod vectices(r@ectangle) {
-- ++ isabinary operator, here creating a new point object

18

[r.top ++ r.left, r.top ++ r.right,
r.bottom++ r.right, r.bottom++ r.left] }

net hod set _vertices(r@ectangle, vs) {
(-- set corners of rectangle fromvs ligt, if possible --) }

Even within a single abstraction, programmers can change their minds about what is stored and
what iscomputed without rewriting lots of code. Syntactically, asimple message send that accesses
an accessor method isjust as concise aswould be avariable access (using the p. x syntactic sugar,
described in section 2.5.6), thus imposing no burden on the programmer for the extra
expressiveness. Other object-oriented languages such as Self and Trellis have shown the
advantages of accessing instance variables solely through specia get and set accessor methods.
CLOS enables get and/or set accessor methods to be defined automatically as part of the
def cl ass form, but CLOSalso providesalower-level sl ot - val ue primitivethat can read and
write any slot directly. Dylan joins Self and Trellis in accessing instance variables solely through
accessor methods.

An object may define or inherit several fieldswith the same name. Just aswith overloaded methods,
thisislega aslong astwo methods, accessor or otherwise, do not have the same name, number of
arguments, and argument specializers. A method may override a field accessor method without
removing the field’s memory location from the object, since aresend within the overriding method
may invoke the field accessor method. Implementations may optimize away the storage for afield
in an object if it cannot be accessed, aswiththeverti ces fieldinther ect angl e object.

2.3.3 Copy-Down vs. Shared Fields

By default, each object inheriting a field declaration receives its own space to hold its version of
thefield’'s contents, and the field's accessor methods access the memory space associated with their
first argument. Such a* copy-down” field acts much like an instance variable declaration in aclass-
based language, since each object gets its own local copy of the field. Alternatively, a field
declaration may be prefixed with the shar ed keyword, implying that all inheriting objects should
share asingle memory location. A shared field thus acts like a class variable.

Supporting both copy-down and shared fields addresses weaknesses in some other prototype-based
object-oriented languages relative to class-based languages. In class-based languages, instance
variables declared in a superclass are automatically copied down into subclasses; the declaration
is inherited, not the variable's contents. Class variables, on the other hand, are shared among the
class, itsinstances, and its subclasses. In some prototype-based languages, including Self and Actra
[Lieberman 86], instance variables of one object are not copied down into inheriting objects; rather,
these variables are shared, much like class variables in a class-based language. In Self, to get the
effect of object-specific state, most data types are actually defined with two objects. one object, the
prototype, includes all the instance-specific variables that objects of the data type need, while the
other object, the traits object, isinherited by the prototype and holds the methods and shared state
of the data type [Ungar et al. 91]. New Self objects are created by cloning (shallow-copying) a
prototype, thus giving new objects their own instance variables while sharing the parent traits
object and its methods and state. Defining a data type in two pieces can be awkward, especially
since it separates the declarations of instance variables from the definitions of the methods that

19

access them. Furthermore, inheriting the instance variable part of the implementation of one data
type into another is more difficult in Self than in class-based languages, relying on complex
inheritance rules and dynamic inheritance [Chambers et al. 91] or programming environment
support [Ungar 95]. Copy-down fields in Cecil solve these problemsin Self without sacrificing the
simple classless object model. In Cecil, only one object needs to be defined for a given data type,
and the field declarations can be in the same place as the method declarationsthat accessthem. This
design increases both conciseness and readability, at the cost of some additional language
mechanism.

Cecil objectsare created only through object declarations and object constructor expressions; these
two expressions have similar run-time effects, with the former additionally binding statically-
known names to the created objects enabling methods and fields to be associated with them and
enabling other objectsto inherit from them. Cecil needs no other primitive mechanism to create or
copy objects as do other languages. Self provides a shallow-copy (clone) primitive in addition to
object literal syntax (analogousto Cecil’s object constructor expressions), in part because there are
no “copy-down” dataslotsin Self. Class-based |languagestypically include several mechanismsfor
creating instances and classes and relations among them. On the other hand, creating an object by
inheriting from an existing object may not be as natural as creating an object by copying an existing
object.

2.3.4 Field Initialization

Cecil allowsafield to be given aninitial value when it is declared by suffixing the field declaration
with the : = symbol and an initializing expression. Additionally, when an object is created, an
object-specific initial value may be specified for anon-shared field. The syntax of field initializers
for object declarations and object constructor expressions is as follows:

field_inits = *“{" field_init { “,” field_init } “}”
field_ init = nane [location] “:=" expr
| ocation = “@ naned_obj ect

For example, the following method produces a new list object with particular values for its
inherited fields:
net hod prepend(e, | @ist) {
object isa cons { head := e, tail :=1 } }

For a field initialization of the form name : = expr, the field to be initialized is found by
performing alookup akin to message lookup to find afield declaration named nane, starting with
the object being created. Method lookup itself cannot be used directly, since the field to be
initialized may have been overridden with a method of the same name. Instead, a form of lookup
that ignores all methodsis used. If thislookup succeedsin finding a single most-specific matching
field declaration, then that field isthe one given an initial value; the matching field should not be a
shared field. If no matching field or more than one matching field is found, then a*“field initializer
not understood” or an “ambiguous field initializer” error, respectively, is reported. To resolve
ambiguities and to initialize fields otherwise overridden by other fields, an extended name for the
field of theform nane@bj : = expr may be used instead. For these kind of initializers, lookup
for a matching field begins with the object named obj rather than the object being created. The

20

obj object must be an ancestor of the object being created. Extended field names are anal ogous to
asimilar mechanism related to directed resends, described in section 2.8.

Immutable shared fields must be initialized as part of the field declaration; thereis no other way to
give them avalue. Immutable copy-down fields may be initialized as part of the field declaration,
but often they are initialized as part of object constructor expressions for objects that inherit the
field, leading to a more functional programming style where data structures are (largely)
immutable.

To avoid pesky problems with uninitialized variables, all fields must be initialized before being
accessed, either by providing aninitial value as part of thefield declaration, by providing an object-
specific value as part of the object declaration or object constructor expression, or by assigning to
thefield before reading from it. The static type checker warnswhen it cannot prove that at least one
of the first two optionsis taken for each field inherited by an object, as described in section 3.7.

In Cecil, theinitializing expression for afield declaration is not evaluated until thefield isfirst read.
If the field is a shared field, then the initializer is evaluated and the contents of the field is updated
to refer to theinitial value; subsequent reads of the shared field will simply return theinitial value.
This supports functionality similar to once functionsin Eiffel and other languages. If thefield is
a copy-down field, then the initializing expression will be evaluated separately for each object
accessed, and the result cached for that object. The initializing expression may name the formal
parameter of the field declaration, allowing the initial value of the field to reference the object of
which the field is a part. The default initializer is not evaluated if it is not needed, i.e., if the field
has already been given a contents as part of object creation or viainvocation of the set accessor.

By evaluating field initializers on demand rather than at declaration time, we avoid the need to
specify some arbitrary ordering over field declarations or to resort to an unhel pful “unspecified” or
“implementation-dependent” rule. Itisillegal to try to read the value of afield during execution of
the field’s initializer; no cyclic dependencies among field initializers are allowed.

Evaluating a copy-down field'sinitializer expression repeatedly for each inheriting object seemsto
support common Cecil programming style. This corresponds to CLOS's : i ni t f or mspecifier.
Anearlier version of Cecil specified caching of theresultsof field initializer evaluation so that other
objects evaluating the same initializer expression would end up sharing the initia value. The
initializing expression was viewed as a shared part of the field declaration, not as a separate part
copied down to each inheriting object. This earlier semantics corresponded more to CLOS's
: def aul t-i ni targs specifier. The difference in the semantics is exposed if the initializing
expression evaluates to a new mutable object. In practice, it seems that each object wants its own
mutable object rather than sharing the mutable object among al inheriting objects. Moreover, the
old semantics can be simulated with acombination of acopy-down field that accesses ashared field
to get thefield'sinitia value.

2.4 Predicate Objects

To enable inheritance and classes to be used to capture run-time varying object behavior, Cecil
support predicate objects [Chambers 93b]. Predicate objects are like normal objects except that

21

they have an associated predicate expression. The semantics of apredicate object isthat if an object
inherits from the parents of the predicate object and also the predicate expression is true when
evaluated on the child object, then the child is considered to also inherit from the predicate object
in addition to its explicitly-declared parents. Since methods can be associated with predicate
objects, and since predicate expressions can test the value or state of a candidate object, predicate
objects alow aform of state-based dynamic classification of objects, enabling better factoring of
code. Also, predicate objects and multi-methods allow a pattern-matching style to be used to
implement cooperating methods.

For example, predicate objects could be used to implement a bounded buffer abstraction:

obj ect buffer isa collection;

field el enents(b@uffer); --aqueueofelements
field max_size(b@uffer); --aninteger

net hod | ength(b@uffer) { b.elenents.length }
nethod is_enpty(b@uffer) { b.length 0}
nmethod is full (b@uffer) { b.length b. max_si ze }

predi cate enpty_buffer isa buffer when buffer.is_enmpty;
nmet hod get (b@npty_buffer) { ... } --raiseerror or block caller

predi cate non_enpty_buffer isa buffer when not(buffer.is_enpty);
nmet hod get (b@on_enpty buffer) { renove_fromfront(b.elenments) }

predicate full _buffer isa buffer when buffer.is _full;
nmet hod put (b@ul |l _buffer, x) { ... } --raiseerror or block caller

predicate non_full _buffer isa buffer when not(buffer.is_full);
met hod put (b@on_full _buffer, x) { add_to_back(b.el enents, x); }

predicate partially_full _buffer isa non_enpty_buffer, non_full_buffer;

The following diagram illustrates the inheritance hierarchy created by this example (the explicit
inheritance link from the buffer object to buf f er is omitted):

buffer

<em pty_buffer) @on_em pty_buffeD @on_fu I I_buffeD
Y, \/
@artiany_fun_buffa)

full_buffer
Vg

a buffer object

Predicate objects increase expressiveness for this example in two ways. First, important states of
bounded buffers, e.g., empty and full states, are explicitly identified in the program and named.

22

Besides documenting the important conditions of a bounded buffer, the predicate objects remind
the programmer of the specia situations that code must handle. This can be particularly useful
during maintenance phases as code is later extended with new functionality. Second, attaching
methods directly to states supports better factoring of code and eliminates i f and case
statements, much as does distributing methods among classes in a traditional object-oriented
language. In the absence of predicate objects, a method whose behavior depended on the state of
an argument object would include an i f or case statement to identify and branch to the
appropriate case; predicate objects eliminate the clutter of these tests and clearly separate the code
for each case. In amore complete example, several methods might be associated with each special
state of the buffer. By factoring the code, separating out all the code associated with a particular
state or behavior mode, we hope to improve the readability and maintainability of the code.

The syntax for a predicate object declaration is as follows:

predi cate decl ::= “predicate” nane {relation} [field_inits] [“when” expr] “;”
2.4.1 Predicate Objects and Inheritance

For normal objects, one object isachild of another object exactly when the relationship is declared
explicitly through i sa declarations by the programmer. Predicate objects, on the other hand,
support aform of automatic property-based classification: an object O is automatically considered
achild of a predicate object P exactly when the following two conditions are satisfied:

* the object O is adescendant of each of the parents of the predicate object P, and

« the predicate expression of the predicate object P evaluates to true, when evaluated in a scope
where each of the predicate object’s parent names is bound to the object O.

By evaluating the predicate expression in acontext where the parent namesrefer to the object being
tested, the predicate expression can query the value or state of the object.

Since the state of an object can change over time (fields can be mutable), the results of predicate
expressions evaluated on the object can change. If this happens, the system will automatically
reclassify the object, recomputing itsimplicit inheritance links. For example, when a buffer object
becomes full, the predicates associated with the non_ful | _buffer and full _buffer
predicate objects both change, and the inheritance graph of the buffer object isupdated. Asaresullt,
different methods may be used to respond to messages, such asthe put messagein thefilled buffer
example. Predicate expressions are evaluated lazily as part of method lookup, rather than eagerly
as the state of an object changes. Only when the value of some predicate expression is needed to
determine the outcome of method lookup is the predicate evaluated. A separate paper describes
efficient implementation schemes for predicate objects [Chambers 93].

If a predicate object inherits from another predicate object, it is a specia case of that parent
predicate object. Thisis because the child predicate object will only bein force whenever its parent
predicate object’s predicate evaluates to true. In essence, the parent’s predicate expression is
implicitly conjoined with the child’s predicate expression. A non-predicate object also may inherit
explicitly from a predicate object, with the implication that the predicate expression will always
evaluate to true for the child object; the system verifiesthis assertion dynamically. For example, an
unbounded buffer object might inherit explicitly from thenon_f ul | _buf f er predicate object.

23

A predicate object need not have a when clause, as illustrated by the
partially full buffer predicate object defined above. Such a predicate object may still
depend on acondition if at least one of its ancestorsis a predicate object. In the above example, the
partially full buffer predicate object has no explicit predicate expression, yet since an
object only inheritsfrom parti al | y_ful I _buffer whenever it aready inherits from both
non_enpty buffer andnon_full _buffer,thepartially full buffer predicate
object effectively repeats the conjunction of the predicate expressions of its parents, in this case
that the buffer be neither empty nor full.

Predicate objects are intended to interact well with normal inheritance among data abstractions. If
an abstraction isimplemented by inheriting from some other implementation, any predicate objects
that specialize the parent implementation will automatically specialize the child implementation
whenever it is in the appropriate state. For example, a new implementation of bounded buffers
could*be built that used a fixed-length array with insert and remove positions that cycle around the
array:

object circular_buffer isa buffer;

field array(b@ircul ar_buffer); --afixed-lengtharray of elements
var field insert_pos(b@ircul ar_buffer); --anindexintothearray
var field renmove_pos(b@ircul ar_buffer); --another integer index

nmet hod max_si ze(b@ircul ar_buffer) { b.array.length }

nmet hod | ength(b@ircul ar_buffer) {
-- %is modul us operator
(b.insert_pos - b.renove_pos) %b.array.length }

predi cate non_enpty_circul ar_buffer isa circular_buffer, non_enpty_ buffer;
nmet hod get (b@on_enpty_circul ar_buffer) {

var x := fetch(b.array, b.renmove_pos);
b.remove_pos := (b.remove_pos + 1) % b.array.|ength;
x }

predi cate non_full _circular_buffer isa circular_buffer, non_full _buffer;

nmet hod put (b@on _full _circular_buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) %b.array.length; }

i Thisimplementation overridesbuf f er 'smax_si ze field with amethod and then ignoresthe buffer’'sel ement s
field. In practice a more efficient implementation would break up buf f er into an abstract parent object and two
child objects for the queue-based implementation and the circular array implementation.

24

The following diagram illustrates the extended inheritance graph for bounded and circular buffers
(thepartially full buffer predicate object is omitted):

buffer

<em pty_buffer) <non_em pty_buffeD @on_full_buffeb

circular_buffer

full_buffer
A

@on_empty_circular_buffe) (non_full_circuIar_buffeD

a circular buffer object

Since the ci r cul ar _buf f er implementation inherits from the original buf f er object, a
circul ar_buffer object will automaticaly inherit from the enpty buffer or
ful | _buffer predicate object whenever the ci r cul ar _buf f er happens to be in one of
those states. Noenpty_ci rcul ar_buffer orfull _circul ar_buf fer objects need to
be implemented if specialized behavior is not needed. The non_enpty_ci rcul ar _buffer
andnon_full _circul ar _buf f er predicate objects are needed to override the default get
and put methods in the non-blocking states. Any object that inheritsfrom ci r cul ar _buf f er
and that also satisfies the predicate associated with non_enpt y_buf f er will automatically be
classifiedasanon_enpty_circul ar_buffer.

The specification of when an object inherits from a predicate object implicitly places a predicate
object just below its immediate parents and after all other normal children of the parents. For
example, consider an empty circular buffer object. Both the buffer object and its parent, the
ci rcul ar _buf f er object, will be considered to inherit from the enpt y_buf f er predicate
object. Because ci rcul ar _buf fer is considered to inherit from enpty_ buffer, any
methods attached to ci r cul ar _buf f er will override methods attached to enpt y_buf f er.
Often thisisthe desired behavior, but at other times it might be preferable for methods attached to
predicate objects to override methods attached to “cousin’ normal objects.” If this were the case,
then the buffer code could be ssimplified somewhat, as follows:

obj ect buffer isa collection;
. --elements,| ength, etc.
nmet hod get (b@uffer) { renmove_fromfront(b.elenents) }
nmet hod put (b@uffer, x) { add_to_back(b.elenments, x); }

predi cate enpty_buffer isa buffer when buffer.is_enpty;
nmet hod get (b@npty _buffer) { ... } --raiseerror or block caller

" One object is a cousin of another if they share acommon ancestor but are otherwise unrelated.

25

predicate full _buffer isa buffer when buffer.is _full;
nmet hod put (b@ull _buffer, x) { ... } --raiseerror or block caller

object circular_buffer isa buffer;
. --array,insert_pos,| ength,etc.
nmet hod get (b@ircul ar_buffer) {

var x := fetch(b.array, b.renmove_pos);
b.remove_pos := (b.renmpove _pos + 1) % b.array. | ength;
x }

met hod put (b@ircular_buffer, x) {

store(b.array, b.insert_pos, Xx);

b.insert _pos := (b.insert_pos + 1) %b.array.length; }
The non-blocking versions of get and put would be associated with the buf f er object directly,
and the non_enpty buffer, non_full buffer, and partially full buffer
predicate objects could be removed (if desired). The non-blocking get and put routines for
circular buffers would similarly be moved up to the ci r cul ar _buf f er object itself, with the
non_enpty_circul ar_buffer and non_ful |l _circul ar_buffer predicate objects
being removed also. If the methods attached to the enpt y _buf f er object were considered to
override those of theci r cul ar _buf f er object, then sending get to acircular buffer that was
empty would (correctly) invoketheenpt y_buf f er implementation. In the current semantics of
predicate objectsin Cecil, however, theci r cul ar _buf f er 'simplementation of get would be
invoked, leading to an error. A third potential semantics would be to consider the predicate object
to be unordered with respect to “cousin” objects, and methods defined on two cousins to be
mutually ambiguous. More experience with predicate objects is needed to adequately resolve this
guestion.

2.4.2 Predicate Objects and Fields

Fields may be associated with a predicate object. This has the effect of reserving persistent space
for thefield in any object that might be classified as a descendant of the predicate object. The value
stored in the field persists even when the field is inaccessible. At object-creation time, an initial
value may be provided for fields potentially inherited from predicate objects, even if those fields
may not be visible in the newly-created object. The semantics of accessing a field attached to a
predicate object is governed by the semantics of accessing its corresponding accessor methods.

The following example exploits this semantics to implement a graphical window object that can be
either expanded or iconified. Each of the two important states of the window remembers its own
screen location (using a field named posi t i on in both cases), plus some other mode-specific
information such as the text in the window and the bitmap of the icon, and this data persists across
openings and closings of the window:

obj ect window i sa interactive_graphical object;
var field iconified(@indow) := false;

met hod di spl ay(w@u ndow) {
-- draw window using w. posi ti on

-}

26

nmet hod erase(w@v ndow) {
-- clear space wherewindow is

}

nmet hod nove(w@u ndow, new _position) {
-- works for both expanded and iconified windows!
W. erase; W.position := new position; wdisplay; }

predi cate expanded_w ndow i sa wi ndow when not (wi ndow. i conified);
var field position(@xpanded_w ndow) := upper_left;
field text(@xpanded wi ndow) ;

nmet hod i coni fy(w@xpanded_wi ndow) {
w.erase; w.iconified := true; wdisplay; }

predi cate iconified w ndow i sa wi ndow when wi ndow. i coni fi ed;
var field position(@confied wi ndow := |ower _right;
field icon(@conified_w ndow);

nmet hod open(w@ coni fi ed_w ndow) {
w. erase; w.iconified := fal se; w.display; }

nmet hod create_w ndow open_position, iconified position,
text, icon) {
obj ect isa w ndow {

iconified := fal se,

posi ti on@pen_w ndow : = open_position,
position@ conified w ndow := iconified position,
text := text, icon :=icon } }

A window object has two posi ti on fields, but only one is visible at a time. This alows the
di spl ay, erase, and nove routines to send the message positi on as part of their
implementation, without needing to know whether the window is open or closed. The
cr eat e_w ndow method initializes both posi t i on fields when the window is created, even
though the position of theicon isnot visible initialy. The posi t i on@hbject notation used in the
field initialization resolves the ambiguity between thetwo posi t i on fields.

2.5 Statements and Expressions
A statement is a declaration block, an assignment, or an expression:

st ;.= decl _bl ock
| assi gnnent “;”
| eXpr 13 ; ”

An expression is either aliteral, areference to a variable or a named object, an object constructor
expression, avector constructor expression, a closure constructor expression, a message, aresend,
or aparenthetical subexpression:

expr : = binop_expr
bi nop_expr ;.= binop_nsg | unop_expr
unop_expr ;1= unop_nsg | dot_expr
dot _expr ::= dot_nsg | sinple_expr
si npl e_expr o= literal

| ref _expr

| vect or _expr

27

| cl osur e_expr
| obj ect _expr
| nmessage

| resend

| par en_expr

All of these constructs are described below, except for resends which are described later in section
2.8 and declarations other than variable declarations which are described in other sections.

2.5.1 Declaration Blocks
A declaration block is an unbroken sequence of declarations:
decl _bl ock .= decl { decl }

Names introduced as part of the declarations in the declaration block are visible throughout the
declaration block and also for the remainder of the scope containing the declaration block; the
names go out of scope once the scope exits. Because the name of an object isvisible throughout its
declaration block, objects can inherit from objects defined later within the declaration block and
methods can be specialized on objects defined later in the declaration block. Similarly, methods
declared within a single declaration block can be mutualy recursive and there is no need for
forward declarations or the like. In environments where the top-level declaration block comprising
the program is spread across multiplefiles, asin the UW Cecil implementation, the ability to attach
methods to objects defined later in some other file isimportant.

2.5.2 Variable Declarations
Variable declarations have the following syntax:
| et _decl ci= “let” [“var”] name {pragma} “:=" expr “;’

If the var annotation is used, the variable may be assigned a new value using an assignment
statement. Otherwise, the variable binding is constant. (The contents of the variable may still be
mutable.) Formal parameters are treated as constant variable bindings and so are not assignable.
Theinitializing expression is evaluated in a context where the name of the variable being declared
and any variables declared later within the same declaration block are considered undefined. This
avoids potential misunderstandings about the meaning of apparently self-referential or mutually
recursive initializers while still supporting akind of | et * [Steele 84] variable binding sequence.

Variable declarations may appear at thetop level aswell asinside amethod. However, the ordering
of variable declarations at the top level (and consequently the order of evaluation of theinitializing
expressions) is less obvious. In the current UW Cecil implementation, the textual ordering of
variable declarations is used to define an ordering for evaluating variable initializers. (Similarly,
statements interspersed with top-level declarations are evaluated in the order given.) We would
prefer a semantics that was independent of the “order” of variable declarations at the top level, so
that all top-level declarations are considered unordered. Possible alternative semantics which have
this property includerestricting variableinitialization expressions to be simple expressions without
side-effects (thereby making the issue of evaluation order unimportant), eliminating variable
declarations at the top level entirely, or supporting a form of on-demand at-most-once evaluation

28

of top-level variableinitializers akin to the lazy evaluation semanticsof field initializers (see
section 2.3.4).

2.5.3 Variable References

A variable or named object is referenced simply by namingahable or object:

ref _expr ©1= name

Thenamesof objectsandvariablesarein the samenamespaceLexical scopingis usedto locate
the closest bacally-enclosing ariable or object binding for the name.

2.5.4 Assignment Statements

Assignment statementsvethe follaving syntax:

assi gnment ;.= nanme “:=" expr assignment to a variable
| assi gn_nsg assignment-like syntax for messages

If theleft-hand-sidas a simplename thenthe closestexically-enclosingbinding of the nameis
locatedandchangedo referto theresultof evaluatingtheright-hand-sidexpressionlt is anerror
totry to assigrno anobject,aformal parameteror to avariabledeclaredvithoutthevar keyword.

If theleft-hand-sidehasthe syntaxof a messagethentheassignmenstatemenis really syntactic
sugar for a message send, as described in section 2.5.6.

2.5.5 Literals
Cecil literal constants can be igts, floating point numbers, characters, or strings:
literal ;.= integer

| f1 oat

| character

| string

Literals are immutable objects.

2.5.6 Message Sends

The syntax of a message send is asvid@lo

nessage = neg_hanme “(” [exprs] “)”
exprs = expr { “,” expr }

unop_nsg = op_nane unop_expr

bi nop_nsg = bi nop_expr op_nane bi nop_expr

A message is written in one of three forms:

* named prefix form, with the name of the messagefollowed by a parenthesizedist of
expressions,

 unary operator prefix form, with the message name listed beforegtimaeamt &pression, or

« infix form, with the message name in between a pairgafraent subgressions.

" All arguments to the message must be listed explicitly; there is no ing#icft argument.

29

Normally, a message whose name begins with a letter is written in named prefix form, while a
message whose name begins with a punctuation symbol is written in unary prefix form or in infix
form.” To invoke a named message as an operator, or to invoke an operator as a named message,
the name of the message is prefixed with an underscore (the leading underscore is not considered
part of the message name). For example, the following two expressions both send the + message
to 3and 4:

3+4
_*H(3, 4)
and the following two expressions both send thebi t _and messageto 3 and 4:
bit _and(3, 4)
3 bit_and 4

The precedence and associativity of infix messages is specified through precedence declarations,
described in section 2.6. The semantics of method lookup is described in section 2.7. Resends, a
special kind of message send, are described in section 2.8.

Syntactic sugar exists for several common forms of messages. Dot notation alows the first
argument of the message to be written first:

dot _nsg c:= dot_expr “.” nmsg_nane [“(” [exprs] “)"]

If the message takes only one argument, the trailing parentheses can be omitted. Consequently, the
following three expressions all send the x message to p:

x(p)
p. x()
p. X

The following two expressions both send thebi t _and messageto 3 and 4:
bit_and(3, 4)
3.bit_and(4)

This syntax may suggest that the first argument is more important than the others, but in fact the
semanticsis still that all arguments are treated uniformly, and any subset of the arguments might
be dispatched at method-lookup time.

