
1

The Diesel Language
Specification and Rationale

Version 0.2

Craig Chambers

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, Washington 98195-2350 USA

January, 2006

NOTE: This document is still under construction!

2

Table of Contents

1 Introduction. 5

1.1 Outline 5

2 Core . 7

2.1 Programs and Files 7

2.2 Include Declarations 8

2.3 Variable Declarations 8

2.4 Classes and Objects 9
2.4.1 Kinds of Class Declarations 9
2.4.2 Inheritance 10
2.4.3 Object Instantiation 10
2.4.4 Predefined Objects and Classes 11
2.4.5 Class Extension Declarations 11
2.4.6 Synonym Declarations 12

2.5 Functions and Methods 12
2.5.1 Functions 12
2.5.2 Signatures 14
2.5.3 Methods 14
2.5.4 Code Method Bodies 18
2.5.5 Primitive Method Bodies 18

2.6 Fields 19
2.6.1 Read-Only vs. Mutable Fields 20
2.6.2 Per-Object vs. Shared Fields 21
2.6.3 Field Methods 21
2.6.4 Field Initialization 23
2.6.5 Field Overloading 24

2.7 Statements and Expressions 25
2.7.1 Assignment Statements 26
2.7.2 Literals 26
2.7.3 Variable References 26
2.7.4 Object Constructors 27
2.7.5 Vector Constructors 27
2.7.6 Closures 27
2.7.7 Message Sends 28
2.7.8 Parenthetical Subexpressions 30

2.8 Precedence Declarations 30
2.8.1 Previous Approaches 30
2.8.2 Precedence and Associativity Declarations in Diesel 31

3

2.9 Method Lookup 32
2.9.1 Philosophy 33

2.9.2 Semantics 33
2.9.3 Examples 34
2.9.4 Strengths and Limitations 36

2.9.5 Multiple Inheritance of Fields 37
2.9.6 Cyclic Inheritance 37

2.9.7 Method Invocation 37

2.10 Resends 38

2.11 Predicate Classes 40
2.11.1 Predicate Classes and Inheritance 41
2.11.2 Predicate Classes and Field Methods 45

2.12 Primitive Declarations 46

2.13 Pragmas 46

3 Static Types. 47

3.1 Goals 47

3.2 Types and Signatures 48

3.3 Type Expressions 50
3.3.1 Named Types 50

3.3.2 Closure Types 51
3.3.3 Least-Upper-Bound Types 51
3.3.4 Greatest-Lower-Bound Types 51

3.4 Type Checking Messages 52
3.4.1 Checking Messages Against Signatures 52
3.4.2 Checking Signatures Against Method Implementations 53

3.4.3 Comparison with Other Type Systems 55
3.4.4 Type Checking Predicate Classes 56

3.5 Type Checking Expressions, Statements, and Declarations 58

3.6 Mixed Statically- and Dynamically-Typed Code 64

4 Parameterization and Bounded Parametric Polymorphism. 67

4.1 Parameterized Declarations 67

4.2 Bounded Polymorphism and Type Constraints 69

4.3 Omitting the Explicit f or al l Clause: the Backquote Sugar 71

4.4 Polymorphism and Subtyping 73

4.5 F-bounded Polymorphism 75

4.6 Constraint Solving and Local Type Inference 77

4

4.7 Related Work 79
4.7.1 Languages Based on F-Bounded Polymorphism 79
4.7.2 Languages Based on Sel f Type or Matching 80
4.7.3 Languages Based on Signature Constraints and Implicit Structural Subtyping 81
4.7.4 Languages Based on Instantiation-Time Checking 82
4.7.5 Languages Based on Covariant Redefinition 83
4.7.6 Languages Offering Local Type Inference 83

5 Modules. 85

5.1 Module Declarations 87

5.2 Privacy and Encapsulation 87

5.3 Qualified Names 90

5.4 Import Declarations 90

5.5 Extends Declarations 91

5.6 Friend Declarations 91

5.7 Module Extension Declarations 92

5.8 Function Call Overload Resolution 93

6 Related Work. 94

7 Conclusion . 97

References . 98

Appendix A Annotated Diesel Syntax . 104

A.1 Grammar 104

A.2 Tokens 110

A.3 White Space 111

Index . 112

5

1 Introduction

Diesel is a purely object-oriented language. All data are objects, and message passing is the only
way to manipulate objects. Even instance variables are accessed solely using message passing.
This purity offers the maximum benefit of object-oriented programming, allowing code to
manipulate an object with no knowledge of (and hence no dependence on) its underlying
representation or implementation. Diesel also allows the easy declaration of singleton objects with
their own unique behavior. Diesel merges inheritance and instantiation, avoiding meta-regress
problems.

Diesel is based on generic functions supporting multiple dispatching over any subset of a function’s
arguments, rather than the more traditional single dispatching based solely on the receiver
argument. Multiple dispatching unifies and subsumes receiver-oriented single dispatching and
static overloading based on static argument types.

In part as a consequence of this multiple dispatching model, all functions, overriding methods, and
even instance variables are declared separately from the the classes on which they dispatch. This
allows outside clients to easily extend existing classes with new functions, methods, and instance
variables by outside clients. Outside clients can also easily extend existing classes with new
superclasses.

Diesel supports first-class, lexically nested, anonymous function objects, called closures. Closures
are commonly used to implement control structures entirely with normal Diesel code; Diesel has
no built-in control structures.

Diesel supports predicate classes [Chambers 93b]. A predicate class is a “virtual” subclass of a
regular class into which an instance of the regular class is automatically and dynamically classified
whenever an associated predicate over the instance is true.

Diesel supports static typechecking. Diesel includes a constraint-based polymorphic type system,
which allows expression of F-bounded polymorphism, where clauses, covariant and contravariant
type parameters, and more. Diesel includes a limited form of type inference for instantiating type
parameters.

Diesel includes a simple module system to manage the space of names and to provide
encapsulation of the internals of a module from outside clients.

Diesel is a descendant of Cecil [Chambers 92b, Chambers 93a]. Diesel shares Cecil’s multimethod
base and its constraint-based polymorphic type system. In contrast to Cecil, Diesel includes a
module system, makes (generic) functions explicit, and unifies inheritance and subtyping.

TO BE FINISHED

1.1 Outline

The next section of this document describes the basic object, generic function, and message passing
model. Section 3 presents the basics of the static type system. Section 4 explains parameterized
types and the constraint-based polymorphic type system. Section 5 describes the module system.

6

Section 6 discusses some related work, and section 7 concludes. Appendix A summarizes the
complete syntax for Diesel.

7

2 Core

This section describes the core features of Diesel, including classes and objects, functions and
methods, fields, and statements and expressions. It excludes many details about static types and
typechecking (which is the subject of section 3), and ignores virtually all information about
parameterized types (which is the subject of section 4) and modules (which is the subject of section
5).

Diesel is a purely object-oriented language. All data are objects, and message passing is the only
way to manipulate objects. Even instance variables are accessed solely using message passing.
This purity offers the maximum benefit of object-oriented programming, allowing code to
manipulate an object with no knowledge of (and hence no dependence on) its underlying
representation or implementation.

2.1 Programs and Files

A Diesel program is made up of one or more files, starting with a root file. Each file is a sequence
of (top-level) declarations and statements:*

pr ogr am : : = f i l e_body

f i l e_body : : = { t op_decl | s t mt }

All the declarations introduced in a scope are visible throughout the scope, allowing forward
references and mutually recursive declarations, without recourse to header files or forward
declarations. Statements and any executable parts of declarations are executed in textual order.

The syntax of declarations is as follows:

t op_decl : : = i ncl ude_decl
| st at i c_decl
| dyn_decl

st at i c_decl : : = cl ass_decl
| ext _cl ass_decl
| pr edi cat e_decl
| di s j oi nt _decl
| cover _decl
| di v i de_decl
| synonym_decl
| f un_decl
| met hod_decl
| s i gnat ur e_decl
| f i el d_decl
| f i el d_met hod_decl
| pr ecedence_decl
| pr i m_decl
| pr agma

dyn_decl : : = l et _decl

* Throughout this section, we ignore parameterization- and module-related constructs. These are the subject of
Sections 4 and 5. Appendix A gives the complete syntax and lexical structure of the language and explains the
grammar meta-notation.

8

Since statements can be written at top-level, there is no need for a distinguished “main” function,
nor is there any need for special module or class initialization code.

2.2 Include Declarations

Other files can be included in a program using i ncl ude declarations:

i nc l ude_decl : : = “ i ncl ude” f i l e_name { pr agma} “ ; ”

f i l e_name : : = st r i ng

The included file should have the same syntax as the root file, i.e. a sequence of top-level
declarations and statements. These additional declarations and statements are treated as being part
of the same global scope as the root file. When the i ncl ude declaration is executed, the included
declarations and statements are executed. Included files themselves can include other files. A file
may be included multiple times; the effect is that it is included only once, and its declarations and
statements are executed only when the first i ncl ude declaration for that file is executed. Include
declarations can only appear at the top level, not in any nested scope.

The set of files comprising a Diesel program is the transitive closure of the i ncl ude declarations,
starting from the given root file. There is no need for any other extra-linguistic mechanism such as
Makef i l es to define a program.

2.3 Variable Declarations

Variable declarations have the following syntax:

l et _decl : : = “ l et ” [“ var ”] name [t ype_decl] { pr agma} “ : =” expr “ ; ”

t ype_decl : : = “ : ” t ype

If the var annotation is used, the variable may be assigned a new value using an assignment
statement. Otherwise, the variable binding is constant. (The contents of the variable may still be
mutable.)

In most contexts, omitted type declarations default to dynami c , as described in section 3.6.
However, for a constant variable binding within a dynamic context (i.e., a local variable, not a
global variable), the type checker can easily and safely infer the type of the variable to be the same
as the type of the iniitalizing expression, which allows many fewer explicit type declarations even
in fully statically typed code.

All declarations in a scope are visible throughout the scope, including variables. However, a
variable doesn’t have a well-defined value until after its initializing expression has been executed.
If a variable is read before its initializer has been executed, an “accessing uninitialized variable”
run-time error is reported. In addition, in a dynamic scope, a compile-time error is reported if the
variable is accessed before or during its declaration. This avoids potential misunderstandings about
the meaning of apparently self-referential or mutually recursive initializers while still supporting a
kind of l et * [Steele 84] variable binding sequence. ver ify that the implementation checks this
way, vs. the old decl block way. could allow mutable vars w/o initializers, falling back on
current er ror if read before assigned.

9

2.4 Classes and Objects

The basic features of classes in Diesel are illustrated by the following declarations, which define a
simple shape hierarchy. (Comments in Diesel either begin with “ - - ” and extend to the end of the
line or are bracketed between “ (- - ” and “ - -) ” and can be nested.)

abst r act c l ass Shape;

cl ass Ci r c l e i sa Shape;

cl ass Rect angl e i sa Shape;

abst r act c l ass Rhombus i sa Shape;

cl ass Squar e i sa Rect angl e, Rhombus;

obj ect Uni t Squar e i sa Squar e;

The syntax of a class or object declaration is as follows:

cl ass_decl : : = cl ass_ki nd name [“ i sa” c l ass_r ef s] [f i el d_i ni t s]
{ pr agma} “ ; ”

c l ass_ki nd : : = “ abst r act ” “ cl ass”
| “ c l ass”
| “ obj ect ”
| “ pr i m” “ c l ass”

c l ass_r ef s : : = cl ass_r ef { “ , ” c l ass_r ef }

c l ass_r ef : : = name

(name is the token for regular identifiers beginning with a letter; see Appendix A.2 for more details
on the lexical rules of Diesel.)

Note that a class declaration does not specify any members such as instance variables or methods.
These are declared separately from classes, as discussed below. This deconstruction of the
traditional monolithic class construct allows more flexible code organizations, for example
allowing methods to be grouped in different ways than strictly by their enclosing class, and it
allows clients to define new methods and instance variables for existing classes just as easily as the
“base” functionality is. mention/discuss “ open classes” idea, if not somewhere around here
already.

Each class defines a corresponding type of the same name.

2.4.1 Kinds of Class Declarations

An abstract class is not allowed to be manipulated directly by programs as a value nor is it allowed
to be instantiated. As a result, functions are not required to provide an implementing method case
for them (such an omitted case is analogous to an abstract method in a traditional object-oriented
language).

A regular class is a concrete class: it can be instantiated to produce first-class objects.
Consequently, functions whose argument types admit arguments of the class’s type must include
an implementing method case for them. However, the class itself is not allowed to be manipulated
directly by programs as a value.

An object declaration creates a first-class object. By being statically declared, it can have its own
specialized type, functions, and method cases. As with a concrete class, functions whose argument

10

types admit the object must include implementing cases for it. An object declaration is good for
defining one-of-a-kind “singleton” objects, without requiring a separate class along with
programming idioms to ensure that only a single instance is ever created. Since it can be
manipulated at run-time, all the fields of such an object should be initialized properly; field
initializers are used for this purpose (and only make sense on an object declaration -- FIX
SYNTAX TO ENFORCE THIS). Section 2.6.4 describes field initializers.

A “prim class” is one that is predefined by Diesel. FINISH THIS. ADD PRIM FIELD PARTS.

2.4.2 Inheritance

A class or named object can directly inherit from zero, one, or more other classes and/or named
objects. We refer collectively to the immediate superclasses and superobjects as “parents,” and the
transitive closure of the parents as “ancestors;” “children” and “descendants” refer to the inverse
relations. One effect of inheritance is on the reuse of implementation: a method case implemented
for one class or object also applies to all its descendants; this is described in more detail in section
2.5. A second effect of inheritance is on subtyping: the type corresponding to a class or named
object is a subtype of the types corresponding to each of its ancestors. If one type is a subtype of
another, then objects of the subtype can be used wherever objects of the supertype are expected.

Inheritance in Diesel may be multiple, simply by listing more than one parent; any ambiguities
among methods and/or fields defined on these parents will be reported to the programmer.
Inheriting from the same ancestor more than once, either directly or indirectly, has no effect other
than to place the ancestor in relation to other ancestors. A class or named object need not have any
(explicit) parents; all classes and objects are considered to inherit from the predefined any object
(see section 2.4.4). The inheritance graph must be acyclic (this is discussed more in section 2.9.6).

2.4.3 Object Instantiation

In addition to named object declarations, new objects can be created by evaluating object
constructor expressions. For example:

. . . new Squar e . . . - - create a fresh instance of square when executed

The complete syntax of an object constructor expression is as follows:

obj ect _expr : : = “ new” c l ass_r ef [f i el d_i ni t s]

The name of the instantiated class must be either a concrete class or a named object. The result is
an anonymous object that inherits from the concrete class or named object. There is no separate
“ instance of” relation between an object and its class; instead, objects and classes just inherit from
each other uniformly. The only difference between the object resulting from a named object
declaration and the objects resulting from evaluating an object constructor expression is that the
former have statically known names and associated named types; otherwise they are treated the
same, e.g. inheritance of method cases works uniformly. An object constructor expression

new C { inits }

can be viewed as having the same effect as the object declaration

obj ect <anon> i sa C { inits }

11

In fact, classes themselves are really just named objects whose use is restricted. In this sense, Diesel
can be viewed as an object-based (a.k.a. prototype-based or classless) rather than a class-based
language, despite the use of the “class” keyword in its syntax. However, Diesel is not as fully
prototype-based as some languages, such as Self [Ungar & Smith 87, Hölzle et al. 91a]: objects
cannot inherit from run-time computed anonymous objects, nor can the inheritance of an object be
changed at run-time.

Section 2.7.4 describes object constructor expressions in more detail.

2.4.4 Predefined Objects and Classes

Diesel includes several kinds of literal expressions, including integers, floats, characters, and
(immutable) strings and described in section 2.7.2, each of which yields objects that are instances
of a corresponding predefined concrete class. Similarly, t r ue and f al se are predefined named
objects which inherit from the predefined bool abstract class.

Diesel includes (immutable) vector constructor expressions, described in section 2.7.5, which
create instances of a predefined concrete class.

Diesel includes closure constructor expressions, described in section 2.7.6, which create instances
of a predefined concrete class. A closure object is a first-class, lexically nested, anonymous
function. It is invoked by sending it the eval message, with additional actual arguments for each
of the closure’s formal arguments.

any is a predefined abstract class that is implicitly the ancestor of all other classes and objects.
Consequently, behavior defined for any is inherited by all objects.

voi d is a predefined named object that can be used when there is no other useful value. voi d is
the result of assignment statements, functions with no body, and the like, and it can be referenced
as an expression in user methods that wish to return voi d explicitly. To preserve its intended use
solely as a return value, voi d is not allowed as a superclass, nor a method specializer, nor can
voi d be instantiated in an object constructor expression, and the voi d type cannot appear
anywhere except as a return type.

The Diesel language does not define any additional behavior for these predefined objects and
classes. Instead, the Diesel standard library specifies their behavior explicitly via regular functions
and methods.

2.4.5 Class Extension Declarations

The inheritance structure and/or field initializers of a class or named object may be extended
outside of the original declaration through a class extension declaration:

ext _cl ass_decl : : = “ ext end” ext _cl ass_ki nd name [“ i sa” c l ass_r ef s]
[f i el d_i ni t s] { pr agma} “ ; ”

ext _cl ass_ki nd : : = “ c l ass”
| “ obj ect ”

Class extension declarations, in conjunction with function, method, and field declarations outside
of classes, enable programmers to extend previously-existing classes and named objects. This

12

ability can be important when reusing and integrating groups of classes implemented by other
programmers. For example, predefined classes and named objects such as pr i m_i nt ,
pr i m_i _st r i ng, and bool are given additional behavior and ancestry through separate user
code. Similarly, particular applications may need to add application-specific behavior to classes
defined as part of other applications. For example, a text-processing application may add
specialized tab-to-space conversion behavior to strings and other collections of characters defined
in the standard library.

Most object-oriented languages do not allow programmers to add behavior to existing classes
without modifying the source code of the existing classes, and completely disallow adding
behavior to built-in classes like strings. Sather is a notable exception, allowing a new class to be
defined which is a superclass of some existing classes [Omohundro 93]. ADD REFS ABOUT
OPEN CLASSES, VISITOR PATTERN, RETRO. ABSTRACTION. Section 5 describes how
modules can be used to localize the visibility of an extension to interested clients only.

2.4.6 Synonym Declarations

A new name for an existing type may be declared using a synonym declaration:

synonym_decl : : = “ synonym” name “ =” t ype { pr agma} “ ; ”

A synonym is equivalent to the type to which it is defined, as opposed to a class declaration which
introduces a new type distinct from any other type. It is primarily used to introduce a shorter name
for a long type expression, e.g., one involving parameterized types.

Currently, synonyms only define new type names, not new class names. In addition, the definition
of a synonym cannot depend on any other synonyms. Both restrictions should be lifted.

2.5 Functions and Methods

2.5.1 Functions

Functions are the basic way that behavior is defined for objects. The following are some
examples:*

abst r act c l ass Shape;
f un dr aw(: Shape, : Di spl ay) : voi d;
f un dr aw(s: Shape) : voi d { dr aw(s, Scr een) ; }
f un ar ea(: Shape) : num;
f un move_t o(s: Shape, new_cent er : Poi nt) : voi d { . . . move s to new_center . . . }

cl ass Poi nt ;
. . . x and y field declarations . . .
f un +(p1: Poi nt , p2: Poi nt) : Poi nt { new_poi nt (p1. x + p2. x, p1. y + p2. y) }
f un new_poi nt (x: num, y: num) : Poi nt { new Poi nt { x : = x, y : = y } }
f un new_or i gi n() : Poi nt { new_poi nt (0, 0) }

The syntax for function declarations is as follows:

f un_decl : : = “ f un” f un_name “ (” [f un_f or mal s] “) ” [t ype_decl]
{ pr agma} f un_body

f un_name : : = name | op_name

* Indentation is semantically insignificant, but helpful for humans in grouping related declarations.

13

f un_f or mal s : : = f un_f or mal { “ , ” f un_f or mal }

f un_f or mal : : = [name] “ : ” t ype
| name

f un_body : : = met hod_body | “ ; ”
met hod_body : : = “ { ” (body | pr i m_body) “ } ” [“ ; ”]

(op_name is the token for infix and prefix operators beginning with a punctuation symbol; see
appendix A.2 for more details.)

A function declaration introduces a new function with the given name into the current scope,
having either a “normal” name (a regular identifier, like dr aw and move_t o above) or an
“operator” name (like + above), and the given number of formal arguments. Functions with a
normal name may have zero or more arguments (in which case the function is invoked using
traditional function call syntax, described in subsection 2.7.7), while functions with an operator
name must have either one formal (in which case the function is invoked as a prefix unary operator)
or two formals (in which case the function is invoked as an infix binary operator; the relative
precedence and associativity of infix operators can be specified explicitly using predecence
declarations, described in section 2.8).

It is illegal to declare multiple functions with the same name and number of formal arguments in
the same scope. Conversely, multiple functions with the same can be declared in the same scope as
long as they have different numbers of formal arguments, as with the dr aw functions above. There
is no static overloading of function names within a scope based on argument type, however.

Functions can be declared in a “static” scope, including at top-level and within a module
declaration, but not in a “dynamic” scope such as within a function body or parenthetical
subexpression. The effect of functions nested in dynamic contexts is achieved using closures,
described in subsection 2.7.6. Similarly, functions themselves are not first-class objects, but the
effect of a first-class function can be had via a closure whose body simply calls the function.
discuss issues with allowing nested functions & methods?

The body of a function can be omitted, leading to the Diesel equivalent of an “abstract method,”
as in the ar ea and 2-argument dr aw functions above. Such a function must be overridden by one
or more methods for each concrete argument combination, as described in section 3.4.2.

If present, the body of a function can be either a sequence of Diesel statements (as described in
subsection 2.5.4) or a primitive written in an external language (as described in subsection 2.5.5).

If a formal argument is not used within the function’s body (if present), its name can be omitted.

Any of the types of a function’s arguments and/or its result type may be omitted. An omitted
function argument or result type defaults to dynami c , which disables static type checking, as
described in subsection 3.6. (Syntactically, each formal argument must have a name and/or a
declared type; both cannot be omitted.)

The type of a function is captured by a signature that specifies the types of the formal arguments
and the type of the result, as described in section 3.2. A function may be called on any actual
argument objects that are subtypes of the corresponding argument types (where a type is a subtype
of itself), and calls of the function will return an object that is a subtype of the result type.

14

The names of functions are in a name-space separate from the name-space of classes and variables.
A function can have the same name as a variable or class without confusion.

2.5.2 Signatures

The type of a previously declared function can be refined using a signature declaration, whose
syntax is as follows:

si gnat ur e_decl : : = “ s i gnat ur e” f un_r ef “ (” [f un_f or mal s] “) ” [t ype_decl]
{ pr agma} “ ; ”

f un_r ef : : = name_f un_r ef | op_f un_r ef

name_f un_r ef : : = name

op_f un_r ef : : = op_name

A signature declaration augments the type of the given function (which must be declared
separately) such that, if the function is invoked on actual argument types that are subtypes of the
formals’ types in the signature declaration, then the result of the invocation is also known to be a
subtype of the signature’s result type. The function’s original type is still valid, as are any other
signature declarations for that function. Rather than overriding the original function type in an
incompatible way, signatures accumulate subtyping constraints on the possible result of an
invocation; all such constraints must be satisfied by implementing methods, and all may be relied
upon by invokers. (These are the usual rules for intersections of function types.)

For example, given a function like

f un copy(s: Shape) : Shape;

signature declarations like

si gnat ur e copy(r : Rect angl e) : Rect angl e;

si gnat ur e copy(r : Squar e) : Squar e;

augment the original (Shape) : Shape function type to also include
(Rect angl e) : Rect angl e and (Squar e) : Squar e. So the copy function is known to
return a Shape, and moreover, if the caller knows the argument is a Rect angl e, the copy
function is further known to return a Rect angl e, and similarly if the caller further knows that
the argument is a Squar e.

Typechecking rules for signature and method declarations, described in section 3.4.2, will cause
signature declarations in practice to have formal argument types that are subtypes of the function’s
formal argument types and have a result type that is a subtype of the function’s result type.

Parameterized functions, described in section 4, can specify uniform variations in a result type
based on the argument types. In contrast, signature declarations allow more ad-hoc refinements in
the type of a function to be specified.

2.5.3 Methods

A function’s implementation can be overridden for particular combinations of argument objects
using a method declaration. For example, the dr aw function can be overridden in various
subclasses:

15

abst r act c l ass Shape;
f un dr aw(: Shape, : Di spl ay) : voi d;

cl ass Ci r c l e i sa Shape;
met hod dr aw(c@Ci r c l e, d: Di spl ay) : voi d { . . . code for drawing a circle . . . }

cl ass Rect angl e i sa Shape;
met hod dr aw(r @Rect angl e, d: Di spl ay) : voi d { . . . code for drawing a rectangle . . . }
met hod dr aw(r @Rect angl e, d@Xwi ndow) : voi d {

. . . more specialized code for drawing a rectangle on an X window . . . }

The syntax for method declarations is as follows:

met hod_decl : : = “ met hod” [“ s i gnat ur e”] f un_r ef “ (” [met h_f or mal s] “) ”
[t ype_decl] { pr agma} met hod_body

met h_f or mal s : : = met h_f or mal { “ , ” met h_f or mal }

met h_f or mal : : = [name] “ : ” t ype
| [name] “ @” c l ass_r ef
| name

A method augments an existing function with the given name and number of arguments (methods
do not introduce new functions). A method specifies a restricted combination of arguments for
which its body is intended to be applicable; when the function is called on one of those argument
combinations, the method’s body is invoked in place of the function’s body (if any). To express
these restrictions, any of the formal arguments of a method may be specialized, by using the
@specializer syntax instead of the : type syntax, where specializer is the name of a class or named
object. For each of a method’s specialized formals, the method is applicable only if the
corresponding actual argument object is equal to or a descendant of the specializer class or named
object. Any number of the formals of a method may be specialized, independently.

A formal’s specializer should be a subtype of the function’s corresponding declared argument type
(if any). In contrast, the declared argument type (if any) of an unspecialized formal argument
should be a supertype of the function’s corresponding declared argument type (if any); this is the
usual contravariant-argument rule for function subtyping and method overriding. As with signature
declarations, the method’s result type should be a subtype of the function’s result type; this is the
usual covariant-result rule for function subtyping and method overriding. (More precise rules,
which also account for signatures, are in section 3.4.2.)

Many methods may augment the same function, as long as those methods have different
combinations of argument specializers. One method may override another if it has more restrictive
argument specializers. In general, when a function with a certain number of arguments is invoked,
all the methods augmenting that function (plus the function itself, if it has a body) are examined to
find those that are applicable to the actual argument objects. Of the applicable methods, the single
most-specific method is chosen to invoke. One method is at least as specific as another if its
specializers are pointwise at least as specific as the other’s, i.e., for each argument position, either
both method’s formals are unspecialized, or the first method’s formal is specialized and the other’s
either is unspecialized or is specialized to an object that’s equal to or an ancestor of the first’s
specializer. A method is more specific than another if it is at least as specific as the other, and it is
strictly more specific in at least one argument position. Note that this rule treats argument positions
symmetrically; there are no “more important” arguments whose relative specificity takes
precedence over others. If no methods are applicable, then a “message not understood” error is

16

reported, while if multiple methods are applicable but none is uniquely most specific, then a
“message ambiguous” error is reported. Static typechecking will warn about the potential for these
errors when examining function and method declarations, and run-time checking will test whether
an error actually arises for any particular call.

For example, in the following code:

f un dr aw(: Shape, : Di spl ay) : voi d { . . . default drawing code . . . }

met hod dr aw(c@Ci r c l e, d: Di spl ay) : voi d { . . . code for drawing a circle . . . }

met hod dr aw(r @Rect angl e, d: Di spl ay) : voi d { . . . code for drawing a rectangle . . . }

met hod dr aw(s@Squar e, d: Di spl ay) : voi d { . . . code for drawing a square . . . }
met hod dr aw(s@Squar e, d@Xwi ndow) : voi d {

. . . more specialized code for drawing a square on an X window . . . }

the four methods each are more specific than the function (because the methods specialize where
the function does not), the two square methods are more specific than the rectangle method
(because they have more specific specializers, uniformly), and the square-on-an-X-window
method is more specific than the generic square method (because it specializes where the other
does not, and the other arguments are at least as specific). The rectangle and circle methods are
mutually unordered (neither is more specific than the other), but this is allowed as long as there are
no objects that inherit from both Ci r cl e and Rect angl e, since at most one of those methods
will apply to any actual argument combination. The following method:

met hod dr aw(s: Shape, d@Xwi ndow) : voi d {
. . . specialized code for drawing a shape on an X window . . . }

is more specific than the function and less specific than the square-on-an-X-window method, but
unordered with respect to the other methods. If an invocation of dr aw passed a Ci r cl e instance
and an Xwi ndow instance, then both the circle method and the shape-on-an-X-window method
would be applicable, but neither would be uniquely most-specific; such an invocation would then
lead to a “message ambiguous” run-time error, and the static typechecker would warn about this
possibility when examining the dr aw function and methods. As another example, if another
concrete subclass of Shape were declared without defining a corresponding dr aw method:

cl ass Tr i angl e i sa Shape;

then an invocation of dr aw that passed an instance of Tr i angl e would not find any applicable
methods and so would report a “message not understood” run-time error; the static typechecker
would warn for this possibility when examining the concrete subclasses of Shape and the method
implementations of dr aw. As a final example, if the following method were added:

met hod dr aw(r @Rect angl e, d@Xwi ndow) : voi d {
. . . specialized code for drawing a rectangle on an X window . . . }

then this method would be unordered with respect to the following existing method, since different
argument positions order the methods differently:

met hod dr aw(s@Squar e, d: Di spl ay) : voi d { . . . code for drawing a square . . . }

Both methods would apply to an invocation of dr aw that passed an instance of Squar e and an
instance of Xwi ndow, but neither would override the other. Fortunately, a third method also
applies:

17

met hod dr aw(s@Squar e, d@Xwi ndow) : voi d {
. . . more specialized code for drawing a square on an X window . . . }

and this method overrides the first two, thereby resolving the ambiguity. This third method would
be invoked at run time, and no run-time error would be reported, nor would any static warning be
issued. As in this example, errors about ambiguous methods can be resolved by providing
additional methods specialized on the ambiguously defined argument combinations.

More details about the rules for method lookup are given in section 2.9.

Diesel methods can emulate both traditional singly-dispatched methods (by specializing only the
first argument) as well as true multimethods (by specializing on multiple arguments). Statically-
overloaded functions and functions declared via certain kinds of pattern-matching also are
subsumed by multimethods. Callers of a function cannot tell or depend on whether the function
may be overridden by methods or on which argument positions the methods may specialize; these
are internal implementation decisions that should not affect callers, and implementors of a function
can always change these decisions without affecting any callers. For example, a given function can
initially be implemented with a single unspecialized implementation and then later be extended or
replaced with several specialized implementations, without affecting clients of the original
function. In contrast, CLOS has a “congruent lambda list” rule that requires all methods in a
particular generic function to specialize on the same argument positions.

A method declaration may include the si gnat ur e keyword to implicitly generate a signature
declaration each of whose argument types is the specializer (or, if unspecialized, the argument
type) of the corresponding method formal argument, and whose result type is the method’s result
type. This provides value to clients of the function whenever the method declares more general
argument types than the function (or other signatures augmenting the function) or a more specific
result type. For example, the following method implies the earlier signature declaration:

met hod s i gnat ur e copy(r @Rect angl e) : Rect angl e { . . . }

A function declaration with a body is simply syntactic sugar for a function declaration without a
body plus a method declaration with all unspecialized arguments.

The name of a formal may be omitted if it is not needed in the method’s body. Unlike singly-
dispatched languages, there is no implicit sel f formal in Diesel; all formals are listed explicitly.

Diesel’s ability for methods to specialize on named objects supports something similar to CLOS’s
eql specializers. In CLOS, an argument to a multimethod in a generic function may be restricted
to apply only to a particular object by annotating the argument specializer with the eql keyword.
A Diesel method would simply specialize on the object, without additional language features.
Diesel’s mechanism differs from CLOS’s in that in Diesel such a method also will apply to any
descendants of the specializing object, while in CLOS the method will apply only for that object.
Dylan, a descendant of CLOS, has a si ngl et on specializer that is analogous to CLOS’s eql
specializer [Apple 92].

As mentioned in subsection 2.4.5, methods can be specialized on existing classes without needing
to modify those existing classes. This facility, lacking in most object-oriented languages, can make

18

reusing existing components easier since they can be adapted to new uses by adding functions,
methods, fields, and even parents to them.

specify that method can be in a different scope than function being extended, as long as
function is visible. specify that method can only be in a static scope, although allowing
dynamically nested methods would be very cool.

2.5.4 Code Method Bodies

The body of a function or method can either be Diesel code or it can be code written in an external
language. If Diesel code, the syntax is as follows:

body : : = { dyn_decl | st mt } r esul t
| empty return void

r esul t : : = nor mal _r et ur n return an expression
| non_l ocal _r t n return from the lexically-enclosing method

nor mal _r et ur n : : = dyn_decl return void
| assi gnment [“ ; ”] return void
| expr [“ ; ”] return result of expression

non_l ocal _r t n : : = “ ^ ” [“ ; ”] do a non-local return, returning void
| “ ^ ” expr [“ ; ”] do a non-local return, returning a result

(The syntax and semantics of statements, assignments, and expressions is described in section 2.7.)