Other syntactic sugars support message sends written like assignments. Any message can appear
on the left-hand-side of an assignment statement:

assi gn_nsg ;.= lvalue_nsg “:=" expr sugar for set _msg(exprs..., expr)
| val ue_nsg I = message

| dot _nsg

| unop_nsg

| bi nop_nsg

In each of these cases, the name of the message sent to carry out the “assignment” is set _
followed by the name of the message in the |l val ue_nsg expression, and the arguments to the

" Named prefix form is always used for method declarations.

30

real message are the arguments of thel val ue_nsg expression followed by the expression on the
right-hand-side of the “assignment.” So the following three expressions are all equivalent:

set_foo(p, q, r);
foo(p, q) :=r;
p.foo(q) :=r;

as are the following two expressions:

set _top(rectangle, Xx);
rectangle.top : = x; - - frequently used for set accessor methods

as are the following two expressions:
set (v, i, X);
vii 1= x;
Note that these syntactic sugars are assignments in syntax only. Semantically, they are all
messages.
2.5.7 Object Constructors

New objects are created either through object declarations (as described in section 2.1) or by
evaluating object constructor expressions. The syntax of an object constructor expression is as
follows:

obj ect _expr ::= “object” {relation} [field_inits]

This syntax isthe same as for an object declaration except that no object name is specified. Object
constructor expressions are analogous to object instantiation operations found in class-based
languages. The only difference between named obj ects introduced through object declarations and
anonymous objects created through object constructor expressions is that named objects have
statically-known names. As a consequence, only named objects can have methods and fields
attached to them and can have descendants.

2.5.8 Vector Constructors

A vector constructor expression iswritten as follows:

vect or _expr o= “[" [exprs] “17

The result of evaluating a vector constructor expression is a new immutable object that inherits
from the predefined i _vect or object and isinitialized with the corresponding el ements.

2.5.9 Closures

The syntax of a closure constructor expression is as follows:

cl osur e_expr = [“& “(” [closure_formals] “)”] “{” body “}”
closure formals::= closure formal { “,” closure formal }
cl osure_formal = [nane] formal names are optional, if never referenced

This syntax is identical to that of a method declaration, except that the net hod keyword and
message name are replaced with the & symbol (intended to be suggestive of the A symboal). If the
closure takes no arguments, then the &() prefix may be omitted. When evaluated, a closure
constructor produces two things:

31

» anew closure object that inherits from the predefined cl osur e object, which is returned as
the result of the closure constructor expression, and

» amethod named eval whose anonymous first argument is specialized on the newly-created
closure object and whose remaining arguments are those listed as formal parameters in the
closure constructor expression.

Aswith other nested method declarations, the body of aclosure’'seval methodislexically-scoped
within the scope that was active when the closure was created. However, unlike nested method
declarations, the eval method is globally visible (as long as the connected closure object is
reachable). Closures may be invoked after their lexically-enclosing scopes have returned.”

All controal structuresin Cecil areimplemented at user level using messages and closures, with the
sole exception of thel oop primitive method described in section 2.2.3. Additionally, closures can
be used to achieve much the same effect as exceptions and multiple results, so these other
constructs are currently omitted from the Cecil language. Sometimes the use of closures is
syntactically more verbose than a built-in language construct might be, and we are considering
various alternatives for allowing programmers to define syntactic extensions to the language to
provide a cleaner syntax for their user-defined control structures.

2.5.10 Parenthetical Subexpressions
A parenthesized subexpression has the same syntax as the body of a method:
par en_expr ci= “(” body *)”

Like the body of a method or a closure, a parenthetical subexpression introduces a new nested
scope and may contain statements and local declarations.

2.6 Precedence Declarations

Cecil programmers can define their own infix binary operators. Parsing expressions with several
infix operators becomes problematic, however, since the precedence and associativity of the infix
operators needs to be known to parse unambiguously. For example, in the following Cecil
expression

foo ++ bar *&! baz *&&! qux _nmax blop

the relative precedences of the ++, *&&!, and _nax infix operators is needed, as is the
associativity of the* &&! infix operator. For amore familiar example, we'd like the following Cecil
expression (* * represents exponentiation)

X + y * Z * % e * % f * q
to parse using standard mathematical rules, asif it were parenthesized as follows:
X + ((y * (z** (e** f))) *aq)

" Inthe current UW Cegil i mplementation, there are some caveatsto the use of such non-LIFO closures. Seethe system
documentation for additional details.

32

2.6.1 Previous Approaches

Most languages restrict infix operators to a fixed set, with a fixed set of precedences and
associativities. Thisisnot appropriate for Cecil, sincewe'd like the set of infix messagesto be user-
extensible.

Smalltalk defines all infix operators to be of equal precedence and |eft-associative. While simple,
this rule differs from standard mathematical rules, sometimes leading to hard-to-find bugs. For
example, in Smalltalk, the expression3 + 4 * 5 returns 35, not 23.

Self attempts to rectify this problem with Smalltalk by specifying the relative precedence of infix
operatorsto be undefined, requiring programmersto explicitly parenthesize their code. Thisavoids
problems with Smalltalk’s approach, but leads to many unsightly parentheses. For example, the
parentheses in the following Self code are all required:

(x <=y) & (y <= (z + 1))
Self makes an exception for the case where the same binary operator is used in series, treating that
case as left-associative. For example, the expression

X +y +z
parses as expected in Self. Even so, the expression

X * % y * % z
would parse “backwards’ in Self, if ** were defined. (Self uses power : for exponentiation,
perhaps to avoid problems like this.) Also, expressions like

X +y -z
areillegal in Self, requiring explicit parenthesization.
Standard ML [Milner et al. 90] allows any operator to be declared prefix (called “nonfix” in SML)
or infix, and infix operators can be declared |eft- or right-associative. Infix declarations al so specify
aprecedencelevel, which isan integer from O (loosest binding) to 9 (tightest binding), with 0 being
the default. For example, the following SML declarations are standard:

infix 7 *, [/, div, nod;

infix 6 +, -;

infix 4 = <> < > <= >z

infix 3 :=

nonfix ~;
SML aso provides special syntax to use an infix operator as a prefix operator, and vice versa

A fixity declaration can appear wherever any other declaration can appear, and affect any parsing
of expressionswhile thefixity declaration isin scope. Fixity declarations can be spread throughout
aprogram, and multiple declarations can add independent operators to the same precedence level.
Fixity declarations in one scope override any fixity declarations of the same operator from
enclosing scopes.

One disadvantage of SML's approach is that is supports only 10 levels of precedence. It is not
possibleto add anew operator that is higher precedence than some operator already defined at level
9, nor isit possible to squeeze a new operator in between operators at adjacent levels. Finally, all
operators at one level bind tighter than all operators at lower levels, even if the programmer might
have preferred that expressions mixing operators from completely different applications be
explicitly parenthesized, for readability.

33

2.6.2 Precedence and Associativity Declarations in Cecil

Cecil allows the precedence and associativity of infix operators to be specified by programmers
through precedence declarations. The syntax of these declarationsis as follows:

prec_decl
associativity
precedence
op_list

“precedence” op_list [associativity] {precedence} “;”

“left _associative” | “right _associative” | “non_associative”
“bel ow’ op [ist | “above” op_list | “with” op_list

: op_nanme { “,” op_nane }

For example, the fO||0\NI ng declarations might appear as part of the standard prelude for Cecil:

precedence ** right_associative; --exponentiation

precedence *, / left_associative bel ow ** above +;

pr ecedence - left_associative bel ow * above =;

precedence =, != <, <=, >= > non_associative bel ow * above;
precedence & | eft_associative bel ow = above |;

precedence | |eft_associative bel ow &

precedence % w th *;

+

precedence ! |eft_associative above =; --arrayindexing

By default, an infix operator has its own unique precedence, unrelated to the precedence of any
other infix operator, and is non-associative. Expressions mixing operators of unrelated precedences
or multiple sequential occurrences of an operator that is non-associative must be explicitly
parenthesized.

The effect of a precedence declaration is to declare the relationship of the precedences of several
binary operators and/or to specify the associativity of abinary operator. Like SML, theinformation
provided by a precedence declaration is used during the scope of the declaration, and declarations
of the same operator at one scope override any from an enclosing scope. Two precedence
declarations cannot define the precedence of the same operator in the same scope.

A precedence declaration of the form

precedence bin-op;, ..., bin-op,
associativity
bel ow bin-opg;, ..., bin-opgy
above bin-opa;, ..., bin-opa,
with bin-opyy, ..., bin-opyn

declaresthat all the bin-op; belong to the same precedence group, and that this group is lesstightly
binding than the precedence groups of any of the bin-opg; and more tightly binding than those of
the bin-opy;. If any bin-op,y; are provided, then the bin-op; belong to the same precedence group
asthe bin-opy;; al the bin-op,y; Must already belong to the same precedence group. Otherwise, the
bin-op, form a new precedence group. The associativity of the bin-op; is as specified by
associativity, if present. If absent, then the associativity of the bin-op; is the same as the bin-opy;,
if provided, and non-associative otherwise. As illustrated by the example above, the ordering of
two precedence groups may be redundantly specified. Cycles in the tighter-binding-than relation
on precedence groups are not allowed. All operators in the same precedence group must have the
same associ ativity.

Taken together, precedence declarations form a partial order on groups of infix operators.
Parentheses may be omitted if adjacent infix operators are ordered according to the precedence
declarations, or if adjacent infix operators are from the same precedence group and the precedence

34

grouphaseitherleft- or right-associatiity. Otherwise parenthesesustbeincluded.For example,
in the pression

v!i (i +1) <(v!i)+1
the parenthesearoundi +1 andv! i arerequired,since! and+ arenot orderedby the above

precedencedeclarationsHowever, both! and+ aremoretightly bindingthan<, sono additional
parentheses are required.

In Cecil,adeclaratiorwithin adeclaratiorblockis visible throughoutheblock, includingduring
textually earlier declarationswithin the block. This appliesto precedenceleclarationsas well,
somevhatcomplicatingparsing.Theimplementatiorstratgy usedin theUW Cecil systenparses
expressiongnvolving binary operatoranto a list of operatorsand operandsandtheselists are
corvertedinto atraditionalparsetreeform only afterall visible declarationhave beenprocessed.

Precedencealeclarationsapply to infix messagenames,not to individual methods.Multiple
methodsnayimplementthe samenfix messagdor differentkindsof agumentsput all methods
with a particular name share the same precedence verm ggope.

2.7 Method Lookup

This sectiondetailsthe semanticsof multi-methodlookup, beginning with a discussionof the
motivations and assumptions that led to the semantics.

2.7.1 Philosophy

All computationin Cecil is accomplishedby sendingmessage® objects.Thelion’s shareof the
semanticof messaggassingspecifiesmethodlookup, andthesemethodlookup rulestypically
reduceto defining a searchof the inheritancegraph.In single inheritancelanguagesmethod
lookupis straightforvard.Mostobject-orientedanguagesoday including Cecil, supportmultiple
inheritanceto allow moreflexible formsof codeinheritanceand/orsubtyping.However, multiple
inheritanceintroduceshe possibility of ambiguity during methodlookup: two methodswith the
same name may be inherited along different paths, thus forcing either the systemor the
programmeito determinewhich methodto run or how to run the two methodsin combination.
Multiple dispatchingintroducesa similar potentialambiguity even in the absenceof multiple
inheritance sincetwo methodswith differing algumentspecializersould both be applicablebut
neither be uniformly more specific than the other Consequently the key distinguishing
characteristicof method lookup in a languagewith multiple inheritance and/or multiple
dispatching is he exactly this ambiguity problem is reseld.

Somelanguagesesol\e all ambiguitiesautomatically For example,Flavors[Moon 86] linearizes
the classhierarcly, producinga total orderingon classesderived from eachclass’local left-to-

right ordering of superclasseghat can be searchedwithout ambiguity just as in the single
inheritancecase However, linearizationcanproduceunexpectednethodookupresults especially
if the programcontainserrors[Snyder86]. CommonLoopgBobrow et al. 86] andCLOS extend
this linearization approachto multi-methods,totally ordering multi-methodsby prioritizing

argument position, with earlier agument positions completely dominating later agument
positions.Again, this removesthe possibility of run-timeambiguities atthe costof automatically
resolving ambiguities that may be the result of programming errors.

35

Cecil tales a diferent viav on ambiguity motivated by seeral assumptions:

* We expect programmerswill sometimesnake mistales during programdevelopment.The
language should help identify these mis&kather than mask or misinterpret them.

» Our experiencewith Selfleadsusto believe that programmingerrorsthatarehiddenby such
automatic language mechanisms are some of the mbstilidnd time-consuming to find.

» Ourexperiencawith Selfalsoencouragessto strivefor thesimplestpossiblanheritanceaules
thatareadequateEvenapparentlystraightforvardextensionscanhave subtleinteractionghat
make the &tensions dficult to understand and use [Chambstral. 91].

» Comple inheritancepatternscanhinderfuture programevolution, sincemethodlookup can
dependon programdetailssuchas parentorderingand argumentordering,andit usuallyis
unclear from the programxewhich details are important for a particular application.

Accordingly we have striven for a very simple systemof multiple inheritanceand multiple
dispatching for Cecil.

2.7.2 Semantics

Methodlookupin Cecil usesa form of Touretzly’'s inferentialdistanceheuristic[Touretzk 86],
wherechildrenoverrideparentsThe methodlookuprulesinterpreta programsinheritancegraph
asa partial orderingon objects,wherebeinglessin the partial ordercorresponds$o beingmore
specific:an objectA is lessthan(more specificthan)anotherobjectB in the partial orderif and
only if A is a properdescendanof B. This orderingon objectsin turn inducesan analogous
orderingonthesetof methodsspecializedntheobjects reflectingwhich methodsoverridewhich
othermethodsIn thepartialorderingon methodswith a particulamameandnumberof alguments,
onemethodM is lessthan(morespecificchan)anothemethodN if andonly if eachof theargument
specializersof M is equal to or less than (more specific than) the correspondingargument
specializerof N. Sincetwo methodscannothave the sameargumentspecializersat leastone
argumentspecializerof M must be strictly less than (more specific than) the corresponding
specializeof N. An unspecializecrgumentis consideredpecializedntheany objectwhichis
anancestoof all otherobjects;a specializedargumentherefores strictly lessthan(morespecific
than) an unspecializedagument.The orderingon methodsis only partial sinceambiguitiesare
possible.

Giventhepartialorderingon methodsmethodookupis straightforvard.For aparticularmessage
send,the systemconstructshe partial orderingof methodswith the samenameand numberof
argumentsasthe messageThe systemthenthrows out of the orderingary methodthat hasan
argumentspecializethatis notequalto or anancestoof thecorrespondin@ctualargumentpassed
in the messagesucha methodis not applicableto the actualcall. Finally, the systemattemptgo
locatethe singlemost-specifianethodremaining,i.e., the methodthatis leastin the partial order
over applicablemethods.If no methodsare left in the partial ordet thenthe systemreportsa
“messageaot understood’error. If morethanonemethodremainsn the partialorder, but thereis
no singlemethodthatoverridesall others,thenthe systemreportsa “messageambiguous’error.
Otherwise thereis exactly one methodin the partial orderthatis strictly more specificthanall
other methods, and this method is returned as the result of the message lookup.

36

2.7.3 Examples

For example, consider the following inheritance graph (containing only singly-dispatched methods
for the moment):

A ml(i@A)

m2(j @A)
AB | 3k@AB) AC [m2j@ac)
m3(k@AC)

ABC m1(i@ABC)

The partial ordering on objectsin this graph defines ABC to be more specific than either AB or AC,
and both AB and AC are more specific than A. Thus, methods defined for ABCwill be more specific
(will override) methods defined in A, AB, or AC, and methods defined in either AB or AC will be
more specific (will override) methods defined in A. The AB and AC objects are mutually unordered,
and so any methods defined for both AB and AC will be unordered.

If the message 1l is sent to the ABC object, both the implementation of mL whose formal argument
is specialized on the ABC object and the implementation of mL specialized on A will apply, but the
method specialized on ABC will be more specific than the one specialized on A (since ABCismore
specific than A), and so ABC's mL will be chosen. If instead the mlL message were sent to the AB
object, then the version of mL specialized on the A object would be chosen; the version of il
specialized on ABC would be too specific and so would not apply.

If the m2 message is sent to ABC, then both the version of n2 whose formal argument is specialized
on A and the one whose formal is specialized on AC apply. But the partial ordering places the AC
object ahead of the A object, and so AC's version of n? is selected.

If the N8 message is sent to ABC, then both AB’s and AC's versions of nB apply. Neither AB nor
AC is the single most-specific object, however; the two objects are mutually incomparable. Since
the system cannot select an implementation of N8 automatically without having a good chance of
being wrong and so introducing a subtle bug, the system therefore reports an ambiguous message
error. The programmer then is responsible for resolving the ambiguity explicitly, typically by
writing amethod in the child object which resends the message to a particular ancestor; resends are
described in section 2.8. Sends of nB to either AB or AC would be unambiguous, since the other
method would not apply.

37

Toillustrate these rulesin the presence of multi-methods, consider the following inheritance graph
(methods dispatched on two arguments are shown twice in this picture):

A ML1(i@A, j@X) X M1(i@A, j@X)
m1l(i@A, j@XZ) M4(k@ABC, |@X)
m2(j @A, k) m5(n@AB, p@X)
M5(N@A, p@XZ)

e A AC X XY / XZ \
m2(j@AB, K) m6(i @AC, j)I m3(j @AB, k@XY)I ml(i@A,j@XZ)l
m3(@AB, k) M5(N@A, p@XZ)
m3(j@AB, k@XY)
mM5(N@AB, p@X)

ABC \ XYZ

m4(k@ABC, I@X)I

mé(i, j@XY2) I

Methods il in Aand nB in AB illustrate that multiple methods with the same name and number of
arguments may be associated with (specialized on) the same object, as long as some other
arguments are specialized differently. The following table reports the results of several message
sends using this inheritance graph.

message invoked method or error explanation
M1(ABC, XYZ) | ml(i@A, j@XZ) XZ overrides X
mM2(ABC, XYZ) | m2(j@AB, k) AB overrides A
mM3(ABC, XYZ) | m3(j@AB, k@XY) XY overrides unspecialized
m4(AB, XY) “message not understood” | ABC too specific for AB O no applicable method
M5(ABC, XYZ) | “message ambiguous’ AB overrides A but XZ overrides X [
no single most-specific applicable method
mM6(ABC, XYZ) | “message ambiguous’ AC overrides unspecialized but XY Z overrides
unspecialized O no single most-specific method

2.7.4 Strengths and Limitations
The partial ordering view of multiple inheritance has several desirable properties:

* Itissimple. It implements the intuitive rule that children override their parents (they are lesser
in the partial ordering), but does not otherwise order parents or count inheritance links or
invoke other sorts of complicated rules.

38

* Ambiguities are not masled. Theseambiguitiesare reportedback to the programmerat
messagéokuptime beforetheerrorcangethidden If theprogrammehasincludedstatictype
declarations, the system will report the ambiguity at type-check-time.

 This form of multiple inheritanceis robust underprogrammingchangesProgrammergsan
changeprogramsfairly easily andthe systemwill reportany ambiguitieswhich may arise
becauseof programmingerrors. More comple inheritancerules tend to be more brittle,
possiblyhinderingchangego programghatexploit theintricaciesof theinheritancerulesand
hiding ambiguities that reflect programming errors.

* Cecil’s partial orderingview of multiple inheritancedoesnot transformthe inheritancegraph
prior to determiningmethodiookup,asdoeslinearization.This allows programmerso reason
about method lookup using the same inheritance graph tlyatigkedo write their programs.

Of course,theremay be times when having a priority orderingover parentsor over argument
positionswould resole anambiguityautomaticallywith no fuss.For thesesituationsjt mightbe
niceto beableto inform the systemaboutsuchpreferencesSelf s prioritizedmultiple inheritance
stratgy canblendorderedandunorderednheritancebut it hassomeundesirablgropertiegsuch
assometimegpreferringamethodn anancestoto onein achild) andinteractgoorlywith resends
anddynamicinheritance. It maybethatCecil couldsupporisomethingakinto prioritizedmultiple
inheritancgandperhapsvena prioritizedargumentlist), but usethesepreferenceasalastresort
to resolvingambiguities;only if ambiguitiesremainafter favoring children over parentswould
preferencesn parentor algumentpositionbe consideredSuchasdesignappearso have fewer
dravbacks than Sel$ approach or CLOS’approach whileaning most of the benefits.

An alternatve approachmight be to supportexplicit declarationghatone methodis intendedto
overrideanothemethod.Thesedeclarationsvould addrelationsto thepartialorderover methods,
potentiallyresolvingambiguities . This approachasthe advantagethatit operateglirectly onthe
methodoverridingrelationshipratherthanon parentorderor thelike which only indirectly affects
methodoverriding relationshipsMoreover, this approachcanonly resole existing ambiguities,
not changeary existing overriding relationshipstherebymakingit easierto reasonaboutthe
resultsof methodookup.To implementhisapproachamechanisnfior namingparticulammethods
(e.g., the method’'name and its specializers) must be added.

2.7.5 Multiple Inheritance of Fields

In otherlanguageswith multiple inheritance,in additionto the possibility of nameclashesfor
methodsthe possibility exists for nameclashedor instancevariables.Somelanguagesnaintain
separateopiesof instancevariablesnheritedfrom differentclasseswhile otherlanguagesneige
like-namednstancevariablestogetherin the subclassThe situationis simplerin Cecil, sinceall
accesdo instancevariablesis throughfield accessomethods An object(conceptuallyat least)
maintainsspacefor eachinheritedcopy-down field, independentiyof their nameg(distinctfields
with the samenamearenot mergedautomatically) Accesseso thesefieldsaremediatecby their
accessomethodsandthe normalmultiple inheritancerulesare usedto resole any ambiguities

i Recently Self'smultipleinheritancesemantichiasbeengreatlysimplified, eliminatingprioritizedinheritanceSelf's
rulesarenowsimilarto Cecil's,exceptthatSelf omitsthe“children-override-parentgjlobalrule. This hastheeffect
of declaring as ambiguous messages suct268BC) in the first example in section 2.7.3.

39

among like-named field accessor methods. In particular, amethod in the child with the same name
as afield accessor method could send directed resend messages (described later in section 2.8) to
access the contents of one or the other of the ambiguous fields.

2.7.6 Cyclic Inheritance

In the current version of Cecil, inheritance is required to be acyclic. However, cycles in the
inheritance graph would be easy to allow. Instead of defining a partial order over objects,
inheritance would define a preorder, where all objects participating in a cycle are considered to
inherit from al other objectsin the cycle, but not be more specific than any of them. This preorder
on inheritanceinduces a corresponding preorder on methods. The same rulesfor successful method
lookup still apply: a single most specific method must be found. If two methods arein acyclein
the method specificity preorder, then neither is more specific than the other. In effect, objects can
participate in inheritance cycles if they define digoint sets of methods. This design of “mutually-
recursive’ objects could be used to factor a single large object into multiple separate objects, each
implementing a separate facet of the original object’s implementation.

2.7.7 Method Lookup and Lexical Scoping

Since methods may be declared both at the top level and nested inside of methods, method lookup
must take into account not only which methods are more specialized than which others but also
which methods are defined in more deeply-nested scopes. The interaction between lexical scoping
and inheritance becomes even more significant in the presence of modules as described in section
5.

The view of lexically-nested methods in Cecil is that nested methods extend the inheritance graph
defined in the enclosing scope, rather than override it. We call this “porous’ lexical scoping of
methods, since the enclosing scope filters through into the nested scope. When performing method
lookup for a message within some nested scope, the set of methods under consideration are those
declared in the current scope plus any methods defined in lexically-enclosing scopes. If alocal
method has the same name, number of arguments, and argument specializers as a method defined
in an enclosing scope, then the local method shadows (replaces) the method in the enclosing scope.
Additionally, any object declarations or object extension declarations in the local scope are added
to those declarations and extensions defined in enclosing scopes. Once this augmented inheritance
graph is constructed, method lookup proceeds as before without reference to the scope in which
some object or method is defined.

Other languages, such as BETA [Kristensen et al. 87], take the opposite approach, searching for a
matching method in one scope before proceeding to the enclosing scope. If a matching method is
found in one scope, it isselected even if amore specialized method isdefined in an enclosing scope.
More experience is needed to judge which of these alternativesis preferable. Cecil’s approach gets
some advantage by distinguishing variable references, which always respect only the lexical scope,
from field references, which always are treated as message sends and primarily respect inheritance
links. BETA uses the same syntax to access both global variables and inherited instance variables,
making the semantics of the construct somewhat more complicated.

40

Nested methods can be used to achieve the effect of a typecase statement as found in other
languages, including Trellis and Modula-3 [Nelson 91, Harbison 92]. For example, to test the
implementation of an object, executing different code for each case, the programmer could write
something like the following:

nmet hod test(x) {

nmet hod typecase(z@objl) { (-- code for case where x inheritsfromobj 1 --) }
nmet hod typecase(z@obj2) { (-- code for case where x inheritsfromobj 2 --) }
met hod typecase(z@obj3) { (-- code for case where x inheritsfromobj 3 --) }
net hod typecase(z) { (-~ code for default case--) }

typecase(x);

}

In the example, objl , obj2 , andobj3 may berelated in the inheritance hierarchy, in which case
the most-specific case will be chosen. If no case applies or no one case is most specific, then a
“message not understood” or an “ambiguous message” error will result. These results fall out of
the semantics of method lookup. By nesting the typecase methods inside the calling method,
the method bodies can access other variables in the calling method through lexical scoping, plus
the scope of the temporary typecase methods is limited to that particular method invocation.
Eiffel’s reverse assignment attempt and Modula-3's NARROWperation can be handled similarly.

2.7.8 Method Invocation

If method lookup is successful in locating a single target method without error, the method is
invoked. A new activation record is created, formals in the new scope are initialized with actuals,
the statements within the body of the method are executed in the context of this new activation
record (or the primitive method is executed, or the field accessor method is executed), and the result
of the method (possibly void) isreturned to the caller.

2.8 Resends

Most existing object-oriented languages allow one method to override another method while
preserving the ability of the overriding method to invoke the overridden version: Smalltalk-80 has
super , CLOS has call-next-method , C++ has qualified messages using the :: operator,
Trellis has qualified messages using the’ operator, and Self has undirected and directed resend
(integrating unqualified super -like messages and qualified messages). Such a facility alows a
method to be defined as an incremental extension of an existing method by overriding it with anew
definition and invoking the overridden method as part of the implementation of the overriding
method. This same facility also allows ambiguities in message lookup to be resolved by explicitly
forwarding the message to a particular ancestor.