When invoked, a method evaluates its body in a new environment containing bindings for the
method’s formal parameters and nested in the method’s lexically-enclosing environment. Formal
parameters are treated as constant variable bindings and so are not assignable in the body.

If the the body is empty, the callee function or method returns the special voi d object (described
in subsection 2.4.4) back to its caller.

Otherwise, the body evaluates its statements and then its final return clause. If the return clause is
a declaration or an assignment, then the body returns voi d to the caller of the function or method.
If the return clause is an expression, then the result of that expression (which might or might not
be voi d) is returned to the caller. Otherwise, the return clause is a non-local return, prefixed with
a ^ symbol. A non-local return is only useful inside a nested closure. It has the effect of returning
its argument expression’s result (or voi d if no argument expression is given) not to the caller of
the closure (i.e., the sender of the eval message) but rather to the caller of the lexically enclosing
function or method, just like a non-local return in Smalltalk-80 [Goldberg & Robson 83] and Self
and similar to a r et ur n statement in C. A run-time error will result if a closure executes a non-
local return after its lexically enclosing method has returned; first-class continuations are not
supported.

2.5.5 Primitive Method Bodies

Alternatively, the body of a function or method may be written in an external language, such as
C++ or the Diesel compiler’s intermediate language. This is most useful for implementing basic
primitive functionality, such as integer arithmetic, vector indexing, looping, and file I/O, that
cannot be expressed in Diesel. The syntax of primitive bodies is as follows:

pr i m_body : : = “ pr i m” { l anguage_bi ndi ng }

19

l anguage_bi ndi ng: : = l anguage “ : ” code_st r i ng
| l anguage “ { ” code_char s “ } ”

l anguage : : = name

code_st r i ng : : = st r i ng

code_char s : : = br ace_bal anced_char s any characters, with balanced use of “ {“ and “ }”

A primitive method’s body is a list of (language name, implementation source code) pairs. The
details of the protocol for writing code in another language inside a Diesel primitive method are
implementation-specific. The UW Diesel implementation recognizes the c_++, r t l , and wi l
language names, for primitives written in C++ and the Vortex and Whirlwind compilers’ internal
intermediate languages, respectively. It is fairly straightforward to make calls to routines written in
C++ from Diesel by defining a primitive method whose body is written in C++.

Looping primitive behavior is provided by the standard library’s l oop function specialized on the
cl osur e predefined class. The body of the loop function is a primitive that repeatedly invokes
its argument closure until some closure performs a non-local return to break out of the loop. Diesel
provides recursion but not looping, so looping is implemented as a primitive rather than
recursively. Other languages such as Scheme [Rees & Clinger 86] avoid the need for such a
primitive by relying instead on user-level tail recursion and implementation-provided tail-
recursion elimination. However, tail-recursion elimination precludes complete source-level
debugging [Chambers 92a, Hölzle et al. 92] and consequently is undesirable in general. The
primitive l oop method may be viewed as a simple tail-recursive method for which the
implementation has been instructed to perform tail-recursion elimination.

2.6 Fields

Object state, such as instance variables and class variables, is supported in Diesel through fields
and associated accessor functions. For example, to define a mutable instance variable x of type T
for a particular class C, the programmer can declare a f i el d of the following form:

var f i el d x(: C) : T;

This declaration allocates an internal “storage table” mapping each object of type C (or a subtype)
to an object of type T.* It also defines two functions, named x and set _x , that provide the only
way to access the internal table:

f un x(o: C) : T { <return o.x> } -- the get accessor function
f un set _x(o: C, val ue: T) : voi d { <o.x : = value; return voi d> } -- the set accessor function

The get accessor function returns the object to which the argument object is mapped in the internal
storage table, i.e., the current contents of its argument’s instance variable. The set accessor function
updates the internal storage table to map the first argument object to the second argument, i.e., it
assigns to the first argument’s instance variable, and then returns voi d. (Section 5 describes how
these accessor methods can be encapsulated within the data abstraction implementation and
protected from external manipulation.)

* A storage table is a semantically clean way to think about the per-object state for a field. An implementation typically
spreads the space of the storage table across all the objects in the table, i.e., reserving space in each object to store the
values of the fields defined for that object.

20

To illustrate, the following declarations specify some instance variables for part of the Shape
hierarchy:

abst r act c l ass Shape;

var f i el d cent er (: Shape) : Poi nt ; -- defines center(:Shape):Point and
-- set_center(:Shape,:Point):void accessors

cl ass Rect angl e i sa Shape;

var f i el d wi dt h(: Rect angl e) : num; -- defines width(:Rectangle):num and
-- set_width(:Rectangle,:num):void accessors

var f i el d hei ght (: Rect angl e) : num; -- defines height(:Rectangle):num and
-- set_height(:Rectangle,:num):void accessors

Since a Rect angl e is a subtype of Shape, every Rect angl e object has storage for cent er ,
wi dt h, and hei ght .

The syntax of field declarations is as follows:

f i el d_decl : : = [“ shar ed”] [“ var ”] “ f i el d” name “ (” f un_f or mal “) ”
[t ype_decl] { pr agma} f i el d_body

f i el d_body : : = “ { ” body “ } ” [“ ; ”] | “ ; ”

somewhere discuss possible extensions to fields with more than one argument.

ensure that the real parser expects fields and field methods to have exactly one formal, with
the same syntax as functions and methods, respectively. handle fields w/ omitted arg types.

2.6.1 Read-Only vs. Mutable Fields

By default, a field is immutable: only the get accessor method is generated for it. To support
updating the value of a field, the var prefix must be used with the field declaration. The presence
of the var annotation triggers generation of the set accessor function. Immutable fields receive
their values either as part of object creation or by an initializing expression associated with the field
declaration, as described in section 2.6.4. Note that the contents of an immutable field can itself be
mutable, but the binding of the field to its contents cannot change. (Global and local variables in
Diesel similarly default to initialize-only semantics, with an explicit var annotation required to
allow updating of the variable’s value, as described in section 2.3.)

In general, we believe that it is beneficial to explicitly indicate when a field is mutable; to
encourage this indication, immutable fields are the default. Programmers looking at code can more
easily reason about the behavior of programs if they know that certain parts of the state of an object
cannot be side-effected. Similarly, immutable fields support the construction of immutable “value”
objects, such as complex numbers and points, that are easier to reason about.

Many languages, including Self and Eiffel, support distinguishing between assignable and constant
variables, but few imperative languages support initialize-only instance variables. CLOS can
define initialize-only variables in the sense that a slot can be initialized at object-creation time
without a set accessor method being defined, but in CLOS the sl ot - val ue primitive function
can always modify a slot even if the set accessor is not generated.

21

2.6.2 Per-Object vs. Shared Fields

By default, a field’s storage table maintains a separate mapping for each object to its own field
contents, i.e., each object inheriting a field declaration receives its own space to hold its value of
the field. Alternatively, a field declaration may be prefixed with the shar ed keyword, in which
case the field stores a single value shared by all inheriting objects. A shared field thus acts like a
class variable in Smalltalk or a st at i c variable in Java. For example, the following declaration
allocates space for a single value that is shared by all shapes:

shar ed var f i el d def aul t _col or (: Shape) : Col or ;

Shared fields create accessor functions just like regular fields. The accessors’ implementation
differs in that they access shared global memory rather than per-object memory. As with regular
fields, shared fields can only be accessed by sending a message to an instance; there is no way to
access a shared field directly.

2.6.3 Field Methods

A field declaration implicitly introduces one or two new functions, whose bodies have special
implementations. As mentioned in section 2.5.3, a function with a body is just syntactic sugar for
a function without a body plus a method containing the original function’s body. A method with a
special field accessor implementation is a field method. The field methods for a field can be
declared explicitly without declaring any new functions, which is needed if the functions have
already been declared. The syntax of a field method declaration is as follows:

f i el d_met hod_decl : : = [“ shar ed”] [“ var ”] “ f i el d” “ met hod” [“ s i gnat ur e”]
name_f un_r ef “ (” met h_f or mal “) ” [t ype_decl]
{ pr agma} f i el d_body

The following example illustrates how a subclass can implement a function via a field method
declaration:

abst r act c l ass Shape;

-- every Shape can report its width:
f un wi dt h(: Shape) : num;

cl ass Rect angl e i sa Shape;

-- Rectangles also allow their width to be changed:
f un set _wi dt h(: Rect angl e, : num) : voi d;

-- Rectangles implement width and set_width through storage:
var f i el d met hod wi dt h(@Rect angl e) : num;

cl ass Ci r c l e i sa Shape;

-- Circles implement width through computation:
met hod wi dt h(c@Ci r c l e) : num { . . . }

A field method is just like any other kind of method, and can override and be overridden just like
any other kind of method. For example, if one class implements a function by computation, using
a regular method, a subclass can choose to reimplement the function by storage, overriding the
method with a field method. Conversely, if one class implements a function by storage, using a
field or a field method, a subclass can choose to reimplement the function by computation,
overriding the field method with a regular method. In the following code, the

22

Al i gnedRect angl e class can inherit from the Pol ygon class but override the ver t i ces
implementation to something more appropriate for axis-aligned rectangles:

cl ass Pol ygon i sa Shape;

var f i el d ver t i ces(: Pol ygon) : col l ect i on[Poi nt] ;

met hod dr aw(p@Pol ygon, d: Di spl ay) : voi d {
(-- draw the polygon on an output device, accessing vertices --) }

cl ass Al i gnedRect angl e i sa Pol ygon;

var f i el d t op(: Al i gnedRect angl e) ;
var f i el d bot t om(: Al i gnedRect angl e) ;
var f i el d l ef t (: Al i gnedRect angl e) ;
var f i el d r i ght (: Al i gnedRect angl e) ;

met hod vect i ces(r @Al i gnedRect angl e) : col l ect i on[Poi nt] {
-- assume++ is a binary operator, creating a new Point object
[r . t op ++ r . l ef t , r . t op ++ r . r i ght ,

 r . bot t om ++ r . r i ght , r . bot t om ++ r . l ef t] }

met hod set _ver t i ces(r @Al i gnedRect angl e, vs: col l ect i on[Poi nt]) : voi d {
(-- set corners of rectangle from vs list, if possible --) }

Even if a field accessor method is overridden, it may remain accessible, since a resend from the
overriding method may invoke the field accessor method. Consequently, the storage for the
overridden field still exists. (The storage table model for the state of a field helps make this clear.)
This makes it easy for a subclass to wrap a storage-based implementation of its superclass with
additional computation. (Of course, implementations are free to optimize away the storage for a
field in an object if it cannot be accessed, as with the ver t i ces field in the
Al i gnedRect angl e class above.)

Accessing instance variables solely through automatically-generated accessor functions has a
number of advantages over the traditional mechanism of direct variable access common in most
object-oriented languages. Since instance variables can only be accessed through messages, all
code becomes representation-independent to a certain degree. A subclass can alter the storage-vs-
computation choices of its superclasses, without requiring changes in the superclass or its clients.
Within a single class, programmers can change their minds about what is stored and what is
computed without rewriting lots of client code. Syntactically, a simple message send that accesses
an accessor function is just as concise as would be a variable access (using the p. x syntactic sugar,
described in section 2.7.7), thus imposing no burden on the programmer for the extra
expressiveness. Other object-oriented languages such as Self and Trellis have shown the
advantages of accessing instance variables solely through special get and set accessor methods.
CLOS enables get and/or set accessor methods to be defined automatically as part of the
def cl ass form, but CLOS also provides a lower-level sl ot - val ue primitive that can read and
write any slot directly. Dylan joins Self and Trellis in accessing instance variables solely through
accessor methods. C#’s properties provide instance-variable-like access syntax to methods, but are
less flexible since properties cannot be overridden by instance variables or vice versa, and are more
verbose under coding conventions where all instance variables get property accessors.

23

2.6.4 Field Initialization

When an object is created (either by an object constructor expression or a named object
declaration), an object-specific initial value may be specified for any of its non-shared fields. The
syntax of field initializers is as follows:

f i el d_i ni t s : : = “ { ” f i el d_i ni t { “ , ” f i el d_i ni t } “ } ”

f i el d_i ni t : : = name_f un_r ef [“ @” c l ass_r ef] “ : =” expr

For example, the following function creates a new Rect angl e and initializes its fields:

f un new_r ect angl e(c: Poi nt , w: num, h: num) : Rect angl e {
new Rect angl e { cent er : = c, wi dt h : = w, hei ght : = h } }

For a field initialization of the form name : = expr , the field to be initialized is found by
performing a lookup akin to message lookup to find a field accessor method named name, starting
with the object being created. Method lookup itself cannot be used directly, since the accessor
method for the field to be initialized may have been overridden by a method of the same name.
Instead, a form of lookup that ignores all regular methods is used. If this lookup succeeds in finding
a single most-specific matching field accessor method, then that field is the one given an initial
value. If no matching field or more than one matching field is found, then a “ field initializer not
understood” or an “ambiguous field initializer” error, respectively, is reported. The accessed field
must be a non-shared field; if a field accessor method for a shared field is found, then a “ initializing
shared field” error is reported.

To resolve ambiguities and to initialize fields otherwise overridden by other fields, an extended
name for the field of the form name@C : = expr may be used instead. For these kind of
initializers, lookup for a matching field begins with the class named C rather than the object being
created; the object being created must inherit from C. Extended field names are analogous to a
similar mechanism related to directed resends, described in section 2.10.

In addition, a field declaration can specify default initialization code, which has the same syntax
as a method body. For example, if the height of a Rect angl e should default to its width, the
hei ght field could be declared as follows:

var f i el d hei ght (r : Rect angl e) : num { r . wi dt h }

A field’s default initializer are not evaluated unless and until needed when reading the field. If a
field’s get accessor method is invoked and the field’s value for the argument object has not been
set previously (either as part of object creation, by an earlier invocation of the field’s set accessor
method, or by an earlier invocation of the get accessor method), then the field’s default initializer
is evaluated (if no default initializer was specified, then the field accessor method reports an
“accessing uninitialized field” error). The initializing expression may name the formal parameter
of the field declaration, allowing the initial value of the field to be defined in terms of other state
of the object of which the field is a part. It is not legal to read the value of a field during execution
of the field’s initializer; doing so will lead to an error or an infinite recursion. The result of the
initializer is stored as the current value of the field (either for this argument object, if a non-shared
field, or for the field as a whole, for a shared field), and returned as the result of the get accessor
method.

24

By evaluating field initializers on demand rather than at declaration time, we avoid the need to
specify some relatively arbitrary ordering over field declarations (as in Java and C#) or to resort to
an unhelpful “unspecified” or “ implementation-dependent” rule.

Evaluating a non-shared field’s initializer expression repeatedly for each inheriting object seems
to support common Diesel programming style. This corresponds to CLOS’s : i ni t f or m
specifier. An alternative semantics would evaluate the field initializer at most once, and share the
resulting value across all objects that use the default. This semantics corresponds to CLOS’s
: def aul t - i ni t ar gs specifier. The difference in the semantics is exposed if the initializing
expression evaluates to a new mutable object. In practice, it seems that each object wants its own
mutable object rather than sharing the mutable object among all default-initialized objects.
Moreover, the alternative semantics can be simulated by having a field’s default initializer access
a shared field holding the initial value.

It is not possible to override just the default initializer of a field or field method declaration,
although this is sometimes desirable. The ability to override a field declaration’s default initializer
can be simulated by introducing a helper function computing the default initial value for its
argument, and calling the helper in the field’s initializer; the helper function can then be overridden
to change the field’s default.

2.6.5 Field Overloading

In a traditional language, different classes declared in the same scope can use the same name for
their instance variables without conflict, e.g.:

cl ass C {
i nt x;

}

c l ass D {
st r i ng x;

}

However, when implementing this design in Diesel, the field declarations are expressed outside of
their classes, and so are all in the same scope, e.g.:

cl ass C;
f i el d x(: C) : i nt ;

cl ass D;
f i el d x(: D) : st r i ng;

Each field declaration with a given name generates a corresponding getter function declaration, all
of which have the same name and so clash with each other, generating a duplicate function
declaration error. (The same problem occurs when translating methods of traditional classes into
Diesel functions outside of their classes, but the problem seems in practice to be more irritating for
fields.)

There are several potential solutions to this clash. One is to encapsulate each of the classes in their
own modules (described in section 5), which returns each field to being defined in its own scope.
A lighter-weight solution is to treat the two fields as being in the same function, and use dynamic

25

dispatching to resolve the clash. One way is simply to convert all but one of the f i el d
declarations into f i el d met hod si gnat ur e declarations, e.g.:

cl ass C;
f i el d x(: C) : i nt ;

cl ass D;
f i el d met hod s i gnat ur e x(@D) : st r i ng;

The si gnat ur e clause yields a signature that indicates that the function has an additional
overloaded signature, potentially unrelated to its original signature, which clients can also call
legally.

This approach favors one of the field declarations over the others. A more symmetric approach
declares the function separately and then implements all instance variables as field method
signatures on this function, e.g.:

f un x(: none) : any;

cl ass C;
f i el d met hod s i gnat ur e x(@C) : i nt ;

cl ass D;
f i el d met hod s i gnat ur e x(@D) : st r i ng;

To ensure that only the fields’ signatures are useful, the separate function declaration uses a type
that is a subtype of all possible function types with that number of arguments (as described in
section 3.3, none is a subtype of all types, any is a supertype of all types, and functions obey
standard contravariant subtyping rules).

2.7 Statements and Expressions

A statement is an assignment or an expression evaluated solely for its side-effects:

st mt : : = assi gnment “ ; ”
| expr “ ; ”

An expression is either a literal, a reference to a variable or a named object, an object constructor
expression, a vector constructor expression, a closure constructor expression, a message (written
in one of several possible syntactic forms), a resend, or a parenthetical subexpression:

expr : : = bi nop_expr

bi nop_expr : : = bi nop_msg | unop_expr

unop_expr : : = unop_msg | dot _expr

dot _expr : : = dot _msg | s i mpl e_expr

si mpl e_expr : : = l i t er al
| var _expr
| vect or _expr
| c l osur e_expr
| obj ect _expr
| message
| r esend
| par en_expr

All of these constructs are described below, except for resends which are described in section 2.10.

26

2.7.1 Assignment Statements

Assignment statements have the following syntax:

assi gnment : : = var _r ef “ : =” expr assignment to a variable
| assi gn_msg assignment-like syntax for messages

var _r ef : : = name

If the left-hand-side is a simple name, then the closest lexically-enclosing binding of the name is
located and changed to refer to the result of evaluating the right-hand-side expression. It is an error
to try to assign to an object, a formal parameter, or a variable declared without the var keyword.

If the left-hand-side has the syntax of a message, then the assignment statement is really syntactic
sugar for a message send, as described in section 2.7.7.

2.7.2 Literals

Diesel literal constants include integers, floating-point numbers, characters, and strings:

l i t er al : : = i nt eger
| s i ngl e_f l oat
| doubl e_f l oat
| char act er
| st r i ng

An integer literal is an instance of the predefined pr i m_i nt class, and has an allowed range
between 0 and an implementation-dependent maximum. Negative integers are computed e.g. by
negating a positive integer. (In the UW Diesel implementation, the standard library defines
max_i nt , the largest possible instance of pr i m_i nt . Arbitrary-precision integers are also
supported, through a separate user-defined library class.)

Single- and double-precision foating-point literals are instances of the predefined
pr i m_si ngl e_f l oat and pr i m_doubl e_f l oat classes, respectively.

A character literal is an instance of the predefined pr i m_char class, and supports ASCII
character codes in the range [0..255]. (In the UW Diesel implementation, Unicode characters are
also supported, through a separate user-defined library class.)

A string literal is an instance of the predefined pr i m_i _st r i ng class. A string stores a possibly-
empty sequence of pr i m_char objects.

The value of a literal object is immutable, and is accessible only through primitives (described in
section 2.5.5). (In the UW Diesel implementation, mutable strings are also supported, through a
separate user-defined library class.)

2.7.3 Variable References

A variable or named object is referenced simply by naming the variable or object:

var _expr : : = var _r ef

The names of classes, objects, and variables are in the same name-space. Lexical scoping is used
to locate the closest lexically-enclosing declaration in this name-space. If the declaration is a class,
an error is reported. Otherwise, the named object or the current contents of the variable is returned.

27

2.7.4 Object Constructors

New objects are created either through object declarations (as described in section 2.4) or by
evaluating object constructor expressions (as discussed in section 2.4.3). The syntax of an object
constructor expression is as follows:

obj ect _expr : : = “ new” c l ass_r ef [f i el d_i ni t s]

An object constructor expression creates a new anonymous object that directly inherits from the
named class. Any field initializers are evaluated to set the initial values of the referenced fields, as
described in section 2.6.4.

2.7.5 Vector Constructors

A vector constructor expression is written as follows:

vect or _expr : : = “ [” [“ : ” t ype “ : ”] [expr s] “] ”

expr s : : = expr { “ , ” expr }

The result of evaluating a vector constructor expression is a new instance of the predefined
pr i m_i _vect or [T] object that is initialized with the corresponding elements. The elements of
the vector are immutable, and are accessible only through primitives (described in section 2.5.5).
(In the UW Diesel implementation, mutable vectors are also supported, through a separate user-
defined library class.) The type of the vector’s elements can be specified explicitly, or inferred as
the least-upper-bound of the types of the initial elements, as described in section 3.5.

2.7.6 Closures

A closure is an anonymous, lexically nestable, first-class function object. The syntax of a closure
constructor expression is as follows:

cl osur e_expr : : = [“ &” “ (” [c l osur e_f or mal s] “) ” [t ype_decl]] “ { ” body “ } ”

c l osur e_f or mal s : : = cl osur e_f or mal { “ , ” c l osur e_f or mal }

c l osur e_f or mal : : = [name] “ : ” t ype
| name

This syntax is like that of a function declaration, except that the f un keyword and message name
are replaced with the & symbol (intended to be suggestive of the λ symbol). If the closure takes no
arguments, then the &() prefix may be omitted. When evaluated, a closure constructor produces
two things:

• a new instance of the predefined cl osur e class, which is returned as the result of the closure
constructor expression, and

• a method in the predefined eval function whose anonymous first argument is specialized on
the newly-created closure object and whose remaining arguments are those listed as formal
parameters in the closure constructor expression.

The body of a closure’s eval method is lexically-scoped within the scope that was active when
the closure was created. Closures may be invoked after their lexically-enclosing scopes have
returned.*

28

A closure’s result type annotation can be omitted, in which case it is inferred to be the same as the
type of the result expression in the body, or none if the closure ends in a non-local return.

All control structures in Diesel are implemented at user level using messages and closures, with
the sole exception of the l oop primitive method described in section 2.5.5. Additionally, closures
can be used to achieve much the same effect as exceptions, so exceptions are omitted from the
Diesel language. WRITE MORE?

EXPLAIN HOW EVAL AS MESSAGE MORE FLEXIBLE, BUT MORE VERBOSE,
THAN BUILT-IN INVOKE PRIMITIVE.

EXPLAIN TRADEOFFS BETWEEN CAPABILITIES OF GENERIC FUNCTIONS AND
CLOSURES.

document closure types as classes, which can be subclassed by other than built-in closures.

2.7.7 Message Sends

The syntax of message sends includes the following:

message : : = name_f un_r ef “ (” [expr s] “) ”

unop_msg : : = op_f un_r ef unop_expr

bi nop_msg : : = bi nop_expr op_f un_r ef bi nop_expr

A message can be written in one of three forms:

• named prefix form, with the name of the message followed by a parenthesized list of
expressions,*

• unary operator prefix form, with the message name listed before the argument expression, or

• infix form, with the message name in between a pair of argument subexpressions.

Normally, a message whose name begins with a letter is written in named prefix form, while a
message whose name begins with a punctuation symbol is written in unary prefix form or in infix
form.† To invoke a named message as an operator, or to invoke an operator as a named message,
the name of the message is prefixed with an underscore (the leading underscore is not considered
part of the message name). For example, the following two expressions both send the + message
to 3 and 4:

3 + 4

_+(3, 4)

and the following two expressions both send the bi t _and message to 3 and 4:

bi t _and(3, 4)

3 _bi t _and 4

* In the current UW Diesel implementation, there are some caveats to the use of such non-LIFO closures. See the
system documentation for additional details.

* All arguments to the message must be listed explicitly; there is no implicit sel f argument.
†Named prefix form is always used for function and method declarations.

29

The relative precedence and associativity of infix messages is specified through precedence
declarations, described in section 2.8. (The relative precedence and associativity of other syntactic
forms of messages are already completely defined by the grammar.)

Syntactic sugar exists for several common forms of messages. Dot notation allows the first
argument of the message to be written first:

dot _msg : : = dot _expr “ . ” name_f un_r ef [“ (” [expr s] “) ”]

If the message takes only one argument, the trailing parentheses can be omitted. Consequently, the
following three expressions all send the x message to p:

x(p)

p. x()

p. x

The following two expressions both send the bi t _and message to 3 and 4:

bi t _and(3, 4)

3. bi t _and(4)

This syntax may suggest that the first argument is more important than the others, but in fact the
semantics is still that all arguments are treated uniformly, and any subset of the arguments might
be dispatched at method-lookup time.

Other syntactic sugars support message sends written like assignments. Any message can appear
on the left-hand-side of an assignment statement:

assi gn_msg : : = l val ue_msg “ : =” expr

l val ue_msg : : = message
| dot _msg
| unop_msg
| bi nop_msg

In each of these cases, the name of the message sent to carry out the “assignment” is set _
followed by the name of the message in the l val ue_msg expression, and the arguments to the
real message are the arguments of the l val ue_msg expression followed by the expression on the
right-hand-side of the “assignment.” So the following three expressions are all equivalent:

set _f oo(p, q, r) ;

f oo(p, q) : = r ;

p. f oo(q) : = r ;

as are the following two expressions:

set _t op(r ect angl e, x) ;

r ect angl e. t op : = x; - - frequently used for set accessor methods

as are the following two expressions:

set _! (v, i , x) ;

v! i : = x;

Note that these syntactic sugars are assignments in syntax only. Semantically, they are all
messages.

30

The semantics of method lookup are described in section 2.9. Resends, a special kind of message
send, are described in section 2.10.

2.7.8 Parenthetical Subexpressions

A parenthesized subexpression has the same syntax as the body of a function, method, or closure:

par en_expr : : = “ (” body “) ”

A parenthetical subexpression introduces a new nested scope and may contain statements and local
declarations.

2.8 Precedence Declarations

Diesel programmers can define their own infix binary operators. Parsing expressions with several
infix operators becomes problematic, however, since the precedence and associativity of the infix
operators needs to be known to parse unambiguously. For example, in the following Diesel
expression

f oo ++ bar * &&! baz * &&! qux _max bl op

the relative precedences of the ++, * &&! , and _max infix operators is needed, as is the
associativity of the * &&! infix operator. For a more familiar example, we’d like the following
Diesel expression (where * * represents exponentiation)

x + y * z * * e * * f * q

to parse using standard mathematical rules, as if it were parenthesized as follows:
x + ((y * (z * * (e * * f))) * q)

2.8.1 Previous Approaches

Most languages restrict infix operators to a fixed set, with a fixed set of precedences and
associativities. This is not appropriate for Diesel, since we’d like the set of infix messages to be
user-extensible.

Smalltalk defines all infix operators to be of equal precedence and left-associative. While simple,
this rule differs from standard mathematical rules, sometimes leading to hard-to-find bugs. For
example, in Smalltalk, the expression 3 + 4 * 5 returns 35, not 23.

Self attempts to rectify this problem with Smalltalk by specifying the relative precedence of infix
operators to be undefined, requiring programmers to explicitly parenthesize their code. This avoids
problems with Smalltalk’s approach, but leads to many unsightly parentheses. For example, the
parentheses in the following Self code are all required:

(x <= y) && (y <= (z + 1))

Self makes an exception for the case where the same binary operator is used in series, treating that
case as left-associative. For example, the expression

x + y + z

parses as expected in Self. Even so, the expression
x * * y * * z

would parse “backwards” in Self, if * * were defined. (Self uses power : for exponentiation,
perhaps to avoid problems like this.) Also, expressions like

x + y - z

31

are illegal in Self, requiring explicit parenthesization.

Standard ML [Milner et al. 90] allows any operator to be declared prefix (called “nonfix” in SML)
or infix, and infix operators can be declared left- or right-associative. Infix declarations also specify
a precedence level, which is an integer from 0 (loosest binding) to 9 (tightest binding), with 0 being
the default. For example, the following SML declarations are standard:

i nf i x 7 * , / , di v, mod;

i nf i x 6 +, - ;

i nf i x 4 = <> < > <= >=;

i nf i x 3 : =;

nonf i x ~;

SML also provides special syntax to use an infix operator as a prefix operator, and vice versa.

A fixity declaration can appear wherever any other declaration can appear, and affect any parsing
of expressions while the fixity declaration is in scope. Fixity declarations can be spread throughout
a program, and multiple declarations can add independent operators to the same precedence level.
Fixity declarations in one scope override any fixity declarations of the same operator from
enclosing scopes.

One disadvantage of SML’s approach is that is supports only 10 levels of precedence. It is not
possible to add a new operator that is higher precedence than some operator already defined at level
9, nor is it possible to squeeze a new operator in between operators at adjacent levels. Finally, all
operators at one level bind tighter than all operators at lower levels, even if the programmer might
have preferred that expressions mixing operators from completely different applications be
explicitly parenthesized, for readability.

2.8.2 Precedence and Associativity Declarations in Diesel

Diesel allows the precedence and associativity of infix operators to be specified by programmers
through precedence declarations. The syntax of these declarations is as follows:
pr ec_decl : : = “ pr ecedence” op_names [associ at i v i t y] { pr ecedence} “ ; ”

associ at i v i t y : : = “ l ef t _associ at i ve” | “ r i ght _associ at i ve” | “ non_associ at i ve”

pr ecedence : : = “ bel ow” op_names | “ above” op_names | “ wi t h” op_names

op_names : : = op_name { “ , ” op_name }

For example, the following declarations might appear as part of the standard Diesel library:
pr ecedence * * r i ght _associ at i ve; -- exponentiation

pr ecedence * , / l ef t _associ at i ve bel ow * * above +;

pr ecedence +, - l ef t _associ at i ve bel ow * above =;

pr ecedence =, ! =, <, <=, >=, > non_associ at i ve bel ow * above;

pr ecedence & l ef t _associ at i ve bel ow = above | ;

pr ecedence | l ef t _associ at i ve bel ow &;

pr ecedence % wi t h * ;

pr ecedence ! l ef t _associ at i ve above =; -- array indexing

By default, an infix operator has its own unique precedence, unrelated to the precedence of any
other infix operator, and is non-associative. Expressions mixing operators of unrelated precedences
or multiple sequential occurrences of an operator that is non-associative must be explicitly
parenthesized.

32

The effect of a precedence declaration is to declare the relationship of the precedences of several
binary operators and/or to specify the associativity of a binary operator. Like SML, the information
provided by a precedence declaration is used during the scope of the declaration, and declarations
of the same operator at one scope override any from an enclosing scope. Two precedence
declarations cannot define the precedence of the same operator in the same scope.

A precedence declaration of the form
pr ecedence bin-op1, . . . , bin-opn

associativity
bel ow bin-opB1, . . . , bin-opBn
above bin-opA1, . . . , bin-opAn
wi t h bin-opW1, . . . , bin-opWn;

declares that all the bin-opi belong to the same precedence group, and that this group is less tightly
binding than the precedence groups of any of the bin-opBi and more tightly binding than those of
the bin-opAi. If any bin-opWi are provided, then the bin-opi belong to the same precedence group
as the bin-opWi; all the bin-opWi must already belong to the same precedence group. Otherwise, the
bin-opi form a new precedence group. The associativity of the bin-opi is as specified by
associativity, if present. If absent, then the associativity of the bin-opi is the same as the bin-opWi,
if provided, and non-associative otherwise. As illustrated by the example above, the ordering of
two precedence groups may be redundantly specified. Cycles in the tighter-binding-than relation
on precedence groups are not allowed. All operators in the same precedence group must have the
same associativity.

Taken together, precedence declarations form a partial order on groups of infix operators.
Parentheses may be omitted if adjacent infix operators are ordered according to the precedence
declarations, or if adjacent infix operators are from the same precedence group and the precedence
group has either left- or right-associativity. Otherwise, parentheses must be included. For example,
in the expression

v ! (i + 1) < (v ! i) + 1

the parentheses around i +1 and v! i are required, since ! and + are not ordered by the above
precedence declarations. However, both ! and + are more tightly binding than <, so no additional
parentheses are required.

In Diesel, a declaration is visible throughout its scope, including textually earlier code within the
scope. This applies to precedence declarations as well, somewhat complicating parsing. The
implementation strategy used in the UW Diesel system parses expressions involving binary
operators into a list of operators and operands, and these lists are converted into a traditional parse
tree form only after all visible declarations have been processed.

Precedence declarations apply to infix message names, not to particular functions. All message
send expressions in the scope of a given precedence declaration follow that declaration’s
properties.*

2.9 Method Lookup

This section details the semantics of multi-method lookup, beginning with a discussion of the
motivations and assumptions that led to the semantics.

* In the current UW Diesel implementation, all precedence declarations are considered to have global scope, no matter
what scope they are actually written in.

33

2.9.1 Philosophy

All computation in Diesel is accomplished by sending messages to objects. The lion’s share of the
semantics of message passing specifies method lookup, and these method lookup rules typically
reduce to defining a search of the inheritance graph. In single inheritance languages, method
lookup is straightforward. Some object-oriented languages, including Diesel, support multiple
inheritance to allow more flexible forms of code inheritance and/or subtyping. However, multiple
inheritance introduces the possibility of ambiguity during method lookup: two methods with the
same name may be inherited along different paths, thus forcing either the system or the
programmer to determine which method to run or how to run the two methods in combination.
Multiple dispatching introduces a similar potential ambiguity even in the absence of multiple
inheritance, since two methods with differing argument specializers could both be applicable but
neither be uniformly more specific than the other. Consequently, the key distinguishing
characteristic of method lookup in a language with multiple inheritance and/or multiple
dispatching is how exactly this ambiguity problem is resolved.

Some languages resolve all ambiguities automatically. For example, Flavors [Moon 86] linearizes
the class hierarchy, producing a total ordering on classes, derived from each class’ local left-to-
right ordering of superclasses, that can be searched without ambiguity just as in the single
inheritance case. However, linearization can produce unexpected method lookup results, especially
if the program contains errors [Snyder 86]. CommonLoops [Bobrow et al. 86] and CLOS extend
this linearization approach to multi-methods, totally ordering multi-methods by prioritizing
argument position, with earlier argument positions completely dominating later argument
positions. Again, this removes the possibility of run-time ambiguities, at the cost of automatically
resolving ambiguities that may be the result of programming errors.

Diesel takes a different view on ambiguity, motivated by several assumptions:

• We expect programmers will sometimes make mistakes during program development. The
language should help identify these mistakes rather than mask or misinterpret them.

• Our experience leads us to believe that programming errors that are hidden by such automatic
language mechanisms are some of the most difficult and time-consuming to find.

• Our experience also encourages us to strive for the simplest possible inheritance rules that are
adequate. Even apparently straightforward extensions can have subtle interactions that make
the extensions difficult to understand and use [Chambers et al. 91].

• Complex inheritance patterns can hinder future program evolution, since method lookup can
depend on program details such as parent ordering and argument ordering, and it usually is
unclear from the program text which details are important for a particular application.

Accordingly, we have striven for a very simple system of multiple inheritance and multiple
dispatching for Diesel.

2.9.2 Semantics

Method lookup in Diesel uses a form of Touretzky’s inferential distance heuristic [Touretzky 86],
summarized as “children override parents.” The method lookup rules interpret a program’s

34

inheritance graph as a partial ordering on objects and classes, where being lesser in the partial order
corresponds to being more specific: an object or class A is less than (more specific than) another
object or class B in the partial order if and only if A is a proper descendant of B. This ordering on
objects and classes in turn induces an analogous ordering on a function’s set of methods specialized
on the objects and classes, reflecting which of a function’s methods override which other methods.
In the partial ordering on methods in a function (including the implicit unspecialized method if the
function’s declaration includes a body), one method M is less than (more specific than) another
method N if and only if each of the argument specializers of M is equal to or less than (more specific
than) the corresponding argument specializer of N (a specialized argument is strictly more specific
than an unspecialized argument). Since two methods cannot have the same argument specializers,
at least one argument specializer of M must be strictly less than (more specific than) the
corresponding specializer of N. The ordering on methods is only partial since ambiguities are
possible.

Given the partial ordering on methods, method lookup is straightforward. For a particular message
send, the system locates the lexically nearest function declaration with the same name and number
of arguments as the message. The system then computes the partial ordering of methods in this
function. The system then throws out of the ordering any method that has an argument specializer
that is not equal to or an ancestor of the corresponding actual argument object passed in the
message; such a method is not applicable to the actual call. Finally, the system attempts to locate
the single most-specific method remaining, i.e., the sole method that is least in the partial order
over applicable methods. If no methods are applicable, then the system reports a “message not
understood” error. If more than one method is applicable, but there is no single method that is more
specific than all other applicable methods, then the system reports a “message ambiguous” error.
Otherwise, there is exactly one method that is applicable and strictly more specific than all other
applicable methods, and this method is returned as the result of the message lookup.

2.9.3 Examples

For example, consider the following inheritance graph (containing only singly-dispatched methods
for the moment):

m1(i@A)
m2(j@A)

m3(k@AC)
m3(k@AB) m2(j@AC)

m1(i@ABC)

A

AB

ABC

AC

35

The partial ordering on classes in this graph defines ABC to be more specific than either AB or AC,
and both AB and AC are more specific than A. Thus, methods defined for ABC will be more specific
(will override) methods defined in A, AB, and AC, and methods defined in either AB or AC will be
more specific (will override) methods defined in A. The AB and AC classes are mutually unordered,
and so any methods defined for both AB and AC will be unordered.

If the message m1 is sent to the ABC class, both the implementation of m1 whose formal argument
is specialized on the ABC class and the implementation of m1 specialized on A will apply, but the
method specialized on ABC will be more specific than the one specialized on A (since ABC is more
specific than A), and so ABC’s m1 will be chosen. If instead the m1 message were sent to the AB
class, then the version of m1 specialized on the A class would be chosen; the version of m1
specialized on ABC would be too specific and so would not apply.

If the m2 message is sent to ABC, then both the version of m2 whose formal argument is specialized
on A and the one whose formal is specialized on AC apply. But the partial ordering places the AC
class ahead of the A class, and so AC’s version of m2 is selected.

If the m3 message is sent to ABC, then both AB’s and AC’s versions of m3 apply. Neither AB nor
AC is the single most-specific class, however; the two classes are mutually incomparable. Since the
system cannot select an implementation of m3 automatically without having a good chance of
being wrong and so introducing a subtle bug, the system therefore reports an ambiguous message
error. The programmer then is responsible for resolving the ambiguity explicitly, typically by
writing an overriding method in the ABC subclass which resends the message to a particular
ancestor; resends are described in section 2.10. Sends of m3 to either AB or AC would be
unambiguous, since the other method would not apply.

To illustrate these rules in the presence of multi-methods, consider the following inheritance graph
(methods dispatched on two arguments are shown twice in this picture):

m1(i@A, j@X)
m1(i@A, j@XZ)

m2(j@AB, k) m6(i@AC, j)

m4(k@ABC, l@X)

A

AB

ABC

AC

m1(i@A, j@X)
m4(k@ABC, l@X)

m5(n@A, p@XZ)
m3(j@AB, k@XY) m1(i@A, j@XZ)

m6(i, j@XYZ)

X

XY

XYZ

XZ

m2(j@A, k)
m5(n@A, p@XZ)

m3(j@AB, k)
m3(j@AB, k@XY)
m5(n@AB, p@X)

m5(n@AB, p@X)

36

Methods m1 in A and m3 in AB illustrate that multiple methods with the same name and number of
arguments may be associated with (specialized on) the same class, as long as some other arguments
are specialized differently. The following table reports the results of several message sends using
this inheritance graph.

2.9.4 Strengths and Limitations

The partial ordering view of multiple inheritance has several desirable properties:

• It is simple. It implements the intuitive rule that children override their parents (they are lesser
in the partial ordering), but does not otherwise order parents or count inheritance links or
invoke other sorts of complicated rules.

• Ambiguities are not masked. These ambiguities are reported back to the programmer at
message lookup time before the error can get hidden. If the programmer has included static type
declarations, the system will report the ambiguity at type-check-time.

• This form of multiple inheritance is robust under programming changes. Programmers can
change programs fairly easily, and the system will report any ambiguities which may arise
because of programming errors. More complex inheritance rules tend to be more brittle,
possibly hindering changes to programs that exploit the intricacies of the inheritance rules and
hiding ambiguities that reflect programming errors.

• Diesel’s partial ordering view of multiple inheritance does not transform the inheritance graph
prior to determining method lookup, as does linearization. This allows programmers to reason
about method lookup using the same inheritance graph that they use to write their programs.

Of course, there may be times when having a priority ordering over parents or over argument
positions would resolve an ambiguity automatically with no fuss. For these situations, it might be
nice to be able to inform the system about such preferences. An early version of Self included a
prioritized multiple inheritance strategy that blended ordered and unordered inheritance, but it had
some undesirable properties (such as sometimes preferring a method in an ancestor to one in a
child) and interacted poorly with resends and dynamic inheritance. More recent versions of Self
have greatly simplified multiple inheritance semantics, dropping prioritized inheritance. These
semantics are similar to Diesel’s, except that Self omits the “children-override-parents” global rule.

message invoked method or error explanation

m1(ABC, XYZ) m1(i@A, j@XZ) XZ overrides X

m2(ABC, XYZ) m2(j@AB, k) AB overrides A

m3(ABC, XYZ) m3(j@AB, k@XY) XY overrides unspecialized

m4(AB, XY) “message not understood” ABC too specific for AB � no applicable method

m5(ABC, XYZ) “message ambiguous” AB overrides A but XZ overrides X �
no single most-specific applicable method

m6(ABC, XYZ) “message ambiguous” AC overrides unspecialized but XYZ overrides
unspecialized � no single most-specific method

37

This has the effect of declaring as ambiguous messages such as m2(ABC) in the first example in
section 2.9.3. It may be that Diesel could support something akin to prioritized multiple inheritance
(and perhaps even a prioritized argument list), but use these preferences as a last resort to resolving
ambiguities; only if ambiguities remain after favoring children over parents would preferences on
parents or argument position be considered. Such as design appears to have fewer drawbacks than
the early Self approach or CLOS’s approach while gaining most of the benefits.

An alternative approach might be to support explicit declarations that one method is intended to
override another method. These declarations would add relations to the partial order over methods,
potentially resolving ambiguities. This approach has the advantage that it operates directly on the
method overriding relationship rather than on parent order or the like which only indirectly affects
method overriding relationships. Moreover, this approach can only resolve existing ambiguities,
not change any existing overriding relationships, thereby making it easier to reason about the
results of method lookup. To implement this approach, a mechanism for naming particular methods
(e.g., the method’s name and its specializers) must be added.

discuss traits, Java’s MI , and other more modern things

2.9.5 Multiple Inheritance of Fields

In other languages with multiple inheritance, in addition to the possibility of name clashes for
methods, the possibility exists for name clashes for instance variables. Some languages maintain
separate copies of instance variables inherited from different classes, while other languages merge
like-named instance variables together in the subclass. The situation is simpler in Diesel, since all
access to instance variables is through field accessor methods. Each field and field method
declaration introduces its own internal storage table, separate from all other fields’ , and so distinct
fields with the same name are not merged automatically. Accesses to these fields are mediated by
their accessor methods, and the normal multiple inheritance rules are used to resolve any
ambiguities among like-named field accessor methods.

2.9.6 Cyclic Inheritance

In the current version of Diesel, inheritance is required to be acyclic. However, cycles in the
inheritance graph would be easy to allow. Instead of defining a partial order over classes,
inheritance would define a preorder, where all classes participating in a cycle are considered to
inherit from all other classes in the cycle, but not be strictly more specific than any of them. This
preorder on classes would induce a corresponding preorder on methods. The same rules for
successful method lookup still apply: a single most-specific applicable method must be found. If
two methods are in a cycle in the method specificity preorder, then neither is more specific than the
other. In effect, classes can participate in inheritance cycles if they define disjoint sets of methods.
This design of “mutually-recursive” classes could be used to factor a single large class into multiple
separate classes, each implementing a separate facet of the original class’s implementation.

2.9.7 Method Invocation

If method lookup is successful in locating a single target method without error, the method is
invoked. A new activation record is created, formals in the new scope are initialized with actuals,

38

the statements within the body of the method are executed in the context of this new activation
record (or the primitive method is executed, or the field accessor method is executed), the result of
the method (possibly voi d) is computed, and the result is either returned normally back to the
called or returned non-locally to the caller of the (eval) method’s lexically enclosing non-nested
method.

2.10 Resends

Most object-oriented languages allow one method to override another method while preserving the
ability of the overriding method to invoke the overridden version: Smalltalk-80 and Java have
super , C# has base, CLOS has cal l - next - met hod, C++ has qualified messages using the
: : operator, Trellis has qualified messages using the ’ operator, and Self has undirected and
directed r esend (integrating unqualified super -like messages and qualified messages). Such a
facility allows a method to be defined as an incremental extension of an existing method by
overriding it with a new definition and invoking the overridden method as part of the
implementation of the overriding method. This same facility also allows ambiguities in message
lookup to be resolved by explicitly forwarding the message to a particular ancestor.

Diesel includes a construct for resending messages that adapts the Self undirected and directed
resend model to the multiply-dispatched case. The syntax for a resend is as follows:

r esend : : = “ r esend” [“ (” r esend_ar gs “) ”]

r esend_ar gs : : = r esend_ar g { “ , ” r esend_ar g }

r esend_ar g : : = expr corresponding formal of sender must be
 unspecialized

| name undirected resend
| name “ @” c l ass_r ef directed resend

The purpose of the resend construct is to allow a method to invoke one of the methods (including
the implicit method derived from a f un declaration with a body) that the resending method
overrides. Consequently, only methods in the same function (which have the same name and
number of arguments as the resending method) whose argument specializers are ancestors of the
resending method’s argument specializers are considered possible targets of a resend; there is no
facility for invoking a method in a different function other than regular dynamically dispatched
message sending.

To invoke an overridden method, the normal prefix message sending syntax is used but with the
following changes and restrictions:

• Syntactically, the name of the message is the keyword r esend; semantically, the name of the
message is implicitly the same as the name of the resending method.

• The number of arguments to the message must be the same as for the resending method.

• All specialized formal arguments of the resending method must be passed through unchanged
as the corresponding arguments to the resend.

As a syntactic convenience, if all formals of the sender are passed through as arguments to the
resend unchanged, then the simple r esend keyword without an argument list is sufficient.

39

The semantics of a resent message are similar to a normal message, except that only methods that
are greater than (less specific than) the resending method in the partial order over methods are
considered possible matches; this has the effect of “searching upwards” in the inheritance graph to
find the single most-specific method that the resending method overrides. The restrictions on the
name, on the number of arguments, and on passing specialized objects through unchanged ensure
that the methods considered as candidates are all applicable to the name and arguments of the
resend. Single-dispatching languages often have similar restrictions: Smalltalk-80 requires that the
implicit sel f argument be passed through unchanged with the super send, and CLOS’s cal l -
next - met hod uses the same name and arguments as the calling method.

For example, the following illustrates how a resend may be used to provide an incremental
extension to an existing method:

cl ass Col or edRect angl e i sa Rect angl e;

f i el d col or (: Col or edRect angl e) ;

met hod dr aw(r @Col or edRect angl e, d: Di spl ay) : voi d {
d. col or : = r . col or ; -- set the right color for this rectangle
r esend; -- do the normal rectangle drawing; sugar for resend(r, d)

}

Resends may also be used to explicitly resolve ambiguities in method lookup by filtering out
undesired methods. Any of the required arguments to a resend (those that are specialized formals
of the resending method) may be suffixed with the @ symbol and the name of an ancestor of the
corresponding formal’s specializer. This further restricts methods considered in the resulting
partial order to be those whose corresponding argument specializers (if present) are equal to or
ancestors of the class named as part of the resend.

To illustrate, the following method resolves the ambiguity of ar ea for Squar e in favor of the
Rect angl e version:

abst r act c l ass Shape;

f un ar ea(: Shape) : num;

cl ass Rect angl e i sa Shape;

met hod ar ea(r @Rect angl e) : num { r . wi dt h * r . hei ght }

cl ass Rhombus i sa Shape;

met hod ar ea(r @Rhombus) : num { . . . }

cl ass Squar e i sa Rect angl e, Rhombus;

met hod ar ea(s@Squar e) : num { r esend(s@Rect angl e) }

This model of undirected and directed resends is a simplification of the Self rules, extended to the
multiple dispatching case. Self ’s rules additionally support prioritized multiple inheritance and
dynamic inheritance, neither of which is present in Diesel. Self also allows the name and number
of arguments to be changed as part of the resend, and Java and C# support similar abilities. In some
cases, it appears to be useful to be able to change the name of the message as part of the resend.
This is an area of future exploration for Diesel.

As demonstrated by Self, supporting both undirected and directed resends is preferable to just
supporting directed resends as do C++ and Trellis, since the resending code does not need to be
changed if the local inheritance graph is adjusted. Since CLOS does not admit the possibility of

40

ambiguity, it need only support undirected resends (i.e., cal l - next - met hod); there is no need
for directed resends.

2.11 Predicate Classes

To enable inheritance and classes to be used to capture run-time varying object behavior, Diesel
supports predicate classes [Chambers 93b]. The syntax for a predicate class declaration is as
follows:

pr edi cat e_decl : : = “ pr edi cat e” name [“ i sa” c l ass_r ef s] [“ when” expr]
{ pr agma} “ ; ”

(Additional declarations related to type-checking in the presence of predicate classes are described
in section 3.4.4.)

Predicate class declarations are similar to normal class declarations except that they optionally can
specify an associated predicate expression. Like regular classes, methods can specialize on
predicate classes. However, a predicate class is never instantiated explicitly. Instead, the system
implicitly treats an object as being an instance of (i.e., inherits from) a predicate class whenever the
object is already an instance of the predicate class’s superclasses and (if present) evaluating the
predicate expression on the object returns true.

Predicate classes allow a form of state-based dynamic classification of objects, enabling better
factoring of code using declarative methods in place of imperative nested conditionals. Also,
predicate classes and multi-methods allow a pattern-matching style to be used to implement
cooperating methods.

For example, predicate classes could be used to implement a bounded buffer of integers:

cl ass buf f er i sa col l ect i on[i nt] ;

f i el d el ement s(b: buf f er) : queue[i nt] { new_queue[i nt] () }

f i el d max_si ze(b: buf f er) : i nt ; -- the bound on the buffer size

f un l engt h(b: buf f er) : i nt { b. el ement s. l engt h } -- number of current elements

f un i s_empt y(b: buf f er) : bool { b. l engt h = 0 }
f un i s_f ul l (b: buf f er) : bool { b. l engt h = b. max_si ze }

f un get (b: buf f er) : i nt ; -- implemented below
f un put (b: buf f er , v : i nt) : voi d; -- implemented below

pr edi cat e empt y_buf f er i sa buf f er when buf f er . i s_empt y;

met hod get (b@empt y_buf f er) : i nt { . . . } -- raise error or block caller

pr edi cat e non_empt y_buf f er i sa buf f er when not (buf f er . i s_empt y) ;

met hod get (b@non_empt y_buf f er) : i nt { dequeue(b. el ement s) }

pr edi cat e f ul l _buf f er i sa buf f er when buf f er . i s_f ul l ;

met hod put (b@f ul l _buf f er , x : i nt) : voi d { . . . } -- raise error or block caller

pr edi cat e non_f ul l _buf f er i sa buf f er when not (buf f er . i s_f ul l) ;

met hod put (b@non_f ul l _buf f er , x : i nt) : voi d { enqueue(b. el ement s, x) ; }

41

pr edi cat e par t i al l y_f ul l _buf f er i sa non_empt y_buf f er , non_f ul l _buf f er ;

The following diagram illustrates the inheritance hierarchy created by this example (the explicit
inheritance link from the buffer object to buf f er is omitted):

Predicate classes increase expressiveness for this example in two ways. First, important states of
bounded buffers, e.g., empty and full states, are explicitly identified in the program and named.
Besides documenting the important conditions of a bounded buffer, the predicate classes remind
the programmer of the special situations that code must handle. This can be particularly useful
during maintenance phases as code is later extended with new functionality. Second, attaching
methods directly to states supports better factoring of code and eliminates i f and case
statements, much as does distributing methods among classes in a traditional object-oriented
language. In the absence of predicate classes, a method whose behavior depended on the state of
an argument object would include an i f or case statement to identify and branch to the
appropriate case; predicate classes eliminate the clutter of these tests and clearly separate the code
for each case. In a more complete example, several methods might be associated with each special
state of the buffer. By factoring the code, separating out all the code associated with a particular
state or behavior mode, we hope to improve the readability and maintainability of the code. Thus,
predicate classes provide a good way to implement the Strategy design pattern [ref].

2.11.1 Predicate Classes and Inheritance

For normal objects, an object is an instance of (i.e., inherits from) a class exactly when the
relationship is defined explicitly by the programmer, and the relationship never changes at run-
time. Predicate classes, on the other hand, support a form of automatic property-based
classification: an object O is automatically considered to inherit from a predicate class P exactly
when the following two conditions are satisfied:

• the object O inherits from each of the superclasses of the predicate class P, and

• the predicate expression of the predicate class P evaluates to true, when evaluated in a scope
where each of the names of the predicate class’s superclasses is bound to the object O.

By evaluating the predicate expression in a context where the superclass names refer to the object
being tested, the predicate expression can query the value or state of the object.

Since the state of an object can change over time (e.g., an object’s fields can be mutable), the results
of predicate expressions evaluated on the object can change. If this happens, the system will

buffer

a buffer object

or

non_empty_buffer non_full_buffer full_bufferempty_buffer

partially_full_buffer

42

automatically reclassify the object, recomputing its implicit inheritance links. For example, when
a buffer object becomes full, the predicates associated with the non_f ul l _buf f er and
f ul l _buf f er predicate classes both change, and the inheritance graph of the buffer object is
updated. As a result, different methods may be used to respond to messages, such as the put
message in the filled buffer example. Predicate expressions are evaluated lazily as part of method
lookup, rather than eagerly as the state of an object changes. Only when the value of some predicate
expression is needed to determine the outcome of method lookup is the predicate evaluated. A
separate paper describes efficient implementation schemes for predicate classes [Chambers 93b].

Because whether an object is classified as being an instance of a predicate class can change over
time, predicate classes cannot be used as static types. This precludes a function being declared that
specifies a predicate class as an argument type. A method in a function can specialize on a predicate
class, but the function itself must be declared to accept a non-predicate superclass of the predicate
class, and the typechecker will require that the function be implemented for all possible run-time
states of instances of the non-predicate superclass.

A predicate class can inherit from another predicate class, thus acting as a special case of the
predicate superclass. This is because an object will only be classified as an instance of the predicate
subclass when it already has been classified as an instance of the predicate superclass. In essence,
the superclass’s predicate expression is implicitly conjoined with the subclass’s predicate
expression. A non-predicate class also may inherit explicitly from a predicate class, with the
implication that the predicate expression will always evaluate to true for the child object; the
system verifies this assertion dynamically. For example, an unbounded buffer object might inherit
explicitly from the non_f ul l _buf f er predicate class.

A predicate class need not have a when clause, as illustrated by the
par t i al l y_f ul l _buf f er predicate class defined above. Such a predicate class may still
depend on a run-time condition if at least one of its superclasses is a predicate class. In the above
example, the par t i al l y_f ul l _buf f er predicate class has no explicit predicate expression,
yet since an object only inherits from par t i al l y_f ul l _buf f er whenever it already inherits
from both non_empt y_buf f er and non_f ul l _buf f er , the par t i al l y_f ul l _buf f er
predicate class effectively repeats the conjunction of the predicate expressions of its parents, in this
case that the buffer be neither empty nor full.

Predicate classes are intended to interact well with normal inheritance among data abstractions. If
an abstraction is implemented by inheriting from some other implementation, any predicate classes
that specialize the parent implementation will automatically specialize the child implementation
whenever it is in the appropriate state. For example, a new implementation of bounded buffers
could be built that used a fixed-length array with insert and remove positions that cycle around the
array:*

cl ass c i r cul ar _buf f er i sa buf f er ;

* This implementation ignores the buffer’s el ement s field. In practice a more efficient implementation would break
up buf f er into an abstract superclass and two concrete subclasses, one for the queue-based implementation and one
for the circular array implementation.

43

f i el d ar r ay(b: c i r cul ar _buf f er) : vect or [i nt] { -- a fixed-length array of elements
new_vect or [i nt] (b. max_si ze) }

var f i el d i nser t _pos(b: c i r cul ar _buf f er) : i nt { 0 } -- an index into the array
var f i el d r emove_pos(b: c i r cul ar _buf f er) : i nt { 0 } -- another index

met hod l engt h(b@ci r cul ar _buf f er) {
(b. i nser t _pos - b. r emove_pos) % b. ar r ay. l engt h }

pr edi cat e non_empt y_ci r cul ar _buf f er i sa ci r cul ar _buf f er , non_empt y_buf f er ;

met hod get (b@non_empt y_ci r cul ar _buf f er) : i nt {
l et x : = f et ch(b. ar r ay, b. r emove_pos) ;
b. r emove_pos : = (b. r emove_pos + 1) % b. ar r ay. l engt h;
x }

pr edi cat e non_f ul l _ci r cul ar _buf f er i sa ci r cul ar _buf f er , non_f ul l _buf f er ;

met hod put (b@non_f ul l _ci r cul ar _buf f er , x : i nt) : voi d {
st or e(b. ar r ay, b. i nser t _pos, x) ;
b. i nser t _pos : = (b. i nser t _pos + 1) % b. ar r ay. l engt h; }

The following diagram illustrates the extended inheritance graph for bounded and circular buffers
(the par t i al l y_f ul l _buf f er predicate class is omitted):

Since the ci r cul ar _buf f er class inherits from the original buf f er class, a
ci r cul ar _buf f er instance will automatically inherit from the empt y_buf f er or
f ul l _buf f er predicate class whenever the ci r cul ar _buf f er happens to be in one of those
states. No empt y_ci r cul ar _buf f er or f ul l _ci r cul ar _buf f er classes need to be
implemented if specialized behavior is not needed. The non_empt y_ci r cul ar _buf f er and
non_f ul l _ci r cul ar _buf f er predicate classes are needed to override the default get and
put methods in the non-blocking states. Any object that inherits from ci r cul ar _buf f er and
that also satisfies the predicate associated with non_empt y_buf f er will automatically be
classified as a non_empt y_ci r cul ar _buf f er .

An interesting semantic question is which superclasses of an object should be classified as
implicitly inheriting from (and therefore overriding) an otherwise unrelated predicate class. For
example, in the diagram above, what inheritance relationship (if any) should exist between

circular_buffer

buffer

non_empty_buffer non_full_buffer full_bufferempty_buffer

or

non_full_circular_buffernon_empty_circular_buffer

a circular buffer object

or

44

ci r cul ar _buf f er and empt y_buf f er with respect some some empty circular buffer
object? A number of plausible alternatives exist. One simple choice would say that there is no
relationship, and so methods in the same function defined on ci r cul ar _buf f er and
empt y_buf f er would be mutually ambiguous.

A second alternative would consider ci r cul ar _buf f er to implicitly inherit from
empt y_buf f er , and in general a non-predicate class would implicitly inherit from any “cousin”
predicate class.* This semantics would allow a regular class to gain control over the
implementation choices of its superclasses, including any of their predicate subclasses. Diesel uses
this second semantics.

A third alternative would reverse this decision, and have predicate classes implicitly inherit from
“cousin” regular classes. This semantics treats division of an object’s implementation into
predicates as a “sticky” property, preserved through inheritance. Under this semantics, the buffer
code could be simplified somewhat, as follows:

cl ass buf f er i sa col l ect i on[i nt] ;

. . . -- elements, length, etc.

f un get (b: buf f er) : i nt { dequeue(b. el ement s) }

f un put (b: buf f er , v : i nt) : voi d { enqueue(b. el ement s, x) ; }

pr edi cat e empt y_buf f er i sa buf f er when buf f er . i s_empt y;

met hod get (b@empt y_buf f er) { . . . } -- raise error or block caller

pr edi cat e f ul l _buf f er i sa buf f er when buf f er . i s_f ul l ;

met hod put (b@f ul l _buf f er , x) { . . . } -- raise error or block caller

cl ass c i r cul ar _buf f er i sa buf f er ;

. . . -- array, insert_pos, length, etc.

met hod get (b@ci r cul ar _buf f er) : i nt {
var x : = f et ch(b. ar r ay, b. r emove_pos) ;
b. r emove_pos : = (b. r emove_pos + 1) % b. ar r ay. l engt h;
x }

met hod put (b@ci r cul ar _buf f er , x : i nt) : voi d {
st or e(b. ar r ay, b. i nser t _pos, x) ;
b. i nser t _pos : = (b. i nser t _pos + 1) % b. ar r ay. l engt h; }

The non-blocking versions of get and put could be associated with the buf f er class directly,
and the non_empt y_buf f er , non_f ul l _buf f er , and par t i al l y_f ul l _buf f er
predicate subclasses could be removed (if desired). The non-blocking get and put routines for
circular buffers could similarly be moved up to the ci r cul ar _buf f er class itself, with the
non_empt y_ci r cul ar _buf f er and non_f ul l _ci r cul ar _buf f er predicate
subclasses being removed also. If the methods attached to the empt y_buf f er object were
considered to override those of the ci r cul ar _buf f er object, then sending get to a circular
buffer that was empty would (correctly) invoke the empt y_buf f er implementation. In the

* One class is a cousin of another if they share a common superclass but are otherwise unrelated.

45

current semantics of predicate classes in Diesel, however, the ci r cul ar _buf f er ’s
implementation of get overrides empt y_buf f er ’s, leading to an error.

2.11.2 Predicate Classes and Field Methods

Just as with other methods, field methods may specialize on a predicate class. Since a field method
semantically allocates an internal storage table to hold the value of the field for each object
inheriting the accessor (either per-object or shared), declaring a field method on a predicate class
has the effect of reserving space for the field in any object that might be classified as an instance
of the predicate class. The value stored in the field persists even when the field is inaccessible.
When an object is created, an initial value may be provided for any fields potentially inherited from
a predicate superclass, even if those fields may not be visible in the newly-created object. The
semantics of accessing a field attached to a predicate class is governed by the semantics of
accessing its corresponding accessor methods.

The following example exploits this semantics to implement a graphical window object that can be
either expanded or iconified. Each of the two important states of the window remembers its own
independent screen location and visual image (using distinct field methods in the posi t i on and
i mage functions), and this data persists across openings and closings of the window:

cl ass Wi ndow;

var f i el d i coni f i ed(: Wi ndow) : bool { f al se }

f un posi t i on(: Wi ndow) : Poi nt ;
f un set _posi t i on(: Wi ndow, : Poi nt) : voi d;

f un i mage(: Wi ndow) : I mage;

f un di spl ay(w: Wi ndow) : voi d {
Scr een. dr aw(w. i mage, w. posi t i on) ; }

f un er ase(w: Wi ndow) : voi d {
Scr een. c l ear (s i ze(w. i mage) , w. posi t i on) ; }

f un move(w: Wi ndow, new_posi t i on: Poi nt) : voi d {
w. er ase; w. posi t i on : = new_posi t i on; w. di spl ay; }

f un i coni f y(w: Wi ndow) : voi d {
w. er ase; w. i coni f i ed : = t r ue; w. di spl ay; }

f un expand(w: Wi ndow) : voi d {
w. er ase; w. i coni f i ed : = f al se; w. di spl ay; }

pr edi cat e ExpandedWi ndow i sa Wi ndow when not (Wi ndow. i coni f i ed) ;

var f i el d met hod posi t i on(@ExpandedWi ndow) : Poi nt ;

f i el d met hod i mage(@ExpandedWi ndow) : Text ; -- Text subtypes Image

met hod expand(w@ExpandedWi ndow) : voi d { } -- override to be a no-op

pr edi cat e I coni f i edWi ndow i sa Wi ndow when Wi ndow. i coni f i ed;

var f i el d met hod posi t i on(@I coni f i edWi ndow) : Poi nt ;

f i el d met hod i mage(@I coni f i edWi ndow) : I con; -- Icon subtypes Image

met hod i coni f y(w@I coni f i edWi ndow) : voi d { } -- override to be a no-op

f un cr eat e_wi ndow(open_posi t i on: Poi nt , i coni f i ed_posi t i on: Poi nt ,
t ext : Text , i con: I con) : Wi ndow {

new Wi ndow {

46

i coni f i ed : = f al se,
posi t i on@ExpandedWi ndow : = open_posi t i on,
posi t i on@I coni f i edWi ndow : = i coni f i ed_posi t i on,
i mage@ExpandedWi ndow : = t ext ,
i mage@I coni f i edWi ndow : = i con } }

A Wi ndow object has two posi t i on field methods, each storing a Poi nt object, but only one
is visible at a time. This allows the di spl ay, er ase, and move routines to send the message
posi t i on as part of their implementations, without needing to know whether the window is open
or closed. The cr eat e_wi ndow method initializes both posi t i on fields when the window is
created, even though the position of the icon is not visible initially. The posi t i on@class notation
used in the field initialization resolves the ambiguity between the two posi t i on field methods.
The i mage field methods are handled similarly.

Just as a function declaration cannot have a predicate class as an argument type, so a field
declaration cannot have a predicate class as its argument type, since the field declaration implicitly
introduces a function declaration. Field method declarations can legally specialize on a predicate
class, however, as shown above.

2.12 Primitive Declarations

Declarations written in an external language may be included at top-level using a primitive
declaration:

pr i m_decl : : = pr i m_body “ ; ”

This construct allows declarations from other languages to be included outside of any compiled
routines. Primitive declarations can be used to include external-language global declarations, such
as C++ #i ncl ude directives, which may be used by later primitive functions in the same file. The
detailed semantics of this construct are implementation-specific.

2.13 Pragmas

Pragmas can be used by the Diesel programmer to provide additional information and
implementation directives to the Diesel implementation. The set of recognized pragmas and their
interpretation is implementation-dependent.