Cecil includes a construct for resending messages that adapts the Self undirected and directed
resend model to the multiply-dispatched case. The syntax for aresend is asfollows:

resend m= “resend’ [“(" resend_args ‘)"]
resend_args »= resend_arg{"“,"resend_arg}
resend_arg n= 0 expr corresponding formal of sender must be
unspecialized
| name undirected resend (narme is a specialized formal)
| name “@” named_object directed resend (nane is a specialized formal)

41

The purpose of the resend construct is to allow a method to invoke one of the methods that the
resending method overrides. Consequently, only methods with the same name and number of
arguments as the resending method whose argument specializers are ancestors of the resending
method’'s argument specializers are considered possible targets of a resend.

To invoke an overridden method, the normal prefix message sending syntax is used but with the
following changes and restrictions:

 Syntactically, the name of the message isthe keyword r esend; semantically, the name of the
message isimplicitly the same as the name of the sending method.

» The number of arguments to the message must be the same as for the sending method.

* All specialized formal arguments of the resending method must be passed through unchanged
as the corresponding arguments to the resend.

As a syntactic convenience, if all formals of the sender are passed through as arguments to the
resend unchanged, then the ssimple r esend keyword without an argument list is sufficient.

The semantics of aresent message are similar to a normal message, except that only methods that
are less specific than the resending method in the partial order over methods are considered
possible matches; this has the effect of “searching upwards’ in the inheritance graph to find the
single most-specific method that the resending method overrides. The restrictions on the name, on
the number of arguments, and on passing specialized objects through unchanged ensures that the
methods considered as candidates are applicable to the name and arguments of the send. Single-
dispatching languages often have similar restrictions: Smalltalk-80 requiresthat theimplicit sel f
argument be passed through unchanged with the super send, and CLOS's cal | - next -
met hod uses the same name and arguments as the calling method.

For example, the following illustrates how resends may be used to provide incremental extensions
to existing methods:

obj ect colored_rectangle isa rectangle;
field col or(@ol ored_rectangl e);

nmet hod di spl ay(r @ol ored_rectangl e, d@utput_device) {
d.color :=r.color; --settherightcolor for thisrectangle
resend; --dothenormal rectangle drawing; sugar for r esend(r, d)

}
Resends may also be used to explicitly resolve ambiguities in the method lookup by filtering out
undesired methods. Any of the required arguments to a resend (those that are specialized formals
of the resending method) may be suffixed with the @symbol and the name of an ancestor of the
corresponding argument specializer. Thisrestricts methods considered in the resulting partial order
to be those whose corresponding argument specializers (if present) are equal to or ancestors of the
object named as part of the resend.

To illustrate, the following method resolves the ambiguity of hei ght for vl si _cel | in favor
of ther ect angl e version of height:”

" This example was adapted from Ungar and Smith’s original Self paper [Ungar & Smith 87].

42

obj ect rectangl e;
field hei ght(@ectangle);

obj ect tree_node;
net hod height(t@ree_node) { 1 + height(t.parent) }

object vlsi_cell isa rectangle, tree_node;
net hod hei ght (v@alsi _cell) { resend(v@ectangle) }

This model of undirected and directed resends is a simplification of the Self rules, extended to the
multiple dispatching case. Self’s rules additionally support prioritized multiple inheritance and
dynamic inheritance, neither of which is present in Cecil. Self also allows the name and number of
arguments to be changed as part of the resend. In some cases, it appears to be useful to be able to
change the name of the message as part of the resend. For example, it might be useful to be able to
provide accessto thet r ee_node version of the hei ght method under some other name, but
this currently is not possible in Cecil. We are investigating possible semantics for resends where
the name of the message is changed, so that both ambiguously-inherited methods can be invoked.

As demonstrated by Self, supporting both undirected and directed resends is preferable to just
supporting directed resends as does C++ and Trellis, since the resending code does not need to be
changed if the local inheritance graph is adjusted. Since CLOS does not admit the possibility of
ambiguity, it need only support undirected resends (i.e., cal | - next - met hod); thereisno need
for directed resends.

2.9 Files and Include Declarations

The current UW Cecil implementation is file-based. The compiler is given a single file name,
naming the file containing the program to compile. To include other files into the program, afile
can include an include declaration, at the global scope:

i ncl ude_decl “include” file_nane “;”
file_name : string
included file ::= file_body

The effect of an include declaration is to include the declarations from the named file into the
current scope. The named file must have the syntax of a single declaration block. Fileinclusion is
idempotent: redundant inclusions of afile into a particular scope have no effect.

2.10 Pragmas

Pragmas can be used by the Cecil programmer to provide additional information and
implementation directives to the Cecil implementation. The set of recognized pragmas and their
interpretation isimplementation-dependent. A description of some of the pragmas supported by the
UW Cecil implementation is provided in its documentation.

Pragmas are written as follows:

pragna - n(**” expr n**)”

43

The body of a pragma uses the syntax of a Cecil expression, but itsinterpretation is different (and
implementation-dependent). Currently, pragmas may appear as part of most Cecil declarations. In
the future, pragmas will likely be able to be provided for any declaration and any expression.

44

3 Static Types

Cecilsupportsastatictypesystemwhichis layeredontop of thedynamically-typeaorelanguage.
The type systers’chief characteristics are the foling:

» Type declarationsspecify the interfacerequiredof an objectstoredin a variableor returned
from a method, without placing ymonstraints on its representation or implementation.

» Argumentspecializer$or methoddispatchingareseparatérom typedeclarationsenablingthe
typesystento containasspecialcasedypesystemdor traditionalsingle-dispatchingndnon-
object-oriented languages.

» Codeinheritancecan be distinct from subtyping,but the commoncasewherethe two are
parallel requires only one set of declarations.

» Thetypecheclercandetectstaticallywhenamessagenightbeambiguouslhydefinedasaresult
of multiple inheritanceor multiple dispatchinglt doesnotrely on the absencef ambiguities
to be correct.

* The type system can check programs statically despite €elaitsless object model.

» Type declarationsare optional, providing partiallanguagesupportfor mixed exploratoryand
production programming.

« Parameterizedbjectstypes,andmethodsupportlexible formsof parametrigoolymorphism,
complementing the inclusion polymorphism supported through subtyping.

This sectiondescribesCecil’s static type systemin the absenceof parameterizationsection4
extendsthis sectionto copewith parameterizeabjectsand methods.Section3.1 presentshe
major goalsfor the type system.Section3.2 presentghe overall structureof the type system.
Sections3.3, 3.4, and 3.5 describethe importantkinds of declarationgrovided by programmers
thatextendthebasedynamically-typedatorelanguagelescribedn section2. Sections3.6,3.7,3.8,
and3.9 detailthe type-checkingulesfor the language Section3.10describesow the language
supports mird statically- and dynamically-typed code.

3.1 Goals

Statictype systemdistoricallyhave addressedary concernsrangingfrom programverification
to improved run-timeefficiengy. Oftenthesegoalsconflict with othergoalsof the type systemor
of thelanguagesuchasthe conflictbetweertype systemslesignedo improve efficiengy andtype
systems designed to aNdull reusability of statically-typed code.

The Cecil type systemis designedo provide the programmerwith extra supportin two areas:
machine-checkabléocumentatiomndearly detectionof somekindsof programmingerrors.The
first goal is addressedy allowing the programmerto annotatevariable declarationsmethod
argumentsandmethodresultswith explicit typedeclarationsThesedeclaration$ielpto document
theinterfacesto abstractionsandthe systemcanensurehatthe documentatiomloesnot become
out-of-datewith respectto the code it is documenting.Type inferencemay be useful as a
programming evironment tool for introducingxlicit type declarations into untyped programs.

45

The Cecil type system also is intended to help detect programming errors at program definition
time rather than later a run-time. These statically-detected errors include “message not
understood,” “message ambiguous,” and “uninitialized field accessed.” The type system is
designed to verify that there is no possibility of any of the above errorsin programs, guaranteeing
type safety but possibly reporting errorsthat are not actually a problem for any particular execution
of the program. To make work on incomplete or inconsistent programs easier, type errors are
considered warnings, and the programmer alwaysisableto run aprogram that containstype errors.
Dynamic type checking at run-timeisthe final arbiter of type safety.

Cecil’stype system is not designed to improve run-time efficiency. For object-oriented |anguages,
the goal of reusable code is often at odds with the goa of efficiency through static type
declarations; efficiency usually is gained by expressing additional representational constraints as
part of atype declaration that artificially limit the generality of the code. Cecil’ stype system strives
for specification only of those properties of objects that affect program correctness, i.e., the
interfaces to objects, and not of how those properties are implemented. To achieve run-time
efficiency, Cecil relies on advanced implementation techniques [e.g., Dean & Chambers 94, Dean
et al. 95a, Dean et al. 95b, Grove et al. 95, Grove 95].

Finaly, Cecil’s type system is descriptive rather than prescriptive. The semantics of a Cecil
program are determined completely by the dynamically-typed core of the program. Type
declarations serve only as documentation and partial redundancy checks, and they do not influence
the execution behavior of programs. This isin contrast to some type systems, such as Dylan’s,
where an argument type declaration can mean a run-time type check in some contexts and act asa
method lookup specializer in other contexts.

The design of the Cecil type system is affected strongly by certain language features. Foremost of
these is multi-methods. Type systems for single dispatching languages are based on the first
argument of a message having control, consulting its static type to determine which operations are
legal. In Cecil, however, any subset of the arguments to a method may be specialized, leaving the
others unspecialized. This enables Cecil to easily model both procedure-based non-object-oriented
languages and singly-dispatched object-oriented languages as important specia cases, but it also
requires the type system to treat specialized arguments differently than unspecialized arguments.

3.2 Types and Signatures

A typein Cecil isan abstraction of an object. A type represents a machine-checkabl e interface and
an implied but unchecked behavioral specification, and all objects that conform to the type must
support the type’sinterface and promise to satisfy its behavioral specification. Onetype may claim
to be a subtype of another, in which case all objectsthat conform to the subtype are guaranteed al'so
to conform to the supertype. The type checker verifies that the interface of the subtype conforms
to the interface of the supertype, but the system must accept the programmer’s promise that the
subtype satisfies the implied behavioral specification of the supertype. Subtyping is explicit in
Cecil just so that these implied behavior specifications can be indicated. A type may have multiple
direct supertypes, and in general the explicit subtyping relationships form a partial order. As

46

described in subsection 3.4, additional type constructors plus a few special types expand the type
partial order to afull lattice.

A signature in Cecil is an abstraction of a collection of overloaded methods, specifying both an
interface (aname, asequence of argument types, and aresult type) and an implied but uncheckable
behavioral specification. The interface of atypeisdefined asthe set of signatures that mention that
type as one of their argument or result types.

For example, the following types and signatures describe the interface to lists of integers:

type int_list subtypes int_collection;
signature is_enpty(int_list):bool;
signature length(int_list):int;
signature do(int_list, &int):void):void;
signature pair_do(int_list, int_list, & int,int):void):void;
signature prepend(int, int_list):int_list;

Types and signatures represent a contract between clients and implementors that enable message
sends to be type-checked. The presence of a signature allows clients to send messages whose
argument types are subtypes of the corresponding argument types in the signature, and guarantees
that the type of the result of such a message will be a subtype of the result type appearing in the
signature. Any message not covered by some signature will produce a “ message not understood”
error. Signatures also impose constraints on the implementations of methods, in order to make the
above guarantees to clients. The collection of methods implementing a signature must be
conforming, complete, and consistent:

» Conformance implies that each method implementing a signature has unspecialized argument
typesthat are supertypes of the corresponding argument types of the signature and aresult type
that is a subtype of the signature’'s result type; conformance is Cecil’s version of the standard
contravariance rule found in singly-dispatched statically-typed languages.

» Completeness implies that the methods must handle all possible argument types that might
appear at run-time as an argument to a message declared legal by the signature.

 Consistency impliesthat the methods must not be ambiguous for any combination of run-time
arguments.

Checking completeness and consistency is the subject of section 3.6.2.

In a singly-dispatched language, each type has an associated set of signatures that defines the
interface to the type. This association relies on the asymmetry of message passing in such
languages, where only the receiver argument impacts method lookup. When type-checking a
singly-dispatched message, the type of the receiver determines the set of legal operations, i.e., the
set of associated signatures. If amatching signature is found, then the message will be understood
at run-time; the static types of the remaining message arguments is checked against the static
argument types listed in the signature. For Cecil, we wish to avoid the asymmetry of this sort of
type system. Consequently, we view a sighature as associated with each of its argument types, not
just the first, much as a multi-method in Cecil is associated with each of its argument specializer

a7

objects. For example, the pr epend signature above is considered part of both thei nt type and
thei nt _|i st type.

In most object-oriented languages, the code inheritance graph and the subtyping graph are joined:
aclassis asubtype of another classif and only if it inherits from that other class. Sometimes this
constraint becomes awkward [Snyder 86], for example when a class supports the interface of some
other class or type, but does not wish to inherit any code. Other times, a class reusing another
class's code cannot or should not be considered a subtype; covariant redefinition as commonly
occursin Eiffel programsis one example of this case [Cook 89].

To increase flexibility and expressiveness, Cecil separates subtyping from code inheritance. Types
and signatures can be declared independently of object representations and method
implementations. However, since in most cases the subtyping graphs and the inheritance graphsare
parallel, requiring programmers to define and maintain two separate hierarchies would become too
onerous to be practical. To simplify specification and maintenance of the two graphs, in Cecil the
programmer can specify both a type and a representation, and the associated subtyping,
conformance, and inheritance relations, with a single declaration. Similarly, a single declaration
can be used to specify both a signature and a method implementation. In this way we hope to
provide the benefits of separating subtyping from code inheritance when it is useful, without
imposing additional costs when the separation is not needed.

3.3 Type and Signature Declarations

Variable declarations and formal arguments and results of methods, closures, and fields may be
annotated with type declarations. The syntax of declarations is extended to include some new
declarations:

decl c:= let _decl
| t p_decl

| type_ext _dec

| obj ect _decl

| obj ext decl

| predi cat e_decl
| di sj oi nt _decl

| cover _decl

| di vi de_decl

| si gnat ur e_decl
| met hod_decl

| field_sig decl
| field_decl

| pr ecedence_decl
| i ncl ude_decl

| pri m decl

In this and subsequent syntax specifications, changes to specifications as described in section 2 are
in boldface.
The following example illustrates some of the extensions:

object |ist;
nmethod is empty(l @list):bool { |I.length = 0 }
signature length(l:list):int;

48

signature do(l:list, closure:&int):void):void,
signature pair_do(l1:1ist, 12:1ist, closure:&int,int):void):void,
method prepend(x:int, I@list):list {

object inherits cons { head :=x, tail :=1 } }
method copy_reverse(l:list):list {
let var 12:list :=nil;
do(l, &x:int){ 12 := prepend(x, 12); };
12}
representation cons isa |ist;

field head(@ cons) :int;
field tail(@cons):Iist;

3.3.1 Type Declarations

New user-defined types are introduced with type declarations of the following form (ignoring
parameterization and encapsul ation aspects):

t p_decl ;.= “type” nane {type_relation} “;”
type_relation = “subtypes” types
types = type { “,” type }

The new type is considered to be a subtype of each of the types listed in the subt ypes clause.
Theinduced subtype relation over used-defined types must be a partial order (i.e., it cannot contain

cycles).”

Type names are interpreted in a name space distinct from that of objects and variables and that of
message names. A type, an object, and a method may all be named | i st unambiguously.

3.3.2 Representation and Object Declarations

New user-defined objects are introduced with representation declarations of the following form
(again, ignoring parameterization and encapsulation):

obj ect _decl = rep_role rep_kind nane {relation} [field_inits] *;”

rep_ki nd ::= “representation” declares an object implementation
| “obj ect” declares an object type and implementation

rel ation : 1= “subtypes” types impl conformsto type, type subtypes from type
| “inherits” parents impl inherits from impl
| “isa” parents impl inherits from impl, type subtypes from type

Representation roles will be described in section 3.5.

If the representation keyword is used, the declaration introduces a new object
representation. This object inherits from the objects named in each i nherits clause and
conforms to the types named in each subt ypes clause. As mentioned in section 2.1.1, the
inheritance graph cannot have cycles.

Ani sa clause is syntactic sugar for both a subt ypes clause and an i nheri ts clause, i.e.,
sugar for the case where inheritance and subtyping are parallel. So the following declaration

"It is not strictly necessary to restrict subtyping to a partial order. Cycles in the subtypes relation could be allowed,
producing a preorder over typesinstead of apartia order. Thiswould have any type in acycle being a subtype of and
therefore substitutable for every other typein the cycle. In essense, al typesin acycle would be equivalent asfar as
the type checker was concerned.

49

representation cons isa list;
is syntactic sugar for the declaration

representation cons inherits list subtypes typeof(list);
where typeof(| i st) represents the most-specific type(s) to which the | i st object conforms
(typeof isnot legal Cecil syntax).

If the obj ect keyword is used, then the declaration is syntactic sugar for the pair of an object
representation declaration and a type declaration. A declaration of the form

obj ect name inherits namg;, name, ..., hamg,

subt ypes namey, namegp, ..., nameg,

i sa namey, name,,, ..., hamey ;

is syntactic sugar for the following two declarations:
type name subtypes namey, nameyp, ..., Namey,
typeof(namey;) , typeof(namey,), ..., typeof(namey) ;

representati on name

i nherits nameq, name,, ..., name, hame,, namey, ..., hamey

subt ypes name ;

Both the object and the type have the same name, but there is no potential for ambiguity since
object and type names are resolved in separate name spaces. The new type subtypes from all the
typeslisted inthe subt ypes clause and from the types to which the objectsin thei sa clause of
the origina declaration conform. The new object representation conforms to the new type and
inherits from the object representations listed in thei nherits andi sa clauses of the original
declaration.

Theobj ect andi sa syntactic sugars are designed to make it easy to specify the inheritance and
subtyping properties of an object/type pair for the common case that code inheritance and
subtyping are parallel. We expect that in most programs, only obj ect andi sa declarationswill
beused; t ype, representation,inherits, andsubt ypes declarations are intended for
relatively rare cases where finer control over inheritance and subtyping are required.

Object constructor expressions are similarly extended with representation roles, representation
kinds, and subtyping relationships:

obj ect _expr .= rep_role rep kind {relation} [field_inits]

In an object constructor expression, both the r epr esent at i on keyword and the obj ect
keyword have the same effect; the presence or absence of an anonymous type isimmaterial.

Representations often add new, implementation-specific operations. For example, the cons
representation defined earlier introduced the head andt ai | fields. To be able to send messages
that access these new features, atype must exist that includes the appropriate signatures. If cons
were only arepresentation, then a separate type would need to be defined that included signatures
forhead andt ai | . To avoid thisextrastep, ar epr esent at i on declaration, likean obj ect

declaration, introduces a corresponding type. Unlike an object declaration, however, the type
derived from a representation declaration is anonymous. It can only be referenced indirectly
through the typeof internal function that specifiesthe semanticsof thei sa and @ syntactic sugars

50

(section3.3.5describeshe @ sugar). Consequentlynovariablesor unspecializedormalsmaybe
declaredto be of the anorymoustype, and no types may be declaredto be subtypesof the
anorymoustype. Thisenableobjectrepresentation® bedefinedthatarenottreatedasfirst-class
types; the programmer has contreeépwhich types are intended to be used in type declarations.

3.3.3 Type and Object Extension Declarations

As describedn section2.1.3,0bjectscanbe extendedwith new inheritancerelationsafter they
have beendefined.In asimilar fashion typescanbe extendedwith nev subtypingrelationsusing
type etension declarations of the folng form:

type_ext_decl ::= “extend” “type” naned_type {type_relation} “;

Thesyntaxof objectextensiondeclarationss extendedo supportaugmentingeitherjustanobject
representation or both an representation and a type:

obj ext _decl ;.= “extend” extend kind naned_obj ect
{relation} [field inits] “;”
ext end_ki nd = “representation” extend representation
| [“object”] extend both type and representation

If theextensionusegher epr esent at i on keyword, thenthenamedepresentatiors extended
with theappropriatenheritanceandconformanceelations Otherwisepoththerepresentatioand
the type that are named by theemnsion are updated. A declaration of the form

extend obj ect name i nherits nameq, name, ..., name,
subtypes namey, namegp, ..., namegy
i sa namey;, namey, ..., nNamey ;
is syntactic suar for the follaving two declarations:
extend type name subtypes namey, namegp, ..., nNamegy,
typeof(namey) , typeof(namey), ..., typeof(namey) ;
extend representati on name
i nherits namg,, namep, ..., name, name,, nNameyp, ..., nNaMegy

subt ypes name ;

It is an error if there does natist both a representation and a type with the corresponding name.

Allowing typesto be extendedexternally to have additional supertypesallows third-partiesto
integrateseparately-deelopedlibrarieswithout modifying the separatdibrariesdirectly [Holzle
93].

3.3.4 Signature Declarations

Signatures can be declared using the ¥alg syntax:

si gnhat ur e_decl “si gnature” nmethod_nane

“(" [arg_types] “)” [type_decl] *“;

arg_types = arg type { “,” arg_type }
arg_type = [[nane] “:"] type
t ype_decl o= YT type

Thenamesof formalsin asignaturearefor documentatiompurpose®nly; they do notimpactthe
meaning of the signature nor doyheve ary effect during type checking.

51

Signatures can aso be declared in afield-like notation, as follows:

field sig decl ::= [“var”] “field” “signature” nethod name
“(" arg_type “)” [type_decl]

A field signature declaration of the form
var field signature name(type): typeg;
is syntactic sugar for the following two declarations:

si gnat ur e name(type) : typeg;

si gnat ure set _name(type, typeg) : VoI d;
A field signature declaration does not require that implementations of the resulting signatures be
fields, only that their interface “looks’ like they could be implemented by fields. If the var
keyword is omitted, then the second set accessor signature is not generated.

3.3.5 Implementation and Method Declarations

The syntax of method implementations is extended in the following way to accommodate static
types:
nmet hod_decl ::= inpl_kind nmethod_nane

“(" [formals] “)” [type_decl] {pragna}
“{" (body | primbody) *}* [*:"]

i mpl _kind = [“method”] “inplenentation” declaresamethodimplementation

| “met hod” declares a method signature and implementation
speci al i zer = [location] [type_decl] specialized formal

| “@ “:” object sugar for @bj ect : obj ect

Formal parameters of the method implementation and the result of the method implementation can
be given explicit type declarations.

If the i npl enment ati on keyword is used, the declaration introduces a new method
implementation. If, however, the net hod keyword aloneis used, the declaration is syntactic sugar
for both a method implementation declaration and a signature declaration. A declaration of the
form

met hod name(x,@hbjq: type;, ..., XNy@bjy: typey) : typer { body }
is syntactic sugar for the following two declarations:
si gnat ure name(type;, .., typey): typer;
i npl emrent ati on name(X;@bjq: type;, ..., Xn@bjy: typey) : typer { body }

Asexplained in section 2.2.1, if any of the obj; are omitted, they default to any.

A formal in amethod or field declaration can be specified with the x@ object syntax. This syntax
is shorthand for x@bject: typeof(object) .

3.3.6 Field Implementation Declarations

Field implementation declarations are similarly extended to accommodate static types:

field_decl i:= [“shared”] [“var”] “field” field_kind method_nane
“(" formal “)” [type_decl] {pragma} [“:=" expr]

52

field kind D= empty declare accessor method impl(s) and sig(s)

| “i mpl enent ati on” declare just accessor method implementation(s)
If the i npl enent at i on keyword is used, then the declaration introduces a field get accessor
method implementation, and al so aset accessor method implementation if thefield isdeclared with
thevar keyword. The result type of thefield is used as the type of the second argument of the set
accessor method; the result type of the set accessor method isvoi d.

If the plain fi el d keyword is used, then the field declaration is syntactic sugar for a field
implementation declaration and a field signature declaration. A field declaration of the form

shared? var? fiel d name(x@bj: type) : typeg : = expr;
where shared? is either the shar ed keyword or empty and var? isthe var keyword or empty, is
syntactic sugar for the following declarations:

shared? var? field inplenmentation name(x@hbj: type) : typeg : = expr;

var? field signature name(type) : typeg;
The field signature declaration is itself syntactic sugar for one or two signature declarations,
depending on whether the var keyword was used.

3.3.7 Other Type Declarations

In addition to allowing the formals and results of methods and fields to be annotated with explicit
type declarations, variable declarations and closure arguments and results can be annotated with
explicit type declarations:

| et _decl = “let” [“var”] nane [type_decl] {pragma} “:=" expr “;”
cl osure_expr = [“& “(" [closure formals] “)” [type_decl]] “{” body “}”
cl osure_formal = [nane] [type_decl] formal names are optional, if never referenced

If the result type of a closureis omitted, instead of defaulting to dynam ¢ as described in section
3.4.1, the result type is inferred from the type of the result expression in the closure’'s body.
Similarly, if the type of a constant local variable is omitted, it is inferred from the type of its
initializing expression; mutable variables and global variables should be given explicit types to
avoid dynamic type checking.

3.3.8 Discussion

Subtyping and conformance in Cecil isexplicit, in that the programmer must explicitly declare that
an object conformsto atype and that atypeisasubtype of another type. These explicit declarations
are verified as part of type checking to ensure that they preserve the required properties of
conformance and subtyping. Explicit declarations are used in Cecil instead of implicit inference of
the subtyping relations (structural subtyping) for two reasons. Oneisto provide programmerswith
error-checking of their assumptions about what objects conform to what types and what types are
subtypes of what other types. Another is to allow programmers to encode additional semantic
information in the use of a particular type in additional to the information implied by the type's
purely syntactic interface. Both of these benefits are desirable as part of Cecil’s goal of supporting
production of high-quality software. To make exploratory programming easier, a programming
environment tool could infer the greatest possible subtype relationships (i.e., the implicit

53

“structural” subtyping relationships) for aparticular object and add the appropriate explicit subtype
declarations automatically.