Pragmas are written as follows:

pr agma : : = “ (* * ” expr s “ * *) ”

The body of a pragma uses the syntax of a Diesel expression, but its interpretation is different (and
implementation-dependent).

Pragmas serve a similar role as annotations in C# and Java.

47

3 Static Types

Diesel supports a static type system which is layered on top of the dynamically-typed core
language described in section 2. This section describes Diesel’s static type system in the absence
of parameterization; section 4 extends this section to cope with parameterized classes and
functions. Section 3.1 presents the major goals for the type system. Section 3.2 presents the overall
model of types and signatures, and section 3.3 describes the kinds of types that can be expressed
in Diesel. Sections 3.4, 3.5, and 3.4.4 detail the type-checking rules for the language. Section 3.6
describes how the language supports mixed statically- and dynamically-typed code.

3.1 Goals

Static type systems historically have addressed many concerns, ranging from program verification
to improved run-time efficiency. Often these goals conflict with other goals of the type system or
of the language, such as the conflict between type systems designed to improve efficiency and type
systems designed to allow full reusability of statically-typed code.

The Diesel type system is intended to provide the programmer with extra support in two areas:
machine-checkable documentation and early detection of some kinds of programming errors. The
first goal is addressed by allowing the programmer to annotate variable declarations, function
arguments, and function results with explicit type declarations. These declarations help to
document the interfaces to abstractions, and the system can ensure that the documentation does not
become out-of-date with respect to the code it is documenting. (Type inference may be useful as a
programming environment tool for introducing explicit type declarations into untyped programs.)

The Diesel type system also is intended to help detect programming errors at program definition
time rather than later at run-time. These statically-detected errors include “message not
understood” and “message ambiguous.” The type system is designed to verify that there is no
possibility of any of the above errors in programs, guaranteeing type safety but possibly reporting
errors that are not actually a problem for any particular execution of the program. To make work
on incomplete or inconsistent programs easier, type errors are considered warnings, and the
programmer always is able to run a program that contains type errors. Dynamic type checking at
run-time is the final arbiter of type safety.

Diesel’s type system is not intended to improve run-time efficiency. For object-oriented languages,
the goal of reusable code is often at odds with the goal of efficiency through static type
declarations; efficiency usually is gained by expressing additional representational constraints as
part of a type declaration that artificially limit the generality of the code. Diesel’s type system
strives for specification only of those properties of objects that affect program correctness, i.e., the
interfaces to objects, and not of how those properties are implemented. To achieve run-time
efficiency, Diesel relies on advanced implementation techniques [e.g., Dean & Chambers 94, Dean
et al. 95a, Dean et al. 95b, Grove et al. 95, Grove 95, more].

Finally, Diesel’s type system is descriptive rather than prescriptive. The semantics of a Diesel
program are determined completely by the dynamically-typed core of the program. Type
declarations serve only as documentation and partial redundancy checks; they do not influence the

48

execution behavior of programs. This is in contrast to some type systems, such as Dylan’s, where
an argument type declaration can mean a run-time type check in some contexts and act as a method
lookup specializer in other contexts.

3.2 Types and Signatures

The design of the Diesel type system is affected strongly by certain language features. Foremost of
these is the separation of classes and functions, and the support for multiple dispatching. Type
systems for single dispatching languages where methods are components of classes use types that
“contain” a list of legal operations. In Diesel, however, functions are defined separately from
classes, and methods in those functions can specialize any subset of their arguments to any classes
that descend from the function’s argument types. Consequently, types in Diesel do not “contain”
their legal operations, but instead these are specified separately via signatures.

A type in Diesel describes a set of possible objects, which are said to conform to the type. Each
non-predicate class* declaration introduces a corresponding type, called a class type, distinct from
all other types; the set of objects conforming to a class type is exactly the set of objects that are
equal to or inherit directly or indirectly from the corresponding class. One type may be a subtype
of another, meaning that all objects that conform to the subtype also conform to the supertype; the
set of objects conforming to a subtype is thus a subset of the set of objects conforming to a
supertype. Subtyping is reflexive and transitive; we say that a type is a proper subtype of another
if the first is a subtype of the second, but not vice versa. The type of a class is a proper subtype of
each of the types of the class’s superclasses. Since inheritance is acyclic, the subtyping relation
over class types forms a partial order. As described in subsection 3.3, additional sorts of types
augment the class types and the subtyping partial order.

A signature in Diesel defines an allowed invocation interface of a function, specifying a sequence
of argument types and a corresponding result type. A function can have mutliple signatures, each
of which specifies a legal way the function can be invoked. A function’s declaration generates its
first signature, and additional signatures can be generated throigh si gnat ur e declarations and
method and field method declarations having si gnat ur e annotations.

The interface of a type, i.e., the set of operations that can be performed on objects conforming to
the type, is then the set of signatures that mention that type (or a supertype) as one of their argument
types.

Types and signatures represent a contract between clients and implementors that enable function
calls and function implementations to be type-checked. The presence of a signature for a function
licenses clients to invoke that function with arguments that conform to the corresponding argument
types in the signature, and guarantees that the result of such an invocation will conform to the result
type appearing in the signature. Clients are obligated to only invoke functions in licensed ways; if
no signature is present to license a function call, the type-checker will report a “message may not
be understood” warning. Correspondingly, the presence of a signature obligates the set of methods

* Except where noted explicitly, in this section a named object is viewed as a special kind of concrete class.

49

implementing the function to validate the signature’s promises to clients. To achieve this, the
collection of methods implementing a signature must be conforming, complete, and consistent:

• Conformance implies that each method implementing a signature has unspecialized argument
types that are supertypes of the corresponding argument types of the signature and a result type
that is a subtype of the signature’s result type. Conformance is Diesel’s version of the standard
contravariance rule found in singly-dispatched statically-typed languages.

• Completeness implies that the methods must handle all possible combinations of run-time
arguments of a message declared legal by the signature.

• Consistency implies that the methods must not be ambiguous for any possible combination of
run-time arguments of a message declared legal by the signature.

Checking these properties is the subject of section 3.4.2.

In Diesel and in most other object-oriented languages, the code inheritance graph and the subtyping
graph are joined: a class is a subtype of another class if and only if it inherits from that other class.
Sometimes this constraint becomes awkward [Snyder 86], for example when a class supports the
interface of some other class or type, but does not wish to inherit any code. Other times, a class
reusing another class’s code cannot or should not be considered a subtype; covariant redefinition
as commonly occurs in Eiffel programs is one example of this case [Cook 89].

To increase flexibility and expressiveness, Diesel’s predecessor, Cecil [Chambers 92b, Chambers
93a], separates subtyping from code inheritance. In Cecil, types, subtyping, and conformance can
be declared independently of classes and inheritance. However, since in most cases the subtyping
graphs and the inheritance graphs are parallel, requiring programmers to define and maintain two
separate hierarchies would become too onerous to be practical. To simplify specification and
maintenance of the two graphs, in Cecil the programmer can specify both a type and a
representation, and the associated subtyping, conformance, and inheritance relations, with a single
declaration. Similarly, a single declaration can be used to specify both a signature and a method
implementation. explain why Diesel changed.

In Diesel, each class declaration gives rise to a distinct named class type, and one class type is a
subtype of another class type only when the first’s class inherits from the other’s. This is refered to
as nominal or by-name subtyping. Treating a subclass as a legal subtype is validated by verifying
that each signature is correctly implemented for all arguments conforming to the signature’s
argument types. An alternative approach, called structural subtyping, would use the intrinsic
properties of types, e.g., the set of operations defined on them, to implicitly decide when one type
could be treated as a subtype of another. Structural subtyping is more flexible than nominal
subtyping, but structural subtyping between class types is difficult to define, because class types
do not have intrinsic properties to compare: all their operations are specified separately through
signatures. As a result, Diesel limits subtyping between class types to explicit inheritance between
classes. Diesel does use structural subtyping for other kinds of types.

50

3.3 Type Expressions

The syntax of type expressions (excluding parameterization and module-related constructs) is as
follows:

t ype : : = l ub_t ype

l ub_t ype : : = l ub_t ype “ | ” gl b_t ype
| gl b_t ype

gl b_t ype : : = gl b_t ype “ &” s i mpl e_t ype
| s i mpl e_t ype

si mpl e_t ype : : = named_t ype
| c l osur e_t ype
| “ (” t ype “) ”

3.3.1 Named Types

Types with names can be directly named:

named_t ype : : = cl ass_r ef

The name-space for types is separate from the name-spaces for classes/objects/variables and
functions.

As explained in section 3.2, each non-predicate class and named object declaration gives rise to a
corresponding named class type. As explained in section 2.4.6, each synonym declaration
introduces a new type name.

In addition, the Diesel type system includes four special predefined types:

• The type any is implicitly a supertype of all types, thus defining the top of the type lattice. any
may be used whenever code does not require any special operations of an object.

• The type voi d is used (and may only be used) as the result type of functions, methods, and
closures that may return normally but without a useful result. As a special case, if the result
type of a function, method, or closure is voi d, then its body’s result expression is allowed to
have any (legal) type, since the client will be ignoring it. The predefined object voi d has type
voi d.

• The type none is implicitly a subtype of all other types, thus defining the bottom of the type
lattice. It is the result type of a closure that terminates with a non-local return, since such a
closure never returns to its caller. It also is the result type of the primitive l oop method, which
also never returns normally. Finally, none is an appropriate argument type for closures that
will never be called.

• The type dynami c is used to disable static type checking. Any value can be bound to a
variable of type dynami c (i.e., dynami c is a supertype of all other types), and a value of type
dynami c can be used in any context (i.e., dynami c is a subtype of all other types).*

Wherever type declarations are omitted, dynami c is implied (with the exception of closure
results and constant local variable declarations, as described in section 3.5), which supports
exploratory programming as described in section 3.6.

* Transitivity of subtyping would then mean that all types were subtypes of all types, by way of dynami c . To prevent
this while allowing dynami c to be modeled in this simple way, subtyping is not transitive through dynami c .

51

3.3.2 Closure Types

The type of a closure is described using the following syntax:

cl osur e_t ype : : = “ &” “ (” [ar g_t ypes] “) ” [t ype_decl]

ar g_t ypes : : = ar g_t ype { “ , ” ar g_t ype }

ar g_t ype : : = [[name] “ : ”] t ype

A closure type of the form

&(t1, ..., tN) : tR

describes a closure whose eval method has the signature:

si gnat ur e eval (: &(t1, ..., tN) : tR, : t1, ..., : tN) : tR

Closure types are related by implicit structural subtyping rules that reflect standard contravariant
subtyping: a closure type of the form &(t1, ..., tN) : tR is a subtype of a closure type of the form
&(s1, ..., sN) : sR iff each ti is a supertype of the corresponding si and tR is a subtype of sR.

3.3.3 Least-Upper-Bound Types

The least upper bound of two types, type1 | type2, is a supertype of both type1 and type2, and a
subtype of all types that are supertypes of both type1 and type2. Least-upper-bound types are most
useful in conjunction with parameterized types, described in section 4.

3.3.4 Greatest-Lower-Bound Types

The greatest lower bound of two types, type1 & type2, is a subtype of both type1 and type2, and a
supertype of all types that are subtypes of both type1 and type2.

Note that the greatest-lower-bound of two class types is different than the type of a class that
inherits from the classes of the two class types. For example,

c1 & c2

is a different type than the type introduced by the declaration

cl ass c3 i sa c1, c2;

The type c3 is a subtype of c1 & c2 (all types that subtype both c1 and c2 are automatically
subtypes of c1 & c2), but not identical to it. The reason is that the programmer might later define
a c4 class:

cl ass c4 i sa c1, c2;

The type c4 is also a subtype of c1 & c2, but c3 and c4 are different and in fact mutually
incomparable under the subtype relation. c1 & c2 is a proper supertype of the types of all classes
that inherit from both c1 and c2.

The greatest-lower-bound and least-upper-bound type constructors serve to extend the subtyping
partial order over the other kinds of types to a full lattice.

52

3.4 Type Checking Messages

This section describes Diesel’s type checking rules for message sends and method declarations.
Section 3.5 describes type checking for other, simpler kinds of expressions, as well as statements
and declarations. Parameterized types are described in section 4.

In Diesel, all control structures, instance variable accesses, and basic operators are implemented
via message passing, so messages are the primary kind of expression to type-check. For a message
to be type-correct, there must be a single most-specific applicable method implementation defined
for all possible argument objects that might be used as an argument to the message. However,
instead of directly checking each message occurring in the program against the methods in the
program, in Diesel messages are checked against the set of signatures defined for the argument
types of the message, and separately each signature is checked that it is implemented conformingly,
completely, and consistently by the methods in the function referenced by the signature.

Using signatures as an intermediary for type checking has three important advantages. First, the
type-checking problem is simplified by dividing it into two separable pieces. Second, checking
signatures enables all interfaces to be checked for conformance, completeness, and consistency
independent of whether messages exist in the program to exercise all possible argument types.
Finally, signatures enable the type checker to assign blame for a mismatch between implementor
and client. If some message is not implemented completely, the error is either “message not
understood” or “message not implemented correctly.” If the signature is absent, it is the former,
otherwise the latter. Signatures inform the type checker (and the programmer) of the intended
interfaces of abstractions, so that the system may report more informative error messages. Of
course, the “missing signature” error is sometimes the appropriate message to report, but the type
checker cannot accurately distinguish this from the “message not understood” alternative.

Subsection 3.4.1 describes checking messages against signatures, and subsection 3.4.2 describes
checking signatures against method implementations. mention other subsections

3.4.1 Checking Messages Against Signatures

Given a message of the form name(expr1, ..., exprN) , where a function named name with N
arguments has been declared and each expr i type-checks and has static type Ti, the type checker
locates all signatures in scope associated with the named function (including the implicit signature
derived from the function’s declaration and any signatures generated as part of met hod
si gnat ur e and f i el d met hod si gnat ur e declarations) of the form name(S1, ..., SN) : SR
where each type Si is a supertype of the corresponding Ti. If this set of licensing signatures is empty,
the checker reports a “message may not be understood” error. Otherwise, the message send is
considered type-correct.

To determine the type of the result of the message send, the type system calculates the most-
specific result type of any licensing signature. This most-specific result type is computed as the
greatest lower bound of the result types of all licensing signatures. In the absence of other type
errors, this greatest lower bound will normally correspond to the result type of the most-specific
signature.

53

To illustrate, consider the message copy(r) , where the static type of r is Rect angl e. The
following classes, functions, and signatures are assumed to be in scope:

abst r act c l ass Shape;

cl ass Rect angl e i sa Shape;

cl ass Squar e i sa Rect angl e;

cl ass Ci r c l e i sa Shape;

f un copy(: Shape) : Shape;

si gnat ur e copy(: Rect angl e) : Rect angl e;

si gnat ur e copy(: Squar e) : Squar e;

si gnat ur e copy(: Ci r c l e) : Ci r c l e;

The signature copy(: Ci r c l e) : Ci r c l e is not licensing, since Rect angl e, the static type of
r , is not a subtype of Ci r cl e. Neither is the signature copy(: Squar e) : Squar e, since r is
not known to be a subtype of Squar e. At run-time, r might turn out to conform to Squar e, but
the static checker cannot assume this and so must ignore that signature. The Shape and
Rect angl e signatures are licensing, so the copy message is considered legal. The type of the
result is known to be both a Shape and a Rect angl e. The greatest lower bound of these two is
Rect angl e, so the result of the copy message is of type Rect angl e.*

Unlike method dispatching, it is acceptable for more than one signature to license a message.
Signatures are contracts that clients can assume, and if more than one signature licenses the
message, then the client can assume more guarantees about the type of the result. The greatest
lower bound is used to calculate the message’s result type, rather than, say, the least upper bound,
because each licensing signature can be assumed to be in force. At run-time, some single method
will be selected, but that method will be required to honor the result type guarantees of all the
licensing signatures, and so the target method implementation will return an object that conforms
to the result types of all the licensing signatures, i.e., the greatest lower bound of these signatures.
In common practice, some most-specific signature’s result type will be the greatest lower bound,
such as the Rect angl e type selected above.

3.4.2 Checking Signatures Against Method Implementations

The type checker ensures that, for every signature in the program, all possible messages that could
be declared type-safe by the signature would in fact locate a single most-specific method with
appropriate argument and result type declarations. This involves locating all methods in the
function named by the signature (including the methods implied by f un declarations with bodies
and by f i el d declarations), finding those that are applicable to the signature (i.e., all those that
could be invoked by a message licensed by the signature), and ensuring that they conformingly,
completely, and consistently implement the signature.

* Note that this example follows the pattern that the type of the result of copy is the same as the type of its argument.
If this pattern were required to hold for all current and future implementations of copy , then a parameterized
function, described in section 4, would be the appropriate way to define this function’s type. If, however, not all
implementations of copy need adhere to this pattern, then a collection of signatures defining the pattern by
enumeration is appropriate.

54

More precisely:

• A method is considered applicable to a signature iff they are for the same function (and
therefore have the same name and number of arguments) and there exists some tuple of
argument objects that both inherit from the corresponding specializers of the method (where
specified) and conform to the corresponding argument types of the signature.

• A method properly conforms to a signature iff

• the type of each unspecialized formal is a supertype of the signature’s corresponding
argument type (no constraints are imposed on specialized formals), and

• the method’s result type is a subtype of the signature’s result type.

• A set of methods completely implements a signature iff, for each possible tuple of argument
objects that conform to the corresponding argument types in the signature, there exists at least
one method in the set that is applicable to the argument objects, i.e., where the argument objects
inherit from the method’s specializers (where specified).

• A set of methods consistently implements a signature iff, for each possible tuple of argument
objects that conform to the corresponding argument types in the signature, there exists at most
one most-specific applicable method in the set.

There are an unbounded number of possible run-time argument objects. However, each such object
is either a named object or a direct instance of a concrete class. All direct instances of a concrete
class have identical behavior with respect to type-checking signature implementations, and so the
type-checker can safely use the concrete class as a static representative of all of its direct instances.
Thus, the set of possible argument objects is drawn from the (finite) set of named objects and
concrete classes in the program being checked. Abstract classes are not included when considering
possible argument objects, since they do not have direct instances at run-time; ignoring them when
checking implementation of signatures allows them to be incompletely implemented. (Checking
signature implementations in the face of predicate classes is discussed separately, in section 3.4.4.)

Proper conformance of a method to a signature can be checked in isolation of any other methods
and signatures in the program. However, when classes and functions are declared separately, or in
the presence of multi-methods, it is not possible to check individual methods in isolation for
completeness and consistency, since interactions among abstract classes and functions and/or
among multi-methods can introduce omissions or ambiguities not detectable when viewing only a
subset of the declarations. Consequently, for each signature, the type checker (conceptually)
enumerates all possible (static) argument objects that conform to the signature’s argument types.
(A more efficient algorithm to perform this checking is described elsewhere [Chambers & Leavens
94].) For each tuple of argument objects, the type checker simulates method lookup and checks that
the simulated message would locate exactly one most-specific method. If no method is found, the
type checker reports a “signature implemented incompletely” error. If multiple mutually
ambiguous methods are found, the type checker reports a “signature implemented inconsistently”
error. Otherwise, the single most-specific method has been found for those arguments. In this case,
the type checker finally verifies that the argument objects conform to the declared argument types
of the target method and that the declared result type of the method is a subtype of the signature’s
result type.

55

For example, consider type-checking the implementation of the following signature in the context
of the following class and object declarations:

si gnat ur e =(: Shape, : Shape) : bool ;

abst r act c l ass Shape;

cl ass Ci r c l e i sa Shape;

cl ass Rect angl e i sa Shape;

abst r act c l ass Rhombus i sa Shape;

cl ass Squar e i sa Rect angl e, Rhombus;

obj ect Uni t Squar e i sa Squar e;

The type checker would first collect all possible static argument objects that conform to Shape.
In this example, such objects are Ci r cl e, Rect angl e, Squar e, and Uni t Squar e; the
Shape and Rhombus classes are not included because they are abst r act .

The type checker then enumerates all possible combinations of static argument objects conforming
to the argument types in the signature, yielding the following possible messages:

=(Ci r c l e, Ci r c l e)

=(Ci r c l e, Rect angl e)

=(Ci r c l e, Squar e)

=(Ci r c l e, Uni t Squar e)

=(Rect angl e, Ci r c l e)

=(Rect angl e, Rect angl e)

...

=(Uni t Squar e, Squar e)

=(Uni t Squar e, Uni t Squar e)

For each message, method lookup is simulated to verify that the message invokes a unique most-
specific applicable method, that the method’s unspecialized formals (if any) are supertypes of the
signature’s corresponding argument types (Shape), and that the method returns a subtype of the
signature’s result type (bool).

3.4.3 Comparison with Other Type Systems

For singly-dispatched languages, most type systems apply contravariant rules to argument and
result types when checking that an overriding method can safely be invoked in place of the
overridden method: argument types in the overriding method must be supertypes of the
corresponding argument types of the overridden method, while the result type must be a subtype.
Diesel’s type system does not directly compare one method against another to enforce
contravariant redefinition rules, but instead compares a method against every signature to which it
is applicable to enforce contravariant rules for non-specialized arguments. In Diesel terms, in a
singly-dispatched language a signature is inferred from the superclass’s method, and then all
subclass methods (i.e., those methods that are applicable to the signature) are checked for
conformance to the signature.

Specialized arguments need not obey contravariant restrictions. In fact, the type corresponding to
a specialized argument for one method can be a subtype of the type of the corresponding argument
for a more general method, because in order to be a more specific method, its argument specializers

56

must be more specific. This does not violate type safety because run-time dispatching will
guarantee that the method will only be invoked for arguments that inherit from the argument
specializer. Unspecialized arguments, on the other hand, cannot safely be covariantly redefined,
because there is no run-time dispatching on such arguments ensuring that the method will only be
invoked when the type declaration is correct.

Singly-dispatched languages make the same distinction between specialized and unspecialized
arguments implicitly in the way they treat the type of the receiver. For most singly-dispatched
languages, the receiver argument is omitted from the signatures being compared, leaving only
unspecialized arguments and hence the contravariant redefinition rule. If the receiver type were
included as an explicit first argument, it would have to be given special treatment and allowed to
differ covariantly. In Diesel, any subset of the arguments of a method can be specialized, and
different methods applicable to the same signature can specialize on different arguments, leading
to type-checking rules that explicitly account for specialized vs. unspecialized arguments. If all
methods in a Diesel program specialize on their first argument only, Diesel’s type checking rules
would reduce to those found in a traditional singly-dispatched language.

Few multiply-dispatched languages support static type systems. Two that are most relevant are
Polyglot [Agrawal et al. 91] and Kea [Mugridge et al. 91]. In both of these systems, type checking
of method’s consistency and completeness requires that all “ related” methods (all methods in the
same generic function in Polyglot and all variants of a function in Kea) be available to the type
checker, just as does Diesel. Neither Polyglot nor Kea supports abstract classes and abstract
functions.

3.4.4 Type Checking Predicate Classes

Predicate classes are intended to represent alternative ways of implementing an object’s interface.
Accordingly, it should be possible to type-check programs using predicate classes, under the
assumption that the particular state of the object does not affect its external interface. In particular,
to guarantee type safety in the presence of predicate classes, the type checker must verify that for
each message declared in the interface of some object O:

• at all times there is an implementation of the message inherited by the object O; and

• at no time are there several mutually ambiguous implementations of the message inherited by
the object O.

These two tests correspond to extending the tests of completeness and consistency of method
implementations to cope with the presence of predicate classes.

The set of methods inherited by the object O from normal objects is fixed at program-definition
time and can be type-checked in the standard way. Methods inherited from predicate classes pose
more of a problem. If two predicate classes might be inherited simultaneously by an object, either
one predicate class must be known to override the other, or they must provide implementations of
disjoint functions. For example, in the bounded buffer implementation described in section 2.11,
since an object can inherit from both the non_empt y_buf f er and the non_f ul l _buf f er
predicate classes, the two predicate classes should not implement methods in the same function.
Similarly, if the only implementations of some message are in some set of predicate classes, then

57

one of the predicate classes must always be inherited for the message to be guaranteed to be
understood. In other words, the checker needs to know when one predicate class implies another,
when two predicate classes are mutually exclusive, and when a group of predicate classes is
exhaustive. Once these relationships among predicate classes are determined, the rest of type-
checking becomes straightforward.

Ideally, the system would be able to determine all these relationships automatically by examining
the when expressions attached to the various predicate classes. However, when expressions in
Diesel can run arbitrary user-defined code, and consequently the system would have a hard time
automatically inferring implication, mutual exclusion, and exhaustiveness. Consequently, we rely
on explicit user declarations to determine the relationships among predicate classes; the system can
verify dynamically that these declarations are correct.

A declaration already exists to describe when one predicate class implies another: the i sa
declaration. If one predicate class explicitly inherits from another, then the first predicate class’s
when expression, after extending it by conjunction with all its ancestor’s when expressions,
automatically implies the second’s. Any methods in the child predicate class override those in the
ancestor, resolving any ambiguities between them.

Mutual exclusion and exhaustiveness are specified using declarations of the following form:

di s j oi nt _decl : : = “ di s j oi nt ” names “ ; ”

cover _decl : : = “ cover ” name “ by” names “ ; ”

di v i de_decl : : = “ di v i de” name “ i nt o” names “ ; ”

names : : = name { “ , ” name }

The disjoint declaration

di s j oi nt class1, ..., classn;

signals to the static type checker that the predicate classes named by each of the classi will never
be inherited simultaneously, i.e., that at most one of their predicate expressions will evaluate to true
at any given time for any given object. Mutual exclusion of two predicate classes implies that the
type checker should not be concerned if both predicate classes define methods with the same name,
since they cannot both be inherited by an object. To illustrate, the following declarations extend the
bounded buffer example of section 2.11 with mutual exclusion information:

di s j oi nt empt y_buf f er , non_empt y_buf f er ;
di s j oi nt f ul l _buf f er , non_f ul l _buf f er ;

The system can infer that empt y_buf f er and f ul l _buf f er are mutually exclusive with
par t i al l y_f ul l _buf f er . Note that empt y_buf f er and f ul l _buf f er are not
necessarily mutually exclusive.

The cover declaration

cover class by class1, ..., classn;

implies that whenever an object O descends from class, the object O will also descend from at least
one of the classi predicate classes; each of the classi are expected to descend from class already.
Exhaustiveness implies that if all of the classi implement some message, then any object inheriting

58

from class will understand the message. For example, the following coverage declaration extends
the bounded buffer predicate classes:

cover buf f er by empt y_buf f er , par t i al l y_f ul l _buf f er , f ul l _buf f er ;

Often a group of predicate classes divide an abstraction into a set of exhaustive, mutually-exclusive
subcases. The divide syntactic sugar makes specifying such situations easier. A declaration of the
form

di v i de class i nt o class1, ..., classn;

is syntactic sugar for the following two declarations:

di s j oi nt class1, ..., classn;

cover class by class1, ..., classn;

(FIGURE OUT AND) EXPLAIN HOW THE EARLIER ITC ALGORITHM SHOULD BE
EXTENDED

(Note: the current UW Diesel implementation does not currently implement full type-checking of
predicate classes and their methods. In particular, neither completeness nor consistency is checked
for any signature with an applicable method specializing on a predicate class. This allows programs
involving predicate classes to be written and run, but might not catch all implementation errors
statically.)

3.5 Type Checking Expressions, Statements, and Declarations

Type checking an expression determines whether it is type-correct, and if type-correct also
determines the type of its result. Type checking a statement or declaration simply checks for type
correctness. All constructs are type-checked in a typing context containing the following
information:

• a binding from the name of each variable, class, or named object in scope to either:

• if a variable, then the variable’s declared or inferred type and an indication of whether the
variable binding is assignable or constant, or

• if a class or object, then the kind of the class or object (abst r act cl ass , cl ass ,
obj ect , or pr edi cat e cl ass optionally with a given when expr clause);

• the set of inheritance relations between classes currently in scope;

• a binding for each type name in scope to the corresponding type;

• the set of declared direct subtyping relations between class types currently in scope;

• a binding for each function in scope, recording its name and number of arguments;

• the set of signatures currently in scope, each recording the signature’s function, argument types,
and result type; and

• the set of method declarations currently in scope (for type checking resends and field
initializations).

In the following, we assume that desugarings involving methods have been applied, so that a f un
declaration with a body is desugared into a f un declaration without a body plus a separate
unspecialized met hod declaration, a f i el d declaration is desugared into one or two f un

59

declarations and one or two met hod declarations whose bodies are special field accessor
primitives (which cannot be expressed directly in Diesel source), and a f i el d met hod
declaration is desugared into one or two met hod declarations whose bodies are special field
accessor primitives.

The type checking rules for expressions are as follows:

• A literal constant is always type-correct. The type of the result of a literal constant is the
corresponding predefined class type.

• A reference name is type-correct iff name is defined in the typing context (i.e., if there exists a
declaration of that name earlier in the same scope or in a lexically-enclosing scope) as either a
variable or a named object. If a variable, then the type of the result is the associated type of the
variable in the typing context, otherwise it is the class type corresponding to the named object.

• An object constructor expression of the general form
new class { field1@c1 : = expr1, ..., fieldN@cN : = exprN }

where any of the @ci may be omitted, is type-correct iff:

• class names a non-abstract, non-predicate, non-voi d class or named object;
• if @ci is present, then ci names an ancestor of class (if absent, it is considered to be the same

as class);
• each fieldi names a field method Fi specialized on or inherited unambiguously by ci,

ignoring any overriding non-field methods, and Fi is not shar ed;
• each expr i is type-correct, returning an object of static type Ti, and Ti is a subtype of the type

of the contents of the field Fi; and
• no field Fi is initialized more than once.

The type of the result of an object constructor expression is the class type corresponding to
class.

• A closure constructor expression of the general form
&(x1: type1, ..., xN: typeN) : typeR { body }

is type-correct iff:

• the xi, where provided, are distinct;
• each of the typei, if provided, notates a non-voi d type in the current typing context, and

otherwise is assumed to be dynami c ;
• body is type-correct, checked in a typing context constructed by extending the current

typing context with constant variable bindings for each of the xi to the corresponding type
typei; and

• if : typeR is omitted, then typeR is inferred to be the type of the result of body; otherwise
typeR notates a type in the current typing context; and if typeR is non-voi d, the type of the
result of body is a subtype of typeR.

The type of the result of a closure constructor expression of the above form is
&(type1, ..., typeN) : typeR.

• A vector constructor expression of the general form [elemtype expr1, ..., exprN] is type-
correct iff:

• each of the expr i is type-correct, with static type Ti; and

60

• if elemtype is : type: , then type notates a non-voi d type in the current typing context and
each of the Ti is a subtype of type; otherwise, type is inferred to be the least upper bound of
the Ti.

The type of the result of a vector constructor expression is the predefined parameterized type
pr i m_i _vect or [type] . (See section 4 for information on parameterized types.)

• A message expression of the general form name(expr1, ..., exprN) is type-correct iff:

• name names a function of N arguments in the current typing context;
• each of the expr i is type-correct, with static type Ti; and
• the set S = { S1, ..., SM} of licensing signatures is non-empty, where S is the set of signatures

in the current typing context of the form Si = si gnat ur e name(ti1, ..., tiN) : tiR where
each Ti is a subtype of ti.

The type of the result of a message is the greatest lower bound of all the result types tiR of the
licensing signatures. (This typechecking of message expressions is also discussed in section
3.4.1. Verifying correctness of the implementation of signatures is described in subsection
3.4.2.)

• A resend expression of the general form
r esend(..., xi@ci, ..., exprj, ...)

is type-correct iff:

• each of the arguments xi or expr i is type-correct, with static type Ti;
• the resend is nested textually in the body of a method M;
• M takes the same number of arguments, N, as does the resend;
• for each specialized formal parameter formal i of M, specialized on classi, the ith argument

to the resend is formal i, possibly suffixed with @ci, and formal i is not shadowed with a local
variable of the same name;

• for each unspecialized formal parameter formal j of M, the jth argument to the resend is not
suffixed with @cj;

• for each resend argument of the form formal i@ci, ci is a proper ancestor of classi, the
specializer of formali, and ci is not voi d;

• when method lookup is simulated with a message name the same as M and with N
arguments, where argument i is either any (if formal i of M is unspecialized), ci (if the
argument of the resend is directed using the @ci suffix notation), or classi, the specializer of
formali (otherwise), and where the resending method M is removed from the set of
applicable methods in the current typing context, exactly one most-specific target method
R is located; and

• each Ti is a subtype of the type of R’s corresponding formal.

The type of the result of a resend expression is the declared result type of the target method R.

• A parenthetical expression of the form (body) is type-correct iff body is type-correct. The
type of the result of a parenthetical expression is the type of the result of body.

The following rules define type-correctness of statements:

• An assignment statement of the form name : = expr; is type-correct iff:

• expr is type-correct, with static type Texpr;
• name is bound to an assignable variable of type Tname in the current typing context; and

61

• Texpr is a subtype of Tname.

• An expression statement of the form expr; is type-correct iff expr is type-correct.

The following rules define type-correctness of return clauses:

• A normal return clause, of the form expr, is type-correct iff expr is type-correct, with static type
T. The type of the result of the return clause is T.