Separating subtyping from implementation inheritance increases the complexity of Cecil. A
simpler language might provide only subtyping, and restrict objectsto inherit code only from their
supertypes; Trellis takes this approach, for example. However, there is merit in clearly separating
the two concepts, and allowing inheritance of code from objects which are not legal supertypes.
Studies have found this to be fairly common in dynamically-typed languages [Cook 92]. With the
current Cecil design, the only way that an object might not be a legal (structural) subtype of an
object from which it inherits is if the child overrides a method of the parent and restricts at |east
one argument type declaration, a relatively rare occurrence. However, Cecil may eventually
support filtering and transforming operations as part of inheritance, such as the ability to exclude
operations, to rename operations, or to systematically adjust the argument types of operations, and
so would create more situations in one object would inherit from another without being a subtype.

Types cannot have default implementations;, only object representations can have methods
attached. In other languages, such as Axiom (formerly Scratchpad 11) [Watt et al., Jenks & Sutor
92], default implementations can be stored with the type (called the category in Axiom). However,
in Axiom method lookup rules are complicated by the possibility of methods being inherited both
from superclasses and from categories, i.e., adong both inheritance and subtyping links. Cecil’s
inheritance rules are simplified by only searching the inheritance graph. We expect that most type-
like entities will actually be declared using the obj ect form so that there is a corresponding
representation to hold any default method implementations.

3.4 Special Types and Type Constructors
The syntax of types (excluding parameterization) is as follows:

type ;.= naned_type
cl osure_type
| ub_type

gl b_type
“(" type ")” just for grouping

I

I

I

I
3.4.1 Named Types
Types with names can be directly named:
naned_t ype :1= name

As described in section 3.3.1, type names are resolved in a name space distinct from the names of
variables and objects and of methods.

In addition to user-defined types introduced through t ype and obj ect declarations, the Cecil
type system includes four specia predefined types:

» Thetypevoi d isused astheresult type of methods and closuresthat do not return aresult. All
types are subtypes of voi d, enabling a method that returns a result to be used in a context
where none is required. The type voi d may only be used when declaring the result type of a
method or closure. The predefined object voi d hastypevoi d.

54

» The type any is implicitly a supertype of all types other than voi d; any may be used
whenever a method does not require any special operations of an object.

* Thetypenone isimplicitly a subtype of al other types, thus defining the bottom of the type
lattice. It is the result type of a closure that terminates with a non-local return, since such a
closure never returnstoitscaller. It also isthe result type of the primitivel oop method, which
also never returns normally. Finally, none is an appropriate argument type for closures that
will never be called.

» Thetypedynami c isused to indicate run-time type checking. Wherever type declarations are
omitted, dynam c isimplied (with the exception of closure results and constant local variable
declarations, as described in section 3.3.7). Thedynam c type selectively disables static type
checking, in support of exploratory programming, as described in section 3.10.

3.4.2 Closure Types

The type of aclosure is described using the following syntax:

cl osure_type o= Y& (" [arg_types] “)” [type_decl]
(Thesyntax of ar g_t ypes is specified along with signaturesin section 3.3.4.)

A closure type of the form

describes a closure whose eval method has the signature:
signature eval (&(tq, ..., tNitr t1, .., tNItR
Closure types are related by implicit subtyping rules that reflect standard contravariant subtyping:
a closure type of the form &(tq, ..., ty) : tgr IS a subtype of a closure type of the form
&('sq, ..., Sy) - Sgiff eacht; isasupertype of the corresponding s; and tg is a subtype of sg.
3.4.3 Least-Upper-Bound Types
The least upper bound of two typesin the type lattice is notated with the following syntax:
| ub_type ci= type “|” type
The type type; | type, is a supertype of both type; and type,, and a subtype of al types that are
supertypes of both type; and type,. Least-upper-bound types are most useful in conjunction with
parameterized types, described in section 4.
3.4.4 Greatest-Lower-Bound Types
The greatest lower bound of two typesis notated with the following syntax:
gl b_type D= type “& type
The type type; & type, is a subtype of both type; and type,, and a supertype of all types that are

subtypes of both type; and type,. Syntactically, the greatest-lower-bound type constructor has
higher precedence than the | east-upper-bound type constructor.

Note that the greatest-lower-bound of two typesis different than a named type that is a subtype of
the two types. For example,

typel & type2

55

isadifferent type than the type introduced by the declaration
type type3 subtypes typel, type2;

Thetypet ype3isasubtypeof t ypel &t ype2 (al typesthat subtypebotht ypel andt ype2
are automatically subtypes of t ypel &t ype2), but not identical to it. The reason is that the
programmer might later define at ype4 type:

type typed4 subtypes typel, typeZz;

Thetypet ype4d isalsoasubtypeof t ypel &type2, butt ype3 andt yped aredifferent and
in fact mutually incomparable under the subtype relation. The two types are different because
named typesinclude implicit behavioral specifications, and theimplication of the two separate type
declarationsis that the implied behavioral specificationsof t ype3 andt ype4 are different.

Thevoi d, any, and none special types and the greatest-lower-bound and | east-upper-bound type
constructors serve to extend the explicitly-declared type partial order generated from type and
object declarationsto afull lattice.

3.5 Object Role Annotations

Because Cecil isclassless, objects are used both asrun-time entities and as static, program structure
entities. Some objects, such as ni | and objects created at run-time through object constructor
expressions, are manipulated at run-time and can appear as arguments to messages at run-time.
Such concrete objects are required to have all the signatures in their types be supported by
corresponding method implementations and all their fields be initialized. In contrast, objects such
ascons andl i st arenot directly manipulated at run-time. Instead, they help organize programs,
providing repositories for shared methods and defining locations in the type lattice. In return for
restricted usage, such abstract objects are not required to have their fields fully initialized nor their
signatures fully implemented.

To inform the type checker about the part played by an object, its declaration is prefixed with an
object representation role annotation:

rep_role ;.= “abstract” only inherited from by named objects;
allowed to be incompl ete
| “tenpl ate” only inherited from or instantiated;
uninitialized fields allowed
| “concrete” directly usable;
must be complete and initialized
| [“dynam c”] directly usable;

no static checks
Each of these role annotations appearsin the list hierarchy:

abstract object list isa collection;
tenpl ate representation cons isa list;
concrete representation nil isa list;

Abstract objects are potentially incomplete objects designed to be inherited from and fleshed out
by other objects. Abstract objects need not have all their signatures fully implemented nor their
fields initialized. For example, the | i st object is not required to implement the do signature
defined for the type | i st ; the implementation of this operation is deferred to children. Because

56

an abstract object may be incomplete, it cannot be used directly at run-time, nor can it appear asa
parent in an object constructor declaration. Abstract objects are similar to abstract classesin class-
based languages.

Template objects are complete objects suitable for direct “instantiation” by object constructor
expressions, but are not allowed to be used directly as a value at run-time. Because new method
implementations cannot be specified for anonymous objects, all the signatures specified as part of
the type of atemplate object are required to be fully implemented. For example, the cons object
is required to fully implement all | i st operations, including do. However, because template
objects will not be sent messages at run-time, they are not required to have their fields initialized.
Thecons objectisnot required to haveitshead andt ai | fieldsinitialized. Template objectsare
analogous to concrete classes in class-based languages.

Concrete objects are complete, initialized objects that can be manipulated at run-time. Like
template objects, all signatures must be implemented, and in addition all fields must be initialized,
either as part of the field declaration or as part of the object declaration or object constructor
expression. Like other named objects, named concrete objects can be inherited from aswell. (The
child object’s role can revert to abstract or template.) Anonymous concrete objects correspond to
instances in class-based languages;, named concrete objects have no direct analogue and are a
feature of Cecil’s object model.

If the object role annotation isdynamni ¢ or omitted, the object is considered fully manipulable by
programs but no static checks for incomplete implementation of signatures or uninitialized fields
are performed. (The appropriate checks will be made dynamically, as messages are sent and fields
accessed.) Dynamic objects are designed to support exploratory programming, as discussed in
section 3.10.

Since object constructor expressions create objects to be used at run-time, neither abst r act nor
t enpl at e annotations are allowed on object constructor expressions.

ODbject role annotations help document explicitly the programmer’sintended uses of objects. Other
languages provide similar support. C++ indirectly supports differentiating abstract from concrete
classes through the use of pure virtual functions and private constructors. Eiffel supportsasimilar
mechanism through its deferred features and classes mechanism. Cecil’sabst r act annotationis
somewhat more flexible than these approaches, since an object can be labeled abst ract

explicitly, even if it has no abstract methods. Such a declaration can be useful to prevent direct
instantiation of the object, perhaps because the method implementations are mutually recursivein
away where subclasses are expected to override at |east one of the methods to break the recursion.

In an earlier version of Cecil, afifth annotation, uni que, could be used to document the fact that
an object was unique. For example, ni | ,true, and f al se all were annotated as unique objects.
Whilethe exact semanticsof uni que wasunclear, aplausibleinterpretation could be that aunique
object is like a concrete object except that it could not be used as a parent in an object constructor
expression (i.e., it could not be “instantiated” or “copied”). Unique objects could still be inherited
from in object declarations, since they might have useful code to beinherited. Unique objects were
removed because it was felt that the extra language mechanism was not worthwhile. The

57

t enpl at e annotation may be removed for a ssimilar reason, since it is not strictly necessary for
the type checker, but the distinction between abstract and templ ate objects appears to be useful for
documenting the programmer’s intentions. The distinction between abstract objects and concrete
objects, however, is crucia to being able to write and type-check realistic Cecil code.

3.6 Type Checking Messages

This section describes Cecil’s type checking rules for message sends and method declarations.
Section 3.7 describes type checking for other, simpler kinds of expressions. Parameterized types
are described in section 4.

In Cecil, al control structures, instance variable accesses, and basic operators are implemented via
message passing, so messages are the primary kind of expression to type-check. For a message to
be type-correct, there must be a single most-specific applicable method i mplementation defined for
all possible argument objects that might be used as an argument to the message. However, instead
of directly checking each message occurring in the program against the methods in the program,
in Cecil we check messages against the set of signatures defined for the argument types of the
message, and then check that each signature in the program is implemented conformingly,
completely, and consistently by some group of methods.

Using signatures as an intermediary for type checking has three important advantages. First, the
type-checking problem is simplified by dividing it into two separable pieces. Second, checking
signatures enables all interfaces to be checked for conformance, completeness, and consistency
independent of whether messages exist in the program to exercise all possible argument types.
Finally, signatures enable the type checker to assign blame for a mismatch between implementor
and client. If some message is not implemented completely, the error is either “message not
understood” or “message not implemented correctly.” If the signature is absent, it is the former,
otherwise the latter. Signatures inform the type checker (and the programmer) of the intended
interfaces of abstractions, so that the system may report more informative error messages. Of
course, the “missing signature” error is sometimes the appropriate message to report, but the type
checker cannot accurately distinguish this from the “message not understood” aternative.

Subsection 3.6.1 describes checking messages against signatures, and subsection 3.6.2 describes
checking signatures against method implementations.

3.6.1 Checking Messages Against Signatures

Given amessage of the form name(expr, ..., expry) , where each expr; type-checks and has static
typeT;, thetype checker usesthe T; to locate all signaturesof theformname(S, ..., §) : Sgwhere
each type § isasupertype of the corresponding T;. If this set of applicable signaturesis empty, the
checker reports a“ message not understood” error. Otherwise, the message send is considered type-
correct.

To determinethetype of the result of the message send, the type system cal cul ates the most-specific
result type of any applicable signature. This most-specific result type is computed as the greatest
lower bound of the result types of all applicable signatures. In the absence of other type errors, this
greatest lower bound will normally correspond to the result type of the most-specific signature.

58

Toillustrate, consider the messagecopy(sone_I i st) ,wherethestatictypeof sone_Ii st is
I i st . Thefollowing types and signatures are assumed to exist:

type collection;
type list subtypes collection
type array subtypes collection

signature copy(collection):collection
signature copy(list):list;
signature copy(array):array;

The signature copy(array):array is not applicable, since |i st, the static type of
some_| i st, isnot a subtype of ar r ay. The dynamic type of sonme_| i st might turn out to
conform to ar r ay at run-time (e.g., if there were some data structure that was both al i st and
an ar r ay), but the static checker cannot assume this and so must ignore that signature. The first
two signatures do apply, so the copy message is considered legal. The type of the result is known
tobebothal i st andacol | ecti on. The greatest lower bound of thesetwo is| i st, so the
result of the copy messageisof typel i st .

Unlike method dispatching, it is acceptable for more than one signature to be applicable to a
message. Signatures are contracts that clients can assume, and if more than one signature is
applicable, then the client can assume more guarantees about the type of the result. The greatest
lower bound is used to calculate the message's result type, rather than the least upper bound,
because each signature can be assumed to be in force. At run-time, a method will be selected, and
that method will be required to honor the result type guarantees of all the applicable signatures, and
so the target method implementation will return an object that conforms to the result types of all
the applicable signatures, i.e., the greatest lower bound of these signatures. In common practice,
some most-specific signature’s result type will be the greatest lower bound, such asthel i st type
selected above.

3.6.2 Checking Signatures Against Method Implementations

The type checker ensuresthat, for every signature in the program, all possible messages that could
be declared type-safe by the signature would in fact locate a single most-specific method with
appropriate argument and result type declarations, given the current set of representation and type
declarationsin the program. Thisinvolveslocating all methodsto which the signature is applicable
(i.e., al those that could be invoked by a message covered by the signature) and ensuring that they
conformingly, completely, and consistently implement the signature.

More precisely:

» A signature is considered applicable to a method iff they have the same name and number of
arguments and there exists some sequence of argument objects that both inherits from the
specializers of the method and conforms to the argument types of the signature. Abstract
objects are not included when considering possible argument objects, since they are not
required to be complete implementations and are restricted from being manipulated at run-
time. (Thisisthe key distinction between abstract and non-abstract objects.) Template objects
areincluded, since they are required to fully implement all applicable signatures.

59

» A method conformsto a signature iff

» for each formal, all objects that inherit from the formal’s specializer and conform to the
signature’s corresponding argument type also conform to the formal’s declared type (for
unspecialized formals, this constraint amounts to requiring that the formal’s type is a
supertype of the signature argument’stype), and

« the method's result type is a subtype of the signature’s result type.

* A set of methods completely implement asignature iff, for each possible sequence of argument
objectsthat conformsto the argument typesin the signature, there exists at least one method in
the set that is applicable to the argument objects, i.e., where the argument objects inherit from
the method'’s specializers.

* A set of methods consistently implement asignatureiff, for each possible sequence of argument
objectsthat conformsto the argument typesin the signature, there exists a single most-specific
applicable method in the set.

Conformance of amethod against a signature can be checked inisolation of any other methods and
signatures in the program. However, in the presence of multi-methods, it is not possible to check
individual methods in isolation for completeness and consistency, since interactions among multi-
methods can introduce ambiguities where none would exist if the multi-methods were not jointly
defined within one program.

To type-check in the presence of Cecil’s prototype-based object model, object representatives are
extracted from the program. Each named template, concrete, and dynamic object is considered a
distinct object representative, and each static occurrence of an object constructor expression is
considered an object representative. A finite number of representatives are extracted from any
given program. Representatives are then used as the potentia run-time argument objects when
testing whether asignature is applicable to a method and whether a set of methods completely and
consistently implement a signature. The object representative for an object constructor expression
acts as a proxy for al the objects created at run-time by executing that object constructor
expression. Since each object created by a particular object constructor expression inherits the
same set of methods and has the same type, only one representative need be checked to ensure type
safety of all objects created by the object constructor expression at run-time. Object representatives
are analogous to concrete classes in a class-based language and maps in the Self implementation
[Chambers et al. 89].

Conceptually, for each signature, the type checker enumerates all possible message representatives
that are covered by the signature, where the arguments to the message representative are object
representatives that conform to the signature’s argument types. (A much more efficient algorithm
to perform this checking is described elsewhere [Chambers & Leavens 94].) For each message
representative, the type checker simulates method lookup and checks that the simulated message
would locate exactly one most-specific method. If no method is found, the type checker reports a
“signature implemented incompletely” error. If multiple mutually ambiguous methods are found,
the type checker reports a “signature implemented inconsistently” error. Otherwise, the single
most-specific method has been found for the message representative. In this case, the type checker
also verifiesthat the argument object representatives conform to the declared argument types of the
target method and that the declared result type of the method is a subtype of the signature’s result

60

type. If al these tests succeed, then all run-time messages matching the message representative are
guaranteed to execute successfully.

For example, consider type-checking the implementation of the following signature:
signature pair_do(collection, collection, & int,int):void):void;

The type checker would first collect all object representatives that conformto col | ecti on and
al those that conform to &(int,int):void. For a small system, the col | ecti on-
conforming object representatives might be the following:

representation nil inherits Iist;
representation cons inherits |ist;
representation inherits cons;
representation array inherits collection

Thel i st andcol | ecti on objects are not enumerated because they are abst r act . The third
representative is extracted from the object constructor expression in the pr epend method. A
single object representative stands for the closure object.

Once the applicable object representatives are collected, the type checker enumerates all possible
combinations of object representatives conforming to the argument types in the signature to
construct message representatives. These message representatives are the following:

pair_do(nil,nil,closure);

pai r_do(nil, cons, closure);
pair_do(nil,representation inherits cons,closure);
pair_do(nil, array, cl osure);

pai r _do(cons, nil, closure);

pai r _do(cons, cons, cl osure);

pair_do(array, representation i nherits cons, closure);
pai r _do(array, array, cl osure);

For each message representative, method lookup is simulated to verify that the message is
understood, that the declared argument types are respected, and that the target method returns a
subtype of the signature’s type.

3.6.3 Comparison with Other Type Systems

For singly-dispatched languages, most type systems apply contravariant rules to argument and
result types when checking that the overriding method can safely be invoked in place of the
overridden method: argument types in the overriding method must be supertypes of the
corresponding argument types of the overridden method, while the result type must be a subtype.
Cecil’ stype system does not directly compare one method against another to enforce contravariant
redefinition rules, but instead compares one method against an applicable signature to enforce
contravariant rules for non-specialized arguments. In Cecil terms, in a singly-dispatched language
a signature is inferred from the superclass's method, and then all subclass methods (i.e., those
methods that are applicable to the signature) are checked for conformance to the signature.

61

Specialized arguments need not obey contravariant restrictions. The type of aspecialized argument
for one method can be a subtype of the type of the corresponding argument for a more generad
method. This does not violate type safety because run-time dispatching will guarantee that the
method will only beinvoked for argumentsthat inherit from the argument specializer, and the static
type checker has verified that all objects that inherit from the specializer also conform to the
specialized argument’s type. Unspecialized arguments cannot safely be covariantly redefined,
because there is no run-time dispatching on such arguments ensuring that the method will only be
invoked when the type declaration is correct.

Singly-dispatched languages make the same distinction between specialized and unspecialized
arguments implicitly in the way they treat the type of the receiver. For most singly-dispatched
languages, the receiver argument is omitted from the signatures being compared, leaving only
unspecialized arguments and hence the contravariant redefinition rule. If the receiver type were
included as an explicit first argument, it would be given special treatment and allowed to differ
covariantly. (In fact, it must, since the receiver’'s type determines when one method overrides
another!) For Cecil, any of the arguments can be specialized or unspecialized, requiring us to make
the distinction explicit. If al methods in a Cecil program specialized on their first argument only,
Cecil’s type checking rules would reduce to those found in a traditional singly-dispatched
language.

Few multiply-dispatched languages support static type systems. Two that are most relevant are
Polyglot [Agrawal et al. 91] and Kea[Mugridge et al. 91]. In both of these systems, type checking
of method consistency and completeness requires that all “related” methods (al methods in the
same generic function in Polyglot and all variants of a function in Kea) be available to the type
checker, just as does Cecil. Neither Polyglot nor Kea distinguishes subtyping from inheritance nor
interfaces from implementations. Additionally, neither Polyglot nor Kea supports a notion of
abstract classes that are not required to be completely implemented but that include some notion
of an operation that is expected to be implemented by subclasses; signatures play thisrolein Cecil .

3.6.4 Type Checking Inherited Methods

Cecil does not require that a method be re-type-checked when inherited by a descendant, even if
that descendant is not a subtype. Thisfeat isaccomplished by verifying that al descendant objects
conform to the declared type of the corresponding formal of the inherited method. If the declared
type isthe type of the specializer, such aswould arise with atype declaration using the @ syntax,
then all descendant objects are required to be subtypes of the specializer as well. This may be
constraining. For example, consider the following set and bag implementation fragments:

tenpl at e obj ect bag i sa unordered_coll ection
field elens(@bag):!|ist;
net hod add(b@bag, x:int):void {
b.elens := cons(b.elens, x); }
nmet hod i ncl udes(b@ bag, x:int):bool ({
b. el enms. i ncl udes(x) }

tenpl ate object set isa unordered _collection inherits bag;
nmet hod add(s@set, x:int):void {
i f_not(includes(s, x), { resend(s, x) }) }

62

Here the type checker would report an error, since set inherits from bag but is not a subtype,
violating the conformance requirementsfor bag’sel ens, add, andi ncl udes methods.” Inthis
case, a new type bag | i ke_obj ect could be created that understood the el ens and
set el ens messages and the b formal of the bag add and i ncl udes methods should be
changed to be of thistype:

abstract object bag |ike_object;
field elens(@bag_like_object):list;

tenpl ate obj ect bag i sa unordered collection, bag |ike_object;
nmet hod add(b@ag: bag_I| i ke_object, x:int):void {
b.elens := cons(b.elens, x); }
nmet hod i ncl udes(b@ag: bag_| i ke_obj ect, x:int):bool {
b. el ems. i ncl udes(x) }

tenpl ate obj ect set isa unordered_collection, bag |ike_object inherits bag;
net hod add(s@et:bag_|ike object, x:int):void {
i f_not(includes(s, x), { resend(s, x) }) }

The programmer could go further and move many of the bag operations into the
bag |i ke _obj ect. Eventualy, set would simply inherit from bag_| i ke_obj ect, not
bag. In this situation, all inheritance links would parallel subtyping links, and the two would not
need to be distinguished.

If such reorganizations can always be made satisfactorily, with the resulting inheritance and
subtyping graphs parallel, then it may not be necessary to separate inheritance from subtyping in
the language. However, such an approach may not always be feasible. Creating the intermediate
bag_| i ke_obj ect is somewhat tedious; the original code was easy to read and dynamically
type-safe. Moreover, the implementation of bag might be written independently and not under
control of the programmer building set . Inthese cases, simply reusing theimplementation of bag
for set is convenient. Unfortunately, Cecil’s type rules currently seem to prevent the smple
solution. One alternative would simply be to re-type-check a method whenever it was inherited by
an object that was not also a subtype. The @ notation could be interpreted as indicating that this
sort of re-type-checking was to be done. Re-type-checking would require accessto at least part of
the inherited method’'s source code, however. Another aternative would be to relax the
conformance constraint for any object that inherited an overriding method. In this example, the
bag add method would not need to be rewritten, sincetheset add method “shadows’ it for the
only descendant object that is not also a subtype; thei ncl udes method would still need to be
rewritten. Also, the resend in the set add method would become type-incorrect, sinceit is passing
an argument of typeset to amethod expecting an argument of typebag. Thisalternative is close
to the idea of encapsulating the use of inheritance from clients, as with private inheritance in C++.
We consider the separation of subtyping from inheritance, when coupled with the desire to avoid
retypechecking methods when inherited, to be an important area for future work.

" Setsare not subtypes of bags since sets do not support the behavioral specification of bags. A client could detect the
difference between aset and a bag by adding the same element twice to an unordered collection and testing how much
the size of the collection changed.

63

3.7

Type Checking Expressions, Statements, and Declarations

Type checking an expression or statement determines whether it istype-correct, and if type-correct
also determines the type of its result. Type checking a declaration simply checks for type
correctness. All constructs are type-checked in a typing context containing the following
information:

 abinding for each variable or object name in scope to either:
* the variable's declared type and an indication of whether the variable binding is assignable

or constant, or

* to an object with arole annotation and a set of conformed-to types.

* the set of inheritance relations currently in scope;

* abinding for each type name in scope to the corresponding type;

« the set of subtyping relations currently in scope;

* the set of signatures currently in scope (for type checking messages);

* the set of method declarations currently in scope (for type checking resends).

The type checking rules for expressions are as follows:

* A literal constant is always type-correct. The type of the result of a literal constant is the
corresponding predefined type.

« A reference nameis type-correct iff nameis defined in the typing context (i.e., if there existsa
declaration of that name earlier in the same scope or in alexically-enclosing scope) as either a
variable or an object. If avariable, then the reference is type-correct, with the type of the result
being the associated type of the variable in the typing context. If an object, then the reference
is type-correct iff the object is a concrete or dynamic object, with the type of the result being

the type of the named object.
» An object constructor expression of the general form
role-annotation obj ect i nherits pareny, .., pareni
subt ypes supertypg, .., supertype
i sa parent-and-supertypge .., parent-and-supertypg
{ fieldi@bj;, : = expr, .. fieldy@bjy : = expny }

istype-correct iff:

each parent name is bound to a non-abstract non-voi d object in the typing context;
each supertypenotates a type other than none in the current typing context;

each parent-and-supertyp@ameis bound to a non-abstract non-voi d object in thetyping
context;

if @bij; is present, then obj; names an ancestor of the newly created object (if absent, it is
considered to be the same as the newly created object);

each field, names afield F; specialized on or inherited unambiguously by obj;, ignoring any
overriding methods, and F; isnot shar ed;

each expr; istype-correct, returning an object of static type T;, and T; isasubtype of thetype
of the contents of the field F;;

no field F; isinitialized more than once;

64

* role-annotation is neither abst r act nort enpl at e; and

« if role-annotation is concr et e, then there do not exist any fields specialized on or
inherited by the newly created object that do not have a default initial value and are not
initialized as part of the object creation expression.

The r epr esent at i on keyword may be used in place of the obj ect keyword without
effect. The type of the result of an object constructor expression is a new anonymous type that
is asubtype of each of the supertype; types and each of the types of the parent-and-supertype,
objects.
* A closure constructor expression of the general form
&(xq: typey, ..., Xy: typey) : typer { body }

istype-correct iff:

* the x;, where provided, are distinct;

* each of thetype,, if provided, notates anon-voi d typein the current typing context;

* typeg, if provided, notates a type in the current typing context;

* body is type-correct, checked in a typing context constructed by extending the current
typing context with constant variable bindings for each of the x; to the corresponding type

type;; and
* the type of the result of body is a subtype of typeg, if provided; if : typeg is omitted, then
typer isinferred to be the type of the result of body.
The type of the result of a closure constructor expression of the above formis
&(typey, ..., typey) : typer.

* A vector constructor expression of the general form [expry, ..., expry] type-correct iff each of
the expr; istype-correct, with static type T; whichisnot voi d. Thetype of theresult of avector
constructor expression is the predefined parameterized typei _vect or instantiated with the
least upper bound of the T;. (See section 4 for information on parameterized types.)

* A message expression of the general form name(exprq, ..., expry) istype-correct iff:

» each of the expr; istype-correct, with static type T; whichisnot voi d " and

e theset S={S, ..., Sy} of applicable signatures is non-empty, where S is the set of
signatures in the current typing context of the form § = si gnat ur e name(tj;, ...,
tin) - tir Where each T; is a subtype of t;.

The type of the result of a message isthe greatest lower bound of each of the result types tjg of
the applicable signatures. Verifying correctness of the implementation of signatures is
described in subsection 3.6.2.
* A resend expression of the general form
resend(.., x@arent, ..., exprj, ...)

istype-correct iff:

* each of the arguments x; or expr; is type-correct, with static type T; which isnot voi d;

* theresend is nested textually in the body of a method M;

* M takes the same number of arguments, N, as does the resend,;

" The check that the argument typeisnot voi d isnot strictly necessary, since no signature will have an argument type
that is a supertype of voi d.

65

» for each specialized formal parameter formal; of M, specialized on object;, the ith argument
to the resend is formal;, possibly suffixed with @arent;, and formal; is not shadowed with
alocal variable of the same name;

» for each unspecialized formal parameter formal; of M, thejth argument to the resend is not
be suffixed with @arent;;

» for each resend argument of the form formal;@arent;, parent; is a proper ancestor of
object;, the specializer of formal;, other than voi d; and

» when method lookup is simulated with a message name the same as M and with N
arguments, whereargument i iseither any (if formal; of M isunspecialized), parent; (if the
argument of the resend is directed using the @arent; suffix notation), or object;, the
specializer of formal; (otherwise), and where the resending method M is removed from the
set of applicable methods in the current typing context, exactly one most-specific target
method R is located, and the argument type declarations of this target method § are
supertypes of the corresponding T;.

The type of the result of aresend expression is the declared result type of the target method R.

A parenthetical expression of the form (body) is type-correct iff body is type-correct. The
type of the result of a parenthetical expression isthe type of the result of body.

The following rules define type-correctness of statements:

» An assignment statement of the form name : = expr istype-correct iff:
* expr istype-correct, with static type Tepy;
» name is bound to an assignable variable of type T,,,me iN the current typing context; and
* Teqpr isasubtype of Tpame.
The type of the result of an assignment statement isvoi d.

* A declaration block is type-correct iff its declarations are type-correct, when checked in a
typing context where all namesin the declaration block are avail abl e throughout the declaration
block. The type of the result of adeclaration block isvoi d.

» Anexpression statement istype-correct iff the expression istype-correct, with statictypeT. The
type of the result of the expression statement is T.

« A non-local return statement, of the form ™ expr, istype-correct iff:
* expr istype-correct, with static type T,
* the non-local return statement is nested textually inside the body of a method M; and
» Tisasubtype of the declared result type of M.
The type of the (local) result of anon-local returnisnone.
The body of a method, closure, or parenthetical expression is type-correct iff its statements are

type-correct. The type of the result of a body is the type of its last statement, if present, or voi d,
otherwise.

The following rules define type-correctness of declarations:

» A variable declaration of the form | et var name: type : = expr, where var is either var or
empty, istype-correct iff:

» name is not otherwise defined in the same scope;

66

* type notates atype in the current typing context; and

* expr is type-correct in atyping context where name and all variables defined later in the
same declaration block are unbound, resulting in static type T, and T is a subtype of type.

The typing context is extended to include a variable binding for name to the type type that is
assignable if var isvar and constant otherwise.
* A type declaration of the form
type name subtypes supertype;, .., supertypey

is type-correct iff each of the supertype notates a type other than none in the current typing
context and no cycles are introduced into the subtyping graph as aresult of the declaration. As
aresult of the declaration, the typing context is extended to include a type binding from name
to anew type that is a subtype of each of the supertype types.

* A representation declaration of the form

role-annotation kind name i nherits parent;, .., parenty
subt ypes supertype;, .., supertype.
i sa parent-and-supertype;, ..., parent-and-supertypey
{ fied@bj; : = expry, .. fiedy@bjy = expry }

istype-correct under the same conditions as the anal ogous object constructor expression, with
the following changes:

« abstract objectsmay be named ini nherits andi sa clauses;

» theabstract andt enpl at e role annotations are allowed; and

* no cycles are allowed to be introduced into the inheritance and subtyping graphs.
The typing context is extended to include an object binding from name to a new object with
role role-annotation that inherits from the parent; objects and the parent-and-supertype,
objects. If kind is the r epr esent at i on keyword, then the new object conforms to the
supertype, types. Otherwise, kind is the keyword obj ect , and the typing context is aso
extended with atype binding from nameto anew typethat isasubtype of each of the supertype,
types, and the new object conforms to the new type.

* A type extension declaration of the form
extend type name subtypes supertype;, .., supertypey

istype-correct iff:

» nameisbound in thetyping context to atype other thanvoi d, any, none, anddynami c;
and

* the same constraints on the subt ypes clause as with the type declaration are satisfied.

As aresult of the declaration, the typing context is extended to reflect that the type nameis a
subtype of each of the supertype; types.

* A representation extension declaration of the form

extend kind namei nherits parent;, .., parentyg
subt ypes supertype;, .., supertype
i sa parent-and-supertype;, ..., parent-and-supertypey
{ field@bj; : = expry, .. fieldy@bjy = expry }

istype-correct iff:
* nameis bound in the typing context to an object other than voi d and any;

67

 if kindisobj ect or omitted, then name also is bound in the typing context to atype other
thanvoi d, any, none, and dynami c;

* the same constraintson thei nheri ts, subt ypes, i sa, andfield initialization clauses
as with the object representation declaration are satisfied; and

* none of thefield;@bj; initialize fields already specialized on or inherited by the object before
the extension.

As aresult of the declaration, the typing context is extended to reflect that the object name
inherits from the parent; objects and the parent-and-supertype objects. If kind is the
repr esent at i on keyword, then the typing context is extended to reflect that the object
conforms to the supertype, types. Otherwise, kind is the keyword obj ect , and the typing
context is extended to reflect that the name type is asubtype of each of the supertype; types and
that the name object conforms to the name type.
A signature declaration of the form
si gnat ure name(X;: typey, ..., XN: typen) : typer

istype-correct iff:

* the x;, when provided, are distinct;

» each of the type, notates atype other than voi d in the typing context; and

* typer notates atype in the typing context.
The typing context is extended to include the corresponding signature.

A field signature declaration of the form
var field signature name(x: type) : typeg
istype-correct iff:
* type notates a type other than voi d in the typing context; and
* typer notates atype other than voi d in the typing context.
The typing context is extended to include the signature
si gnat ur e name(type) : typer
and, if var isvar, the signature
si gnat ure set _name(type, typeg) : voi d
A method implementation declaration of the general form
met hod kind name(x,@bjq: typey, ..., Xy@bjy: typey) : typer { body }
istype-correct iff:
* the x;, when provided, are distinct;
* each of the type, notates a type other than voi d in the typing context;
* if @hbj; is present, then obj; conforms to type;;
* typer notates a type in the typing context;

* body istype-correct when checked in atyping context constructed by extending the current
typing context with constant variable bindings for each of the x; to the corresponding type

type;; and
* the type of the result of body is a subtype of typeg.

The typing context is extended to include the declared method implementation. If kind is not
i mpl enent at i on, then the typing context is aso extended to include the signature

68

si gnat ur e name(typey, ..., typey) : typer
* A field implementation declaration of the general form
shared var field kind name(x@hbj: type) : typegr : = expr;
istype-correct iff:

* type notates a type other than voi d in the typing context;

* if @Nbj is present, then obj conformsto type;

* typer notates a type other than voi d in the typing context;

« if : = expr is provided, then expr is type-correct, with static type T, and T is a subtype of
typer; and

« if sharedisshar ed, then : = expr is provided.

The typing context is extended to include the declared field get accessor method
implementation, plus the set accessor method implementation if var isvar , plus the get (and
possibly set) signature(s) if kindisnot i npl enment at i on.

3.8 Type Checking Subtyping Declarations

When the programmer declaresthat an object conformsto atype (viaasubt ypes ori sa clause),
the type system trusts this declaration and uses it when checking conformance and subtyping.
However, it is possible that the programmer’s claim is wrong, and that the object in fact does not
faithfully implement the interface of the types to which it supposedly conforms. In this case, the
signature implementation checking, described in section 3.6.2, is sufficient to detect and report the
error, so no additional checking is required. When enumerating and checking message
representatives matching a signature defined on the supertype, the object in question, if not
abstract, will be enumerated, and the error will be detected because some signature will not be
implemented properly for that object. If the object is abstract, no type error will be reported. This
will not affect running programs since the abstract object cannot be used in amessage. Also, since
abstract objects are allowed to be incomplete, it is unclear whether atype error really exists.

3.9 Type Checking Predicate Objects

Predicate objects are intended to represent alternative ways of implementing an object’s interface.
Accordingly, it should be possible to type-check programs using predicate objects, under the
assumption that the particular state of the object does not affect its external interface. In particular,
to guarantee type safety in the presence of predicate objects, the type checker must verify that for
each message declared in the interface of some object O:

« at all timesthereisan implementation of the message inherited by the object O; and

« at no time are there several mutually ambiguous implementations of the message inherited by
the object O.

These two tests correspond to extending the tests of completeness and consistency of method
implementations to cope with the presence of predicate objects.

The set of methods inherited by the object O from normal objects is fixed at program-definition
time and can be type-checked in the standard way. Methods inherited from predicate objects pose
more of aproblem. If two predicate objects might be inherited simultaneously by an object, either

69

one predicate object must be known to override the other or they must have disjoint method names.
For example, in the bounded buffer implementation described in section 2.4, since an object can
inherit from boththenon_enpty_buf f er andthenon_f ul | _buf f er predicate objects, the
two predicate objects should not implement methods with the same name. Similarly, if the only
implementations of some message are in some set of predicate objects, then one of the predicate
objects must always be inherited for the message to be guaranteed to be understood. In other words,
the checker needs to know when one predicate object implies another, when two predicate objects
are mutually exclusive, and when a group of predicate objects is exhaustive. Once these
relationships among predicate objects are determined, the rest of type-checking becomes
straightforward.

|deally, the system would be able to determine all these relationships automatically by examining
the predicate expressions attached to the various predicate objects. However, predicate expressions
in Cecil can run arbitrary user-defined code, and consequently the system would have a hard time
automatically inferring implication, mutual exclusion, and exhaustiveness. Consequently, we rely
on explicit user declarationsto determine the rel ationships among predicate objects; the system can
verify dynamically that these declarations are correct.

A declaration already exists to describe when one predicate object implies another: the i sa
declaration. If one predicate object explicitly inherits from another, then the first object’s predicate
is assumed to imply the second object’s predicate. Any methods in the child predicate object
override those in the ancestor, resolving any ambiguities between them.

Mutual exclusion and exhaustiveness are specified using declarations of the following form:

di sj oi nt _decl
cover _decl

di vi de_decl
naned_obj ects

“di sjoint” naned_objects “;”

“cover” naned_object “by” named_objects “;”
“di vide” naned_object “into” named objects “;”
naned _object { “,” nanmed_object }

The digoint declaration
di sj oi nt object;, .., object,

impliesto the static type checker that the predicate objects named by each of the object; will never
beinherited simultaneoudly, i.e., that at most one of their predicate expressionswill evaluateto true
at any given time. Mutual exclusion of two predicate objects implies that the type checker should
not be concerned if both predicate objects define methods with the same name, since they cannot
both be inherited by an object. To illustrate, the following declarations extend the earlier bounded
buffer example with mutual exclusion information:

di sjoint enmpty_buffer, non_enpty_buffer;

disjoint full _buffer, non_full buffer;
The system can infer that enpty_buffer and ful | _buffer are mutualy exclusive with
partially full _buffer. Note tha enpty buffer and full buffer are not
necessarily mutually exclusive.

The cover declaration

cover object by object;, .., object,

70

implies that whenever an object O descends from object, the object O will also descend from at
least one of the object; predicate objects; each of the object; are expected to descend from object
already. Exhaustiveness impliesthat if all of the object; implement some message, then any object
inheriting from object will understand the message. For example, the following coverage
declaration extends the bounded buffer predicate objects:

cover buffer by enpty buffer, partially full_buffer, full _buffer;

Often agroup of predicate objects divide an abstraction into a set of exhaustive, mutually-exclusive
subcases. The divide syntactic sugar makes specifying such situations easier. A declaration of the
form

di vi de object i nt o object;, .., objecty;
is syntactic sugar for the following two declarations:

di sj oi nt object;, .., object,
cover object by object;, .., object,

Sincefields are accessed solely through accessor methods, checking accessesto fieldsin predicate
objects reduces to checking legality of messages in the presence of predicate objects, as described
above. To ensure that fields are always initialized before being accessed, the type checker ssimply
checks that the values of all fields potentially inherited by an object are initialized either at the
declaration of the field or at the creation of the object.

3.10 Mixed Statically- and Dynamically-Typed Code

One of Cecil’s major design goals is to support both exploratory programming and production
programming and in particular to support the gradua evolution from programs written in an
exploratory style to programs written in a production programming style. Both styles benefit from
object-oriented programming, a pure object model, user-defined control structures using closures,
and a flexible, interactive development environment. The primary distinction between the two
programming styles relates to how much effort programmers want to put into polishing their
systems. Programmers in the exploratory style want the system to allow them to experiment with
partially-implemented and partially-conceived systems, with a minimum of work to construct and
subsequently revamp systems; rapid feedback on incomplete and potentially inconsistent designs
is crucial. The production programmer, on the other hand, is concerned with building reliable,
high-quality systems, and wants as much help from the system as possible in checking and
polishing systems.

To partially support these two programming styles within the same language, type declarations and
type checking are optional. Type declarations may be omitted for any argument, result, or local
variable. Programs without explicit type declarations are smaller and less redundant, maximizing
the exploratory programmer’s ability to rapidly construct and modify programs. Later, as a
program (or part of a program) matures, the programmer may add type declarations incrementally
to evolve the system into a more polished and reliable production form.

Omitted type declarations are treated asdynam c¢; dynam ¢ may also be specified explicitly as
the type of some argument, result, or variable. An expression of type dynami ¢ may legaly be

71

passed as an argument, returned as a result, or assigned to a variable of any type. Similarly, an
expression of any type may be assigned to, passed to, or returned from a variable, argument, or
result, respectively, of type dynam c. This approach to integrating dynamically-typed code with
statically-typed code has the effect of checking type safety statically wherever two statically-typed
expressions interact (assuming that at run-time the objects resulting from evaluating the statically-
typed expressions actually conform to the given types), and deferring to run-time checking at
message sends whenever a dynamically-typed expression is used.

A consequence of this semantics for the dynam c type is that the static type safety of statically-
typed expressions can be broken by passing an incorrect dynamically-typed value to a statically-
typed piece of the program. Dynamic type checking will catch errors eventually, but run-time type
errorscan occur inside statically-typed code even if the code passesthe type checker. An aternative
approach would check types dynamically at the “interface” between dynamically- and statically-
typed code: whenever a dynamically-typed value is assigned to (or passed to, or returned as) a
statically-typed variable or result, the system could perform a run-time type check of the
dynamically-typed value as part of the assignment. This approach would then ensure the integrity
of statically-typed code: no run-time type errors can occur within statically-typed code labeled
type-correct by the typechecker, even when mixed with buggy dynamically-typed code.
Unfortunately, this approach has some difficulties. One problem is that objects defined in
exploratory mode should not be required to include explicit subtyping declarations; such
declarations could hinder the free-flowing nature of exploratory programming. However, if such an
object were passed to statically-typed code, the run-time type check at the interface would fail,
since the object had not been declared to be a subtype of the expected static type. We have chosen
for the moment to skip the run-time check at the interface to statically-typed code in order to
support use of statically-typed code from exploratory code, relying on dynamic checking at each
message send to ensure that the dynamically-typed object supports al required operations. An
aternative might be to perform some form of inference of the subtyping relationships of
dynamically-typed objects, like that incorporated in object-oriented systems based on implicit
structural subtyping, and use these inferred subtyping relationships for the run-time type check.

Cecil supports the view that static type checking is a useful tool for programmers willing to add
extraannotationsto their programs, but that all static efficiently-decidable checking techniques are
ultimately limited in power, and programmers should not be constrained by theinherent limitations
of static type checking. The Cecil type system has been designed to be flexible and expressive (in
particular by supporting multi-methods, separating the subtype and code inheritance graphs, and
supporting explicit and implicit parameterization) so that many reasonable programs will
successfully type-check statically, but we recognize that there may still be reasonable programs
that either will be awkward to write in a statically-checkable way or will be difficult if not
impossible to statically type-check in any form. Accordingly, error reports do not prevent the user
from executing the suspect code; users are free to ignore any type checking errors reported by the
system, relying instead of dynamic type checks. Static type checking is a useful tool, not a
complete solution.

72

4 Parameterization and Bounded Parametric Polymorphism

Practical statically-typed languages need bounded parametric polymorphism. Without some
mechanism for type parameterization, programmers must either resort to multiple similar
implementations of the same abstraction that differ only in type annotations, or insert type casts,
often at the client side, to indicate the more precise types of expressions than the type checker
infers. For example, if parameterization is not available, several nearly identical implementations
of | i st orarray may beneededfor listsor arrays of integers, strings, etc., and control structures
such asi f and map could not be reused for a variety of argument types. Accordingly, Cecil
supports the definition of parameterized object representations, method and field implementations,
types, signatures, and subtype and inheritance relations. The programmer is allowed to expressthe
assumptions on the type parameters in such declarations using mixed subtype and signature type
constraints. For example, atype parameter may be restricted to be a subtype of a certain type or to
be any type such that a certain signature holds. Type constraints in Cecil generalize F-bounded
polymorphism [Canning et al. 89] and Theta-stylewher e clauses[Day et a. 95, Liskov et a. 94].

This section presents type parameterization and type constraints in Cecil. A more formal
development, athough in a simpler setting and using a dlightly different notation, appears
elsewhere [Litvinov 98]. The next subsection introduces parameterization. Subsection 4.2 adds
constraints to achieve bounded polymorphism. Subsection 4.3 describes constraint solving and
typeinference. Subsection 4.4 describes an advanced use of the type system to express F-bounded
polymorphism. The last subsection reviews related work.

4.1 Parameterized Declarations

4.1.1 Type Parameters, Type Variables, and Instantiating Types

Cecil supports parametric polymorphism by allowing declarations to be parameterized with type
variables. (Thisfacility is not provided for variable declarations, for which it would be unsound.)
Aforall TI1,..,Tn prefix introduces type variables T1, ... ,Tn in a declaration. The scope of
these type variables is the declaration that has this prefix, within which the type variables may be
used as regular types:

t p_decl c:= [type_cxt] “type” name [fornmal _parans]
{type_relation} “;”

obj ect _decl .= [type_cxt] rep_role rep_kind nane [formal parans]
{relation} [field_inits] “;”

predi cate_decl ::= [type_cxt] [privacy] “predicate” nane [formal _parans]
{relation} [field_inits] [“when” expr] “;”

type_ext _decl ::= [type_cxt] [privacy] “extend” “type” naned_ type
{type_relation} “;”

obj _ext _decl c:= [type_cxt] [privacy] “extend” extend ki nd nanmed_object
{relation} [field_inits] *;”

signature_decl ::= [type_cxt] [privacy] “signature” nethod_name

((!l [ar g_t ypes] H)!l [type_decl] 13 ”

[type_cxt] [privacy] inpl_kind nmethod nane
“(" [formals] “)" [type_decl] {pragna}
13 { ” (body | pr i m_body) 13 } ” [13 ; ”]

net hod_dec

73

field_sig_decl [type_cxt] [field_privacy] [*var”] “field” “signature”

msg_name [formal_params] “(" arg_type “)”
[type_decl] "
field_decl = [type_cxt] [field_privacy] [*shared”] [‘var”] “field”

field_kind msg_name [formal_params] “(" formal “)”
[type_decl] {pragma} [“:=" expr] *;"

method_name = msg_name [fornal _parans] | op_name

type_cxt = “forall” formal_param { “,” formal_param }

formal_params = “["formal_param {*“,” formal_param } “]”

formal_param 2= [*"] name_binding

name_binding = hame declares a type variable called name

To use a polymorphic declaration, it must be instantiated by providing the instantiating type for
each type variable. Type variables are “formals’ and instantiating types are “actuals’ of a
parameterized declaration. In the following example an immutable vector object i_vector
method fetch , and an extend declaration are parameterized with type variable T (intended to
denote the type of the vector elements):

forall T: tenplate object i_vector[T];

forall T: extendi_vector[T] i sa collection[T];
forall T: nethod fetch(a@:i_vector[T], index:int):T {...}
var my_vec:i_vector[num] := concrete object isai_vector[num];

var result:num := fetch(my_vec, 5);
Note that parameterization is unsound and is disallowed in the following cases:
» Variable (let) declarations cannot be parameterized.

» Thetype of afield cannot reference any type parameters except those of the object to which the
field is attached. Moreover, the type of afield attached to a concrete object cannot reference
any type parameters.

4.1.2 Explicit and Implicit Parameterization

A type parameter is explicit if the corresponding instantiating type is to be explicitly provided by
clients of the declaration, or implicit if it is to be inferred automatically by the typechecker. A
polymorphic object or method declaration specifies which parameters are explicit by listing the
corresponding type variables in brackets following the name of the declared entity. The explicitly
instantiating types should be similarly given in brackets whenever the object, type, or message is
referenced:

named_object name [par ans]

named_type = name [par ans]

message = msg_name [par ans] “(" [exprs] “)”

dot_msg = dot_expr“.” msg_name [parans] [“(" [exprs])]

params = ["types ‘T

In the previous example, thei_vector object isexplicitly parameterized and requires all clients
to provide instantiating types, as in i_vector[num] . Method fetch , in contrast, is
parameterized implicitly; in the expression fetch(my_vec, 5) theinstantiating typefor T is

inferred to be num. Inference allows the programmer to avoid writing the often obvious
instantiating types; it is akey feature of Cecil. It is described in more detailsin Section 4.3.

74

Thenumberof explicit typeparameterss consideregbartof the“name” of thedeclarecentity. For
example,multiple objectscanbe declaredwith the samename,aslong asthey aredeclaredwith
differentnumbersof explicit type parameters.Also, methodlookup is extendedto includethe
numberof explicit parametersf candidatenethodgwhich mustmatchthatat the callsite)aspart
of the methodselectionprocess.Method lookup doesnot dependon the instantiatingtypes,
however. For example, messagesendsfoo[int]() and foo[string]() will always be
dispatchedo the samemethodimplementationput foo[int,string]() will be dispatched
to a diferent implementation.

Parameterizeaxtensiondeclarationsare only instantiatednternally by the typecheckr. Their
type parameters therefore arevays implicit.

4.1.3 Omitting the Explicit forall ~ Clause: the Backquote Sugar

Type variablescanbe introducedimplicitly — without listing themin theforall ~ clause.This
providesa moreconcisenotationfor parameterizedeclarationdy omitting the explicit forall
prefix. A type wariable is introduced implicitly in a declaration if:

* it is precededy abackquotd’) somavherein its headel(seemoreonthebackquotesugarin
Sectiond.2), or

* it appearsnsidethe squarebracletsfollowing the nameof a parameterizedbjector message
beingintroducedin an objector methoddeclaration,in which casethe type variableis an
explicit type parameter of that object or method.

So the declarations from the pireus example can be veritten more concisely as:

tenpl at e obj ect i_vector[T];

ext end i_vector[T] i sa collection[T];

nmet hod fetch(a@:i_vector['T], index:int):T {...}
The expressiongemainthe samesincethe backquotesugar doesnot affect whetheror notatype
parameteis explicit. Notethatthenamesof typevariablesshadev namesof globallyvisibletypes,
whetherthe variablesare introducedin a forall clause,using the backquotesugar, or asan
explicit type parameterFor example,if a declarationintroducesa type variablecalledint , all
occurrencesfint inthatdeclaratiorwill referto thattypevariableandnotthepredefinednteger

type.

4.2 Bounded Polymorphism and Type Constraints

It is oftennecessaryo expresssomeassumptionsr restrictionson type parameterg-or example,
asort methodcanonly sort collectionswhoseelementscan be comparedwith eachother A

matrix_multiply methodmay require that matrix elementsbe numbers.This situationis

known asboundedbolymorphismCardelli& Wegner85]. Cecil supportdoundedoolymorphism
by allowing type constraints on type parameters.

" This featuredoesnotinteractwell with mixed dynamicandstatictyping, sincethe numberof parameteraffectsthe
executionbehaviorof the program violating the principle that statictypesdo not affectthe executionsemanticsin
thefuture,the numberof parametersnay be removedfrom the “name” of an objector method,sothatparameters
are confined to the (optional) static type system.