• A non-local return clause, of the form ^ or ^ expr , is type-correct iff:

• if present, expr is type-correct, with static type T; if absent, T is considered to be voi d;
• the non-local return statement is nested textually inside the body of a method M; and
• if the declared result type of M is non-voi d, then T is a subtype of the declared result type

of M.

The type of the (normal) result of a non-local return clause is none.

The body of a method, closure, or parenthetical expression, viewed abstractly as a possibly empty
sequence of statements and declarations optionally followed by a return clause, is type-correct iff
its statements, declarations, and return clause are type-correct. The extensions made to the typing
context by declarations in the body are visible throughout the body. The type of the result of a body
is the type of its return clause, if present, or voi d, otherwise.

The following rules define type-correctness of declarations:

• A variable declaration of the form
l et var name: type : = expr;

where var is either var or empty and : type may be omitted, is type-correct iff:

• name is not otherwise defined as a variable, class, or named object in the same scope;
• expr is type-correct in a typing context where name and all variables defined later in the

same scope are unbound, resulting in static type T;
• if : type is omitted, then if the declaration is in a dynamic scope (inside the body of a

method, closure, or parenthetical expression) and var is empty, then type is inferred to be
T, otherwise it is inferred to be dynami c ; if type is provided, then it must notate a type in
the current typing context, and T must be a subtype of type.

The typing context is extended to include a variable binding for name of type type that is
assignable if var is var and constant otherwise.

• A class or named object declaration of the form
kind name i sa superclass1, ..., superclassM { field1@c1 : = expr1, ..., fieldN@cN : = exprN } ;

where kind is abst r act cl ass , cl ass , or obj ect and where any of the @ci may be
omitted, is type-correct iff:

• name is not otherwise defined as a variable, class, or named object in the same scope, nor
is it otherwise defined as a type in the same scope;

• kind is abst r act cl ass , cl ass , or obj ect ;
• each superclassi names a non-voi d class or named object;
• no cycles are introduced into the inheritance graph;
• if field initializers are given, then kind is obj ect ;

62

• if @ci is present, then ci names an ancestor of the class or object being declared (if absent,
it is considered to be the same as the class or object being declared);

• each fieldi names a field method Fi specialized on or inherited unambiguously by ci,
ignoring any overriding non-field methods, and Fi is not shar ed;

• each expr i is type-correct, returning an object of static type Ti, and Ti is a subtype of the type
of the contents of the field Fi; and

• no field Fi is initialized more than once.

The typing context is extended to include a variable binding from name to a new class or named
object of kind kind, and with inheritance links from the new class or object to each of the
superclassi classes. The typing context is also extended with a type binding from name to a new
class type, and with subtyping relations from the new class type to the types corresponding to
the superclassi classes (the type corresponding to a non-predicate class or named object is its
corresponding class type, while the type corresponding to a predicate class is the greatest lower
bound of the types corresponding to the predicate class’s non-predicate ancestors).

• A class or object extension declaration of the form

ext end kind name i sa superclass1, ..., superclassM
{ field1@c1 : = expr1, ..., fieldN@cN : = exprN } ;

where kind is cl ass or obj ect and where any of the @ci may be omitted, is type-correct iff:

• if kind is cl ass , then name is bound in the typing context to a non-predicate class other
than voi d and any ;

• if kind is obj ect , then name is bound in the typing context to a named object other than
voi d;

• the same constraints on the superclass and field initialization clauses as with a class or
named object declaration are satisfied; and

• none of the field initializers initializes a field already initialized by some other declaration
or extension of this object. (this requires global knowledge; cut?)

As a result of the declaration, the typing context is extended with inheritance links from the
class or object named name to each of the superclassi classes, and with subtyping relations from
the class type corresponding to the class or object named name to the types corresponding to
the superclassi classes.

• A predicate class declaration of the form

pr edi cat e name i sa superclass1, ..., superclassM when expr;

where when expr may be omitted, is type-correct iff:

• name is not otherwise defined as a variable, class, or named object in the same scope;

• each superclassi names a non-voi d class or named object;

• no cycles are introduced into the inheritance graph; and

• if the when clause is present,. expr is type-correct when checked in a typing context
constructed by extending the current typing context with constant variable bindings for
each of the superclassi with the type corresponding to the new predicate class (i.e., the
greatest lower bound of the types corresponding to the predicate class’s non-predicate
ancestors), and returns an object of static type bool .

63

The typing context is extended to include a variable binding from name to a new predicate class
that has the given when clause, and with inheritance links from the new predicate class to each
of the superclassi classes.

• disjoint and cover declarations

• A synonym declaration of the form
synonym name = type;

is type-correct iff:

• name is not otherwise defined as a type in the same scope; and
• type notates a type in the current typing context, not involving any types introduced by

synonym declarations.

The typing context is extended to include a type binding for name to type.

• A function declaration of the form
f un name(x1: type1, ..., xN: typeN) : typeR;

is type-correct iff:

• a function named name taking N arguments is not already defined in the same scope;
• the xi, when provided, are distinct;
• each of the typei, if provided, notates a non-voi d type in the current typing context, and

otherwise is assumed to be dynami c ; and
• typeR, if provided, notates a type in the typing context, and otherwise is assumed to be

dynami c .

The typing context is extended to include a function binding for name taking N arguments,
along with a signature of the form

si gnat ur e name(type1, ..., typeN) : typeR

(formal names are ignored).

• A signature declaration of the form
si gnat ur e name(x1: type1, ..., xN: typeN) : typeR;

is type-correct iff:

• a function named name taking N arguments is already bound in the current typing context;
• the xi, when provided, are distinct;
• each of the typei, if provided, notates a non-voi d type in the current typing context, and

otherwise is assumed to be dynami c ; and
• typeR, if provided, notates a type in the typing context, and otherwise is assumed to be

dynami c .

The typing context is extended to include the corresponding signature of the form
si gnat ur e name(type1, ..., typeN) : typeR

(formal names are ignored).

• A method declaration of the general form
met hod signature name(..., xi@ci, ..., xj: typej, ...) : typeR { body }

having N formal parameters, where signature may be si gnat ur e or empty and body may be
code, a primitive, or a get or set field accessor, is type-correct iff:

64

• a function named name taking N arguments is already bound in the current typing context;
• the xi, when provided, are distinct;
• for each formal of the form xi@ci, ci names a class or named object, and typei is considered

to be the type corresponding to ci (the type corresponding to a non-predicate class or named
object is its corresponding class type, while the type corresponding to a predicate class is
the greatest lower bound of the types corresponding to the predicate class’s non-predicate
ancestors);

• for every other formal, of the form xj: typej, if typej is provided, then it notates a non-voi d
type in the typing context, otherwise typej defaults to dynami c ;

• typeR, if provided, notates a type in the typing context, and otherwise is assumed to be
dynami c ;

• body is type-correct when checked in a typing context constructed by extending the current
typing context with constant variable bindings for each of the xi to the corresponding type
typei; and

• if typeR is non-voi d, the type of the result of body is a subtype of typeR.

The following rules define type-correctness of the possible kinds of method bodies:

• A regular code method body of the form body is type-correct iff body is type-correct, and
its result type is body’s result type.

• A primitive method body is always type-correct, with result type dynami c .
• The body of a get accessor field method without an initializer is always type-correct, and

its result type is typeR.
• The body of a get accessor field method with an initializer of the form body is type-correct

iff body is type-correct, and its result type is body’s result type.
• The body of a set accessor field method is always type-correct, and its result type is voi d.

The typing context is extended to include the declared method implementation. Moreover, if
signature is si gnat ur e, then the typing context is also extended to include the signature

si gnat ur e name(type1, ..., typeN) : typeR

(formal names are ignored).

• precedence decls

• Primitive declarations are always type-correct, and have no effect on the typing context.

• Pragma declarations are always type-correct, and have an implementation-dependent effect
(usually none) on the typing context.

3.6 Mixed Statically- and Dynamically-Typed Code

One of Diesel’s design goals is to support both exploratory programming and production
programming and in particular to support the gradual evolution from programs written in an
exploratory style to programs written in a production programming style. Both styles benefit from
object-oriented programming, a pure object model, user-defined control structures using closures,
and a flexible, interactive development environment. The primary distinction between the two
programming styles relates to how much effort programmers want to put into polishing their
systems. Programmers in the exploratory style want the system to allow them to experiment with
partially-implemented and partially-conceived systems, with a minimum of work to construct and

65

subsequently revamp systems; rapid feedback on incomplete and potentially inconsistent designs
is crucial. The production programmer, on the other hand, is concerned with building reliable,
high-quality systems, and wants as much help from the system as possible in documenting and
checking systems.

To partially support these two programming styles within the same language, type declarations and
type checking are optional. Type declarations may be omitted for any argument, result, or local
variable. Programs without explicit type declarations are smaller and less redundant, maximizing
the exploratory programmer’s ability to rapidly construct and modify programs. Later, as a
program (or part of a program) matures, the programmer may add type declarations incrementally
to evolve the system into a more documented and reliable production form.

Omitted type declarations are treated as dynami c ; dynami c may also be specified explicitly as
the type of some argument, result, or variable.* An expression of type dynami c may legally be
passed as an argument, returned as a result, or assigned to a variable of any type. Similarly, an
expression of any type may be assigned to, passed to, or returned from a variable, argument, or
result, respectively, of type dynami c . This approach to integrating dynamically-typed code with
statically-typed code has the effect of checking type safety statically wherever two statically-typed
expressions interact (assuming that at run-time the objects resulting from evaluating the statically-
typed expressions actually conform to the given types), and deferring to run-time checking at
message sends whenever a dynamically-typed expression is used.

A consequence of this semantics for the dynami c type is that the static type safety of statically-
typed expressions can be broken by passing an incorrect dynamically-typed value to a statically-
typed piece of the program. Dynamic type checking will catch errors eventually, but run-time type
errors can occur inside statically-typed code even if the code passes the type checker. An
alternative approach would check types dynamically at the “ interface” between dynamically- and
statically-typed code: whenever a dynamically-typed value is assigned to (or passed to, or returned
as) a statically-typed variable or result, the system could perform a run-time type check of the
dynamically-typed value as part of the assignment. This approach would then ensure the integrity
of statically-typed code: no run-time type errors can occur within statically-typed code labeled
type-correct by the typechecker, even when mixed with buggy dynamically-typed code.
Unfortunately, this approach has some difficulties. One problem is that objects defined in
exploratory mode should not be required to include explicit subtyping declarations; such
declarations could hinder the free-flowing nature of exploratory programming. However, if such
an object were passed to statically-typed code, the run-time type check at the interface would fail,
since the object had not been declared to be a subtype of the expected static type. We have chosen
for the moment to skip the run-time check at the interface to statically-typed code in order to
support use of statically-typed code from exploratory code, relying on dynamic checking at each
message send to ensure that the dynamically-typed object supports all required operations.

Diesel supports the view that static type checking is a useful tool for programmers willing to add
extra annotations to their programs, but that all static efficiently-decidable checking techniques are

* In fact, the current UW Diesel implementation warns whenever an omitted type declaration defaults to dynami c .

66

ultimately limited in power, and programmers should not be constrained by the inherent limitations
of static type checking. The Diesel type system has been designed to be flexible and expressive (in
particular by supporting multi-methods, separating the subtype and code inheritance graphs, and
supporting explicit and implicit parameterization) so that many reasonable programs will
successfully type-check statically, but we recognize that there may still be reasonable programs
that either will be awkward to write in a statically-checkable way or will be difficult if not
impossible to statically type-check in any form. Accordingly, error reports do not prevent the user
from executing the suspect code; users are free to ignore any type checking errors reported by the
system, relying instead of dynamic type checks. Static type checking is a useful tool, not a complete
solution.

67

4 Parameterization and Bounded Parametric Polymorphism

Practical statically-typed languages need bounded parametric polymorphism. Without some
mechanism for type parameterization, programmers must either resort to multiple similar
implementations of the same abstraction that differ only in type annotations, or insert type casts,
often at the client side, to indicate the more precise types of expressions than the type checker
infers. For example, if parameterization is not available, several nearly identical implementations
of l i s t or ar r ay may be needed for lists or arrays of integers, strings, etc., and control structures
such as i f and map could not be reused for a variety of argument types. Accordingly, Diesel
supports the definition of parameterized types and signatures, derived from parameterized classes,
named objects, and functions. The programmer is allowed to express the assumptions on the type
parameters in such declarations using mixed subtype and signature type constraints. For example,
a type parameter may be restricted to be a subtype of a certain type or to be any type such that a
certain signature holds. Type constraints in Diesel generalize F-bounded polymorphism [Canning
et al. 89] and Theta-style wher e clauses [Day et al. 95, Liskov et al. 94].

This section presents type parameterization and type constraints in Diesel. A more formal
treatment, in the context of Diesel’s predecessor, Cecil, appears elsewhere [Litvinov 98, Litvinov
& Chambers TR, Litvinov thesis]. The next subsection introduces parameterization.
Subsection 4.2 adds constraints to achieve bounded parametric polymorphism. Subsection 4.6
describes constraint solving and local type inference. Subsection 4.5 describes an advanced use of
the type system to express F-bounded polymorphism. The last subsection reviews related work.

4.1 Parameterized Declarations

Diesel supports parametric polymorphism by allowing many kinds of declarations to be
parameterized with type variables. The most explicit way to make a declaration polymorphic is to
prefix it with a f or al l T1, ... ,Tn: clause, which introduces type variables T1, ... ,Tn in a
declaration. The scope of these type variables is the declaration that has this prefix, within which
the type variables may be used as regular types; a type variable shadows any type of the same name
declared in an enclosing scope. To use a polymorphic declaration, it first must be instantiated by
providing (either explicitly or implicitly via a kind of local type inference) the instantiating type
for each type variable: type variables are “ formals” and instantiating types are “actuals” of a
parameterized declaration. In the following example, an immutable vector class i _vect or , a
separate inheritance relationship, and a function f et ch are each polymorphic in a given type
variable (intended to denote the type of the vector elements):

f or al l T: cl ass i _vect or [T] ;
f or al l S: ext end c l ass i _vect or [S] i sa col l ect i on[S] ;
f or al l R: f un f et ch(a: i _vect or [R] , i ndex: i nt) : R { . . . }

The basic syntax of parameterized declarations (ignoring some features described below) extends
the earlier syntax of non-polymorphic Diesel in the following ways (changes to the right-hand-
sides of previously presented non-terminals are highlighted, and the left-hand-sides of new non-
terminals are highlighted):

cl ass_decl : : = [t ype_cxt] c l ass_ki nd name [f or mal _par ams]
[“ i sa” c l ass_r ef s] [f i el d_i ni t s] { pr agma} “ ; ”

68

ext _cl ass_decl : : = [t ype_cxt] “ ext end” ext _cl ass_ki nd cl ass_r ef
[“ i sa” c l ass_r ef s] [f i el d_i ni t s] { pr agma} “ ; ”

pr edi cat e_decl : : = [t ype_cxt] “ pr edi cat e” name [f or mal _par ams]
[“ i sa” c l ass_r ef s] [“ when” expr] { pr agma} “ ; ”

synonym_decl : : = [t ype_cxt] “ synonym” name [f or mal _par ams]
“ =” t ype { pr agma} “ ; ”

f un_decl : : = [t ype_cxt] “ f un” f un_name [f or mal _par ams]
“ (” [f un_f or mal s] “) ” [t ype_decl] { pr agma} f un_body

met hod_decl : : = [t ype_cxt] “ met hod” [“ s i gnat ur e”] f un_r ef
“ (” [met h_f or mal s] “) ” [t ype_decl] { pr agma} met hod_body

si gnat ur e_decl : : = [t ype_cxt] “ si gnat ur e” f un_r ef
“ (” [f un_f or mal s] “) ” [t ype_decl] { pr agma} “ ; ”

f i el d_decl : : = [t ype_cxt] [“ shar ed”] [“ var ”] “ f i el d” name [f or mal _par ams]
“ (” f un_f or mal “) ” [t ype_decl] { pr agma} f i el d_body

f i el d_met hod_decl : : =[t ype_cxt] [“ shar ed”] [“ var ”] “ f i el d”
“ met hod” [“ s i gnat ur e”] name_f un_r ef
“ (” met h_f or mal “) ” [t ype_decl] { pr agma} f i el d_body

t ype_cxt : : = “ f or al l ” f or mal _par am { “ , ” f or mal _par am } “ : ”

f or mal _par ams : : = “ [” f or mal _par am { “ , ” f or mal _par am } “] ”

f or mal _par am : : = name_bi ndi ng

name_bi ndi ng : : = name

A type parameter is explicit if the corresponding instantiating type is to be explicitly provided by
clients of the declaration, or implicit if it is to be inferred automatically by the typechecker. A
polymorphic class or function declaration specifies which type parameters are explicit by listing
the corresponding type variables in brackets following the name of the declared entity, as in the
i _vect or class above. The explicitly instantiating types should be similarly given in brackets
whenever the class or function is referenced:

The following example uses these polymorphic declarations:

var my_vec: i _vect or [num] : = new i _vect or [num] ;
var r esul t : num : = f et ch(my_vec, 5) ;

The i _vect or class is declared with an explicit type parameter, [T] . Consequently, all uses of
i _vect or must provide an explicit instantiating actual type (S in the inheritance declaration, R
in the f et ch function, and num in the my_vec variable declaration). In contrast, the f et ch
function has no explicit type parameter; instead, the instantiating type for R is inferred at each use
of f et ch by the type checker itself. In the example call of f et ch, R is inferred to be num, given
the type of my_vec . Inference allows the programmer to avoid writing the often obvious
instantiating types; it is a key feature of Diesel. It is described in more detail in Section 4.6.

The syntax of references to explicitly parameterized classes, objects, types, and functions is
extended as follows:

cl ass_r ef : : = name [par ams]

name_f un_r ef : : = name [par ams]

op_f un_r ef : : = op_name [par ams]

par ams : : = “ [” t ypes “] ”

The number of explicit type parameters is considered part of the “name” of the declared entity. For
example, multiple classes with the same name can be declared in the same scope, as long as they

69

are declared with different numbers of explicit type parameters.* Likewise, multiple functions with
the same name but different numbers of explicit type parameters can be declared in the same scope,
analogously to how functions with the same name but different numbers of arguments can be
declared in the same scope. Since signature, method, and field method declarations refer to
previously declared functions, each must be declared with the same number of explicit type
parameters as the function it is referencing. explain somewhere the rules for ITC in the face of
parameter ized types. explain somewhere how over r iding methods can add implicit type
var iables.

While the type checker uses parameterized types to check polymorphic implementations and their
clients, the execution behavior of a program does not depend on the instantiating types (aside from
the number of explicit type parameters). In particular, method lookup does not examine any
explicit or implicit type parameters for the function or its arguments. For example, it is not legal to
define separate methods for f oo[i nt] () and f oo[st r i ng] () (as explained below in section
ITC), and so message sends f oo[i nt] () and f oo[st r i ng] () will always be dispatched to
the same method implementation.

Parameterized class extension declarations are only instantiated internally by the typechecker.
Their type parameters therefore are always implicit.

put this in a better place: Note that parameterization is in general unsound and is disallowed in
the following cases:

• Variable (l et) declarations cannot be parameterized. (If parameterized variable declarations
were allowed, to be sound, the initializing value, and each assigned value if the variable is
mutable, would have to be a subtype of all possible instantiations of the variable’s type.)

• The type of a field cannot reference any type parameters except those of the object to which the
field is attached. Moreover, the type of a field attached to a named object cannot reference any
type parameters [really? why not? what should be done for a field on e.g. nil[T]? seems like
there should be a cleaner way to talk about constraints of data vs. code, which subsumes
the restr iction on var iables.].

4.2 Bounded Polymorphism and Type Constraints

It is often necessary to express some assumptions or restrictions on type parameters. For example,
a sor t method can only sort collections whose elements can be compared with each other. A
mat r i x_mul t i pl y method may require that matrix elements be numbers. This situation is
known as bounded polymorphism [Cardelli & Wegner 85]. Diesel supports bounded
polymorphism by allowing type constraints on type parameters.

There are two kinds of type constraints in Diesel. A subtype constraint specifies the requirement
that one type be a subtype of another. A common use of subtype constraints is to specify upper or

* This feature does not interact well with mixed dynamic and static typing, since the number of parameters affects the
execution behavior of the program, violating the principle that static types do not affect the execution semantics. In
the future, the number of parameters may be removed from the “name” of an object or method, so that parameters
are confined to the (optional) static type system.

70

lower bounds of type variables. In the following example, the type of matrix elements is
constrained to be a subtype of num:

f or al l T wher e T<=num:
f un mat r i x_mul t i pl y(a: mat r i x [T] , b: mat r i x [T]) : mat r i x [T] {

. . .
}

Because of the type constraint, this function can only be instantiated for types that are subtypes of
num.

A signature constraint specifies the requirement that the given signature hold. A common use of
signature constraints is to require certain operations to be provided for the type parameters. In the
following example, the message send of <= in the body of sor t is guaranteed to be legal as long
as the constraint is satisfied:

f or al l T wher e si gnat ur e <=(: T, : T) : bool :
f un sor t (a: ar r ay[T]) : voi d {

. . .
l et a_i : T : = a! i ;
l et a_j : T : = a! j ;
i f (a_i <= a_j , { ... swap a!i and a!j ... }) ;
. . .

}

Type constraints can be specified as part of f or al l clauses:

t ype_cxt : : = “ f or al l ” f or mal _par am { “ , ” f or mal _par am } [t ype_cons] “ : ”
| “ f or al l ” t ype_cons “ : ”

The syntax of type constraints is as follows:

t ype_cons : : = “ wher e” t ype_const r ai nt { “ , ” t ype_const r ai nt }

t ype_const r ai nt : : = sub_const r ai nt | s i g_const r ai nt | t ype

sub_const r ai nt : : = t ype (“ <=” | “ >=”) t ype

si g_const r ai nt : : = [“ s i gnat ur e”] f un_r ef “ (” [f un_f or mal s] “) ” t ype_decl

As a convenience, a single lower and/or upper bound may also be specified with a type variable
when it is introduced:

name_bi ndi ng : : = name [“ >=” t ype] [“ <=” t ype]

For example, the mat r i x_mul t i pl y function above could have been declared equivalently as:

f or al l T<=num:
f un mat r i x_mul t i pl y(a: mat r i x [T] , b: mat r i x [T]) : mat r i x [T] {

. . .
}

The specializer of a method’s formal can be written as a type variable whose upper bound is the
specializing class:

met h_f or mal : : = [name] “ : ” t ype
| [name] “ @” [name “ <=”] cl ass_r ef
| name

For example, in the following method:

f or al l T: met hod s i gnat ur e f oo(x@T<=bar) : T { . . . }

71

the specializer is the class bar , and so this method applies to any objects that inherit from bar ,
but moreover, because of the type parameter, it is known that the result will be of the same type as
the argument, which can be more precise than just bar . In this example, the following signature is
derived:

f or al l T<=bar : si gnat ur e f oo(x: T) : T;

4.3 Omitting the Explicit f or al l Clause: the Backquote Sugar

Type variables can be introduced implicitly — without listing them in the f or al l clause. This
provides a more concise notation for parameterized declarations by omitting the explicit f or al l
prefix. A type variable is introduced implicitly in a declaration iff:

• it is an explicit formal type parameter, i.e., a type introduced in square brackets following the
name of a class, object, synonym, function, signature, or method being declared; or

• it is preceded by a backquote (‘) somewhere in the declaration’s header.

So the declarations from section 4.1 can be rewritten more concisely as:

cl ass i _vect or [T] ;
ext end c l ass i _vect or [‘ T] i sa col l ect i on[T] ;
f un f et ch(a: i _vect or [‘ T] , i ndex: i nt) : T { . . . }

To specify type constraints without requiring explicit f or al l clauses, an upper and/or lower
bound may be specified along with a backquoted type variable, and every declaration allowing a
f or al l clause also allows a wher e clause to be provided at the end of its header. For example,
the mat r i x_mul t i pl y and sor t functions from section 4.2 can be re-written more concisely
as follows (the mat r i x_mul t i pl y example sacrifices the visual symmetry between the
arguments a and b, but is semantically equivalent, because it introduces exactly the same type
variable and constraint):

f un mat r i x_mul t i pl y(a: mat r i x [‘ T<=num] , b: mat r i x [T]) : mat r i x [T] { . . . }

f un sor t (a: ar r ay[T]) : voi d wher e si gnat ur e <=(: T, : T) : bool {
. . .
l et a_i : T : = a! i ;
l et a_j : T : = a! j ;
i f (a_i <= a_j , { ... swap a!i and a!j ... }) ;
. . .

}

Similarly, the operations on a binary tree can specify that the elements of the binary tree support
the comparison operation:

cl ass bi nar y_t r ee[T] i sa col l ect i on[T] ;

f un i nser t (t : bi nar y_t r ee[‘ T] , el m: T) : voi d wher e si gnat ur e <=(: T, : T) : bool {
. . . }

f un i nc l udes(t : bi nar y_t r ee[‘ T] , el m: T) : bool wher e si gnat ur e <=(: T, : T) : bool {
. . . }

In this case, only instantiations of bi nar y_t r ee with comparable element types will be useful
in practice, since all non-trivial uses will involve a function requiring ordered elements, such as
i nser t and i ncl udes above. To capture this constraint, the bi nar y_t r ee class itself can be
given the constraint:

72

cl ass bi nar y_t r ee[T] wher e si gnat ur e <=(: T, : T) : bool ;

This ensures that every instantiation of bi nar y_t r ee has an element type that can be compared.
As described so far, however, the type constraints on the i nser t and i ncl udes functions are
still necessary, in order to satisfy the constraints of the instantiation of bi nar y_t r ee. However,
since these binary trees are arguments, instantiated previously, it is known that they must have
satisfied all the required type constraints of bi nar y_t r ee when the binary tree instances were
created. To avoid manually writing down such “known” type constraints, Diesel provides a
syntactic sugar that automatically inserts these associated constraints. If a backquoted type variable
is used as an explicit instantiating parameter of a parameterized type, the constraints that the type
associates with its explicit parameter in the corresponding position are imposed on the type
variable. In the i nser t and i ncl udes functions, the occurrence of ‘ T implicitly adds to the
enclosing function declaration the type constraints required for T to be a legal instance of
bi nar y_t r ee, i.e., si gnat ur e <=(: T, : T) : bool . Thus, these functions can be declared
simply as follows:

f un i nser t (t : bi nar y_t r ee[‘ T] , el m: T) : voi d { . . . }

f un i nc l udes(t : bi nar y_t r ee[‘ T] , el m: T) : bool { . . . }

Aside defining locations where constraints are inferred, there is no semantic impact from marking
more than one occurrence of a type variable with a backquote; any one occurrence is enough to
ensure that the type variable is included in the declaration’s (implicit or explicit) f or al l clause.
Similarly, it does not matter which occurrences of a backquoted type variable have upper and/or
lower bounds specified; all will be promoted tothe declaration’s f or al l clause.

The full syntax of parameterized types, specifying formally where backquoted type variables are
allowed, is as follows:

cl ass_decl : : = [t ype_cxt] c l ass_ki nd name [f or mal _par ams]
[t ype_cons] [“ i sa” cl ass_r ef _ps] [f i el d_i ni t s]
{ pr agma} “ ; ”

cl ass_r ef _ps : : = cl ass_r ef _p { “ , ” c l ass_r ef _p }

cl ass_r ef _p : : = name [par am_pat t er ns]

ext _cl ass_decl : : = [t ype_cxt] “ ext end” ext _cl ass_ki nd cl ass_r ef _p
[t ype_cons] [“ i sa” cl ass_r ef _ps] [f i el d_i ni t s]
{ pr agma} “ ; ”

pr edi cat e_decl : : = [t ype_cxt] “ pr edi cat e” name [f or mal _par ams]
[t ype_cons] [“ i sa” cl ass_r ef _ps]
[“ when” expr] { pr agma} “ ; ”

synonym_decl : : = [t ype_cxt] “ synonym” name [f or mal _par ams]
“ =” t ype_pat t er n [t ype_cons] { pr agma} “ ; ”

f un_decl : : = [t ype_cxt] “ f un” f un_name [f or mal _par ams]
“ (” [f un_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f un_body

f un_f or mal : : = [name] “ : ” t ype_pat t er n
| name

met hod_decl : : = [t ype_cxt] “ met hod” [“ s i gnat ur e”] f or mal _f un_r ef
“ (” [met h_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} met hod_body

f or mal _f un_r ef : : = name_f or mal _f un_r ef | op_f or mal _f un_r ef

name_f or mal _f un_r ef : : =name [f or mal _par ams]

73

op_f or mal _f un_r ef : : =op_name [f or mal _par ams]

met h_f or mal : : = [name] “ : ” t ype_pat t er n
| [name] “ @” [[“ ‘ ”] name “ <=”] c l ass_r ef _p
| name

si gnat ur e_decl : : = [t ype_cxt] “ si gnat ur e” f or mal _f un_r ef
“ (” [f un_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} “ ; ”

f i el d_decl : : = [t ype_cxt] [“ shar ed”] [“ var ”] “ f i el d”
name [f or mal _par ams]
“ (” f un_f or mal “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f i el d_body

f i el d_met hod_decl : : =[t ype_cxt] [“ shar ed”] [“ var ”] “ f i el d”
“ met hod” [“ s i gnat ur e”] name_f or mal _f un_r ef
“ (” met h_f or mal “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f i el d_body

t ype_const r ai nt : : = sub_const r ai nt | s i g_const r ai nt | t ype_pat t er n

sub_const r ai nt : : = t ype_pat t er n (“ <=” | “ >=”) t ype_pat t er n

si g_const r ai nt : : = [“ s i gnat ur e”] f or mal _f un_r ef
“ (” [f un_f or mal s] “) ” t ype_decl _p

t ype_decl _p : : = “ : ” t ype_pat t er n

t ype_pat t er ns : : = t ype_pat t er n { “ , ” t ype_pat t er n }

t ype_pat t er n : : = l ub_t ype_p

l ub_t ype_p : : = l ub_t ype_p “ | ” gl b_t ype_p
| gl b_t ype_p

gl b_t ype_p : : = gl b_t ype_p “ &” s i mpl e_t ype_p
| s i mpl e_t ype_p

si mpl e_t ype_p : : = bi ndi ng_t ype_p
| named_t ype_p
| c l osur e_t ype_p
| “ (” t ype_pat t er n “) ”

bi ndi ng_t ype_p : : = “ ‘ ” name_bi ndi ng

named_t ype_p : : = cl ass_r ef _p

cl osur e_t ype_p : : = “ &” “ (” [ar g_t ype_ps] “) ” [t ype_decl _p]

ar g_t ype_ps : : = ar g_t ype_p { “ , ” ar g_t ype_p }

ar g_t ype_p : : = [[name] “ : ”] t ype_pat t er n

f or mal _par am : : = [“ ‘ ”] name_bi ndi ng

name_bi ndi ng : : = name [“ >=” t ype_pat t er n] [“ <=” t ype_pat t er n]

4.4 Polymorphism and Subtyping

discuss non-, co-, and contravar iant type parameters, e.g.:

by default, there is no subtyping relation between two different instances of the same parameterized
type. however, sometimes such a relationship is desired. this can be expressed using constrained
implicit type parameters. e.g.:

cl ass i ndexed[T] i sa i ndexed[‘ S >= T] ; - - subtyping of indexed is covariant in T
f un f et ch(i : i ndexed[‘ T] , i ndex: i nt) : T { . . . }

cl ass m_i ndexed[T] i sa i ndexed[T] ; - - subtyping of m_indexed is nonvariant in T
f un s t or e(i : i ndexed[‘ T] , i ndex: i nt , val : T) : voi d { . . . }

- - some allowed and disallowed subtyping relations:

m_i ndexed[i nt] <= i ndexed[i nt] <= i ndexed[num] <= i ndexed[any]

m_i ndexed[i nt] ! <= m_i ndexed[num] - - because i t woul d be unsound

74

here indexed[T] is a read-only collection of elements of type T. indexed[T] can be legally viewed
as a subtype of indexed[S] for any supertype S of T, i.e., the subtyping of indexed is covariant in
its type parameter. in contrast, m_indexed[T] is a read-write collection of elements of type T. in
this situation, it would be unsound in general to view an m_indexed[T] as an m_indexed[S] for any
type S != T. E.g.:

l et a1: m_i ndexed[i nt] : = new m_i ndexed[i nt] ;

l et a2: m_i ndexed[any] : = a1; - - (not allowed in real Diesel)

a2. st or e(0, “ hel l o”) ;

l et x : i nt : = a1. f et ch(0) ; - - expects to return an int, but gets a string instead

in this case, the subtyping of m_indexed is non-variant in its type parameter, which is the default
situation. an m_indexed[T] is a subtype of indexed[T], which is a subtype of indexed[S] for any S
>= T, so by transitivity m_indexed[T] is a subtype of indexed[S] for any S >= T. this does not cause
problems because the view of the mutable collection through indexed[S] does not allow any
updates, only reads, thereby avoiding the soundness problem.

subtyping of a type may also be contravariant in a type parameter. for example, subtyping of
closure types is contravariant in the argument types (and covariant in the result type). e.g. a user-
defined type analogous to a two-argument closure type could be declared as follows:

abst r act c l ass Fun[Ar g1, Ar g2, Resul t] - - equivalent to &(Arg1,Arg2):Result
i sa Fun[‘ Ar g1B <= Ar g1, ‘ Ar g2B <= Ar g2, ‘ Resul t B >= Resul t] ;

f un eval (f : Fun[‘ Ar g1, ‘ Ar g2, ‘ Resul t] , a1: Ar g1, a2: Ar g2) : Resul t ;

- - some allowed and disallowed subtyping relations:

Fun[any, any, none] <= . . . <= Fun[num, any, i nt] <= . . . <= Fun[i nt , st r i ng, num]
<= . . . <= Fun[none, none, any]

discuss conditional subtyping, e.g.

abst r act c l ass pr i nt abl e;
f un pr i nt (p: pr i nt abl e) : voi d;

abst r act c l ass col l ect i on[T] ;
ext end c l ass col l ect i on[‘ T <= pr i nt abl e] i sa pr i nt abl e;

met hod pr i nt (a@col l ect i on[‘ T <= pr i nt abl e]) : voi d {
pr i nt (" [") ; a. do(&(e: T) { pr i nt (e) ; }) ; pr i nt ("] ") ; }

whether a function is in a type’s (implicit) interface can be conditional on properties of the type’s
instantiating type parameters, by adding type constraints to the function’s definition. e.g.
matrix_multiply and sort above. in other words, a function may be defined only for certain
instantiations of its argument types.

similarly, only certain instances of a polymorphic type may subtype from another. this conditional
subtyping arises from class extension declarations that impose more type constraints than the class
being extended. inheritance is always there, but the functions in the interface of the inherited class
are only invocable for instances of the subclass that satisfy the additional type constraints. e.g. print
only supported for collections of printable elements.