75

There aretwo kinds of type constraintsin Cecil. A subtype constraint specifiesthe requirement that
onetype be a subtype of another. A common use of subtype constraintsisto specify upper or lower
bounds of type variables. In the following example, the type of matrix elementsis constrained to
be a subtype of num

method matrix_rmultiply(a:matrix[*T], b:matrix[‘T]): matrix[T]
where T<=num
{

}

A signature constraint specifies the requirement that the given signature hold. A common use of
signature constraints is to require certain operations to be provided for the type parameters. In the
following example, the message send of <= in the body of sor t isguaranteed to be legal aslong
asthe constraint is satisfied:

net hod sort(a:array[‘T]):void
where signature <=(T, T): boo

{

iéi a_i:T:=ali;

let a j:T:=alj;

if(a_i <= aj, { ..swapa!i anda!j .. });
}

Type constraints are allowed in the wher e part of the f or al | clause and in a wher e clause
following the header of adeclaration. The common case of the subtype constraints, type variables
upper bounds, are also allowed wherever that type variable is introduced (in af oral | clause,
using the backquote sugar, or as an explicit type parameter).

type_cxt = “forall” formal _param{ “,” formal param} [type_cons]
type_cons = “where” type constraint { “,” type_constraint }
type_constraint::= sub_constraint | sig_constraint

sub_constrai nt = type (“<=" | “>=") type

si g_constraint “signature” (nmsg_nane [parans] | op_nane)

“(" [arg_types] “)” type_dec

nane_bi ndi ng ©:= name [“>=" type] [“<=" type]

t p_decl ::= [type_cxt] [privacy] “type” nane [fornmal _parans]
{type_rel ation} [type_cons] “;”

obj ect _decl ::= [type_cxt] [privacy] rep_role rep_kind nane [formal parans]
{relation} [type_cons] [field_ inits] “;”

predi cate _decl ::= [type_cxt] [privacy] “predicate” nane [fornal parans]
{relation} [type_cons] [field_ inits] [“when” expr] “;”

type_ext_decl ::= [type_cxt] [privacy] “extend” “type” naned_type
[type_cons] {type relation} “;”

obj _ext _decl c:= [type_cxt] [privacy] “extend” extend_kind named_obj ect
{relation} [type_cons] [field_inits] *;”

signature_decl ::= [type_cxt] [privacy] “signature” nethod name
“(" [arg_types] “)” [type_decl] [type_cons] “;”

nmet hod_decl .= [type_cxt] [privacy] inpl_kind nethod_nane

“(" [formals] “)” [type_decl] [type_cons] {pragma}
“{* (body | primbody) *}" [*;”]

76

field_sig_decl [type_cxt] [field_privacy] [“var”] “field” “signature”
nsg _nane [formal parans] “(” arg_type “)”
[type_decl] [type_cons] “;”

[type_cxt] [field privacy] [“shared”] [“var”] “field”
field_kind msg_nane [formal _paranms] “(” formal *“)”

[type_decl] [type_cons] {pragma} [“:=" expr] “;”

field _decl

Thematri x_nmul ti ply method in the above example can be re-written more concisely as
follows (this sacrifices the visual symmetry between the arguments a and b, but is semantically
equivalent, because it introduces exactly the same type variable and constraint):

method matrix_multiply(a:matrix[* T<=num, b:matrix[T]): matrix[T]

{ ...}
The @ syntactic sugar isextended to allow atype variable with an upper bound. Thisidiom isused
when it is desirable to give amore precise type to aformal that is specialized on some object (and
the type of the formal is expected to subtype the specializer object). For example,

nmet hod foo(x@"‘ T<=bar): T { ... }
desugarsinto
met hod foo(x@ar:*T<=bar): T { ... }

It isauseful programming idiom to associate constraints with parameterized types. For example,
the type of a binary search tree may require that the comparison operation be defined on the type
of the tree element, similarly to the sorting method above:

tenpl ate object binary_tree[T] where signature <=(T,T): bool;

Cecil provides a syntactic sugar that automatically inserts these associated constraints. If a
backquoted type variable is used as an explicit instantiating parameter of a parameterized type, the
constraints that the type associates with its explicit parameter in the corresponding position are
imposed on the type variable. For example, in the following method:

nmethod insert(t@binary_tree['T], elmT):void { ... }

the constraint wher e si gnature <=(T, T): bool isautomatically added, so in the body of
i nsert itislegal to send the message <= to tree elementsand el m

4.3 Constraint Solving and Type Inference
The following typechecking tasks in Cecil lead to constraint solving:

* Totypecheck amessage send m[T{',...,Ty1(Ey,....E,)), where the types of E;,...E, are Ty,..., T,
the signature constraint si gnat ur e m[Ty',...,. Ty] (T, Tr): Treguit IS SOIVEd. Here Tiog it iS@
fresh type variable and can be instantiated with some type. The type of the message send isthe
most specific type that Tt Can take on while the signature constraint can be solved
successfully.

* Tocheck whether S; isasubtypeof S,, the subtype constraint S; <= S, issolved. S; isasubtype
of S, iff the constraint can be solved successfully.

* Whenever adeclaration with constraintsin its header isinstantiated, theinstantiated constraints
must be solved. If they cannot be solved successfully, such instantiation is not legal and so is
disallowed.

1

Given a constraint to solve, constraint solving proceeds as follows. A *“set-to-be-solved” of
constraintsis created, initially containing this one constraint. One constraint at atimeis picked and
removed from this set. A matching constraint is produced from the program declarations, if
possible, otherwise constraint solving fails. Two constraints match if they have the same structure
(e.g., both are signature constraints for the same message name and number of arguments) and the
types in the corresponding positions are the same; fresh type variables may be instantiated with
types during matching. While producing the matching constraint, new constraints to be solved may
arise, in which case they are added to the set-to-be-solved. Constraint solving succeeds when the
set-to-be-solved becomes empty.

The matching constraint can be produced either by taking a constraint or declaration available in
the program, or by combining other constraints produced from the program declarations. More
specifically:

* A polymorphic subtype or signature declaration present in the program can be instantiated by
substituting types or fresh type variablesfor itstype variables; its constraints, if any, need to be
solved and are added to the set-to-be-solved. A subtype of signature declaration with no type
variablesis treated as an available constraint itself.

» When typechecking the body of a polymorphic declaration, the constraints in its header are
available.

« Constraints can be combined based on the standard properties of subtyping, such astransitivity,
and of signatures, such as contravariance. For example, if the program contains declarations
si gnat ure =(num num : bool and extendi nt i sa num they can be combined to
yield the constraint si gnat ur e =(i nt, num : bool . Matching of types and substitutions
of types for fresh type variables are performed as needed.

Inference of instantiating types is the part of constraint solving whereby the typechecker decides
how to instantiate polymorphic declarations, i.e., what types to substitute for type variables.
Intuitively, when typechecking a message send, the typechecker tries to find the “best”
instantiations of declarations involved in solving the signature constraint, i.e., the instantiations
that lead to the most precise result type. When checking whether atype is a subtype of another, the
typechecker only needs to prove that some appropriate instantiations exist.

Consider, for example, typechecking the message send pr i nt (ny_col I) in the context of the
following declarations:

abstract object printable;
signature print(p:printable):void;

abstract object collection[T];
extend collection['T <= printable] isa printable;

nmet hod print(a@collection[‘T <= printable]):void
{ print("["); a.do(&e:T){ print(e) }); print("]") 1}

extend string isa printable; -- assumestri ng implementspri nt

let ny_coll:collection[string] := ...;
print(m_coll);

78

Sinceny_col | hastypecol | ecti on[stri ng], in orderto checkthis sendthetypecheclkr
needsto solve the constraintsi gnature print(collection[string]): T,eqt Where
Tresuit 1S @ fresh type variable; this is the first constraintin the set-to-be-soled. A matching
constraintcan be producedby instantiatingthe signaturecorrespondingto et hod pri nt
(collection[®T<=printabl e]): voi d. Two substitutionsneedto take placeto achieve
matchingvoi d for T, andst r i ng for T. Also, thesignatures instantiatecsubtypeconstraint
string<=printabl e is addedto the set-to-be-soled. This time, the program already
containsan exactly matchingdeclaration(the subtypedeclarationcorrespondingo ext end
stringisaprintabl e). Nomoreconstraintareaddedo the set-to-be-soled,soconstraint
solving is complete.The instantiatingtype st r i ng was automaticallyinferred for the type
variableT of the polymorphic method declaration.

4.4 F-bounded Polymorphism

This subsectiondescribesan example of adwanceduse of the Cecil type system,F-bounded
polymorphism.As we will see,no specialsupportfor this powerful idiom is neededn the type
system— it is madepossibleby allowing constraintgo berecursve, wherebyatypevariablecan
appear in itswn bound.

For ourfirstexample let usconsidemnabstracbbjector der ed andabinarymethod>. A binary
method is a methodthatexpectstwo argumentsof similar types;the > methodcanbe applied,for
example to two numbersor two strings but notastringandanumberWe would lik e to definethis
methodonce,in theor der ed object,andhave otherobjects,suchasnumandst r i ng, inherit
it. The simplest &y to achige it seems to be as folis:

abstract object ordered;

signature <=(x:ordered, y:ordered): bool
met hod >(x:ordered, y:ordered):bool { not(x <=y) }

extend num i sa ordered;
extend string isa ordered;

This code,however, leadsto anundesirablesffect. Since> and<= aredefinedfor or der ed and
numandst r i ng areits subclassesye arerequiredto write implementation®f <= to comparea
numandast r i ng, whichwe maynotwant.To avoid mixing of subclassesf or der ed, wecan
apply F-bounded polymorphism as folls:
abstract object ordered[T] where T <= ordered[T];
signature <=(x:'T, y:‘'T):bool where T <= ordered[T];
method >(x: ‘T, y:‘T):bool where T <= ordered|[T]
{ not(x <=y) }

extend numisa ordered[nuni;
nmet hod <=(x@num y@nunj):bool { ... }

extend string isa ordered[string];
nmet hod <=(x@string, y@string):bool { ... }
Now method > can be instantiatedwith num for T (becausethe instantiated constraint
num<= or der ed[nun] canbesolved:thereis a correspondingleclarationn the program)or
with st ri ng for T, but cannotwith (st r i ng| num for T (whichwouldberequiredin orderto
compare aaumand ast ri ng).

79

With this scheme, in addition to defining binary methodsitself, or der ed and al its subtypes can
inherit binary methods from other objects, for example:
abstract object comparable[T] where T <= conparabl e[T];
signature =(x:‘T, y:"T):bool where T <= conparabl e[T];
method !'=(x:‘T, y:'T):bool where T <= conparabl e[T]
{ not(x =1vy) }

extend ordered[‘T] isa conparable[T];
met hod =(x@ num y@ num :bool { ... }
met hod =(x@string, y@string):bool { ... }
Moreover, numcan have subtypes, such asi nt or f | oat, which can be compared with each
other, but not with st ri ng or its subtypes:
extend int isa num
extend float isa num
31=3.14 -- legal

F-bounded polymorphism can be applied similarly to express families of two or more mutually
recursive types. For example, consider a smplified model-view framework, where the model and
the view must be able refer to each other and invoke operations on each other.” Moreover, instances
of the model-view framework, such asadrawing model and a drawing view, must be ableto invoke
specific operations on each other without loss of type safety. The following code shows how the
generic model-view framework can be defined:

abstract object nodel[‘M <= nodel[MV], ‘V <= vieW{ M V]];
field views(@nodel [*M ‘V]):set[V] := new set[V]();

net hod register_viewm@nodel [*M V], view V):void {
m vi ews. add(view); }

nmet hod update(m@nmodel [*M “V]):void {
m vi ews. do(& v: V) {

v. update();

|

abstract object viewWf'M<= nmodel[MV], 'V <= vieWfyMV]];

field model (@QviewW‘M" ' V]): M

signature update(v@view ‘M ‘V]):void;
Both nodel and vi ew are parameterized by the type of the model and the view with the
corresponding upper bounds on these two parameters. Correspondingly, the code for the nodel
and vi ew objects is parameterized by the actual types of the instantiation of the framework. For
example, the following code instantiates the generic model-view framework to construct a bitmap
drawing model and view:

tenpl ate object drawi ng i sa nodel [draw ng, drawi ng_vi ew] ;
field bitmap(@ draw ng):bitnap;

nmet hod set _pi xel (m@ drawi ng, pos: position, value:color):void {
bi t map. pi xel (pos) := val ue;
m vi ews. do(& v: drawi ng_vi ew) {
v. updat e_pi xel (pos, val ue);

" Thanks to Gail Murphy for suggesting this problem to us.

80

1)}

tenpl ate object drawi ng view isa view draw ng, drawi ng_vi ew ;

nmet hod updat e(v@ dr awi ng_vi ew) : voi d {
screen. pl ot (v. nodel . bitmap); }

nmet hod updat e_pi xel (v@drawi ng_vi ew, pos:position, value:color):void {
screen. pl ot _pi xel (pos, value); }

net hod new _drawi ng_vi ew(m@ dr awi ng) : drawi ng_vi ew {
concrete object isa draning view { nodel := m} }

Bothdr awi ng anddr awi ng_vi ewadd new operations that need to be called by the other type.
By parameterizing nodel as was done, the type of the vi ews field in dr awi ng is known
statically to be set of (subtypes of) dr awi ng_vi ew This knowledge alows the set _pi xel
operationindr awi ng toinvoketheupdat e_pi xel operation without generating either astatic
type-error or requiring adynamic “typecase” or “narrow” operation. Similarly, because of the way
Vi ewis parameterized, the nodel fieldinitschilddr awi ng_vi ewwill be known statically to
refer to a (subtype of) dr awi ng, alowing the updat e operation of dr awi ng_vi ewto access
the bi t map field of the model in a statically type-safe manner. Note that it is legal to instantiate
nmodel and vi ew with drawi ng and dr awi ng_vi ew, because the instantiated subtype
constraints can be solved successfully.

Alternatively to the unparameterized dr awi ng and dr awi ng_vi ew, the programmer could
parameterize them in away similar to how nodel andvi eware parameterized, in order to allow
further refinement of these two types. This is similar to having the parameterized or der ed
subtype of conpar abl e, as opposed to the unparameterized numand st ri ng subtypes of
or der ed, inour earlier examples.

45 Related Work

We categorize related work on polymorphic type systemsfor object-oriented languagesinto several
groups. languages based on F-bounded polymorphism and explicit subtyping, languages based on
Sel f Type or matching, languages based on signature constraints and implicit structural
subtyping, languages based on instantiation-time checking, languages based on covariant
redefinition, and languages offering local type inference. Cecil includes the core expressiveness of
both F-bounded polymorphism (and its restrictions Sel f Type and matching) and signature
constraints, provided uniformly over awide range of declarations. Except where noted bel ow, other
languages based on these ideas support strict subsets of the expressiveness of Cecil, although
sometimes with more compact syntax. Also, the other languages do not support multi-methods,
complete separation of inheritance from subtyping, and least-upper-bound and greatest-lower-
bound type expressions, except where noted below. In most other systems, classes corresponds to
Cecil’s abstract or template objects with parallel subtype and inheritance hierarchies.

4.5.1 Languages Based on F-Bounded Polymorphism

Pizza is an extension to Java based on F-bounded polymorphism [Odersky & Wadler 97]. Like
Cecil, Pizza supports classes with mutually recursive bounds, crucial for supporting interrelated
families of classes such as the nodel -vi ew example from section 4.4. Also like Cecil, Pizza
automatically infers instantiating type parameters of polymorphic methods and constructors,

81

although the instantiating parameters must match the actual argument types exactly, which ismore
restrictive than Cecil which can infer appropriate supertypes of the argument types. Pizza lacks
signature constraints and the resulting implicit structural subtyping. Pizza does not support any
subtyping between different instances of a parameterized type, such as the desirable and legal
subtyping between different read-only interfacesto collectiontypesasinouri _vect or example.
Pizza aso inherits severa restrictions from its Java base, including that it does not alow
contravariant method overriding. Pizza extends Javawith first-class, lexically nested functions and
with algebraic data types and pattern-matching. The authors justify introducing algebraic data
types by claiming that classes alow new representationsto be added easily but not new operations,
while agebraic data types support the reverse. Cecil’'s multi-methods enable both new
representations and new operations to be added easily, avoiding the need for new language
constructs.

Bruce, Odersky, and Wadler [Bruce et al. 98] recently proposed to extend Pizza with special
support for declaring families of mutually recursive classes. They argue that pure F-bounded
polymorphism is too cumbersome for programmers to use in practice. We have not found pure F-
bounded polymorphism to be untenable, however; the nodel -vi ew example from section 4.4
illustrates our approach. Our experience may be better than theirs because our multi-method
framework encourages us to treat each argument and parameter symmetrically and uniformly,
while their model is complicated by the asymmetry between the implicit receiver and the explicit
arguments. Nevertheless, we are working on syntactic sugars that would make the more
sophisticated uses of F-bounded polymorphism ssimpler.

Agesen, Freund, and Mitchell propose asimilar extensionto Java[Agesen et al. 97]. It differsfrom
Pizza and Cecil in being able to parameterize a class over its superclass. However, this feature
cannot be typechecked when the abstraction is declared, but instead must be rechecked at each
instantiation.

Haskell’s type classes can be viewed as a kind of F-bounded polymorphism [Wadler & Blott 89].
Haskell automatically infers the most-general parameterization and constraints on functions that
take polymorphic arguments, as well as automatically inferring instantiations on calls to such
functions; Cecil requires polymorphic methods to explicitly declare type variables and constraints
over these variables. (In some cases, Haskell cannot unambiguously infer instantiations.) However,
Haskell is not truly object-oriented, in that after instantiation, no subtype polymorphism remains,
values of different classes but a common supertype cannot be mixed together at run-time,
preventing for instance lists of mixed integers and floats.

ML is apowerful polymorphic object-oriented language supporting multi-methods [Bourdoncle
& Merz 97]. ML, supports subtyping directly, but treats inheritance as a separate syntactic sugar
(which must follow the subtyping relation). Similarly to Cecil, ML constrainstype variables using
sets of potentially recursive subtype constraints, supportsinference of type parametersto methods,
and supports least-upper-bound type expressions (although not greatest-lower-bound type
expressions). ML, also supports parameterization over type constructors, while in Cecil type
constructors must be instantiated before use. ML, supports explicit declarations of co- and
contravariant type parameters of type constructors, while Cecil uses polymorphic subtype

82

declarationsto achieve more general effects. ML only allows subtyping between typesin the same
type constructor “class,” however, which for instance restricts subtyping to be between types with
the same number of type parameters with the same variance properties, and ML does not support
other forms of constrained subtyping, conformance, or inheritance. Cecil supports multiple
polymorphic signature declarations for the same message, while ML, alows only a single
signature declaration per message. ML is purely functional and side-effect-free.

4.5.2 Languages Based on Sel f Type or Matching

Some languages provide only restricted forms of F-bounded polymorphism. In TOOPLE [Bruce
et a. 93] and Strongtalk [Bracha & Griswold 93], a special type Sel f Type isintroduced, which
can be used asthe type of method arguments, results, or variables; roughly speaking, aclass C with
referencesto Sel f Type can be modeled with the F-bounded declaration
forall SelfType where Sel f Type <= C[Sel f Type]:
tenpl at e obj ect C[Sel f Type];

Sel f Type supports binary methods like <= and methods like copy that return values of exactly
the same type as their receiver, but it does not support other kinds of F-bounded parameterization.
Other languages provide a related notion called matching, which alows a kind of F-bounded
polymorphism where a single type variable is bounded by afunction of itself (but of no other type
variables); languages with matching include PolyTOIL [Bruce et al. 95b] and LOOM [Bruceet al.
97]. The key advantage of Sel f Ty pe and matching is convenient syntactic support for acommon
idiom, but it is less powerful than F-bounded polymorphism. Additionally, the LOOM language
drops subtyping altogether in favor of matching, which costs it the ability to support run-time
mixing of values of different classes but common supertypes, such as performing binary operations
on the elements of a list of mixed integers and floats. Sel f Type and matching also are weaker
than F-bounded polymorphism in that they force subclasses to continually track the more specific
type; they cannot stop narrowing at some subclass and switch to normal subtyping below that point.
For example, with F-bounded polymorphism, the parameterized or der ed type can have its type
parameter “narrowed” and then fixed (say at or der ed[nunj), alowing subtypes of the fixed
type (such asi nt and f| oat) to be freely mixed. This open/closed distinction for recursive
references to atype was noted previously by Eifrig et al. [Eifrig et al. 94].

4.5.3 Languages Based on Signature Constraints and Implicit Structural Subtyping

Some languages use collections of signatures to constrain polymorphism, where any type which
supports the required signatures can instantiate the parameterized declaration. These systems can
be viewed as treating the signature constraints as defining “protocol” types and then inferring a
structural subtyping relation over user-defined and protocol types. This inferenceisin contrast to
the systems described earlier which require that the protocol types be declared explicitly, and that
legal instantiations of the protocols be declared as explicit subtypes. Implicit structural subtyping
can be more convenient, easier to understand, more adaptable to program evolution, and better
suited to combining separately written code without change, while explicit by-name subtyping
avoids inferring subtyping relations that ignore behavioral specifications, and may interact better
with inheriting default implementations of protocol types. Neither is clearly better than the other;
Cecil supports both easily. In addition, Cecil allows new supertypes to be added to previously

83

declared types, avoiding one limitation of explicit subtyping when adding new explicit protocol
types and adapting previously written objects to conform to them.

Strongtalk is atype system for Smalltalk where programmers define protocol types explicitly, use
protocolsto declare the types of arguments, results, and variables, and let the system infer subtype
and conformance rel ations between protocols and classes; like Cecil, subtyping and inheritance are
separated. Precise details of the type system are not provided, but it appears that Strongtalk
supports explicit parameterization (but without constrained polymorphism) for protocols and
classes, akind of parametric typing with dependent types and type inference for methods, |east-
upper-bound type expressions, and aform of Sel f Type. To avoid accidental subtyping, a class
may be branded with one or more protocols. Like Cecil, type declarations and typechecking are
optional in Strongtalk.

Interestingly, a later version of Strongtalk appears to have dropped inferred structural subtyping
and brands in favor of explicit by-name subtyping [Bracha 96]. This later version also introduces
the ability to declare that different instantiations of a parameterized type are subtype-related either
co- or contravariantly with respect to its parameter types. Both Strongtalk systems are subsets of
Cecil’stype system.

Theta [Day et a. 95, Liskov et a. 94] and PolyJ [Myers et a. 97] support signature constraints
called wher e clauses. Unlike Cecil, only explicit type variables are supported, and clients must
provide instantiations of all type variables when using a parameterized abstraction. No subtype
relation holds between different instantiations of the same parameterized type, preventing idioms
such as the covariantly related read-only collection interfaces.

Recursively constrained types are the heart of avery sophisticated type system [Eifrig et a. 95]. In
this system, type variables and sets of constraints over them are automaticaly inferred by the
system. Subtyping is inferred structurally, viewing objects as records and using standard record
subtyping rules. Technically, the constraints on type variables are (mutually recursive) subtype
constraints, but anonymous types may be introduced as part of the subtype constraints, providing
a kind of signature constraint. Instead of instantiating polymorphic entities and inferring ground
types for expressions, their system simply checks whether the inferred constraints over the whole
program are satisfiable, without ever solving the constraints. For example, when computing the
type of the result of a message, their system may return apartialy constrained type variable, while
Cecil must infer a unique, most-specific ground type. As a result, their system can typecheck
programs Cecil cannot. On the other hand, because Cecil computes named types for all
subexpressions, it can give simpler type error messages for incorrect programs, recursively
constrained types can provide only the constraint system that was unsatisfiable as the error
message, and this constraint system may be aslarge asthe program source codeitself. Their system
limits syntactically where least-upper-bound and greatest-lower-bound subtype constraints can
appear to ensure that such constraints can always be solved, while Cecil places no syntactic limits
but may report atype error due to incompl eteness of the particular deterministic algorithm used by
the typechecker.

84

4.5.4 Languages Based on Instantiation-Time Checking

Somelanguagesincluding C++ [Stroustrup86] and Modula-3[SRC], dispensawith specifying
constraintson type variablesentirely, relying insteadon checkingeachinstantiationseparately
Theselanguagesre very flexible in what sort of parameterizedleclarationsand clientscanbe
written, astheonly constraintghatneedbe metarethattheindividualinstantiationgnadein some
programtypecheckandthey aresimplefor programmerso use.(C++ alsoallows constanvalues
asparametersn additionto types.)However, droppingexplicit constraintson instantiatingtype
variableslosesthe ability to checka parameterizedeclaratiorfor type correctnesenceandfor
all separatelyrom its (potentiallyunknownn) clients,losesthe specificatiorbenefitto programmers
abouthow parameterizedeclarationshouldbeusedandforcesthe sourcecodeof parameterized
entities to be madevailable to clients in order for them to typecheck instantiations.

4.5.5 Languages Based on Covariant Redefinition

Somelanguagesupportboundedpolymorphicclasseghroughcovariantredefinitionof typesor
operationsa polymorphicclassis definedasa regular classthat hasan “anchor” type member
initializedto theupperboundof thetypeparameterandinstancesremadeby definingsubclasses
that redefine some anchor types to selectedsubtypes.Instancesmay themseles be further
subclassedndtheir anchortypesnarraved. Eiffel supportscovariantoverriding of methodsand
instancevariablesanduseghel i ke constructo referto anchorgMeyer 92]; Eiffel alsosupports
unboundegbarameterizedlassesswell. Betasupportssirtual patternsasanchorclassegMadsen
& Mgller-Pederser89, Madsenet al. 93], and Thorup adaptedhis ideain his proposedvirtual
typesextensionto Java[Thorup97]. While all of thesemechanismseenmnaturalto programmers
in mary casesndaresyntacticallyconcisethey suffer from alossof statictypesafety In contrast,
Cecilcandirectly supportall of thestandardexamplesusedto justify suchmechanismgincluding
binarymethodsandthenodel -vi ewexample) for instanceausingoneor moremutuallyrecursve
F-boundedype parameterswithout sacrificingstatic type safety We are working on syntactic
supportfor the generalpatternof mutually recursve F-boundedtype parametersin hopesof
achiezing the same syntactic conciseness and programmer comprehensibility as well.

4.5.6 Languages Offering Local Type Inference

Thework onlocaltypeinferencein anextensionof F. [Pierce& Turner98], especiallythe“local
type argumentsynthesis, is very similar to inferenceof instantiatingtypesin Cecil: they address
asimilarproblemanduseasimilarinferencealgorithm.Theirsettingis differentfrom Cecil’s: they
work within animpredicatve type systemwhereasCecil’s is essentiallypredicatve. In contrast
with their system, Cecil handles F-boundedquantification, signature constraints,by-name
subtyping,and overloading(with multiple dispatch).An earlier work on type inferencein F.
[Cardelli93] presenta fasteralgorithmwhichis morerestrictve in somecasesiueto asymmetric
treatment of method gmments.

A similarkind of typeinferenceas alsoofferedby GJ,alanguagehataddsparameterizetypesto
Java [Brachaet al. 98]. Comparedo its predecessoPizza,in GJthetype of anexpressiondoes
not dependon its contet, and the type inferencesupportssubsumptiorand empty collections
(which may be consideredas having multiple incomparablecollectiontypes).GJ only provides

85

non-variant type parameters whereas in Cecil covariant or contravariant type parameters can be
expressed using polymorphic subtype declarations and are supported by type inference. Type
inference in GJ seeksto find the smallest instantiating types for type variables, whereas the goal of
type inference in Cecil isto infer the most specific type of an expression (which may be achieved,
for example, with the biggest instantiating type for a contravariant type parameter). GJ supports F-
bounded polymorphism, but does not provide other advanced language constructs, such as
signature constraints, independently parameterized subtype declarations, and multi-methods. The
authors of GJ report on the positive experience with their 20,000-line GJ compiler (written in GJ,
too) which extensively uses parameterization for container classes and the Visitor pattern. The
125,000-line Vortex compiler written in Cecil [Dean et a. 96] also uses parameterization
extensively for container classes as well as in heavily parameterized optimization and
interprocedural analysis frameworks [Litvinov 98]. Since Cecil alows additions of new multi-
methods and new branches of multi-methods to the existing code, thereis no need to usethe Visitor
pattern in Vortex.

86

5 Modules

Object-oriented methods encourage programmers to develop reusable libraries of code. However,
multi-methods can pose obstacles to smoothly integrating code that was devel oped independently.
Unlike with singly-dispatched systems, if two classes that subclass a common class are included
into a program, it is possible for incompleteness or inconsistency to result. The additional
expressiveness and flexibility of multi-methods creates new pitfalls for integration.

Encapsulation and modularity of multi-methods is a related problem. To enable easier program
reuse and maintenance, it is often desirable to encapsulate a data structure’s implementation.
However, in a multiply-dispatched language achieving this encapsulation is less straightforward
than it would bein either an abstract datatype based language, such as CLU, or asingly dispatched
object-oriented language, such as C++ or Smalltalk. In ADT-based or singly-dispatched languages,
direct access to an object’s representation can be limited to a statically-determined region of the
program.

An early approach to encapsulation in Cecil suffered from the problem that privileged access could
aways be gained by writing methods that specialized on the desired data structures [Chambers
92b]. A newer module system for Cecil was designed [Chambers and Leavens 94], but there are
unsolved challenges with alowing different multi-methods of the same generic function to have
different visibility. A still newer module system has been designed, and a prototype implemented,
as part of the next-generation Diesel language. This design shows promise, but it is not yet ready
for “primetime.”

For now, Cecil’s syntax has been extended to support module and encapsulation declarations, but
these declarations are not enforced; they are merely advisory stylized comments. The syntax of
declarations is extended to support modules as follows:

decl ;= nodul e_decl

| i mport _decl

| | et _decl

| t p_decl

| type_ext _dec

| obj ect _decl

| obj ext decl

| pr edi cat e_decl

| di sj oi nt _decl

| cover _decl

| di vi de_decl

| si gnat ur e_decl

| met hod_decl

| field_sig _decl

| field_decl

| pr ecedence_decl

| i ncl ude_decl

| pri m decl

: “public” | “protected” | “private”

[privacy] “nodul e” nodul e _nane [extension] “{”
{friendship | decl} “}" [“;"]

“ext ends” nodul e_nanes

“friend” nodul e _nanes “;”

privacy
nodul e_dec

ext ensi on
friendship

87

nmodul e_nanes
nodul e_narne
i mport _dec

modul e_nanme {“,” nodul e_nane}
name
[privacy] “inport” [“friend”] nodul e_nanes “;”

Also, most declarations have an optional privacy annotation allowed.

88

6 Related Work

Cecilbuildsuponmuchof thework donewith the Self programminganguagdUngar & Smith87,
Holzleet al. 91a].Selfoffersasimple,pure,classlessbjectmodelwith stateaccessedia message
passingust like methods Cecil extendsSelf with multi-methods copy-down andinitialize-only
dataslots,lexically-scopedocal methodsandfields,objectextensionsstatictyping,andamodule
systemCecil hassimplermethodlookup andencapsulatiomules,at leastwhenconsideringonly
thesingledispatchingcase Cecil’'smodelof objectcreationis differentthanSelf' s. However, Cecil
doesnotincorporatedynamicinheritance pne of the mostinterestingfeaturesof Self; predicate
objects are Cecil's more structuredbut more restricted alternatve to dynamic inheritance.
Freeman-Bensoimdependentlylevelopeda proposafor addingmulti-methodgo Self[Freeman-
Benson 89].

CommonLoops[Bobrow et al. 86] andCLOS [Bobrow et al. 88, Gabrielet al. 91] incorporate
multi-methodsin dynamically-typedclass-basedbject-orientedextensionsto Lisp. Method
specializationgatleastin CLOS)canbeeitherontheclassof theargumentobjector onits value.
One significant difference between Cecil's design philosoply and that in CLOS and its
predecessolis thatCecil’'s multiple inheritanceandmultiple dispatchingulesareunorderedand
report any ambiguitiesin the sourceprogramas messageerrors, while in CLOS left-to-right
linearizationof theinheritancegraphandleft-to-right orderingof theagumentdispatchingsenes
to resole all messagambiguitiesautomaticallypotentiallymaskingrealprogrammingerrors We
feel stronglythatthe programmeshouldbe madeaware of potentialambiguitiessinceautomatic
resolutionof theseambiguitiescaneasilyleadto obscuresrrorsin programsCecil offersasimpler
purerobjectmodel,optionalstatictype checking,andencapsulationCLOS andits predecessors
include extensve supportfor methodcombinationrulesandreflectve operationgKiczaleset al.
91] not present in Cecil.

Dylan [Apple 92] is a new languagewhich canbe viewed asa slimmed-devn CLOS, basedn a
Scheme-like languagansteadof CommonLisp. Dylanis similarto CLOSin mostof therespects
describedibove, exceptthatDylan alwaysaccessestatethroughmessage®ylan supportaform
of type declarationsbut thesearenot checled statically cannotbe parameterizechndaretreated
bothasagumentspecializerandtypedeclarationsynlike Cecilwhereargumentspecializerand
argument type declarations are distinct.

Polyglotis a CLOS-like languagewith a statictype systemAgrawal et al. 91]. However, thetype
systemfor Polyglotdoesnot distinguishsubtypingfrom codeinheritancgclassesrethe sameas
typesin Polyglot), doesnot supportparameterizetr parametricallypolymorphic classesor
methodsanddoesnot supportabstracmethodsor signaturesTo checkconsisteng amongmulti-
methodswithin agenericfunction,atleasttheinterfacego all multi-methodsf agenericfunction
mustbe available at type-check-timeThis requirementis similar to that of Cecil thatthe whole
programbe available at type-check-timgo guaranteehat two multi-methodsare not mutually
ambiguous for some set olgament objects.

Keais ahigherorderpolymorphicfunctionallanguagesupportingnulti-method4Mugridgeet al.
91]. Like Polyglot (andmostotherobject-orientedanguages)inheritanceand subtypingin Kea

89

are unified. Kea's type checking of multi-methodsis similar to Cecil’sin that multi-methods must
be both complete and consistent. It appears that Kea has a notion of abstract methods as well.

Leavens describes a statically-typed applicative language NOAL that supports multi-methods
using run-time overloading on the declared argument types of methods [Leavens 89, Leavens &
Weihl 90]. NOAL was designed primarily as a vehicle for research on formal verification of
programs with subtyping using behavioral specifications, and consequently omits theoretically
unnecessary features that are important for practical programming, such as inheritance of
implementation, mixed static and dynamic type checking, and mutable state. Other theoretical
treatments of multi-methods have been pursued by Rouaix [Rouaix 90], Ghelli [Ghelli 91],
Castagna [Castagna et al. 92, Castagna 95], and Pierce and Turner [Pierce & Turner 92, Pierce &
Turner 93].

The RPDE? environment supports subdivided methods where the value of a parameter to the
method or of a global variable helps select among alternative method implementations [Harrison
& Ossher 90]. However, a method can be subdivided only for particular values of a parameter or
global variable, not its class; thisis much like supporting only CLOS'seql speciaizers.

A number of languages, including C++ [Stroustrup 86, Ellis & Stroustrup 90], Ada [Barnes 91],
and Haskell [Hudak et al. 90], support static overloading on function arguments, but all
overloading is resolved at compile-time based on the static types of the arguments (and results, in
the case of Ada) rather than on their dynamic types as would be required for true multiple
dispatching.

Trellis” supports an expressive, safe static type system [Schaffert et al. 85, Schaffert et al. 86].
Cecil’s parameterized type system includes features not present in Trellis, such asimplicitly-bound
type variables and uniform treatment of constrained type variables. Trellis restricts the inheritance
hierarchy to conform to the subtype hierarchy; it only supportsi sa-style superclasses.

POOL is a daticaly-typed object-oriented language that distinguishes inheritance of
implementation from inheritance of interface [America & van der Linden 90]. POOL generates
types automatically from all class declarations (Cecil alows the programmer to restrict which
objects may be used astypes). Subtypingisimplicit (structural) in POOL: al possiblelegal subtype
relationships are assumed to be in force. Programmers may add explicit subtype declarations as a
documentation aid and to verify their expectations. One unusual aspect of POOL is that types and
classes may be annotated with properties, which are ssimple identifiers that may be used to capture
distinctionsin behavior that would not otherwise be expressed by a purely syntactic interface. This
ameliorates some of the drawbacks of implicit subtyping.

Emerald is another classless object-oriented language with a static type system [Black et al. 86,
Hutchinson 87, Hutchinson et al. 87, Black & Hutchinson 90]. Emerald is not based on multiple
dispatching and in fact does not include support for inheritance of implementation. Types in
Emerald are arranged in a subtype lattice, however.

" Formerly known as Owl and Trellis’Owl.

90

Rapide [Mitchell et al. 91] is an extension of Standard ML modules [Milner et al. 90] with
subtyping and inheritance. Although Rapide does not support multi-methods and relies on implicit
subtyping, many other design goals for Rapide are similar to those for Cecil.

Some more recent languages support some means for distinguishing subtyping from inheritance.
These languages include Theta[Day et al. 95], Java[Sun 95], and Sather [Omohundro 93]. Theta
additionally supports an enhanced CL U-like where-clause mechanism that provides an alternative
to F-bounded polymorphism. C++’s private inheritance supports a kind of inheritance without
subtyping.

Severa languages support some form of mixed static and dynamic type checking. For example,
CLU [Liskov et al. 77, Liskov et al. 81] allows variables to be declared to be of type any. Any
expression may be assigned to avariable of type any, but any assignments of an expression of type
any to an expression of another type must be explicitly coerced using the parameterized f or ce
procedure. Cedar supportsasimilar mechanism through its REF ANY type[Teitelman 84]. Modula
3 retains the REFANY type and includes severa operations including NARROWand TYPECASE
that can produce a more precisely-typed value from a REFANY type [Nelson 91, Harbison 92].
Cecil provides better support for exploratory programming than these other languages since there
is no source code “overhead” for using dynamic typing: variable type declarations are smply
omitted, and coercions between dynamically-typed expressions and statically-typed variables are
implicit. On the other hand, in Cecil it sometimes can be subtle whether some expression is
statically-typed or dynamically-typed.

91

7 Conclusion

Cecil is a pure object-orientedanguageintendedto supportthe rapid constructionof reliable,
extensiblesystemslt incorporatesa relatively simple objectmodelwhich is basedon multiple
dispatching.Cecil complimentsthis object model with a static type systemthat describeghe
interfacego objectsinsteadof theirrepresentationanda modulesystemo groupandencapsulate
objectsandmethodsCecil’s type systemdistinguishesubtypingfrom codeinheritanceput uses
notationthat strives to minimize the burdenon the programmerof maintainingtheseseparate
objectandtype relationships.The type systemsupportsexplicitly andimplicitly parameterized
typesandmethoddo preciselycapturetherelationshipamongargumenttypesandresulttypesin
a convenientand conciseway. Cecil supportsboth an exploratory programmingstyle and a
productionprogrammingstyle, in part by allowing a programto matureincrementallyfrom a
dynamically-typedystento astatically-typedsystemSomeareaof Cecil’'sdesignarethesubject
of currentwork, includingthedetailsof the parameterizatiomechanisnin the statictype system,
the precisesemanticof the modulesystem anda formal specificationof the staticanddynamic
semantics of the language.

Acknowledgments

The Cecil languagedesignand the presentatiorin this documenthave benefittedgreatly from

discussionsvith memberof the Self groupincluding David Ungar, Urs Holzle, Bay-Wei Chang,
Ole AgesenRandySmith,JohnMaloney, andLarsBak, with memberof the Kaleidoscopgroup
including Alan Borning, Bjorn Freeman-Benson\ichael Sannella,Gus Lopez, and Denise
Draper with the Cecil groupincluding ClaudiaChiang,Jef Dean,CharlesGarrett,David Grove,

VassilyLitvinov, Vitaly Shmatilov, andStuartWilliams, andothersincluding PeterDeutsch Eliot

Moss,JohnMitchell, JensPalsbeg, DougLea,Rick Mugridge,JohnChapin,Barbara.erner and
ChristineAhrens.GaryLeavenscollaboratedvith theauthorto refinethestatictypesystemgdevise
themodulesystemanddevelopanefficienttypecheckinglgorithm.ClaudiaChiangimplemented
thefirst versionof the Cecil interpreterin Self. StuartWilliams augmentedhis interpretemwith a

type checler for the monomorphicsubsetof the Cecil type system.Jef Dean,Greg DeFouw,

Charles Garrett, David Grove, MaryAnn Joy, Vassily Litvinov, Phiem Huynh Ngoc, Vitaly

Shmatilov, Ben Teitelbaum,and Tina Wong have worked on various aspectsof the Vortex

optimizing compiler for object-orientedlanguages.a.k.a. the UW Cecil implementation.A

cornversationwith Danry Bobrov and David Ungar at OOPSLA '89 provided the original

inspiration for the Cecil language desigfost

This researchhasbeensupportedby a National ScienceFoundationResearcHnitiation Award
(contractnumber CCR-9210990),a NSF Young Investigator Award (contractnumber CCR-
945767),a University of WashingtonGraduateSchool Research~und grant, a grant from the
Office of Naval ResearclicontracnumbemMN00014-94-1-1136andgifts from SunMicrosystems,
IBM Canada, Xerox RRC, Edison Design Group, and Pure Saitev

More informationon the Cecil languageandVortex optimizingcompilerprojectsareavailablevia
http://ww. cs. washi ngt on. edu/ resear ch/ proj ects/ cecil and via
anorymous ftp fromcs. washi ngt on. edu: pub/ chanbers.

92

References

[Agesenetal. 97] Ole AgesenStepherN. FreundandJohnC. Mitchell. Adding Type Parameterizatioto
the Jaa Language. IRProceedings OOPSLA '9Atlanta, GA, October 1997.

[Agrawal etal. 91] RakeshAgrawal, Linda G. DeMichiel,andBruceG. Lindsay Static Type Checkingof
Multi-Methods.In OOPSLA91 ConfeenceProceedingspp. 113-128,Phoenix,AZ, October 1991.
Published aSIGPLAN Notices 26(11November 1991.

[America & van der Linden 90] Pierre Americaand Frank van der Linden. A Parallel Object-Oriented
Languagewith InheritanceandSubtypingIn OOPSLA/ECOOP0 ConfeenceProceedingspp.161-
168, Ottava, Canada, Octohet990. Published é8IGPLAN Notices 25(10Dctobey 1990.

[Andersen& Reenskaud@?2] Egil P Andersenand Trygve ReenskaugSystemDesignby Composing
Structuresof InteractingObjects.In ECOOP’92 ConfeenceProceedingspp. 133-152,Utrecht,the
Netherlands,June/Julyl992. Publishedas Lecture Notesin ComputerScienceb15 SpringerVerlag,
Berlin, 1992,

[Apple 92] Dylan, an Object-Oriented Dynamic Lang@aApple ComputerApril, 1992.

[Barnes91] J. G. P. Barnes.Programmingin Ada, 3rd Edition. Addison-Weslegy, Wokingham,England,
1991.

[Black et al. 86] Andrew Black, NormanHutchinson,Eric Jul, andHenry Levy. Object Structurein the
EmeraldSystemIn OOPSLA86 ConfeenceProceedingspp. 78-86,Portland OR, SeptemberL986.
Published aSIGPLAN Notices 21(11November 1986.

[Black & Hutchinson90] Andrew P. Black and NormanC. Hutchinson.Typechecking?olymorphismin
Emerald. Technical report TR 90-34, Departmentof Computer Science,University of Arizona,
December1990.

[Bobrow et al. 86] Daniel G. Bobrow, KennethKahn, Gregor Kiczales,Larry Masinter Mark Stefik, and
Frank Zdybel. CommonLoops:Merging Lisp and Object-OrientedProgramming.ln OOPSLA’86
ConfeenceProceedingspp. 17-29,Portland,OR, Septemberl986. Publishedas SIGPLANNOotices
21(11) November 1986.

[Bobrow etal. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,S. E. KeeneG. Kiczales,D. A. Moon.
CommornLisp ObjectSystemSpecificationX3J13.In SIGPLANNotices23(Specialssue) September
1988.

[Borning 86] A. H. Borning. Classed/ersusPrototypesn Object-Oriented.anguagesln Proceedingof
the 1986 Bl Joint Computer Confence pp. 36-40, Dallas, TX, Nember 1986.

[Bourdoncle & Merz 97] Francois Bourdoncle and StephanMerz. Type Checking HigherOrder
PolymorphicMulti-Methods.In ConfeenceRecod of the 24th ACM SIGPLAN-SIGET Symposium
on Principles of Psgramming Languges pages 302-315, January 1997.

[Bracha & Griswold 93] Gilad Brachaand David Griswold. Strongtalk: TypecheckingSmalltalk in a
ProductionErnvironment.In OOPSLA'93 ConfeenceProceedingspp. 215-230,WashingtonD.C.,
September 1993. Published§&PLAN Notices 28(10Dctober 1993.

[Bracha96] Gilad Bracha.The StrongtalkType Systemfor Smalltalk,1996. OOPSLA’96 Workshopon
Extending the Smalltalk Languageailable from http://jga.sun.com/people/gbracha/nwst.html.

[Brachaet al. 98] Gilad Bracha,Martin Odersly, David StoutamireandPhilip Wadler Making the Future
Safefor the Past:Adding Genericityto the Jarza Programmind.anguageln OOPSLA98 Confeence
ProceedingsVancouer, B.C., October1998.

[Bruceetal. 93] Kim B. Bruce,JonCrabtree,ThomasP. Murtagh,Robertvan Gent,Allyn Dimock, and
Robert Muller. Safe and decidabletype checkingin an object-orientedianguage.ln Proceedings
OOPSLA93, pages29-46,0ctoberl993.PublishedcasACM SIGPLAN Notices,volume28, number
10.

93

[Bruceetal.95b] Kim B. Bruce AngelaSchuettandRobertvanGent.PolyToil: A Type-Safd?olymorphic

Object-Oriented_anguageln Proceedings ECOOP ' 95, Aarhus,Denmark,August 1995. Springer
Verlag.

[Bruceetal. 97] Kim B. Bruce,Adrian Fiech,andLeaf PetersenSubtypingis not a good“Match” for
object-oriented languages. Bnoceedings ECOOP ’97. SpringefVerlag, June 1997.

[Bruceetal. 98] Kim B. Bruce,Martin Odersly, andPhilip Wadler A StaticallySafeAlternative to Virtual
Types. InProceedings ECOOP ’ 98, Brussels, Belgium, July 1998. Springéarlag.

[Canninget al. 89] PeterS. Canning,William R. Cook, Walter L. Hill, JohnC. Mitchell, and William
Olthoff. F-Bounded Quantification for Object-Oriented Programming. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture, 1989.

[Cardelli & Wegner85] Luca CardelliandPeterWegner On Understandingypes,DataAbstraction,and
Polymorphism. IrComputing Surveys 17(4), pp. 471-522, December, 1985.

[Cardelli 93] Luca Cardelli. An implementationof Fsub ResearchReport97, Digital Equipment
Corporation Systems Research Ceri683.

[Castagnat al. 92] GiuseppeCastagnagiorgio Ghelli, andGiuseppd.ongo. A Calculusfor Overloaded
Functionswith Subtyping.In Proceedings of the 1992 ACM Conference on Lisp and Functional

Programming, pp.182-192 SanFranciscoJune 1992.PublishedasLisp Pointers5(1), January-March,
1992.

[Castagnad5] GiuseppeCastagnaCovarianceand Contravariance:Conflict without a Cause.ln ACM
Transactions on Programming Languages and Systems 17(3), pp. 431-447, May 1995.

[Chamberset al. 89] CraigChamberspavid Ungar, andElgin Lee.An EfficientiImplementatiorof Self, a
Dynamically-Typed Object-OrientedLanguageBasedon Prototypes.In OOPSLA ’'89 Conference
Proceedings, pp. 49-70, New Orleans,LA, October 1989. Publishedas SSGPLAN Notices 24(10),

October 1989.Also publishedin Lisp and Symbolic Computation 4(3), Kluwer AcademicPublishers,
June, 1991.

[Chamberset al. 91] Craig ChambersPavid Ungar, Bay-Wei Chang,andUrs Holzle. Parentsare Shared

Parts:InheritanceandEncapsulatioin Self.In Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Chambers& Ungar 91] Craig Chambersand David Ungar. Making Pure Object-Oriented_anguages
Practical.ln OOPS_A '91 Conference Proceedings, pp. 1-15,Phoenix,AZ, October,1991.Published
asS GPLAN Notices 26(10), October 1991.

[Chambers92a] Craig ChambersThe Design and Implementation of the Self Compiler, an Optimizing

Compiler for Object-Oriented Programming Languages. Ph.D. thesis, Departmentof Computer
Science, Stanford University, March, 1992.

[Chambers92b] Craig ChambersObject-OrientedVulti-Methodsin Cecil. In ECOOP *92 Conference

Proceedings, pp. 33-56, Utrecht, the Netherlands June/July 1992. Publishedas Lecture Notes in
Computer Science 615, Springe+fVerlag, Berlin, 1992.

[Chamber®3a] Craig ChambersThe Cecil Language SpecificatiorandRationale Technicalreport#93-
03-05, Department of Computer Science and Engineeringetsity of Washington, March, 1993.

[Chamber®©3b] CraigChambersPredicateClassesln ECOOP ' 93 Conference Proceedings, pp.268-296,

KaiserslauternGermauy, July, 1993.PublishedasLecture Notes in Computer Science 707, Springer
Verlag, Berlin, 1993.

[Chambers& Leavens94] Craig ChambersaandGary T. Leavens.Typecheckingand Modulesfor Multi-
Methods.In OOPSLA '94 Conference Proceedings, pp. 1-15, Portland,OR, October1994.Published
as SGPLAN Notices 29(10), October1994. An expandedand revised versionto appearin ACM
Transactions on Programming Languages and Systems.

[Chang & Ungar 90] Bay-Wei Changand David Ungar. ExperiencingSelf Objects: An Object-Based
Artificial Reality. Unpublished manuscript, 1990.

94

[Cook 89] W. R. Cook.A Proposafor Making Eiffel Type-Safeln ECOOP ’'89 Conference Proceedings,
pp. 57-70, Cambridge Urersity Press, July1989.

[Cooket al. 90] William Cook,WalterHill, andPeterCanningInheritancas not Subtyping.n Conference
Record of the 17th Annual ACM Symposium on Principles of Programming Languages, SanFrancisco,
CA, January1990.

[Cook 92] William R. Cook. Interfacesand Specificationdor the Smalltalk-80CollectionClasseslin In
OOPSLA '92 Conference Proceedings, pp. 1-15, Vancouver,Canada,October,1992. Publishedas
S GPLAN Notices 27(10), October1992.

[Day et al. 95] Mark Day, RobertGruber BarbaraLiskov, and Andrenv C. Meyers. Subtypesvs. Where
Clauses:ConstrainingParametricPolymorphism.In Proceedings of the 1995 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '95), pp. 156-168,
Austin, TX, October 1995.

[Dean & Chambers94] Jefrey Deanand Craig Chambers.Towards Better Inlining DecisionsUsing
Inlining Trials. In Proceedings of the ACM Sympaosium on Lisp and Functional Programming, pp.273-
282, Orlando, FL, June 1994. Published.imp Pointers 7(3), July-September 1994.

[Deanet al. 95a] Jefrey Dean,Craig Chambersand David Grove. Selectve Specializationin Object-
OrientedLanguagesin Proceedings of the 1995 S GPLAN Conference on Programming Language
Design and Implementation (PLDI ' 95), La Jolla, CA, June 1995.

[Dean et al. 95b] Jefrey Dean,David Grove, and Craig Chambers Optimization of Object-Oriented
ProgramsUsing Static ClassHierarcty Analysis. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’95), Arhus, Denmark, August 1995.

[Deanetal. 96] Jefrey Dean,Greg DeFouw, Dave Grove, VassilyLitvinov, andCraig ChambersVortex:
An OptimizingCompilerfor Object-Oriented. anguagedn OOPSL_A 96 Conference Proceedings, San
Jose, CA, October 1996.

[Eifrig etal. 95] Jonatharkifrig, ScottSmith,andValery Trifonov. SoundPolymorphicTypeInferencefor
Objects. INOOPSLA' 95 Conference Proceedings, pages 169-184, Austin, TX, October 1995.
[Ellis & Stroustrupd0] MargaretA. Ellis andBjarne Stroustrup.The Annotated C++ Reference Manual.

Addison-Wesley, Reading, MA, 1990.

[Freeman-Benso®9] Bjorn N. Freeman-BensormA Proposalfor Multi-Methods in Self. Unpublished
manuscript, Decembgt989.

[Gabriel et al. 91] RichardP. Gabriel,JonL White, and Daniel G. Bobron. CLOS: Integrating Object-
Orientedand FunctionalProgrammingln Communications of the ACM 34(9), pp. 28-38,September
1991.

[Ghelli 91] Giorgio Ghelli. A Static Type Systemfor MessagePassing.In OOPSLA '91 Conference

Proceedings, pp. 129-145, Phoenix, AZ, October 1991. Publishedas SGPLAN Notices 26(11),
November 1991.

[Goldbeg & Robson83] Adele Goldbeg and David Robson.Smalltalk-80: The Language and Its
Implementation. Addison-Wésley, Reading, MA, 1983.

[Goldbeg 84] AdeleGoldbeg. Smalltalk-80: The Interactive Programming Environment. Addison-W\ésley,
Reading, MA, 1984.

[Groveet al. 95] David Grove, Jefrey Dean,CharlesGarrettandCraigChambersProfile-GuidedRecever
ClassPrediction.In Proceedings of the 1995 ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ' 95), Austin, TX, October 1995.