75

4.5 F-bounded Polymorphism

This subsection describes an example of advanced use of the Diesel type system, F-bounded
polymorphism. As we will see, no special support for this powerful idiom is needed in the type
system — it is made possible by allowing constraints to be recursive, whereby a type variable can
appear in its own bound.

For our first example, let us consider an abstract class or der ed and a binary function <=. A
binary function is a function that expects two arguments of similar types; the <= function can be
applied, for example, to two numbers or two strings, but not a string and a number. We would like
to define this function once, in the or der ed class, and have other classes, such as num and
st r i ng, inherit it. The simplest way to achieve it seems to be as follows:

abst r act cl ass or der ed;
f un <=(x: or der ed, y: or der ed) : bool ;
f un > (x: or der ed, y: or der ed) : bool { not (x <= y) }

ext end c l ass num i sa or der ed;
ext end c l ass st r i ng i sa or der ed;

This code, however, leads to an undesirable effect. Since <= and > are defined for or der ed and
num and st r i ng are its subclasses, we are required (for completeness) to write implementations
of <= to compare a num and a st r i ng, which we may not want. To avoid mixing of subclasses
of or der ed, we can apply F-bounded polymorphism as follows:

abst r act cl ass or der ed[T] wher e T <= or der ed[T] ;
f un <=(x: ‘ T, y: ‘ T) : bool wher e T <= or der ed[T] ;
f un > (x: ‘ T, y: ‘ T) : bool wher e T <= or der ed[T] { not (x <= y) }

ext end c l ass num i sa or der ed[num] ;
met hod <=(x@num, y@num) : bool { . . . }

ext end c l ass s t r i ng i sa or der ed[st r i ng] ;
met hod <=(x@st r i ng, y@st r i ng) : bool { . . . }

Now function > can be instantiated with num for T (because the instantiated constraint
num<= or der ed[num] can be solved: there is a corresponding declaration in the program) or
with st r i ng for T, but cannot with (st r i ng| num) for T (which would be required in order to
compare a num and a st r i ng).

With this scheme, in addition to defining binary functions itself, or der ed and all its subtypes can
inherit binary functions from other objects, for example:

abst r act cl ass compar abl e[T] wher e T <= compar abl e[T] ;
f un = (x: ‘ T, y: ‘ T) : bool wher e T <= compar abl e[T] ;
f un ! =(x: ‘ T, y: ‘ T) : bool wher e T <= compar abl e[T] { not (x = y) }

ext end c l ass or der ed[‘ T] i sa compar abl e[T] ;
met hod =(x@num, y@num) : bool { . . . }
met hod =(x@st r i ng, y@st r i ng) : bool { . . . }

Moreover, num can have subtypes, such as i nt or f l oat , which can be compared with each
other, but not with st r i ng or its subtypes:

ext end c l ass i nt i sa num;
ext end c l ass f l oat i sa num;

76

3 ! = 3. 14 -- legal

F-bounded polymorphism can be applied similarly to express families of two or more mutually
recursive types. For example, consider a simplified model-view (also known as subject-observer)
framework, where the model and the view must be able refer to each other and invoke operations
on each other.* Moreover, instances of the model-view framework, such as a drawing model and a
drawing view, must be able to invoke specific operations on each other without loss of static type
safety. The following code shows how the generic model-view framework can be defined:

abst r act cl ass model [‘ M <= model [M, V] , ‘ V <= v i ew[M, V]] ;

f i el d v i ews(: model [‘ M, ‘ V]) : set [V] : = new_set [V] () ;

f un r egi st er _vi ew(m: model [‘ M, ‘ V] , v i ew: V) : voi d {
m. vi ews. add(vi ew) ; }

f un changed(m: model [‘ M, ‘ V]) : voi d {
m. vi ews. do(&(v: V) {

v. updat e() ;
}) ; }

abst r act cl ass v i ew[‘ M <= model [M, V] , ‘ V <= v i ew[M, V]] ;

f i el d model (: v i ew[‘ M, ‘ V]) : M;

f un updat e(v: v i ew[‘ M, ‘ V]) : voi d;

Both model and vi ew are parameterized by the type of the model and the view with the
corresponding upper bounds on these two parameters. Correspondingly, the code for the model
and vi ew classes is parameterized by the actual types of the instantiation of the framework. For
example, the following code instantiates the generic model-view framework to construct a bitmap
drawing model and view:

cl ass dr awi ng i sa model [dr awi ng, dr awi ng_vi ew] ;

f i el d bi t map(: dr awi ng) : bi t map;

met hod set _pi xel (m: dr awi ng, pos: posi t i on, val ue: col or) : voi d {
m. bi t map. pi xel (pos) : = val ue;
- - more efficient than simply m.changed():
m. vi ews. do(&(v: dr awi ng_vi ew) {

v. updat e_pi xel (pos, val ue) ;
}) ; }

f un new_dr awi ng() : dr awi ng { new dr awi ng }

cl ass dr awi ng_vi ew i sa v i ew[dr awi ng, dr awi ng_vi ew] ;

met hod updat e(v@dr awi ng_vi ew) : voi d {
scr een. pl ot (v. model . bi t map) ; }

f un updat e_pi xel (v: dr awi ng_vi ew, pos: posi t i on, val ue: col or) : voi d {
scr een. pl ot _pi xel (pos, val ue) ; }

f un new_dr awi ng_vi ew(m: dr awi ng) : dr awi ng_vi ew {
new dr awi ng_vi ew { model : = m } }

Both dr awi ng and dr awi ng_vi ew add new operations that need to be called by the other type.
By parameterizing model as was done, the type of the vi ews field in dr awi ng is known
statically to be set of (subtypes of) dr awi ng_vi ew. This knowledge allows the set _pi xel

* Thanks to Gail Murphy for suggesting this problem to us.

77

operation in dr awi ng to invoke the updat e_pi xel operation without generating either a static
type-error or requiring a dynamic “ typecase” or “narrow” operation. Similarly, because of the way
vi ew is parameterized, the model field in its child dr awi ng_vi ew will be known statically to
refer to a (subtype of) dr awi ng, allowing the updat e operation of dr awi ng_vi ew to access
the bi t map field of the model in a statically type-safe manner. Note that it is legal to instantiate
model and vi ew with dr awi ng and dr awi ng_vi ew, because the instantiated subtype
constraints can be solved successfully.

Alternatively to the unparameterized dr awi ng and dr awi ng_vi ew, the programmer could
parameterize them in a way similar to how model and vi ew are parameterized, in order to allow
further refinement of these two types. This is similar to having the parameterized or der ed
subtype of compar abl e, as opposed to the unparameterized num and st r i ng subtypes of
or der ed, in our earlier examples.

4.6 Constraint Solving and Local Type Inference

The following typechecking tasks in Diesel lead to constraint solving:

• To typecheck a message send m[T1′,...,Tm′](E1,...,En), where the types of E1,...,En are T1,...,Tn,
the signature constraint si gnat ur e m[T1′,...,Tm′] (T1,...,Tn):Tresult is solved. Here Tresult is a
fresh type variable and can be instantiated with some type. The type of the message send is the
most specific type that Tresult can take on while the signature constraint can be solved
successfully.

• Type-checking many other kinds of expressions, statements, and declarations involves
determining whether one type is a subtype of another. To check whether S1 is a subtype of S2,
the subtype constraint S1 <= S2 is solved. S1 is a subtype of S2 iff the constraint can be solved
successfully.

• Whenever a declaration with constraints in its header is instantiated, the instantiated constraints
must be solved. If they cannot be solved successfully, such instantiation is not legal and so is
disallowed.

Informally, given a constraint to solve, constraint solving proceeds as follows. A “set-to-be-
solved” of constraints is created, initially containing this one constraint. One constraint at a time is
picked and removed from this set. A matching constraint is produced from the program
declarations, if possible, otherwise constraint solving fails. Two constraints match if they have the
same structure (e.g., both are signature constraints for the same function) and the types in the
corresponding positions are the same; fresh type variables may be instantiated with types during
matching. While producing the matching constraint, new constraints to be solved may arise, in
which case they are added to the set-to-be-solved. Constraint solving succeeds when the set-to-be-
solved becomes empty.

The matching constraint can be produced either by taking a constraint or declaration available in
the program, or by combining other constraints produced from the program declarations. More
specifically:

• A polymorphic subtype or signature declaration present in the program can be instantiated by
substituting types or fresh type variables for its type variables; its constraints, if any, need to be

78

solved and are added to the set-to-be-solved. A subtype of signature declaration with no type
variables is treated as an available constraint itself.

• When typechecking the body of a polymorphic declaration, the constraints in its header are
available.

• Constraints can be combined based on the standard properties of subtyping, such as transitivity,
and of signatures, such as contravariance. For example, if the program contains declarations
si gnat ur e =(: num, : num) : bool and ext end cl ass i nt i sa num, they can be
combined to yield the constraint si gnat ur e =(: i nt , : num) : bool . Matching of types
and substitutions of types for fresh type variables are performed as needed.

Inference of instantiating types is the part of constraint solving whereby the typechecker decides
how to instantiate polymorphic declarations, i.e., what types to substitute for type variables.
Intuitively, when typechecking a message send, the typechecker tries to find the “best”
instantiations of declarations involved in solving the signature constraint, i.e., the instantiations
that lead to the most precise result type. When checking whether a type is a subtype of another, the
typechecker only needs to prove that some appropriate instantiations exist.

Consider, for example, typechecking the message send pr i nt (my_col l) in the context of the
following declarations:

abst r act c l ass pr i nt abl e;
f un pr i nt (p: pr i nt abl e) : voi d;

abst r act c l ass col l ect i on[T] ;
ext end c l ass col l ect i on[‘ T <= pr i nt abl e] i sa pr i nt abl e;

met hod pr i nt (a@col l ect i on[‘ T <= pr i nt abl e]) : voi d {
pr i nt (" [") ; a. do(&(e: T) { pr i nt (e) ; }) ; pr i nt ("] ") ; }

cl ass f r ob i sa pr i nt abl e;

met hod pr i nt (a@f r ob) : voi d { . . . }

l et my_col l : col l ect i on[f r ob] : = . . . ;
pr i nt (my_col l) ;

Since my_col l has type col l ect i on[f r ob] , in order to check this send, the typechecker
needs to solve the constraint si gnat ur e pr i nt (col l ect i on[f r ob]) : Tresult where Tresult
is a fresh type variable; this is the first constraint in the set-to-be-solved. There is only one
declaration available that can be matched against this constraint: the one for si gnat ur e pr i nt
(pr i nt abl e) : voi d, derived from the function declaration. Using the implicit contravariant
signature matching rule, the original constraint can be satisfied if we can satisfy the following new
constraints: col l ect i on[f r ob] <= pr i nt abl e and voi d <= Tresult. The latter constraint
can be satisfied by instantiating Tresult with any supertype of voi d; we wish the result of the
message to be as precise as possible, so our inferencer picks the most specific legal instantiation,
in this case voi d. The former constraint can be satisfied by matching against the conditional
subtyping declaration col l ect i on[‘ T<=pr i nt abl e] <= pr i nt abl e, if we are able to
satisfy match f r ob against ‘ T<=pr i nt abl e. This matching succeeds if we can substitute
f r ob for T and also satisfy the constraints on T. This leads to needing to solve the constraint f r ob

79

<= pr i nt abl e, which is directly satisfied by the subtyping knowledge in f r ob’s class
declaration. All the constraints are satisfied, and so the message send is type-correct, returning a
value of type voi d.

explain somewhere the rules for ITC in the face of parameter ized types. generally, revisit
typechecking rules from section 3, revising/augmenting to account for type parameters.

A fuller and more formal explanation of Diesel’s constraint-based type system and the constraint
solving algorithm, along with soundness proofs and a discussion of termination, appear elsewhere
[Litvinov 98, Litvinov & Chambers TR, Litvinov thesis].

4.7 Related Work

THIS SUBSECTION STILL NEEDS TO BE UPDATED

We categorize related work on polymorphic type systems for object-oriented languages into
several groups: languages based on F-bounded polymorphism and explicit subtyping, languages
based on Sel f Type or matching, languages based on signature constraints and implicit structural
subtyping, languages based on instantiation-time checking, languages based on covariant
redefinition, and languages offering local type inference. Diesel (and its predecessor Cecil)
includes the core expressiveness of both F-bounded polymorphism (and its restrictions
Sel f Type and matching) and signature constraints, provided uniformly over a wide range of
declarations. Except where noted below, other languages based on these ideas support strict subsets
of the expressiveness of Diesel, although sometimes with more compact syntax. Also, the other
languages do not support multi-methods or least-upper-bound and greatest-lower-bound type
expressions, except where noted below.

4.7.1 Languages Based on F-Bounded Polymorphism

Pizza is an extension to Java based on F-bounded polymorphism [Odersky & Wadler 97]. Like
Diesel, Pizza supports classes with mutually recursive bounds, crucial for supporting interrelated
families of classes such as the model -vi ew example from section 4.5. Also like Diesel, Pizza
automatically infers instantiating type parameters of polymorphic methods and constructors,
although the instantiating parameters must match the actual argument types exactly, which is more
restrictive than Diesel which can infer appropriate supertypes of the argument types. Pizza lacks
signature constraints and the resulting implicit structural subtyping. Pizza does not support any
subtyping between different instances of a parameterized type, such as the desirable and legal
subtyping between different read-only interfaces to collection types as in our i _vect or example.
Pizza also inherits several restrictions from its Java base, including that it does not allow
contravariant method overriding. Pizza extends Java with first-class, lexically nested functions and
with algebraic data types and pattern-matching. The authors justify introducing algebraic data
types by claiming that classes allow new representations to be added easily but not new operations,
while algebraic data types support the reverse. Diesel’s multi-methods enable both new
representations and new operations to be added easily, avoiding the need for new language
constructs.

80

Bruce, Odersky, and Wadler [Bruce et al. 98] recently proposed to extend Pizza with special
support for declaring families of mutually recursive classes. They argue that pure F-bounded
polymorphism is too cumbersome for programmers to use in practice. We have not found pure F-
bounded polymorphism to be untenable, however; the model -vi ew example from section 4.5
illustrates our approach. Our experience may be better than theirs because our multi-method
framework encourages us to treat each argument and parameter symmetrically and uniformly,
while their model is complicated by the asymmetry between the implicit receiver and the explicit
arguments. Nevertheless, we are working on syntactic sugars that would make the more
sophisticated uses of F-bounded polymorphism simpler.

Agesen, Freund, and Mitchell propose a similar extension to Java [Agesen et al. 97]. It differs from
Pizza and Diesel in being able to parameterize a class over its superclass. However, this feature
cannot be typechecked when the abstraction is declared, but instead must be rechecked at each
instantiation.

Haskell’s type classes can be viewed as a kind of F-bounded polymorphism [Wadler & Blott 89].
Haskell automatically infers the most-general parameterization and constraints on functions that
take polymorphic arguments, as well as automatically inferring instantiations on calls to such
functions; Diesel requires polymorphic methods to explicitly declare type variables and constraints
over these variables. (In some cases, Haskell cannot unambiguously infer instantiations.) However,
Haskell is not truly object-oriented, in that after instantiation, no subtype polymorphism remains;
values of different classes but a common supertype cannot be mixed together at run-time,
preventing for instance lists of mixed integers and floats.

ML≤ is a powerful polymorphic object-oriented language supporting multi-methods [Bourdoncle
& Merz 97]. ML≤ supports subtyping directly, but treats inheritance as a separate syntactic sugar
(which must follow the subtyping relation). Similarly to Diesel, ML≤ constrains type variables
using sets of potentially recursive subtype constraints, supports inference of type parameters to
methods, and supports least-upper-bound type expressions (although not greatest-lower-bound
type expressions). ML≤ also supports parameterization over type constructors, while in Diesel type
constructors must be instantiated before use. ML≤ supports explicit declarations of co- and
contravariant type parameters of type constructors, while Diesel uses polymorphic subtype
declarations to achieve more general effects. ML≤ only allows subtyping between types in the same
type constructor “class,” however, which for instance restricts subtyping to be between types with
the same number of type parameters with the same variance properties, and ML≤ does not support
other forms of constrained subtyping, conformance, or inheritance. Diesel supports multiple
polymorphic signature declarations for the same message, while ML≤ allows only a single
signature declaration per message. ML≤ is purely functional and side-effect-free.

4.7.2 Languages Based on Sel f Type or Matching

Some languages provide only restricted forms of F-bounded polymorphism. In TOOPLE [Bruce et
al. 93] and Strongtalk [Bracha & Griswold 93], a special type Sel f Type is introduced, which can
be used as the type of method arguments, results, or variables; roughly speaking, a class C with
references to Sel f Type can be modeled with the F-bounded declaration

81

f or al l Sel f Type wher e Sel f Type <= C[Sel f Type] :
 t empl at e obj ect C[Sel f Type] ;

Sel f Type supports binary methods like <= and methods like copy that return values of exactly
the same type as their receiver, but it does not support other kinds of F-bounded parameterization.
Other languages provide a related notion called matching, which allows a kind of F-bounded
polymorphism where a single type variable is bounded by a function of itself (but of no other type
variables); languages with matching include PolyTOIL [Bruce et al. 95b] and LOOM [Bruce et al.
97]. The key advantage of Sel f Type and matching is convenient syntactic support for a common
idiom, but it is less powerful than F-bounded polymorphism. Additionally, the LOOM language
drops subtyping altogether in favor of matching, which costs it the ability to support run-time
mixing of values of different classes but common supertypes, such as performing binary operations
on the elements of a list of mixed integers and floats. Sel f Type and matching also are weaker
than F-bounded polymorphism in that they force subclasses to continually track the more specific
type; they cannot stop narrowing at some subclass and switch to normal subtyping below that point.
For example, with F-bounded polymorphism, the parameterized or der ed type can have its type
parameter “narrowed” and then fixed (say at or der ed[num]), allowing subtypes of the fixed
type (such as i nt and f l oat) to be freely mixed. This open/closed distinction for recursive
references to a type was noted previously by Eifrig et al. [Eifrig et al. 94].

discuss Diesel’s unification of inher itance & subtyping vs. Cecil, and how F-bounded
compensates for much of that lost expressiveness.

4.7.3 Languages Based on Signature Constraints and Implicit Structural Subtyping

Some languages use collections of signatures to constrain polymorphism, where any type which
supports the required signatures can instantiate the parameterized declaration. These systems can
be viewed as treating the signature constraints as defining “protocol” types and then inferring a
structural subtyping relation over user-defined and protocol types. This inference is in contrast to
the systems described earlier which require that the protocol types be declared explicitly, and that
legal instantiations of the protocols be declared as explicit subtypes. Implicit structural subtyping
can be more convenient, easier to understand, more adaptable to program evolution, and better
suited to combining separately written code without change, while explicit by-name subtyping
avoids inferring subtyping relations that ignore behavioral specifications, and may interact better
with inheriting default implementations of protocol types. Neither is clearly better than the other;
Diesel supports both easily. In addition, Diesel allows new supertypes to be added to previously
declared types, avoiding one limitation of explicit subtyping when adding new explicit protocol
types and adapting previously written objects to conform to them.

Strongtalk is a type system for Smalltalk where programmers define protocol types explicitly, use
protocols to declare the types of arguments, results, and variables, and let the system infer subtype
and conformance relations between protocols and classes; like Diesel, subtyping and inheritance
are separated. Precise details of the type system are not provided, but it appears that Strongtalk
supports explicit parameterization (but without constrained polymorphism) for protocols and
classes, a kind of parametric typing with dependent types and type inference for methods, least-
upper-bound type expressions, and a form of Sel f Type. To avoid accidental subtyping, a class

82

may be branded with one or more protocols. Like Diesel, type declarations and typechecking are
optional in Strongtalk.

Interestingly, a later version of Strongtalk appears to have dropped inferred structural subtyping
and brands in favor of explicit by-name subtyping [Bracha 96]. This later version also introduces
the ability to declare that different instantiations of a parameterized type are subtype-related either
co- or contravariantly with respect to its parameter types. Both Strongtalk systems are subsets of
Diesel’s type system.

Theta [Day et al. 95, Liskov et al. 94] and PolyJ [Myers et al. 97] support signature constraints
called wher e clauses. Unlike Diesel, only explicit type variables are supported, and clients must
provide instantiations of all type variables when using a parameterized abstraction. No subtype
relation holds between different instantiations of the same parameterized type, preventing idioms
such as the covariantly related read-only collection interfaces.

Recursively constrained types are the heart of a very sophisticated type system [Eifrig et al. 95]. In
this system, type variables and sets of constraints over them are automatically inferred by the
system. Subtyping is inferred structurally, viewing objects as records and using standard record
subtyping rules. Technically, the constraints on type variables are (mutually recursive) subtype
constraints, but anonymous types may be introduced as part of the subtype constraints, providing
a kind of signature constraint. Instead of instantiating polymorphic entities and inferring ground
types for expressions, their system simply checks whether the inferred constraints over the whole
program are satisfiable, without ever solving the constraints. For example, when computing the
type of the result of a message, their system may return a partially constrained type variable, while
Diesel must infer a unique, most-specific ground type. As a result, their system can typecheck
programs Diesel cannot. On the other hand, because Diesel computes named types for all
subexpressions, it can give simpler type error messages for incorrect programs; recursively
constrained types can provide only the constraint system that was unsatisfiable as the error
message, and this constraint system may be as large as the program source code itself. Their system
limits syntactically where least-upper-bound and greatest-lower-bound subtype constraints can
appear to ensure that such constraints can always be solved, while Diesel places no syntactic limits
but may report a type error due to incompleteness of the particular deterministic algorithm used by
the typechecker.

4.7.4 Languages Based on Instantiation-Time Checking

Some languages, including C++ [Stroustrup 86] and Modula-3 [SRC], dispense with specifying
constraints on type variables entirely, relying instead on checking each instantiation separately.
These languages are very flexible in what sort of parameterized declarations and clients can be
written, as the only constraints that need be met are that the individual instantiations made in some
program typecheck, and they are simple for programmers to use. (C++ also allows constant values
as parameters in addition to types.) However, dropping explicit constraints on instantiating type
variables loses the ability to check a parameterized declaration for type correctness once and for
all separately from its (potentially unknown) clients, loses the specification benefit to programmers

83

about how parameterized declarations should be used, and forces the source code of parameterized
entities to be made available to clients in order for them to typecheck instantiations.

4.7.5 Languages Based on Covariant Redefinition

Some languages support bounded polymorphic classes through covariant redefinition of types or
operations: a polymorphic class is defined as a regular class that has an “anchor” type member
initialized to the upper bound of the type parameter, and instances are made by defining subclasses
that redefine some anchor types to selected subtypes. Instances may themselves be further
subclassed and their anchor types narrowed. Eiffel supports covariant overriding of methods and
instance variables, and uses the l i ke construct to refer to anchors [Meyer 92]; Eiffel also supports
unbounded parameterized classes as well. Beta supports virtual patterns as anchor classes [Madsen
& Møller-Pedersen 89, Madsen et al. 93], and Thorup adapted this idea in his proposed virtual
types extension to Java [Thorup 97]. While all of these mechanisms seem natural to programmers
in many cases and are syntactically concise, they suffer from a loss of static type safety. In contrast,
Diesel can directly support all of the standard examples used to justify such mechanisms (including
binary methods and the model -vi ew example), for instance using one or more mutually recursive
F-bounded type parameters, without sacrificing static type safety. We are working on syntactic
support for the general pattern of mutually recursive F-bounded type parameters, in hopes of
achieving the same syntactic conciseness and programmer comprehensibility as well.

4.7.6 Languages Offering Local Type Inference

The work on local type inference in an extension of F≤ [Pierce & Turner 98], especially the “ local
type argument synthesis,” is very similar to inference of instantiating types in Diesel: they address
a similar problem and use a similar inference algorithm. Their setting is different from Diesel’s:
they work within an impredicative type system whereas Diesel’s is essentially predicative. In
contrast with their system, Diesel handles F-bounded quantification, signature constraints, by-
name subtyping, and overloading (with multiple dispatch). An earlier work on type inference in F≤
[Cardelli 93] presents a faster algorithm which is more restrictive in some cases due to asymmetric
treatment of method arguments.

A similar kind of type inference is also offered by GJ, a language that adds parameterized types to
Java [Bracha et al. 98]. Compared to its predecessor, Pizza, in GJ the type of an expression does
not depend on its context, and the type inference supports subsumption and empty collections
(which may be considered as having multiple incomparable collection types). GJ only provides
non-variant type parameters whereas in Diesel covariant or contravariant type parameters can be
expressed using polymorphic subtype declarations and are supported by type inference. Type
inference in GJ seeks to find the smallest instantiating types for type variables, whereas the goal of
type inference in Diesel is to infer the most specific type of an expression (which may be achieved,
for example, with the biggest instantiating type for a contravariant type parameter). GJ supports F-
bounded polymorphism, but does not provide other advanced language constructs, such as
signature constraints, independently parameterized subtype declarations, and multi-methods. The
authors of GJ report on the positive experience with their 20,000-line GJ compiler (written in GJ,
too) which extensively uses parameterization for container classes and the Visitor pattern. The

84

125,000-line Vortex compiler written in Diesel [Dean et al. 96] also uses parameterization
extensively for container classes as well as in heavily parameterized optimization and
interprocedural analysis frameworks [Litvinov 98]. Since Diesel allows additions of new multi-
methods and new branches of multi-methods to the existing code, there is no need to use the Visitor
pattern in Vortex.

85

5 Modules

Diesel allows declarations to be packaged up into modules. Modules aid in managing a program’s
name spaces, by treating like-named declarations in different modules as unrelated. Client code
explicitly indicates which subset of the available modules are being used, thereby helping to
narrow the interface that the client has of the rest of the program. Modules also support
encapsulation, by allowing the declarations within a module to be marked with a visibility
annotation, and restricting clients to access only visible members. The following example
illustrates some of the features of Diesel’s module system:

modul e Col l ect i on {

i mpor t Pr i nt Ut i l s ; - - import e.g. print_to_console

publ i c abst r act c l ass col l ect i on[T] ;

publ i c f un do(c: col l ect i on[‘ T] , c l osur e: &(T) : voi d) : voi d;

publ i c f un pr i nt (c: col l ect i on[‘ T]) : voi d {
pr i nt _t o_consol e(c. col l ect i on_name) ;
. . . print elements . . . }

pr ot ect ed f un col l ect i on_name(: col l ect i on[T]) : st r i ng;

. . .

}

modul e Li st {

publ i c ext ends Col l ect i on;

publ i c c l ass l i s t [T] i sa col l ect i on[T] ;

met hod col l ect i on_name(l @l i st [‘ T]) : st r i ng { “ l i s t ” }

i mpor t Li nk;

modul e Li nk {

publ i c c l ass l i nk[T] ;

publ i c f i el d val ue(: l i nk[T]) : T;

publ i c get var f i el d next (: l i nk[T]) : l i nk[T] | nul l ;

publ i c obj ect nul l ;

. . .

}

. . .

}

The full syntax of module-related declarations augments the earlier Diesel syntax as follows:

st at i c_decl : : = modul e_decl
| ext _modul e_decl
| i mpor t _decl
| ext ends_decl
| c l ass_decl
| ext _cl ass_decl
| pr edi cat e_decl
| di s j oi nt _decl
| cover _decl
| di v i de_decl
| synonym_decl
| f un_decl
| met hod_decl
| s i gnat ur e_decl

86

| f i el d_decl
| f i el d_met hod_decl
| pr ecedence_decl
| pr i m_decl
| pr agma

modul e_decl : : = [pr i vacy] “ modul e” name { pr agma} modul e_body

modul e_body : : = “ { ” modul e_cont ent s “ } ” [“ ; ”]
| “ ; ” modul e_cont ent s “ end” “ modul e” [name] “ ; ”
| “ ; ” modul e_cont ent s <EOF> module body ends at end of file

modul e_cont ent s : : = { mod_decl | s t mt }

mod_decl : : = f r i end_decl
| st at i c_decl
| dyn_decl

ext _modul e_decl : : = “ ext end” modul e_decl

i mpor t _decl : : = [pr i vacy] “ i mpor t ” modul e_r ef s { pr agma} “ ; ”

ext ends_decl : : = [pr i vacy] “ ext ends” modul e_r ef s { pr agma} “ ; ”

f r i end_decl : : = “ f r i end” modul e_r ef s { pr agma} “ ; ”

modul e_r ef s : : = modul e_r ef { “ , ” modul e_r ef }

modul e_r ef : : = qual i f i ed_name

cl ass_decl : : = [t ype_cxt] [pr i vacy] c l ass_ki nd name [f or mal _par ams]
[t ype_cons] [“ i sa” c l ass_r ef _ps] [f i el d_i ni t s]
{ pr agma} “ ; ”

ext _cl ass_decl : : = [t ype_cxt] [pr i vacy] “ ext end” ext _cl ass_ki nd cl ass_r ef _p
[t ype_cons] [“ i sa” c l ass_r ef _ps] [f i el d_i ni t s]
{ pr agma} “ ; ”

pr edi cat e_decl : : = [t ype_cxt] [pr i vacy] “ pr edi cat e” name [f or mal _par ams]
[t ype_cons] [“ i sa” c l ass_r ef _ps]
[“ when” expr] { pr agma} “ ; ”

synonym_decl : : = [t ype_cxt] [pr i vacy] “ synonym” name [f or mal _par ams]
“ =” t ype_pat t er n [t ype_cons] { pr agma} “ ; ”

f un_decl : : = [t ype_cxt] [pr i vacy] “ f un” f un_name [f or mal _par ams]
“ (” [f un_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f un_body

met hod_decl : : = [t ype_cxt] [pr i vacy] “ met hod” [“ s i gnat ur e”] f or mal _f un_r ef
“ (” [met h_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} met hod_body

si gnat ur e_decl : : = [t ype_cxt] [pr i vacy] “ s i gnat ur e” f or mal _f un_r ef
“ (” [f un_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} “ ; ”

f i el d_decl : : = [t ype_cxt] [f i el d_pr i vacy] [“ shar ed”] [“ var ”] “ f i el d”
name [f or mal _par ams]
“ (” f un_f or mal “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f i el d_body

f i el d_met hod_decl : : =[t ype_cxt] [f i el d_pr i vacy] [“ shar ed”] [“ var ”] “ f i el d”
“ met hod” [“ s i gnat ur e”] name_f or mal _f un_r ef
“ (” met h_f or mal “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f i el d_body

l et _decl : : = [pr i vacy] “ l et ” [“ var ”] name [t ype_decl] { pr agma}
“ : =” expr “ ; ”

pr i vacy : : = “ publ i c” | “ pr ot ect ed” | “ pr i vat e”

f i el d_pr i vacy : : = pr i vacy [“ get ” [pr i vacy “ put ”] | “ put ”]

var _r ef : : = qual i f i ed_name

cl ass_r ef : : = qual i f i ed_name [par ams]

cl ass_r ef _p : : = qual i f i ed_name [par am_pat t er ns]

87

name_f un_r ef : : = qual i f i ed_name [par ams]

op_f un_r ef : : = qual i f i ed_op_name [par ams]

name_f or mal _f un_r ef : : =qual i f i ed_name [f or mal _par ams]

op_f or mal _f un_r ef : : =qual i f i ed_op_name [f or mal _par ams]

qual i f i ed_name : : = [[modul e_r ef] “ $”] name

qual i f i ed_op_name: : =[[modul e_r ef] “ $”] op_name

Note that Diesel’s current module system is intentionally simple and somewhat incomplete,
intended to enable Diesel programmers (and its language designer) to gain experience using a
module system in a language featuring Diesel’s other unusual constructs such as multiple
dispatching.

5.1 Module Declarations

A group of declarations and statements can be packaged in a named module. The module
introduces a new nested scope, in which its body declarations are declared. Executing a module
causes its body statements and declarations to be executed, in the order given in the module. As
with other nested scoping, declarations in the scope surrounding the module are visible within the
module. (Visibility of the declarations within a module to scopes outside the module are mediated
by privacy annotations, as discussed in section 5.2.)

There are several equivalent ways of declaring a module:

modul e moduleName { . . . decls and stmts . . . }

modul e moduleName; . . . decls and stmts . . . end modul e;

modul e moduleName; . . . decls and stmts . . . end modul e moduleName;

modul e moduleName; . . . decls and stmts . . . - - end of file

The first way is the “standard” way to write a nested scope, but if the body is large, the closing
brace may be visually difficult to notice. As a more visually obvious alternative, the end modul e-
style syntax can be used. For further clarity and error checking, the name of the module can be
specified again when it is being ended. Finally, the end modul e clause can be omitted entirely,
in which case the module implicitly extends to the end of the file; this style is particularly
convenient if a whole file defines a single module.

A module can be declared within another module, introducing a further nested scope. As with
nested scoping in other contexts, the declarations of the enclosing module are visible within the
nested module.

File i ncl ude declarations are only allowed at top-level, not within a module. This ensures that
an included file’s scope always begins in the outer scope.

5.2 Privacy and Encapsulation

Most kinds of declarations in a module can be given privacy annotations, which control the
accessibility of the declaration in scopes outside the module. (A declaration is always accessible
within the module and within any nested modules. As a consequence, it is pointless to give privacy
annotations on global declarations.) If a named declaration is accessible, then it can be referenced,

88

either directly using a qualified name (described in section 5.3) or indirectly through the effects of
an i mpor t declaration (described in section 5.4).

A declaration annotated publ i c is accessible to any scope that has access to the enclosing
module. Since global modules are accessible to all code, public declarations of global modules are
globally accessible.

A declaration annotated pr ot ect ed is accessible to outside code only if it is lexically within a
module that declares itself to be a “submodule” of the module directly containing the pr ot ect ed
declaration. One module declares that it is a submodule of another using an ext ends declaration,
as described in section 5.5.

A declaration annotated pr i vat e is accessible to outside code only if it is lexically within a
module that the module directly containing the pr i vat e declaration declares to be a friend, using
a f r i end declaration as described in section 5.6.

If a privacy annotation is omitted, it defaults to pr ot ect ed.

A mutable field declaration introduced two new names, one for the field’s getter function and one
for its setter function. The privacy of each of these functions can be specified separately. A field
privacy annotation of the form getter_privacy get setter_privacy put specifies both the getter
and the setter’s privacy explicitly. Either of these halves may be omitted, in which case the omitted
privacy defaults to pr ot ect ed. A single privacy annotation can be given, in which case it applies
to both the getter and the setter.

For all declarations that introduce one or more new names, including module, class, object,
predicate, synonym, function, field, and variable declarations, privacy annotations control
accessibility of those names. Some declarations do not introduce any new names, but rather
augment some existing declared entities; such declarations include class extension declarations,
signature declarations, and method and field method declarations. The effect of a privacy
annotation on these declarations is as follows:

• On a class extension declaration, a privacy annotation controls visibility of the knowledge that
one class type is a subtype of another. The privacy annotation does not affect the fact that the
subclass does inherit from the superclass (which affects run-time method lookup), and that the
subclass type is a subtype of the superclass type in scope of the class extension declaration.
Type checking ensures that the subclass is indeed a legal subtype; hiding this fact simply
restricts outside clients from exploiting it. Hidden subtyping can be useful to allow a class to
inherit another for implementation purposes, while acting to outside clients as if it were a
separate type. example?

• Similarly, on a signature declaration, a privacy annotation controls visibility of the knowledge
that a function supports a certain interface. Type checking will ensure that all signatures are
valid; hiding a signature simply prevents some outside clients from using the signature to
license a call of the function.

• A privacy annotation on a method or field method declaration is only meaningful if the
declaration includes a si gnat ur e annotation, in which case the privacy annotation is
transferred to the implicit signature declaration(s). The method or field method(s) themselves

89

do not have visibility separate from the visibility of the function they extend; if a function is
visible to a caller, then so are all methods that extend that function. If a si gnat ur e
annotation is not specified, any privacy annotation specified with a method or field method
declaration must match the accessibility of the function(s) being extended, and has no other
effect.

refine this semantics to say which outside clients see the subtyping & signature decls (just
those that impor t? introduce use in addition to impor t?), and make it be the same as for
regular class & fun declarations. how does this hiding interact with ITC?

note that the UW Diesel implementation doesn’ t yet support hiding subtyping or signature
decls; all are implicitly globally visible, i.e., visible whenever their endpoint types or their
function & argument types are.

explain how all declarations are visible globally for the purposes of ITC, e.g., for each
function, for all its signatures (even hidden ones), enumerating all possible concrete classes
(even hidden ones) that conform (even via hidden subtyping) to the signature’s argument
types. no modular ITC :(.

Some declarations do not allow a privacy annotation to be specified. Precedence declarations have
global visibility, even when written inside a module, and so do not support a privacy annotation.
[I t would be nice, and seems feasible, to make precedence declarations scoped.] Similarly,
pr i m declarations have visibility in all later pr i m declarations and in all pr i m statements
occurring in the same source file, independently of what modules they are written in, and so they
do not support a privacy annotation. Since they are used solely during implementation-side type
checking, di sj oi nt , cover , and di vi de declarations are globally visible and so do not admit
a privacy annotation.

It is possible for a declaration to be given one degree of visibility, but to reference things that have
less visibility. For example, a public class declaration might inherit from a private superclass, or a
public function might have a private argument or result type. This is legal. Clients of such
declarations treat such non-visible aspects of declarations as being unknown, which may prevent
the client from performing some operations. For example, a client cannot exploit any subtyping
from a class to a hidden superclass (the fact that every class inherits from any is always known),
and a client cannot call a function that takes a hidden argument type, nor do anything with the result
of a function returning a hidden type except treat it as being some unknown subtype of any. It is
not even known that two occurrences of the same hidden type are the same. the UW Diesel
implementation probably does not enforce these limitations fully.

An alternative to privacy annotations is signature ascription, as in ML. In that model, a separate
“module type,” called a signature in ML, is assigned to the module, and this type can hide some
names by listing only a subset of the members of the module. Signature ascription does not easily
let a module have multiple external views, e.g. anyone vs. submodule vs. friend, but it does allow
a module’s interface to be written down separately from its implementation, which can improve
clarity and modular reasoning at the cost of duplicating the “headers” of externally visible
members.

90

5.3 Qualified Names

A client can refer to a named member of a module using a qualified name, of the form
moduleName$memberName. The member named memberName must be declared directly in the
module named moduleName (not in one of its lexically enclosing scopes), and memberName must
be accessible to the scope containing the qualified name occurrence. A module may itself be nested
inside module, and a qualified name may be used to name it, i.e., moduleName may itself be a
qualified name. Thus, a qualified name can specify a path,
outerModuleName$nestedModuleName$...$lastModuleName$memberName, starting with some
outer module (whose name is declared in a scope lexically enclosing the qualified name
occurrence), then stepping through a sequence of nested modules (each of which is accessible to
the scope containing the qualified name occurrence), finishing with the name of some member of
the last module.

For the purposes of qualified names, the global scope is treated as a module whose name is empty.
Thus, a qualified name can start with $, e.g.,
$globalModuleName$...$nestedModuleName$memberName or $globalName. Such a fully
qualified name is a context-insensitive way to refer to a named declaration.

5.4 Import Declarations

Named members exported by modules can be accessed using qualified names, but doing so can
lead to verbose programs. Alternatively, all names exported by some module can be imported into
a client scope using an i mpor t declaration. The effect of an import declaration is to declare local
aliases of all the names in the imported modules that are accessible to the importer. These aliases
can then be referred to using regular, unqualified names in their scope.

An import declaration can have a privacy annotation. This annotation controls the visibility of the
aliases to clients of the importing module. The aliases are known to the client of the importing
module to be equivalent to the names in the importee module, in case both modules are accessible
to the client.

A member declared in a scope shadows a member of the same name imported from another
module. A member imported into a scope shadows a member declared in a lexically enclosing
scope.

If two different modules are imported that declare the same name, and those names are not known
to be aliases, then the name is considered ambiguously imported, and it cannot be referred to under
its alias name. The ambiguity can be resolved using qualified names to indicate explicitly which
module’s version of the name is desired.

To avoid circular dependencies in name resolution, i mpor t declarations are ignored when
resolving the names of modules in i mpor t declarations themselves. Only regular lexical scoping
is used when resolving the names of importees.

A common idiom is to declare a nested module containing publ i c and pr i vat e members, and
then immediately import the nested module into the enclosing scope. This has the effect of making

91

the publ i c members of the nested module visible to the rest of the enclosing scope, while hiding
the pr i vat e members, analogously to how a l ocal declaration in ML allows hiding of some
declarations while exporting others. The imported publ i c members can be made available to
outside scopes by giving the i mpor t declaration an appropriate privacy annotation.

It is not currently possible to selectively import a subset of the names of a module, or to assign
different imported names different privacies. Such an ability would be useful to add to the
language, however. how about coupling a signature ascr iption to an impor t decl? or to a
module itself? seems like it could solve lots of problems....

investigate allowing import in dyn scopes (only a limitation of the implementation, not the
semantics)

5.5 Extends Declarations

A module can specify that it is a “submodule” of another module by using an ext ends
declaration specifying the other module. This grants the submodule access to the pr ot ect ed
members as well as the publ i c members of the extended module. In addition, an ext ends
declaration acts like an i mpor t declaration, introducing local aliases for all publ i c and
pr ot ect ed named members of the extended module into the submodule. The rules for privacy
annotations and shadowing of these local aliases are the same as for local aliases due to i mpor t
declarations.

An ext ends declaration is intended to achieve for modules an effect similar to what traditional
class-based languages achieve for pr ot ect ed members. For example, a class and its operations
can be declared in one module, with any members intended for use only by subclasses marked
protected. A subclass can then be declared in a separate module, which can gain access to the
pr ot ect ed members, e.g., to override them with subclass-specific methods, by declaring that the
module containing the subclass extends the module containing the superclass. Note, however, that
there is no obligation that the submodule actually declare a subclass, or access the pr ot ect ed
members solely on behalf of subclass instances; pr ot ect ed privacy is only advisory. It would
be useful to extend the language to enforce the constraint that submodules only access
pr ot ect ed members of the extended module on behalf of instances of classes declared in the
submodule. introduce protected types.

As with i mpor t declarations, ext end declarations are ignored when resolving the names of
modules in i mpor t or ext end declarations. Only regular lexical scoping is used when resolving
the names of extendees.

5.6 Friend Declarations

A module can grant an outside module access to all of its members, including its pr i vat e
members, by listing the outside module in a f r i end declaration. Then, whenever the friend
module accesses a member of the module, either directly via a qualified name or indirectly through
i mpor t or ext ends declarations, access is always granted.

92

In contrast to ext ends declarations, which occur in the outside extending modules that wish to
gain additional access to a module’s members, f r i end declarations occur in the module wishing
to grant access to outside modules.

Since a f r i end declaration introduces no names, it can have no privacy annotation.

As with i mpor t and ext end declarations, f r i end declarations are ignored when resolving the
names of modules in i mpor t , ext end, or f r i end declarations. Only regular lexical scoping is
used when resolving the names of friends.

A f r i end declaration can only appear inside a module, not at top-level.

5.7 Module Extension Declarations

A module’s body can be augmented “ from the outside” of its original declaration using a module
extension declaration, analogously to how a class or object extension declaration can augment the
inheritance declarations and field initializers of a class or object “ from the outside.” Such a
declaration begins with the keyword ext end followed by a normal module declaration. However,
unlike a regular module declaration, the module extension does not declare a new module, but
instead must refer to an existing module. The body of the module extension is in the same scope
as the body of the original module declaration, and the bodies of any other module extensions of
the same module; all these bodies can refer to any declarations in any of the bodies. Executing a
module extension causes its body statements and declarations to be executed, in the order given in
the module extension; the body of the module extension is not executed when the original module
is executed.

Note that a module extension declaration is unrelated to an extends declaration identifying a
submodule. One begins ext end modul e, while the other begins ext ends . The former
augments an existing module in place, while the latter is a component of a module that claims
access to pr ot ect ed members of some other modules.

Module extensions are intended to be a way for a module’s implementation to be spread across
multiple files. They also allow a single module to act as an open-ended “name space” container
into which other files add declarations, e.g. nested modules. This ability is similar to packages in
Java and namespaces in C#.

The current syntax of module extensions requires the extendee module to be referred to by a simple
name, not a qualified name. To achieve the effect of an extension of a module accessed by a
qualified name, e.g.

ext end modul e M1$M2$M3 { . . . }

a nested sequence of module extensions can be declared, e.g.

ext end modul e M1 { ext end modul e M2 { ext end modul e M3 { . . . } } }

Nonetheless, it would be useful to regularize the language to allow qualified names in this context
as well. tr ivial; do this.

93

5.8 Function Call Overload Resolution

As described in section 5.4, if two members of different modules but with the same name are
imported into the same scope, the name is ambiguous. Normally, this prevents referencing the
name. However, Diesel includes support to resolve this ambiguity for the special case of function
calls. In this case, the static types of the call’s arguments can aid in selecting the right function
being called, without requiring qualifying the function’s name. To locate the function being
invoked, the implementation collects all functions that have the same name, number of explicit
type parameters, and number of arguments as the call, and that are declared in any lexically
enclosing scope, or are declared in any module imported or extended by a lexically enclosing scope
and accessible to that scope; the usual shadowing and ambiguity rules are ignored. Then the set of
functions thus collected is filtered to include only those functions having visible signatures with
arguments that are supertypes of the types of the actual arguments of the call. If this filtered set still
has multiple callable functions, then an “ambiguous reference” error is reported. If the filtered set
is empty, then a “message not understood” error is reported. Otherwise, a unique callable function
has been located, and it is the one invoked by the function call.

This form of ambiguity resolution is related to the static overloading found in languages like C++,
Java, and C#. One difference is that overloading based solely on static argument type is not allowed
within a single scope, only when accessing like-named functions declared in different scopes but
visible in a common scope.

Currently, function ambiguity resolution based on static argument types is applied to references to
functions in function calls, but not to other references to functions including method and signature
declarations and field initializers. It would be useful to investigate supporting ambiguity resolution
for these other function references as well.

Using static argument types to resolve ambiguities in references to functions being called is
convenient (and widely used in practice) for statically typed code, but it does not help dynamically
typed code. Qualified names of functions must be used wherever more than one function with a
matching name are visible to a call site. This unfortunately penalizes dynamically typed code
relative to statically typed code.

94

6 Related Work

Diesel builds on Cecil.

(The following is a discussion of the related work for Cecil. This needs to be extended and
revised to include the more recent work which influenced and relates to Diesel.)

Cecil builds upon much of the work done with the Self programming language [Ungar & Smith 87,
Hölzle et al. 91a]. Self offers a simple, pure, classless object model with state accessed via message
passing just like methods. Cecil extends Self with multi-methods, copy-down and initialize-only
data slots, lexically-scoped local methods and fields, object extensions, static typing, and a module
system. Cecil has simpler method lookup and encapsulation rules, at least when considering only
the single dispatching case. Cecil’s model of object creation is different than Self ’s. However, Cecil
does not incorporate dynamic inheritance, one of the most interesting features of Self; predicate
objects are Cecil’s more structured but more restricted alternative to dynamic inheritance.
Freeman-Benson independently developed a proposal for adding multi-methods to Self [Freeman-
Benson 89].

Common Loops [Bobrow et al. 86] and CLOS [Bobrow et al. 88, Gabriel et al. 91] incorporate
multi-methods in dynamically-typed class-based object-oriented extensions to Lisp. Method
specializations (at least in CLOS) can be either on the class of the argument object or on its value.
One significant difference between Cecil’s design philosophy and that in CLOS and its
predecessors is that Cecil’s multiple inheritance and multiple dispatching rules are unordered and
report any ambiguities in the source program as message errors, while in CLOS left-to-right
linearization of the inheritance graph and left-to-right ordering of the argument dispatching serves
to resolve all message ambiguities automatically, potentially masking real programming errors. We
feel strongly that the programmer should be made aware of potential ambiguities since automatic
resolution of these ambiguities can easily lead to obscure errors in programs. Cecil offers a simpler,
purer object model, optional static type checking, and encapsulation. CLOS and its predecessors
include extensive support for method combination rules and reflective operations [Kiczales et al.
91] not present in Cecil.

Dylan [Apple 92] is a new language which can be viewed as a slimmed-down CLOS, based in a
Scheme-like language instead of Common Lisp. Dylan is similar to CLOS in most of the respects
described above, except that Dylan always accesses state through messages. Dylan supports a form
of type declarations, but these are not checked statically, cannot be parameterized, and are treated
both as argument specializers and type declarations, unlike Cecil where argument specializers and
argument type declarations are distinct.

Polyglot is a CLOS-like language with a static type system [Agrawal et al. 91]. However, the type
system for Polyglot does not distinguish subtyping from code inheritance (classes are the same as
types in Polyglot), does not support parameterized or parametrically polymorphic classes or
methods, and does not support abstract methods or signatures. To check consistency among multi-
methods within a generic function, at least the interfaces to all multi-methods of a generic function
must be available at type-check-time. This requirement is similar to that of Cecil that the whole

95

program be available at type-check-time to guarantee that two multi-methods are not mutually
ambiguous for some set of argument objects.

Kea is a higher-order polymorphic functional language supporting multi-methods [Mugridge et al.
91]. Like Polyglot (and most other object-oriented languages), inheritance and subtyping in Kea
are unified. Kea’s type checking of multi-methods is similar to Cecil’s in that multi-methods must
be both complete and consistent. It appears that Kea has a notion of abstract methods as well.

Leavens describes a statically-typed applicative language NOAL that supports multi-methods
using run-time overloading on the declared argument types of methods [Leavens 89, Leavens &
Weihl 90]. NOAL was designed primarily as a vehicle for research on formal verification of
programs with subtyping using behavioral specifications, and consequently omits theoretically
unnecessary features that are important for practical programming, such as inheritance of
implementation, mixed static and dynamic type checking, and mutable state. Other theoretical
treatments of multi-methods have been pursued by Rouaix [Rouaix 90], Ghelli [Ghelli 91],
Castagna [Castagna et al. 92, Castagna 95], and Pierce and Turner [Pierce & Turner 92, Pierce &
Turner 93].

The RPDE3 environment supports subdivided methods where the value of a parameter to the
method or of a global variable helps select among alternative method implementations [Harrison
& Ossher 90]. However, a method can be subdivided only for particular values of a parameter or
global variable, not its class; this is much like supporting only CLOS’s eql specializers.

A number of languages, including C++ [Stroustrup 86, Ellis & Stroustrup 90], Ada [Barnes 91],
and Haskell [Hudak et al. 90], support static overloading on function arguments, but all
overloading is resolved at compile-time based on the static types of the arguments (and results, in
the case of Ada) rather than on their dynamic types as would be required for true multiple
dispatching.

Trellis* supports an expressive, safe static type system [Schaffert et al. 85, Schaffert et al. 86].
Cecil’s parameterized type system includes features not present in Trellis, such as implicitly-bound
type variables and uniform treatment of constrained type variables. Trellis restricts the inheritance
hierarchy to conform to the subtype hierarchy; it only supports i sa-style superclasses.

POOL is a statically-typed object-oriented language that distinguishes inheritance of
implementation from inheritance of interface [America & van der Linden 90]. POOL generates
types automatically from all class declarations (Cecil allows the programmer to restrict which
objects may be used as types). Subtyping is implicit (structural) in POOL: all possible legal subtype
relationships are assumed to be in force. Programmers may add explicit subtype declarations as a
documentation aid and to verify their expectations. One unusual aspect of POOL is that types and
classes may be annotated with properties, which are simple identifiers that may be used to capture
distinctions in behavior that would not otherwise be expressed by a purely syntactic interface. This
ameliorates some of the drawbacks of implicit subtyping.

* Formerly known as Owl and Trellis/Owl.

96

Emerald is another classless object-oriented language with a static type system [Black et al. 86,
Hutchinson 87, Hutchinson et al. 87, Black & Hutchinson 90]. Emerald is not based on multiple
dispatching and in fact does not include support for inheritance of implementation. Types in
Emerald are arranged in a subtype lattice, however.

Rapide [Mitchell et al. 91] is an extension of Standard ML modules [Milner et al. 90] with
subtyping and inheritance. Although Rapide does not support multi-methods and relies on implicit
subtyping, many other design goals for Rapide are similar to those for Cecil.

Some more recent languages support some means for distinguishing subtyping from inheritance.
These languages include Theta [Day et al. 95], Java [Sun 95], and Sather [Omohundro 93]. Theta
additionally supports an enhanced CLU-like where-clause mechanism that provides an alternative
to F-bounded polymorphism. C++’s private inheritance supports a kind of inheritance without
subtyping.

Several languages support some form of mixed static and dynamic type checking. For example,
CLU [Liskov et al. 77, Liskov et al. 81] allows variables to be declared to be of type any. Any
expression may be assigned to a variable of type any, but any assignments of an expression of type
any to an expression of another type must be explicitly coerced using the parameterized f or ce
procedure. Cedar supports a similar mechanism through its REF ANY type [Teitelman 84]. Modula-
3 retains the REFANY type and includes several operations including NARROW and TYPECASE
that can produce a more precisely-typed value from a REFANY type [Nelson 91, Harbison 92].
Cecil provides better support for exploratory programming than these other languages since there
is no source code “overhead” for using dynamic typing: variable type declarations are simply
omitted, and coercions between dynamically-typed expressions and statically-typed variables are
implicit. On the other hand, in Cecil it sometimes can be subtle whether some expression is
statically-typed or dynamically-typed.

97

7 Conclusion

TO BE WRITTEN

Acknowledgments

TO BE REVISED to include Diesel-related acknowledgments.

The Cecil language design and the presentation in this document have benefitted greatly from
discussions with members of the Self group including David Ungar, Urs Hölzle, Bay-Wei Chang,
Ole Agesen, Randy Smith, John Maloney, and Lars Bak, with members of the Kaleidoscope group
including Alan Borning, Bjorn Freeman-Benson, Michael Sannella, Gus Lopez, and Denise
Draper, with the Cecil group including Claudia Chiang, Jeff Dean, Charles Garrett, David Grove,
Vassily Litvinov, Vitaly Shmatikov, and Stuart Williams, and others including Peter Deutsch, Eliot
Moss, John Mitchell, Jens Palsberg, Doug Lea, Rick Mugridge, John Chapin, Barbara Lerner, and
Christine Ahrens. Gary Leavens collaborated with the author to refine the static type system, devise
the module system, and develop an efficient typechecking algorithm. Claudia Chiang implemented
the first version of the Cecil interpreter, in Self. Stuart Williams augmented this interpreter with a
type checker for the monomorphic subset of the Cecil type system. Jeff Dean, Greg DeFouw,
Charles Garrett, David Grove, MaryAnn Joy, Vassily Litvinov, Phiem Huynh Ngoc, Vitaly
Shmatikov, Ben Teitelbaum, and Tina Wong have worked on various aspects of the Vortex
optimizing compiler for object-oriented languages, a.k.a. the UW Cecil implementation. A
conversation with Danny Bobrow and David Ungar at OOPSLA ’89 provided the original
inspiration for the Cecil language design effort.

This research has been supported by a National Science Foundation Research Initiation Award
(contract number CCR-9210990), a NSF Young Investigator Award (contract number CCR-
945767), a University of Washington Graduate School Research Fund grant, a grant from the
Office of Naval Research (contract number N00014-94-1-1136), and gifts from Sun Microsystems,
IBM Canada, Xerox PARC, Edison Design Group, and Pure Software.

More information on the Diesel language and Vortex optimizing compiler projects is available at
ht t p: / / www. cs. washi ngt on. edu/ r esear ch/ pr oj ect s/ ceci l . More information
on related projects of the Washington Advanced Systems for Programming (WASP) group is
available at ht t p: / / www. cs. washi ngt on. edu/ r esear ch/ pr ogsys/ wasp.

98

References

[Agesen et al. 97] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding Type Parameterization to
the Java Language. In Proceedings OOPSLA ’97, Atlanta, GA, October 1997.

[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type Checking of
Multi-Methods. In OOPSLA ’91 Conference Proceedings, pp. 113-128, Phoenix, AZ, October, 1991.
Published as SIGPLAN Notices 26(11), November, 1991.

[America & van der Linden 90] Pierre America and Frank van der Linden. A Parallel Object-Oriented
Language with Inheritance and Subtyping. In OOPSLA/ECOOP ’90 Conference Proceedings, pp. 161-
168, Ottawa, Canada, October, 1990. Published as SIGPLAN Notices 25(10), October, 1990.

[Andersen & Reenskaug 92] Egil P. Andersen and Trygve Reenskaug. System Design by Composing
Structures of Interacting Objects. In ECOOP ’92 Conference Proceedings, pp. 133-152, Utrecht, the
Netherlands, June/July 1992. Published as Lecture Notes in Computer Science 615, Springer-Verlag,
Berlin, 1992.

[Apple 92] Dylan, an Object-Oriented Dynamic Language. Apple Computer, April, 1992.

[Barnes 91] J. G. P. Barnes. Programming in Ada, 3rd Edition. Addison-Wesley, Wokingham, England,
1991.

[Black et al. 86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Structure in the
Emerald System. In OOPSLA ’86 Conference Proceedings, pp. 78-86, Portland, OR, September, 1986.
Published as SIGPLAN Notices 21(11), November, 1986.

[Black & Hutchinson 90] Andrew P. Black and Norman C. Hutchinson. Typechecking Polymorphism in
Emerald. Technical report TR 90-34, Department of Computer Science, University of Arizona,
December, 1990.

[Bobrow et al. 86] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel. CommonLoops: Merging Lisp and Object-Oriented Programming. In OOPSLA ’86
Conference Proceedings, pp. 17-29, Portland, OR, September, 1986. Published as SIGPLAN Notices
21(11), November, 1986.

[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon.
Common Lisp Object System Specification X3J13. In SIGPLAN Notices 23(Special Issue), September,
1988.

[Borning 86] A. H. Borning. Classes Versus Prototypes in Object-Oriented Languages. In Proceedings of
the 1986 Fall Joint Computer Conference, pp. 36-40, Dallas, TX, November, 1986.

[Bourdoncle & Merz 97] François Bourdoncle and Stephan Merz. Type Checking Higher-Order
Polymorphic Multi-Methods. In Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 302–315, January 1997.

[Bracha & Griswold 93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a
Production Environment. In OOPSLA ’93 Conference Proceedings, pp. 215-230, Washington, D.C.,
September 1993. Published as SIGPLAN Notices 28(10), October 1993.

[Bracha 96] Gilad Bracha. The Strongtalk Type System for Smalltalk, 1996. OOPSLA ’96 Workshop on
Extending the Smalltalk Language, available from http://java.sun.com/people/gbracha/nwst.html.

[Bracha et al. 98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the Future
Safe for the Past: Adding Genericity to the Java Programming Language. In OOPSLA ’98 Conference
Proceedings, Vancouver, B.C., October, 1998.

[Bruce et al. 93] Kim B. Bruce, Jon Crabtree, ThomasP. Murtagh, Robert van Gent, Allyn Dimock, and
Robert Muller. Safe and decidable type checking in an object-oriented language. In Proceedings
OOPSLA ’93, pages 29–46, October 1993. Published as ACM SIGPLAN Notices, volume 28, number
10.

99

[Bruce et al. 95b] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyToil: A Type-Safe Polymorphic
Object-Oriented Language. In Proceedings ECOOP ’95, Aarhus, Denmark, August 1995. Springer-
Verlag.

[Bruce et al. 97] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good “Match” for
object-oriented languages. In Proceedings ECOOP ’97. Springer-Verlag, June 1997.

[Bruce et al. 98] Kim B. Bruce, Martin Odersky, and Philip Wadler. A Statically Safe Alternative to Virtual
Types. In Proceedings ECOOP ’98, Brussels, Belgium, July 1998. Springer-Verlag.

[Canning et al. 89] Peter S. Canning, William R. Cook, Walter L. Hill, John C. Mitchell, and William
Olthoff. F-Bounded Quantification for Object-Oriented Programming. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture, 1989.

[Cardelli & Wegner 85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. In Computing Surveys 17(4), pp. 471-522, December, 1985.

[Cardelli 93] Luca Cardelli. An implementation of Fsub. Research Report 97, Digital Equipment
Corporation Systems Research Center, 1993.

[Castagna et al. 92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded
Functions with Subtyping. In Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pp. 182-192, San Francisco, June, 1992. Published as Lisp Pointers 5(1), January-
March, 1992.

[Castagna 95] Giuseppe Castagna. Covariance and Contravariance: Conflict without a Cause. In ACM
Transactions on Programming Languages and Systems 17(3), pp. 431-447, May 1995.

[Chambers et al. 89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of Self, a
Dynamically-Typed Object-Oriented Language Based on Prototypes. In OOPSLA ’89 Conference
Proceedings, pp. 49-70, New Orleans, LA, October, 1989. Published as SIGPLAN Notices 24(10),
October, 1989. Also published in Lisp and Symbolic Computation 4(3), Kluwer Academic Publishers,
June, 1991.

[Chambers et al. 91] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle. Parents are Shared
Parts: Inheritance and Encapsulation in Self. In Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages
Practical. In OOPSLA ’91 Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991. Published
as SIGPLAN Notices 26(10), October, 1991.

[Chambers 92a] Craig Chambers. The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. Ph.D. thesis, Department of Computer
Science, Stanford University, March, 1992.

[Chambers 92b] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In ECOOP ’92 Conference
Proceedings, pp. 33-56, Utrecht, the Netherlands, June/July, 1992. Published as Lecture Notes in
Computer Science 615, Springer-Verlag, Berlin, 1992.

[Chambers 93a] Craig Chambers. The Cecil Language: Specification and Rationale. Technical report #93-
03-05, Department of Computer Science and Engineering, University of Washington, March, 1993.

[Chambers 93b] Craig Chambers. Predicate Classes. In ECOOP ’93 Conference Proceedings, pp. 268-296,
Kaiserslautern, Germany, July, 1993. Published as Lecture Notes in Computer Science 707, Springer-
Verlag, Berlin, 1993.

[Chambers & Leavens 94] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-
Methods. In OOPSLA ’94 Conference Proceedings, pp. 1-15, Portland, OR, October 1994. Published
as SIGPLAN Notices 29(10), October 1994. An expanded and revised version to appear in ACM
Transactions on Programming Languages and Systems.

[Chang & Ungar 90] Bay-Wei Chang and David Ungar. Experiencing Self Objects: An Object-Based
Artificial Reality. Unpublished manuscript, 1990.

100

[Cook 89] W. R. Cook. A Proposal for Making Eiffel Type-Safe. In ECOOP ’89 Conference Proceedings,
pp. 57-70, Cambridge University Press, July, 1989.

[Cook et al. 90] William Cook, Walter Hill, and Peter Canning. Inheritance is not Subtyping. In Conference
Record of the 17th Annual ACM Symposium on Principles of Programming Languages, San Francisco,
CA, January, 1990.

[Cook 92] William R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. In In
OOPSLA ’92 Conference Proceedings, pp. 1-15, Vancouver, Canada, October, 1992. Published as
SIGPLAN Notices 27(10), October, 1992.

[Day et al. 95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Subtypes vs. Where
Clauses: Constraining Parametric Polymorphism. In Proceedings of the 1995 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’95), pp. 156-168,
Austin, TX, October 1995.

[Dean & Chambers 94] Jeffrey Dean and Craig Chambers. Towards Better Inlining Decisions Using
Inlining Trials. In Proceedings of the ACM Symposium on Lisp and Functional Programming, pp. 273-
282, Orlando, FL, June 1994. Published as Lisp Pointers 7(3), July-September 1994.

[Dean et al. 95a] Jeffrey Dean, Craig Chambers, and David Grove. Selective Specialization in Object-
Oriented Languages. In Proceedings of the 1995 SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’95), La Jolla, CA, June 1995.

[Dean et al. 95b] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’95), Århus, Denmark, August 1995.

[Dean et al. 96] Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily Litvinov, and Craig Chambers. Vortex:
An Optimizing Compiler for Object-Oriented Languages. In OOPSLA’96 Conference Proceedings, San
Jose, CA, October 1996.

[Eifrig et al. 95] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound Polymorphic Type Inference for
Objects. In OOPSLA’95 Conference Proceedings, pages 169–184, Austin, TX, October 1995.

[Ellis & Stroustrup 90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA, 1990.

[Freeman-Benson 89] Bjorn N. Freeman-Benson. A Proposal for Multi-Methods in Self. Unpublished
manuscript, December, 1989.

[Gabriel et al. 91] Richard P. Gabriel, Jon L White, and Daniel G. Bobrow. CLOS: Integrating Object-
Oriented and Functional Programming. In Communications of the ACM 34(9), pp. 28-38, September,
1991.

[Ghelli 91] Giorgio Ghelli. A Static Type System for Message Passing. In OOPSLA ’91 Conference
Proceedings, pp. 129-145, Phoenix, AZ, October, 1991. Published as SIGPLAN Notices 26(11),
November, 1991.

[Goldberg & Robson 83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA, 1983.

[Goldberg 84] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley,
Reading, MA, 1984.

[Grove et al. 95] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. Profile-Guided Receiver
Class Prediction. In Proceedings of the 1995 ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’95), Austin, TX, October 1995.