[Grove 95] David Grove. Thelmpactof InterproceduraClassAnalysison Optimization.In Proceedings of
CASCON '95, pp. 195-203, dronto, Canada, Nember 1995.

[Halbert& O’Brien 86] Daniel C. HalbertandPatrick D. O'Brien. Using TypesandInheritancan Object-
Oriented Languagesethnical report DEC-TR-437, Digital Equipment Corp., April, 1986.

95

[Harbison 92]Samuel PHarbisonModula-3 Prentice Hall, Englgood Cliffs, NJ, 1992.

[Harrison & Ossher90] William Harrison and Harold Ossher Subdvided ProceduresA Language
ExtensionSupportingextensibleProgrammingin Proceeding®f the 1990International Confeence
on Computer Languges pp. 190-197, Ne Orleans, LA, March, 1990.

[Harrison& Osshe93] William HarrisonandHarold OssherSubject-OrientedrogrammingA Critique
of PureObjects)In OOPSLA93 ConfeenceProceedingspp.411-428 WashingtonD.C., September
1993. Published &8IGPLAN Notices 28(10Dctober 1993.

[Holzle etal. 91a] Urs Holzle, Bay-Wei Chang,Craig ChambersQle Agesen.andDavid Ungar. The Self
Manual, Version 1.1Unpublished manual, February, 1991.

[Holzle etal. 91b] Urs Holzle, CraigChambersandDavid Ungar. Optimizing Dynamically-TypedObject-
Oriented ProgrammingLanguageswith Polymorphic Inline Caches.In ECOOP '91 Confeence
Proceedingspp. 21-38, Gen&, Switzerland, Jujy1991.

[Holzle etal. 92] UrsHoblzle, CraigChambersandDavid Ungar. DebuggingOptimizedCodewith Dynamic
DeoptimizationTo appeain Proceeding®fthe SIGPLAN92 Confeenceon ProgrammingLanguage
Design and Implementatip®an Francisco, CA, June, 1992.

[Holzle 93] Urs Holzle. IntegratingIndependently-DeelopedComponentén Object-Oriented.anguages.
In ECOOP’93 ConfeenceProceedingspp. 36-56,KaiserslauterniGGermairy, July 1993.Publishedas
Lecture Notes in Computer Science 78pringe+Verlag, Berlin, 1993.

[Hudak et al. 90] Paul Hudak, Philip Wadler Arvind, Brian Boutel, Jon Fairbairn, JosephFasel,Kevin
Hammond,John Hughes, ThomasJohnssonDick Kieburtz, Rishiyur Nikhil, Simon Pegston Jones,
Mik e Reere, David Wise,Jonatharyoung.Reportonthe ProgrammingLanguaje Haslell, Version1.0.
Unpublished manual, April, 1990.

[Hutchinson 87] Norman C. Hutchinson. Emerld: An Object-BasedLanguaje for Distributed
Programming Ph.D. thesis, University of Washington, January, 1987.

[Hutchinsonetal. 87] NormanC. HutchinsonRajendraK. Raj, Andrew P. Black,HenryM. Levy, andEric
Jul. The Emerald Programming Language Report. Technical Report 87-10-07, Department of
Computer Science, University of Washington, October, 1987.

[Ingalls 86] DanielH. H. Ingalls. A Simple Techniquefor HandlingMultiple Polymorphismin OOPSLA
'86 ConfeenceProceedingspp. 347-349,Portland,OR, Septemberl1986. Publishedas SIGPLAN
Notices 21(11)November 1986.

[Jenks& Sutor92] RichardD. JenksandRobertS. Sutor Axiom:the ScientificComputingSystemSpringer
Verlag. 1992.

[Kiczalesetal. 91] GregorKiczales JameslesRivieres,andDanielG. Bobrow. TheArt of theMeta-Object
Protocol MIT Press, Cambridge, MA, 1991.

[Kristensenet al. 87] B. B. Kristensen,Ole LehrmannMadsen,Birger Mgller-Pedersenand Kristen
Nygaard. The BETA Programming Language. In Reseath Directions in Object-Oriented
Programming MIT Press, Cambridge, MA, 1987.

[LaLondeetal. 86] Wilf R. LaLonde,Dave A. ThomasandJohnR. Pugh.An ExemplarBasedSmalltalk.
In OOPSLA'86 ConfeenceProceedingspp. 322-330,Portland,OR, Septemberl986.Publishedas
SIGPLAN Notices 21(11Novembey 1986.

[Leavens89] Gary Todd Leavens. \erifying Object-OrientedProgramsthat use SubtypesPh.D. thesis,
MIT, 1989.

[Leavens& Weihl 90] Gary T. LeavensandWilliam E. Weihl. Reasonin@boutObject-OrientedPrograms
that use Subtypesln OOPSLA/ECOOP90 ConfeenceProceedingspp. 212-223,0ttawa,Canada,
October, 1990. Published 88§GPLAN Notices 25(10Pctober, 1990.

96

[Lieberman86] Henry Lieberman.Using PrototypicalObjectsto ImplementSharedBehavior in Object-
OrientedSystemsin OOPSLA'86 ConfeenceProceedingspp. 214-223,Portland,OR, September
1986. Published &8IGPLAN Notices 21(11November 1986.

[Liebermanetal. 87] Henry LiebermanLynn AndreaStein,and David Ungar. The Treatyof Orlando.In
Addendumto the OOPSLA’87 Confeence Proceedingspp. 43-44, Orlando, FL, October 1987.
Published aSIGPLAN Notices 23(5May, 1988.

[Liskov et al. 77] BarbaraLiskov, Alan Sryder, RussellAtkinson, and J. Craig Schafert. Abstraction
Mechanisms in CLU. l@ommunications of theGM 20(8) pp. 564-576, August, 1977.

[Liskov et al. 81] BarbaraLiskov, RussellAtkinson, Toby Bloom, Eliot Moss,J. Craig Schafert, Robert
Scheifler and Alan Syder CLU Refeence ManualSpringefVerlag, Berlin, 1981.

[Liskov et al. 94] Barbaraliskov, Dorothy Curtis, Mark Day, SanjayGhemavhat, RobertGruber Paul
Johnson, and Andrev C. Myers. Theta Reference Manual. Technical Report Programming
Methodology Group Memo 88, MIT Laboratory for Computer Science, February 1994,

[Litvinov 98] Vassily Litvinov. Constraint-Basedolymorphismin Cecil:Towardsa Practicaland Static
Type System. I©®OPSLA '98 Confemnce PoceedingsVancouer, B.C., October1998.

[Madsen& Mgller-Pedersei89] Ole LehrmannMadsenandBirger Mgller-PedersenVirtual ClassesA

Pawerful Mechanisnmin Object-OrientedProgrammingln ProceedingOOPSLAS89, pages397—-406,
October 1989. Published a€M SIGPLAN Notices, slume 24, number 10.

[Madsenretal. 93] Ole LehrmannvadsenBirgerMgller-PederserandKrystenNygaard.Object-Oriented
Programming in the Beta Bgramming Languge. Addison-Wslg/, Reading, MA, 1993.

[Meyer 86] BertrandMeyer. Genericityversusinheritanceln OOPSLA86 ConfeenceProceedingspp.
391-405, Portland, OR, Septemh&986. Published &IGPLAN Notices 21(11November 1986.

[Meyer 88] Bertrand Mger. Object-Oriented SoftwarConstructionPrentice Hall, Ne York, 1988.
[Meyer 92]Bertrand Mger. Eiffel: The Languge. Prentice Hall, Ne& York, 1992.

[Milner etal. 90] RobinMilner, MadsTofte,andRobertHarper TheDefinitionof Standad ML. MIT Press,
Cambridge, MA, 1990.

[Mitchell etal. 91] JohnMitchell, SigurdMeldal,andNeelHadha. An Extensiorof StandardML Modules
with Subtypingand Inheritance.ln Confeence Recod of the ACM Symposiunon Principles of
Programming Languges Williamsburg, VA, January1991.

[Moon 86] David A. Moon. Object-OrientedProgrammingwith Flavors. In OOPSLA’86 Confeence
Proceedings,pp. 1-8, Portland, OR, September 1986. Publishedas SIGPLAN Notices 21(11)
November 1986.

[Mugridge etal. 91] W. B. Mugridge,J. G. Hosking,andJ. Hamer Multi-Methodsin a Statically-Typed
ProgrammingLanguage.Technical report #50, Departmentof Computer Science,University of
Auckland, 1991. Also ilcCOOP '91 Confegnce PoceedingsGenea, Switzerland, Jujy1991.

[Myersetal. 97] Andrew C. Myers,JosephA. Bank,andBarbara.iskov. Parameterizedypesfor Java.In
ConfeenceRecod of the 24th ACM SIGPLAN-SIGET Symposiunon Principles of Programming
Languaes pages 132-145, January 1997.

[Nelson91] Greg Nelson,editor System#$rogrammingwith Modula-3 PrenticeHall, Englevood Cliffs,
NJ, 1991.

[Odersky & Wadler97] Martin Odersly and Philip Wadler Pizzainto Java: TranslatingTheory into
Practice.In ConfeenceRecod of the 24th ACM SIGPLAN-SIGET Symposiunon Principles of
Programming Languges pages 146-159, January 1997.

[Omohundro 93] Stephen Omohundide Sather 1.0 Specificatiddnpublished manual, June 1993.

[Pierce& Turner92] BenjaminC. PierceandDavid N. Turner StaticallyTypedMulti-Methodsvia Partially
Abstract pes. Unpublished manuscript, OctqldE392.

97

[Pierce& Turner93] BenjaminC. Pierceand David N. Turner Object-OrientedProgrammingWithout
Recursie Types. In Conference Record of the 20th Annual ACM Symposium on Principles of
Programming Languages, January1993.

[Pierce& Turner98] BenjaminC. PierceandDavid N. Turner Local Typelnferenceln Conference Record
of the 25th ACM S GPLAN-S GACT Symposiumon Principles of Programming Languages, page252—
265, January 1998.

[Rees& Clinger 86] JonatharReesand William Clinger, editors. Revised® Report on the Algorithmic
Language Scheme. In SSGPLAN Notices 21(12), December1986.

[Rouaix90] FrancoisRouaix.SafeRun-Time Overloading In Conference Record of the 17th Annual ACM
Symposium on Principles of Programming Languages, pp. 355-366,SanFranciscoCA, January1990.

[SRC] DEC SRC Modula-3ImplementationDigital EquipmentCorporationSystemsResearctCenter
http://www.research.digital.com/SRC/modula-3/html/home.html.

[Santas93] Philip S. Santas.A Type Systemfor ComputerAlgebra. In International Symposium on
Symbolic and Algebraic Computation. 1993.

[Schafert et al. 85] Craig Schafert, TopherCooperandCarrieWilpolt. Trellis Object-BasedEnvironment,
Language Reference Manuakchnical report DEC-TR-372, Nembey 1985.

[Schafert et al. 86] Craig Schafert, TopherCooper Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
Introduction to Trellis/Owl. In OOPSLA '86 Conference Proceedings, pp. 9-16, Portland, OR,
Septemberl986. Published &3 GPLAN Notices 21(11), November 1986.

[Snyder86] Alan Sryder. Encapsulatiorand Inheritancein Object-OrientedProgramming.anguagesln
OOPSLA '86 Conference Proceedings, pp. 38-45, Portland, OR, September1986. Publishedas
S GPLAN Notices 21(11), November 1986.

[Steele 84] Guy L. Steele.Zommon LISP. Digital Press, 1984.

[Stroustrup86] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesleg/, Reading,MA,
1986.

[Sun 95] Sun Microsystem$he Java Language Specification. Unpublished manual, May 1995.

[Teitelman 84] Warren Teitelman. The Cedar Programming Environment: A Midterm Report and
Examination. Xerox PARC technical report CSL-83-11, June, 1984.

[Thorup 97] KrestenKrab Thorup.Genericityin Java with Virtual Types.In Proceedings ECOOP ' 97,
Jyvaskla, Finland, June 1997. Springéerlag.

[Touretzly 86] D. Touretzky. The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.

[Ungar & Smith87] David Ungar andRandallB. Smith. Self: The Paver of Simplicity. In OOPSLA ' 87
Conference Proceedings, pp. 227-241,0rlando,FL, October 1987. Publishedas SGPLAN Notices
22(12), December1987.Also publishedin Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Ungar et al. 91] David Ungar, Craig ChambersBay-Wei Chang,andUrs Holzle. Organizing Programs
without Classes. lhisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Ungar 95] David Ungar. AnnotatingObjectsfor Transportto OtherWorlds. In Proceedings of the 1995
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
'95), pp. 73-87, Austin, TX, October 1995.

[Wadler& Blott 89] Philip WadlerandStepherBlott. How to Make ad-hoc Polymorphism_essad-hoc.
In Conference Record of the Sxteenth Annual ACM Symposium on Principles of Programming
Languages, pages 60—76, January 1989.

[Wattet al. 88] StevenM. Watt, RichardD. JenksRobertS. Sutor andBarry M. Trager The Scratchpadi
Type System:Domainsand Subdomainsin Proceedings of the International Workshop on Scientific
Computation, Capri, Italy, 1988.Publishedn Computing Tools for Scientific Problem Solving, A. M.
Miola, ed., Academic Press, 1990.

98

Appendix A Annotated Cecil Syntax

In our EBNF notation, vertical bars (|) are used to separate alternatives. Braces({ . . . }) surround
strings that can be repeated zero or more times. Brackets ([. . .]) surround an optional string.
Parentheses are used for grouping. Literal tokens are included in quotation marks (“. . . ”).

A.1 Grammar

a programis a sequence of declaration blocks and statements
program .= file_body
file_body .= { top_decl _block | stmt }

a declaration block is an unbroken sequence of declarations where names are available throughout;
declaration blocks at the top level can be interspersed with pragmas

top_decl _block ::= { decl | pragnma }
decl bl ock .= decl { decl }

adeclarationisavariable, afield, or a method declaration

decl .= nodul e_decl
| i mport _decl

| | et _decl

| t p_decl

| type_ext _decl

| obj ect _decl

| obj ext decl

| predi cat e_decl

| di sj oi nt _decl

| cover _decl

| di vi de_decl

| si gnat ur e_decl

| met hod_decl

| field sig decl

| field_decl

| pr ecedence_decl
| i ncl ude_decl

| pri m decl

privacy of a declaration defaults to public
privacy ;.= “public” | “protected” | “private”

modules package up independent subsystems

nodul e_decl [privacy] “nodul e” nodul e nane [extension] “{”
{friendship | decl} “}" [“;"]

ext ensi on = “extends” nodul e_nanes
friendship = “friend” nodul e_nanes “;”
nodul e_nanes = nodul e_nane {“,” nodul e_nane}
nodul e_nane ;1= nanme

import declar ations specify used modules
i nport _decl ::= [privacy] “inport” [“friend”] nodul e_names *;”

99

variable declarations bind names to objects; if “var” is present then variable is assignable
| et _decl c:= [privacy] “let” [“var”] name [type_decl] {pragm}
13 : :11 expr 13 ; ”

type, representation, and object declarations create new implementations and/or types

t p_decl ;.= [type_cxt] [privacy] “type” nanme [formal parans]
{type_relation} [type_cons] “;” declares an object type
obj ect _decl ::= [type_cxt] [privacy] rep_role rep_kind nanme [formal _parans]
{relation} [type_cons] [field inits] “;”
rep_role ::= “abstract” only inherited from by hamed objects;
allowed to be incomplete
| “tenpl ate” only inherited from or instantiated;
uninitialized fields allowed
| “concrete” completely usable;
must be complete and initialized
| [“dynam c”] completelyusable;accessesheckedlynamically
rep_kind 1= “representation” declares an object implementation
| “obj ect” declares an object type and implementation
type relation ::= “subtypes” type patterns
rel ation .= type_relation type subtypes from type, or impl conforms to type
| “inherits” parents impl inherits from impl
| “isa” parents impl inherits from impl, type subtypes from type
parents ;.= nanmed_object _p { “,” naned_object p }
field_inits o= o field_init {), field_init } “}”
field_ init ::= msg_nane [location] “:=" expr
| ocation = “@ naned_obj ect

predicate object declaration

predi cate_decl ::= [type_cxt] [privacy] “predicate” nane [formal _parans]
{relation} [type_cons] [field_inits] [“when” expr] *;”

declarations of the relationships among predicate objects

disjoint_decl ::= [privacy] “disjoint” named_objects “;”

cover _decl [privacy] “cover” naned_object “by” named_objects
di vi de_decl [privacy] “divide” named_object “into” naned_objects “;”
naned_obj ects naned_object { “,” named_object }

extensions adjust the declaration of an existing object and/or type

type_ext _decl ::= [type_cxt] [privacy] “extend” “type” naned_type p
[type_cons] {type_relation} “;”

[type_cxt] [privacy] “extend” extend_kind named_object p
{relation} [type_cons] [field_ inits] “;”

“representation” extend representation

| [“object”] extend both type and representation

obj ext _decl

ext end_ki nd

signature declarations declare method signatures

signature_decl ::= [type_cxt] [privacy] “signature” nethod name
“(" [arg_type_ps] “)” [type_decl _p] [type_cons] “;”
arg_type_ps c:= arg_type p { “,” arg_type p }
arg type_p o= [[name] “:"] type_pattern
met hod_nane ::= msg_nane [formal _parans] | op_nane
nNsg_name : 1= name

100

implementation declarations define new method implementations; method decls define signatures, too
nmet hod_decl ::= [type_cxt] [privacy] inpl_kind nmethod_nane
“(" [formals] “)” [type_decl _p] [type_cons] {pragma}
“{" (body | primbody) *}" [¥;"]

i mpl _kind = [“method”] “inplenentation” declaresa methodimplementation

| “met hod” declares a method signature and implementation
formal s = formal { “,” formal }
f or mal = [nane] specializer formal names are optional, if never referenced
speci al i zer = location [type_decl p] specialized formal

| [type_decl p] unspecialized formal

| “@ “:” named_object p sugar for@aned_obj p:naned_obj p

field declarations declare accessor method signatures and/or implementations

field sig decl ::= [type_cxt] [field privacy] [“var”] “field” “signature”
nmsg _nane [formal parans] “(” arg_type p “)”
[type_decl _p] [type_cons] “;”

field_decl = [type_cxt] [field_privacy] [“shared’] [“var”] “field”
field_kind nsg_name [formal paranms] “(” formal *)”
[type_decl _p] [type_cons] {pragma} [“:=" expr] “;”
field kind = empty declare accessor method impl(s) and sig(s)
| “i mpl enent ati on” declare just accessor method implementation(s)
field_privacy = privacy [(“get” [privacy “set”] | “set”)]

precedence declarations control the precedence and associativity of binary operators

prec_decl ::= [privacy] “precedence” op_|list
[associativity] {precedence} “;”
associativity = “left_associative” | “right_associative” | “non_associative”
pr ecedence = “below’ op_list | “above” op_list | “with” op_list
op_li st = op_nane { “,” op_nane }

include declarations control textual file inclusions (implementation specific)
i ncl ude_decl ::= “include” file_name “;”
file_name ;= string

primitive body declarations include an arbitrary piece of code in the compiled file (implementation specific)
pri m decl ::= primbody “;”

primitive method bodies support access to code written in other languages (implementation specific)

pri m body c:= “print { | anguage_binding }
| anguage_bi ndi ng:: =1 anguage “:"” code_string
| | anguage “{” code_chars “}”
| anguage © 1= name currently recognizet| andc_++
code_string t:= string
code_chars .= brace_bal anced_chars anycharacterswith balanceduseof “{* and“}"

body of a method or closure

body ci= {stm} result

| empty returnvoi d
st .= decl _bl ock

| assi gnnent “;”

| eXpr 13 ; ”

101

result ::= normal _return

| non_local _rtn
normal _return ::= decl _block

| assignment [“;"]

| expr [*:7]
non_local _rtn ::= “A" [*;"]

| “AToexpr [57]

assignment only allowed if name is assignable; returnsvoi d

return an expression
return from the lexically-enclosing method

returnvoi d
returnvoi d
return result of expression

do a non-local return, returning voi d
do a non-local return, returning a result

assignment-like syntax for messages
sugar for set _msg(exprs..., expr)

assi gnment ::= qualified name “:=" expr
| assi gn_nsg
assi gn_nsg ::= lvalue_nsg “:=" expr
| val ue_nsg © 1= nmessage
| dot _nsg
| unop_nsg
| bi nop_nsg
expressions
expr = bi nop_expr
binary msgs have lowest precedence
bi nop_expr = binop_nsg | unop_expr
bi nop_nsg = bi nop_expr op_nane bi nop_expr

unary msgs have second-lowest precedence
unop_expr ::= unop_nsg | dot_expr
unop_nsg 1= op_nane unop_expr

dotted messages have second-highest precedence
dot _expr ::= dot_nsg | sinple_expr
dot _nsg ;.= dot_expr “.”

nsg _nane [paranms] [“(”

predecence and associativity as declared

&and " are not allowed as unary operators

[exprs]

“)"]

sugar for nreg_nane[par ans] (dot _expr, exprs...)

simple messages have highest precedence
si mpl e_expr c:= literal

| ref _expr

| vect or _expr

| cl osure_expr
| obj ect _expr

| nmessage

| resend

| par en_expr

literal constants

literal ::= integer
| fl oat
| character
| string

reference a variable or a named object implementation

ref _expr ::= qualified_nane
| naned_obj ect

102

reference alocal or global variable
reference a named object

build a vector
vect or _expr ci= “[” [exprs] “]”
exprs pi= expr { %, expr }

build a closure

cl osur e_expr i= [“& “(" [closure_formals] “)” [type_decl]] “{” body “}”
closure_formals::= closure_formal { “,” closure_formal }
cl osure_formal = [nane] [type_decl] formal names are optional, if never referenced

build a new object
obj ect _expr

rep_role rep_kind {relation} [field_inits]

send a message

nessage ::= meg_nane [parans] “(” [exprs] “)”

resend the message

resend c:= “resend” [“(” resend_args “)"]

resend_args = resend _arg { “,” resend_arg }

resend_arg = expr corresponding formal of sender must be

unspecialized

| nane undirected resend (nane is a specialized formal)
| nane | ocation directed resend (nane is a specialized formal)

introduce a new nested scope
par en_expr i= “(” body ")~

name something perhapsin another module
qualified name ::= [nodul e_name “$"] nane

name an object
naned_obj ect ::= qualified_name [parans]
naned_object _p :: qual i fi ed_nanme [param patterns]

type contexts and constraints

type_cxt ::= “forall” formal _param { “,” formal _param}
[type_cons] K

type_cons = “where” type constraint { “,” type_constraint }

type_constraint::= sub_constraint | sig_constraint

sub_constraint ::= type pattern (“<=" | “>=") type_pattern

si g_constraint “signature” (nsg_nane [param patterns] | op_nane)

“(" [arg_type_ps] “)” type_decl p

103

syntax of types

types ci= type { “,” type }
type : 1= named_type
| cl osure_type
| | ub_type
| gl b_type
| paren_type
naned_type .= qualified_name [parans]
cl osure_type o= Y& (" [arg_types] “)” [type_decl]
arg_types c:= arg_type { “,” arg_type }
arg_type o= [[name] “:"] type
| ub_type i1 = type “|” type
gl b_type 11= type “& type
paren_type i= (" type *)”

type patterns are types that can contain binding occurrences of implicit type parameters
type patterns ::= type pattern { “,” type pattern }
type_pattern .= binding type p
naned_type_p
cl osure_type_p
lub_type_p
glb_type_p
paren_type_p
nane_bi ndi ng

bi nding_type p ::

naned_type_p ::= qualified_name [param patterns]
closure_type p ::= “& “(” [arg_type_ps] “)” [type_decl _p]
lub_type_p = type_p “|" type_p

gl b_type_p = type_p “& type_p

paren_type_p = “(" type_p “)”

name_binding introduces a type variable called name
nane_bi ndi ng nane [“>=" type_ pattern] [“<=" type_pattern]

type_decl o= YT type
type_decl _p " type_pattern

formal type parameters for objects and methods

formal _parans ::= “[” formal _param{ “,” formal _param} “]”
formal _param ::= ["“‘"] name_binding

actual type parameters for objects and methods
par ams o= Y[types “]1”

actual type parameters for types that may contain binding occurrences of implicit type variables
param patterns ::= “[” type_patterns “]”

pragmas can be added at various points in a program to provide implementati on-specific hints’commands
pragna S = n(**” exprs n**)”

104

A.2 Tokens

Bold-faced non-terminals in this grammar are the tokens in the full grammar of A.1. As usual,
tokens are defined as the longest possible sequence of characters that are in the language defined
by the grammar given below. The meta-notations “one of “...””, “any but x,” and “x. . y’
are used to concisely list arange of aternative characters. space, t ab, and newl i ne stand for

the corresponding characters.

nane = letter {letter | digit} [id _cont]
| “ " {*_ "} op_name the first underscore is not part of the msg name
op_nane ;.= punct {punct} [id_cont]
| “ " "} nane the first underscore is not part of the msg name
i d_cont o=t {" "} [name | op_nane]
i nteger ::= [radix] hex_digits a leading - " is considered a unary operator
radi x .= digits “_”
hex digits ;.= hex_digit {hex digit}
hex_digit 1= digit | one of “a..fA .F’
fl oat ::= integer “.” hex_digits [exponent]
| i nt eger exponent
exponent o= A [t | "] digits
digits c:= digit {digit}
char acter ci= “'" char *'”
string o= """ { char | line_break } “"”
char = any | “\” escape_char
escape_char ::= one of “abfnrtv'"\?0”
| [“0"]|“d"] digit [digit [digit]]
| [“0"] digit [digit [digit]]
| “x" hex_digit [hex_digit]
[i ne_break = “\” {whitespace} new_|ine {whitespace} “\”

characters between \'s are not part of the string

brace_bal anced chars :: =
{any but “{"} [“{” brace_balanced chars “}” {any but “}"}]

letter ::= one of “a..zA .Z"
digit ::= one of “0..9”
punct ::= one of “l#$UW& - +=<>/2~\]|"

A.3 White Space

Whitespace is allowed between any pair of tokensin the grammar in A.1.

whi t espace
coment

space | tab | newine | comment

: “--" {any but new ine} new ine commenttoend ofline
| “(--" {any} “--)” bracketed comment; can be nested

105