[Grove 95] David Grove. The Impact of Interprocedural Class Analysis on Optimization. In Proceedings of
CASCON ’95, pp. 195-203, Toronto, Canada, November 1995.

[Halbert & O’Brien 86] Daniel C. Halbert and Patrick D. O’Brien. Using Types and Inheritance in Object-
Oriented Languages. Technical report DEC-TR-437, Digital Equipment Corp., April, 1986.

101

[Harbison 92] Samuel P. Harbison. Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1992.

[Harrison & Ossher 90] William Harrison and Harold Ossher. Subdivided Procedures: A Language
Extension Supporting Extensible Programming. In Proceedings of the 1990 International Conference
on Computer Languages, pp. 190-197, New Orleans, LA, March, 1990.

[Harrison & Ossher 93] William Harrison and Harold Ossher. Subject-Oriented Programming (A Critique
of Pure Objects). In OOPSLA ’93 Conference Proceedings, pp. 411-428, Washington, D.C., September
1993. Published as SIGPLAN Notices 28(10), October 1993.

[Hölzle et al. 91a] Urs Hölzle, Bay-Wei Chang, Craig Chambers, Ole Agesen, and David Ungar. The Self
Manual, Version 1.1. Unpublished manual, February, 1991.

[Hölzle et al. 91b] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed Object-
Oriented Programming Languages with Polymorphic Inline Caches. In ECOOP ’91 Conference
Proceedings, pp. 21-38, Geneva, Switzerland, July, 1991.

[Hölzle et al. 92] Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized Code with Dynamic
Deoptimization. To appear in Proceedings of the SIGPLAN ’92 Conference on Programming Language
Design and Implementation, San Francisco, CA, June, 1992.

[Hölzle 93] Urs Hölzle. Integrating Independently-Developed Components in Object-Oriented Languages.
In ECOOP ’93 Conference Proceedings, pp. 36-56, Kaiserslautern, Germany, July 1993. Published as
Lecture Notes in Computer Science 707, Springer-Verlag, Berlin, 1993.

[Hudak et al. 90] Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph Fasel, Kevin
Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Simon Peyton Jones,
Mike Reeve, David Wise, Jonathan Young. Report on the Programming Language Haskell, Version 1.0.
Unpublished manual, April, 1990.

[Hutchinson 87] Norman C. Hutchinson. Emerald: An Object-Based Language for Distributed
Programming. Ph.D. thesis, University of Washington, January, 1987.

[Hutchinson et al. 87] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy, and Eric
Jul. The Emerald Programming Language Report. Technical Report 87-10-07, Department of
Computer Science, University of Washington, October, 1987.

[Ingalls 86] Daniel H. H. Ingalls. A Simple Technique for Handling Multiple Polymorphism. In OOPSLA
’86 Conference Proceedings, pp. 347-349, Portland, OR, September, 1986. Published as SIGPLAN
Notices 21(11), November, 1986.

[Jenks & Sutor 92] Richard D. Jenks and Robert S. Sutor. Axiom: the Scientific Computing System. Springer-
Verlag. 1992.

[Kiczales et al. 91] Gregor Kiczales, James des Rivières, and Daniel G. Bobrow. The Art of the Meta-Object
Protocol. MIT Press, Cambridge, MA, 1991.

[Kristensen et al. 87] B. B. Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen
Nygaard. The BETA Programming Language. In Research Directions in Object-Oriented
Programming, MIT Press, Cambridge, MA, 1987.

[LaLonde et al. 86] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh. An Exemplar Based Smalltalk.
In OOPSLA ’86 Conference Proceedings, pp. 322-330, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Leavens 89] Gary Todd Leavens. Verifying Object-Oriented Programs that use Subtypes. Ph.D. thesis,
MIT, 1989.

[Leavens & Weihl 90] Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented Programs
that use Subtypes. In OOPSLA/ECOOP ’90 Conference Proceedings, pp. 212-223, Ottawa, Canada,
October, 1990. Published as SIGPLAN Notices 25(10), October, 1990.

102

[Lieberman 86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems. In OOPSLA ’86 Conference Proceedings, pp. 214-223, Portland, OR, September,
1986. Published as SIGPLAN Notices 21(11), November, 1986.

[Lieberman et al. 87] Henry Lieberman, Lynn Andrea Stein, and David Ungar. The Treaty of Orlando. In
Addendum to the OOPSLA ’87 Conference Proceedings, pp. 43-44, Orlando, FL, October, 1987.
Published as SIGPLAN Notices 23(5), May, 1988.

[Liskov et al. 77] Barbara Liskov, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. Abstraction
Mechanisms in CLU. In Communications of the ACM 20(8), pp. 564-576, August, 1977.

[Liskov et al. 81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert
Scheifler, and Alan Snyder. CLU Reference Manual. Springer-Verlag, Berlin, 1981.

[Liskov et al. 94] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawhat, Robert Gruber, Paul
Johnson, and Andrew C. Myers. Theta Reference Manual. Technical Report Programming
Methodology Group Memo 88, MIT Laboratory for Computer Science, February 1994.

[Litvinov 98] Vassily Litvinov. Constraint-Based Polymorphism in Cecil:Towards a Practical and Static
Type System. In OOPSLA ’98 Conference Proceedings, Vancouver, B.C., October, 1998.

[Madsen & Møller-Pedersen 89] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual Classes: A
Powerful Mechanism in Object-Oriented Programming. In Proceedings OOPSLA ’89, pages 397–406,
October 1989. Published as ACM SIGPLAN Notices, volume 24, number 10.

[Madsen et al. 93] OleLehrmann Madsen, Birger Møller-Pedersen, and Krysten Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading, MA, 1993.

[Meyer 86] Bertrand Meyer. Genericity versus Inheritance. In OOPSLA ’86 Conference Proceedings, pp.
391-405, Portland, OR, September, 1986. Published as SIGPLAN Notices 21(11), November, 1986.

[Meyer 88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, New York, 1988.

[Meyer 92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, New York, 1992.

[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

[Mitchell et al. 91] John Mitchell, Sigurd Meldal, and Neel Hadhav. An Extension of Standard ML Modules
with Subtyping and Inheritance. In Conference Record of the ACM Symposium on Principles of
Programming Languages, Williamsburg, VA, January, 1991.

[Moon 86] David A. Moon. Object-Oriented Programming with Flavors. In OOPSLA ’86 Conference
Proceedings, pp. 1-8, Portland, OR, September, 1986. Published as SIGPLAN Notices 21(11),
November, 1986.

[Mugridge et al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-Typed
Programming Language. Technical report #50, Department of Computer Science, University of
Auckland, 1991. Also in ECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991.

[Myers et al. 97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized Types for Java. In
Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 132–145, January 1997.

[Nelson 91] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs,
NJ, 1991.

[Odersky & Wadler 97] Martin Odersky and Philip Wadler. Pizza into Java: Translating Theory into
Practice. In Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 146–159, January 1997.

[Omohundro 93] Stephen Omohundro. The Sather 1.0 Specification. Unpublished manual, June 1993.

[Pierce & Turner 92] Benjamin C. Pierce and David N. Turner. Statically Typed Multi-Methods via Partially
Abstract Types. Unpublished manuscript, October, 1992.

103

[Pierce & Turner 93] Benjamin C. Pierce and David N. Turner. Object-Oriented Programming Without
Recursive Types. In Conference Record of the 20th Annual ACM Symposium on Principles of
Programming Languages, January, 1993.

[Pierce & Turner 98] Benjamin C. Pierce and David N. Turner. Local Type Inference. In Conference Record
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 252–
265, January 1998.

[Rees & Clinger 86] Jonathan Rees and William Clinger, editors. Revised3 Report on the Algorithmic
Language Scheme. In SIGPLAN Notices 21(12), December, 1986.

[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. In Conference Record of the 17th Annual ACM
Symposium on Principles of Programming Languages, pp. 355-366, San Francisco, CA, January, 1990.

[SRC] DEC SRC Modula-3 Implementation. Digital Equipment Corporation Systems Research Center.
http://www.research.digital.com/SRC/modula-3/html/home.html.

[Santas 93] Philip S. Santas. A Type System for Computer Algebra. In International Symposium on
Symbolic and Algebraic Computation. 1993.

[Schaffert et al. 85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis Object-Based Environment,
Language Reference Manual. Technical report DEC-TR-372, November, 1985.

[Schaffert et al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
Introduction to Trellis/Owl. In OOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR,
September, 1986. Published as SIGPLAN Notices 21(11), November, 1986.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. In
OOPSLA ’86 Conference Proceedings, pp. 38-45, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Steele 84] Guy L. Steele Jr. Common LISP. Digital Press, 1984.

[Stroustrup 86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA,
1986.

[Sun 95] Sun Microsystems. The Java Language Specification. Unpublished manual, May 1995.

[Teitelman 84] Warren Teitelman. The Cedar Programming Environment: A Midterm Report and
Examination. Xerox PARC technical report CSL-83-11, June, 1984.

[Thorup 97] Kresten Krab Thorup. Genericity in Java with Virtual Types. In Proceedings ECOOP ’97,
Jyvaskyla, Finland, June 1997. Springer-Verlag.

[Touretzky 86] D. Touretzky. The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.

[Ungar & Smith 87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In OOPSLA ’87
Conference Proceedings, pp. 227-241, Orlando, FL, October, 1987. Published as SIGPLAN Notices
22(12), December, 1987. Also published in Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Ungar et al. 91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing Programs
without Classes. In Lisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Ungar 95] David Ungar. Annotating Objects for Transport to Other Worlds. In Proceedings of the 1995
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’95), pp. 73-87, Austin, TX, October 1995.

[Wadler & Blott 89] Philip Wadler and Stephen Blott. How to Make ad-hoc Polymorphism Less ad-hoc.
In Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 60–76, January 1989.

[Watt et al. 88] Steven M. Watt, Richard D. Jenks, Robert S. Sutor, and Barry M. Trager. The Scratchpad II
Type System: Domains and Subdomains. In Proceedings of the International Workshop on Scientific
Computation, Capri, Italy, 1988. Published in Computing Tools for Scientific Problem Solving, A. M.
Miola, ed., Academic Press, 1990.

104

Appendix A Annotated Diesel Syntax

In our EBNF notation, vertical bars (|) are used to separate alternatives. Braces ({ . . . }) surround
strings that can be repeated zero or more times. Brackets ([. . .]) surround an optional string.
Parentheses are used for grouping. Literal tokens are included in quotation marks (“ . . . ”).

A.1 Grammar
a program is defined by a (root) file, which contains a sequence of declaration blocks and statements
pr ogr am : : = f i l e_body

f i l e_body : : = { t op_decl | s t mt }

declarations that can appear at top level:
t op_decl : : = i ncl ude_decl

| st at i c_decl
| dyn_decl

declarations that can appear immediately within a module:
mod_decl : : = f r i end_decl

| st at i c_decl
| dyn_decl

declarations that can appear either at top level or immediately within a module, but not in the body of a function or
method, i.e., any “ static” context:
st at i c_decl : : = modul e_decl

| ext _modul e_decl
| i mpor t _decl
| ext ends_decl
| c l ass_decl
| ext _cl ass_decl
| pr edi cat e_decl
| di s j oi nt _decl
| cover _decl
| di v i de_decl
| synonym_decl
| f un_decl
| met hod_decl
| s i gnat ur e_decl
| f i el d_decl
| f i el d_met hod_decl
| pr ecedence_decl
| pr i m_decl
| pr agma

declarations that can appear anywhere, including in the body of a function, method, or other “ dynamically executed”
context:
dyn_decl : : = l et _decl

include declarations specify other files, whose syntax is file_body, that should also be included in the program
i nc l ude_decl : : = “ i ncl ude” f i l e_name { pr agma} “ ; ”

f i l e_name : : = st r i ng

modules introduce a nested namespace; the visibility of the members of a module are controlled by privacy annotations
modul e_decl : : = [pr i vacy] “ modul e” name { pr agma} modul e_body

105

modul e_body : : = “ { ” modul e_cont ent s “ } ” [“ ; ”]
| “ ; ” modul e_cont ent s “ end” “ modul e” [name] “ ; ”
| “ ; ” modul e_cont ent s <EOF> module body ends at end of file

modul e_cont ent s : : = { mod_decl | s t mt }

a module can be extended with additional members
ext _modul e_decl : : = “ ext end” modul e_decl

import declarations provide local aliases, with the given visibility, for public members of the imported modules, plus
protected and private members of imported modules that list the importer as a friend
i mpor t _decl : : = [pr i vacy] “ i mpor t ” modul e_r ef s { pr agma} “ ; ”

modul e_r ef s : : = modul e_r ef { “ , ” modul e_r ef }

extends declarations provide local aliases, with the given visibility, for public and protected members of the extended
modules
ext ends_decl : : = [pr i vacy] “ ext ends” modul e_r ef s { pr agma} “ ; ”

friend declarations grant access to protected and private members to the named modules
f r i end_decl : : = “ f r i end” modul e_r ef s { pr agma} “ ; ”

name a module
modul e_r ef : : = qual i f i ed_name

name something perhaps in another module or at the top level
qual i f i ed_name : : = [[modul e_r ef] “ $”] name

qual i f i ed_op_name: : =[[modul e_r ef] “ $”] op_name

class and object declarations
cl ass_decl : : = [t ype_cxt] [pr i vacy] c l ass_ki nd name [f or mal _par ams]

[t ype_cons] [“ i sa” c l ass_r ef _ps] [f i el d_i ni t s]
{ pr agma} “ ; ”

c l ass_ki nd : : = “ abst r act ” “ cl ass”
| “ c l ass”
| “ obj ect ”
| “ pr i m” “ c l ass”

c l ass_r ef _ps : : = cl ass_r ef _p { “ , ” c l ass_r ef _p }

c l ass_r ef _p : : = qual i f i ed_name [par am_pat t er ns]

f i el d_i ni t s : : = “ { ” f i el d_i ni t { “ , ” f i el d_i ni t } “ } ”

f i el d_i ni t : : = name_f un_r ef [“ @” c l ass_r ef] “ : =” expr

name a class or object
cl ass_r ef : : = qual i f i ed_name [par ams]

declared classes and objects can be extended with new superclasses and field initializers
ext _cl ass_decl : : = [t ype_cxt] [pr i vacy] “ ext end” ext _cl ass_ki nd cl ass_r ef _p

[t ype_cons] [“ i sa” c l ass_r ef _ps] [f i el d_i ni t s]
{ pr agma} “ ; ”

ext _cl ass_ki nd : : = “ c l ass”
| “ obj ect ”

106

predicate class declarations declare “ virtual” subclasses into which objects are dynamically classified whenever
some predicate over them is true
pr edi cat e_decl : : = [t ype_cxt] [pr i vacy] “ pr edi cat e” name [f or mal _par ams]

[t ype_cons] [“ i sa” c l ass_r ef _ps]
[“ when” expr] { pr agma} “ ; ”

this syntax below needs to be extended to refer to parameterized predicate classes, e.g. with class_ref_ps in places.
also, what about privacy?
di s j oi nt _decl : : = “ di s j oi nt ” c l ass_r ef s “ ; ”

cover _decl : : = “ cover ” c l ass_r ef “ by” c l ass_r ef s “ ; ”

di v i de_decl : : = “ di v i de” c l ass_r ef “ i nt o” c l ass_r ef s “ ; ”

c l ass_r ef s : : = cl ass_r ef { “ , ” c l ass_r ef }

synonym declarations define an alternate name for an existing type
synonym_decl : : = [t ype_cxt] [pr i vacy] “ synonym” name [f or mal _par ams]

“ =” t ype_pat t er n [t ype_cons] { pr agma} “ ; ”

fun declarations declare new named (generic) functions, optionally with a default implementation
f un_decl : : = [t ype_cxt] [pr i vacy] “ f un” f un_name [f or mal _par ams]

“ (” [f un_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f un_body

f un_name : : = name | op_name

f un_f or mal s : : = f un_f or mal { “ , ” f un_f or mal }

f un_f or mal : : = [name] “ : ” t ype_pat t er n
| name

f un_body : : = met hod_body | “ ; ”

name a function
f un_r ef : : = name_f un_r ef | op_f un_r ef

name_f un_r ef : : = qual i f i ed_name [par ams]

op_f un_r ef : : = qual i f i ed_op_name [par ams]

a method declaration adds a new dynamically dispatched subcase to an existing generic function; if the “ signature”
keyword is present, the method declaration also extends the type of the generic function with a new argument type-
result type relation
met hod_decl : : = [t ype_cxt] [pr i vacy] “ met hod” [“ s i gnat ur e”] f or mal _f un_r ef

“ (” [met h_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} met hod_body

f or mal _f un_r ef : : = name_f or mal _f un_r ef | op_f or mal _f un_r ef

name_f or mal _f un_r ef : : =qual i f i ed_name [f or mal _par ams]

op_f or mal _f un_r ef : : =qual i f i ed_op_name [f or mal _par ams]

met h_f or mal s : : = met h_f or mal { “ , ” met h_f or mal }

met h_f or mal : : = [name] “ : ” t ype_pat t er n
| [name] “ @” [[“ ‘ ”] name “ <=”] cl ass_r ef _p
| name

met hod_body : : = “ { ” (body | pr i m_body) “ } ” [“ ; ”]

signature declarations extend the types of existing generic functions with new argument type-result type relations
si gnat ur e_decl : : = [t ype_cxt] [pr i vacy] “ s i gnat ur e” f or mal _f un_r ef

“ (” [f un_f or mal s] “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} “ ; ”

107

a field declaration (a) allocates either a storage table to hold the field contents for each possible argument object, or
a single memory location if the “ shared” keyword is present, (b) declares a new named (generic) function with a
default implementation that is a “ get accessor” for the field, optionally with code to compute the field’s initial value,
and (c) if the “ var” keyword is present, declares a new named (generic) function with a default implementation that
is a “ set accessor” for the field, whose name is the name of the get accessor prefixed with “ set_” .

f i el d_decl : : = [t ype_cxt] [f i el d_pr i vacy] [“ shar ed”] [“ var ”] “ f i el d”
name [f or mal _par ams]
“ (” f un_f or mal “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f i el d_body

f i el d_pr i vacy : : = pr i vacy [“ get ” [pr i vacy “ put ”] | “ put ”]

f i el d_body : : = “ { ” body “ } ” [“ ; ”] | “ ; ”

a field method declaration (a) allocates either a storage table to hold the field contents for each possible argument
object, or a single memory location if the “ shared” keyword is present, (b) adds a new dynamically dispatched “ get
accessor” subcase to an existing generic function, and (c) if the “ var” keyword is present, adds a new dynamically
dispatched “ set accessor” subcase to an existing generic function, whose name is the name of the get accessor prefixed
with “ set_” . if the “ signature” keyword is present, the field method declaration also extends the type(s) of the generic
function(s) with new argument type-result type relations

f i el d_met hod_decl : : =[t ype_cxt] [f i el d_pr i vacy] [“ shar ed”] [“ var ”] “ f i el d”
“ met hod” [“ s i gnat ur e”] name_f or mal _f un_r ef
“ (” met h_f or mal “) ” [t ype_decl _p] [t ype_cons]
{ pr agma} f i el d_body

precedence declarations control the precedence and associativity of binary operators

pr ecedence_decl : : = “ pr ecedence” op_names [associ at i v i t y] { pr ecedence}
{ pr agma} “ ; ”

associ at i v i t y : : = “ l ef t _associ at i ve” | “ r i ght _associ at i ve” | “ non_associ at i ve”

pr ecedence : : = “ bel ow” op_names | “ above” op_names | “ wi t h” op_names

op_names : : = op_name { “ , ” op_name }

primitive declarations include an arbitrary piece of code in the compiled file (implementation specific)

pr i m_decl : : = pr i m_body “ ; ”

primitive bodies support access to code written in other languages (implementation specific)

pr i m_body : : = “ pr i m” { l anguage_bi ndi ng }

l anguage_bi ndi ng: : = l anguage “ : ” code_st r i ng
| l anguage “ { ” code_char s “ } ”

l anguage : : = name

code_st r i ng : : = st r i ng

code_char s : : = br ace_bal anced_char s any characters, with balanced use of “ {“ and “ }”

variable declarations bind names to objects; if “ var” is present then the variable is assignable

l et _decl : : = [pr i vacy] “ l et ” [“ var ”] name [t ype_decl] { pr agma}
“ : =” expr “ ; ”

name a variable

var _r ef : : = qual i f i ed_name

privacy of a declaration; defaults to protected. a privacy annotation is meaningless for top-level declarations

pr i vacy : : = “ publ i c” | “ pr ot ect ed” | “ pr i vat e”

108

body of a function, method, field initializer, closure, or parenthetical subexpression
body : : = { dyn_decl | st mt } r esul t

| empty return void
st mt : : = assi gnment “ ; ”

| expr “ ; ”
r esul t : : = nor mal _r et ur n return an expression

| non_l ocal _r t n return from the lexically-enclosing method
nor mal _r et ur n : : = dyn_decl return void

| assi gnment [“ ; ”] return void
| expr [“ ; ”] return result of expression

non_l ocal _r t n : : = “ ^ ” [“ ; ”] do a non-local return, returning void
| “ ^ ” expr [“ ; ”] do a non-local return, returning a result

assignment-like statement
assi gnment : : = var _r ef “ : =” expr assign to a mutable variable; returns void

| assi gn_msg assignment-like syntax for messages
assi gn_msg : : = l val ue_msg “ : =” expr sugar for set_lmsg(lexprs...,rexpr)
l val ue_msg : : = message

| dot _msg
| unop_msg
| bi nop_msg

expressions
expr : : = bi nop_expr

binary msgs have lowest precedence
bi nop_expr : : = bi nop_msg | unop_expr

bi nop_msg : : = bi nop_expr op_f un_r ef bi nop_expr
predecence and associativity as declared

unary msgs have second-lowest precedence
unop_expr : : = unop_msg | dot _expr
unop_msg : : = op_f un_r ef unop_expr & and ^ are not allowed as unary operators

dotted messages have second-highest precedence
dot _expr : : = dot _msg | s i mpl e_expr

dot _msg : : = dot _expr “ . ” name_f un_r ef [“ (” [expr s] “) ”]
sugar for name_fun_ref(dot_expr,exprs...)

simple messages have highest precedence
si mpl e_expr : : = l i t er al

| var _expr
| vect or _expr
| c l osur e_expr
| obj ect _expr
| message
| r esend
| par en_expr

literal constants
l i t er al : : = i nt eger

| s i ngl e_f l oat

109

| doubl e_f l oat
| char act er
| st r i ng

reference a variable or a named object
var _expr : : = var _r ef reference a variable

| c l ass_r ef reference an object declaration

build a vector, optionally specifying the element type
vect or _expr : : = “ [” [“ : ” t ype “ : ”] [expr s] “] ”
expr s : : = expr { “ , ” expr }

build a closure
cl osur e_expr : : = [“ &” “ (” [c l osur e_f or mal s] “) ” [t ype_decl]] “ { ” body “ } ”

c l osur e_f or mal s : : = cl osur e_f or mal { “ , ” c l osur e_f or mal }
c l osur e_f or mal : : = [name] “ : ” t ype

| name

build a new instance of a concrete class or object
obj ect _expr : : = “ new” c l ass_r ef [f i el d_i ni t s]

send a message
message : : = name_f un_r ef “ (” [expr s] “) ”

resend the message to an overridden method case
r esend : : = “ r esend” [“ (” r esend_ar gs “) ”]
r esend_ar gs : : = r esend_ar g { “ , ” r esend_ar g }

r esend_ar g : : = expr corresponding formal of sender must be
 unspecialized

| name undirected resend (name is a specialized formal)
| name “ @” c l ass_r ef directed resend (name is a specialized formal)

introduce a new nested scope
par en_expr : : = “ (” body “) ”

a type declaration is an annotation giving an explicit type to a variable or result
t ype_decl : : = “ : ” t ype

t ype_decl _p : : = “ : ” t ype_pat t er n

type contexts and constraints
t ype_cxt : : = “ f or al l ” f or mal _par am { “ , ” f or mal _par am } [t ype_cons] “ : ”

| “ f or al l ” t ype_cons “ : ”

t ype_cons : : = “ wher e” t ype_const r ai nt { “ , ” t ype_const r ai nt }
t ype_const r ai nt : : = sub_const r ai nt | s i g_const r ai nt | t ype_pat t er n

sub_const r ai nt : : = t ype_pat t er n (“ <=” | “ >=”) t ype_pat t er n
si g_const r ai nt : : = [“ s i gnat ur e”] f or mal _f un_r ef

“ (” [f un_f or mal s] “) ” t ype_decl _p

syntax of types
t ypes : : = t ype { “ , ” t ype }
t ype : : = l ub_t ype

110

l ub_t ype : : = l ub_t ype “ | ” gl b_t ype
| gl b_t ype

gl b_t ype : : = gl b_t ype “ &” s i mpl e_t ype
| s i mpl e_t ype

si mpl e_t ype : : = named_t ype
| c l osur e_t ype
| “ (” t ype “) ”

named_t ype : : = cl ass_r ef a class, object, or synonym
cl osur e_t ype : : = “ &” “ (” [ar g_t ypes] “) ” [t ype_decl]

ar g_t ypes : : = ar g_t ype { “ , ” ar g_t ype }

ar g_t ype : : = [[name] “ : ”] t ype

type patterns are types that can contain binding occurrences of implicit type parameters
t ype_pat t er ns : : = t ype_pat t er n { “ , ” t ype_pat t er n }

t ype_pat t er n : : = l ub_t ype_p

l ub_t ype_p : : = l ub_t ype_p “ | ” gl b_t ype_p
| gl b_t ype_p

gl b_t ype_p : : = gl b_t ype_p “ &” s i mpl e_t ype_p
| s i mpl e_t ype_p

si mpl e_t ype_p : : = bi ndi ng_t ype_p
| named_t ype_p
| c l osur e_t ype_p
| “ (” t ype_pat t er n “) ”

bi ndi ng_t ype_p : : = “ ‘ ” name_bi ndi ng

named_t ype_p : : = cl ass_r ef _p a class, object, or synonym
cl osur e_t ype_p : : = “ &” “ (” [ar g_t ype_ps] “) ” [t ype_decl _p]

ar g_t ype_ps : : = ar g_t ype_p { “ , ” ar g_t ype_p }

ar g_t ype_p : : = [[name] “ : ”] t ype_pat t er n

name_binding introduces a type variable called name
name_bi ndi ng : : = name [“ >=” t ype_pat t er n] [“ <=” t ype_pat t er n]

formal type parameters for objects and methods
f or mal _par ams : : = “ [” f or mal _par am { “ , ” f or mal _par am } “] ”

f or mal _par am : : = [“ ‘ ”] name_bi ndi ng

actual type parameters for objects and methods
par ams : : = “ [” t ypes “] ”

actual type parameters for types that may contain binding occurrences of implicit type variables
par am_pat t er ns : : = “ [” t ype_pat t er ns “] ”

pragmas can be added at various points in a program to provide implementation-specific hints/commands
pr agma : : = “ (* * ” expr s “ * *) ”

A.2 Tokens

Bold-faced non-terminals in this grammar are the tokens in the full grammar of A.1. As usual,
tokens are defined as the longest possible sequence of characters that are in the language defined
by the grammar given below. The meta-notations “one of “ . . . ” ” , “any but x,” and “x. . y”

111

are used to concisely list a range of alternative characters. space, t ab, and newl i ne stand for
the corresponding characters.

name : : = l et t er { l et t er | di gi t } [i d_cont]
| “ _” { “ _” } op_name the first underscore is not part of the name

op_name : : = punct { punct } [i d_cont]
| “ _” { “ _” } name the first underscore is not part of the name

i d_cont : : = “ _” { “ _” } [name | op_name]

i nt eger : : = [r adi x] hex_di gi t s a leading “ -” is considered a unary operator

r adi x : : = di gi t s “ _”

hex_di gi t s : : = hex_di gi t { hex_di gi t }

hex_di gi t : : = di gi t | one of “ a. . f A. . F”

si ngl e_f l oat : : = f l oat

doubl e_f l oat : : = f l oat (“ d” | “ D”)

f l oat : : = di gi t s “ . ” di gi t s [exponent]
| di gi t s exponent

exponent : : = (“ e” | “ E”) [“ +” | “ - ”] di gi t s

di gi t s : : = di gi t { di gi t }

char act er : : = “ ' ” char “ ' ”

st r i ng : : = “ " ” { char | l i ne_br eak } “ " ”

char : : = any | “ \ ” escape_char

escape_char : : = one of “ abf nr t vABFNRTV' " \ ?”
 | [“ d” | “ D”] di gi t [di gi t [di gi t]] decimal character code

| (“ o” | “ O”) di gi t [di gi t [di gi t]] octal character code
| (“ x” | “ X”) hex_di gi t [hex_di gi t] hexadecimal character code

l i ne_br eak : : = “ \ ” { whi t espace} new_l i ne { whi t espace} “ \ ”
characters between and including \’s
are not part of the string

br ace_bal anced_char s : : =
{ any but “ { ” } [“ { ” br ace_bal anced_char s “ } ” { any but “ } ” }]

l et t er : : = one of “ a. . zA. . Z”

di gi t : : = one of “ 0. . 9”

punct : : = one of “ ! #%̂ &* - +=<>/ ?~\ | ”

A.3 White Space

Whitespace is allowed between any pair of tokens in the grammar in A.1.

whi t espace : : = space | t ab | newl i ne | comment

comment : : = “ - - ” { any but newl i ne} newl i ne comment to end of line
| “ (- - ” { any} “ - -) ” bracketed comment; can be nested

112

Index

NOTE: this index is in the process of being populated

A
abstract class 9

C
class

declaration of 9

concrete class 9

I
include declaration 8

L
let declaration 8

N
named object declaration

see object declaration

O
object declaration 9

V
var annotation

on fields 20
on variables 8

	Table of Contents
	1 Introduction
	1.1 Outline

	2 Core
	2.1 Programs and Files
	2.2 Include Declarations
	2.3 Variable Declarations
	2.4 Classes and Objects
	2.4.1 Kinds of Class Declarations
	2.4.2 Inheritance
	2.4.3 Object Instantiation
	2.4.4 Predefined Objects and Classes
	2.4.5 Class Extension Declarations
	2.4.6 Synonym Declarations

	2.5 Functions and Methods
	2.5.1 Functions
	2.5.2 Signatures
	2.5.3 Methods
	2.5.4 Code Method Bodies
	2.5.5 Primitive Method Bodies

	2.6 Fields
	2.6.1 Read-Only vs. Mutable Fields
	2.6.2 Per-Object vs. Shared Fields
	2.6.3 Field Methods
	2.6.4 Field Initialization
	2.6.5 Field Overloading

	2.7 Statements and Expressions
	2.7.1 Assignment Statements
	2.7.2 Literals
	2.7.3 Variable References
	2.7.4 Object Constructors
	2.7.5 Vector Constructors
	2.7.6 Closures
	2.7.7 Message Sends
	2.7.8 Parenthetical Subexpressions

	2.8 Precedence Declarations
	2.8.1 Previous Approaches
	2.8.2 Precedence and Associativity Declarations in Diesel

	2.9 Method Lookup
	2.9.1 Philosophy
	2.9.2 Semantics
	2.9.3 Examples
	2.9.4 Strengths and Limitations
	2.9.5 Multiple Inheritance of Fields
	2.9.6 Cyclic Inheritance
	2.9.7 Method Invocation

	2.10 Resends
	2.11 Predicate Classes
	2.11.1 Predicate Classes and Inheritance
	2.11.2 Predicate Classes and Field Methods

	2.12 Primitive Declarations
	2.13 Pragmas

	3 Static Types
	3.1 Goals
	3.2 Types and Signatures
	3.3 Type Expressions
	3.3.1 Named Types
	3.3.2 Closure Types
	3.3.3 Least-Upper-Bound Types
	3.3.4 Greatest-Lower-Bound Types

	3.4 Type Checking Messages
	3.4.1 Checking Messages Against Signatures
	3.4.2 Checking Signatures Against Method Implementations
	3.4.3 Comparison with Other Type Systems
	3.4.4 Type Checking Predicate Classes

	3.5 Type Checking Expressions, Statements, and Declarations
	3.6 Mixed Statically- and Dynamically-Typed Code

	4 Parameterization and Bounded Parametric Polymorphism
	4.1 Parameterized Declarations
	4.2 Bounded Polymorphism and Type Constraints
	4.3 Omitting the Explicit forall Clause: the Backquote Sugar
	4.4 Polymorphism and Subtyping
	4.5 F-bounded Polymorphism
	4.6 Constraint Solving and Local Type Inference
	4.7 Related Work
	4.7.1 Languages Based on F-Bounded Polymorphism
	4.7.2 Languages Based on SelfType or Matching
	4.7.3 Languages Based on Signature Constraints and Implicit Structural Subtyping
	4.7.4 Languages Based on Instantiation-Time Checking
	4.7.5 Languages Based on Covariant Redefinition
	4.7.6 Languages Offering Local Type Inference

	5 Modules
	5.1 Module Declarations
	5.2 Privacy and Encapsulation
	5.3 Qualified Names
	5.4 Import Declarations
	5.5 Extends Declarations
	5.6 Friend Declarations
	5.7 Module Extension Declarations
	5.8 Function Call Overload Resolution

	6 Related Work
	7 Conclusion
	References
	A.1 Grammar
	A.2 Tokens
	A.3 White Space
	Index

