
1

How to Use the Vortex Compiler and Environment

The Cecil Group

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, Washington 98195-2350
cecil@cs.washington.edu

Abstract

This documentdescribeshow to usetheVortex compilationenvironment.We begin with a brief overview
of thecompilationmodel.We thendetail thestepsinvolvedin compilinganapplication,anddescribehow
to usethedebuggerandtheCecil evaluator. We describehow to setup separatelycompiledlibraries,use
non-Cecil front ends, and then finish with some installation and configuration directions.

1 Introduction

The Vortex compiler’s whole-programanalysesintroducecomplex intermoduledependencies,rendering
the standardheaderfile andmake-basedapproachto incrementalcompilationuntenable.Instead,Vortex
tracksintermoduledependenciesin aprogramdatabase,enablingit to determinewhichcompiledfilesmust
be recompiledafter a programmingchange.The currentVortex compilerkeepsthis databasein memory
while runningandsupportsoperationsto dumpthe programdatabaseto disk andlater readthe program
databasebackfrom disk.Thefile containingtheprogram’s databaseandotherinformationaboutthestate
of the compiler is called the program’s checkpoint.

Given whole-programanalysisand optimization,eachprogram’s compiledcode(including libraries) is
tunedto thatparticularapplicationandconsequentlyit cannotbesharedwith otherapplications(with the
exceptionof sharable,separatelycompiledlibraries;seesection5). In general,eachapplicationmustbe
compiledinto its own directory. We call this directorytheapplication’s gen directory(shortfor “generated
code”). Vortex placesall generatedfiles (except for files that are part of separatelycompiledlibraries)
including the final executable and the program’s checkpoint in the gen directory.

Vortex compilationoccursin threephases.In PhaseZero,aVortex front endtranslatesnon-Cecilprograms
into theVortex RTL intermediatelanguage.In PhaseOne,Vortex translatesaRTL or Cecil sourceprogram
into eitherC++ or assemblycode.In PhaseTwo, a C++ compileror anassemblertranslatestheoutputof
Vortex into objectfiles andanexecutable.CurrentlytheSPARC is theonly architecturewith anassembly
code back-end.

For an example of a compiler session, see Section 2.2.1.

2 Building Your Program

This sectiondescribeshow to useVortex to build an applicationin stand-alonemode.As discussedin
section5,Vortex alsosupportscompilingapplicationsagainstasharedpre-compiledlibrary (theCecilstdlib
for example).

Normally, a wrapperscriptconfiguredoncepersitesetsnecessaryenvironmentvariablesbeforeinvoking
the underlying Vortex executable. See section 8 for details on setting up this wrapper script.



2

How to Use the Vortex Compiler and Environment

2.1 Gen directories

It is easiestto run the compilerfrom the directorycontainingyour sourcefiles. During the first compile,
Vortex createsasubdirectoryof thecurrentdirectorycalledgen whichbecomesthegendirectoryfor your
application.Theprogram’s executableis createdin this directory. Its nameis thenameof theapplication’s
mainfile with thesuffix removed.For example,if yourprogramis calledmypoint.cecil, theexecutable
will be gen/mypoint.

If you have several applications,just put the sourcesfor eachapplicationin their own directory, so each
application has its own gen directory. (Section 2.4.3 explains how to adjust the gen directory.)

2.2 Running the compiler

2.2.1 Typical compiler session

Vortex normally runs interactively, reading and executing user commands.The notation Vortex>
some_command indicatesthat some_command (followed by pressingthe returnkey) is typedat the
compilerprompt.Compilercommandsappearin boldface, and% is usedasasampleUnix shellprompt.

To compilea new program(say, myprog.cecil) run a make commandwhich specifiesthenameof your
program:Vortex> make myprog.cecil. Themake commandparsesthefile namedmyprog.cecil
andany filestransitively includedby thisfile, constructsglobaldatastructuresdescribingtheprogram(e.g.,
the object inheritancegraphand the table of definedmethods),producesPhase-1“compiled”(C++ or
assembly)codefor theapplicationin thegendirectory(which is createdif necessary),andtheninvokesa
Phase-2make* to compiletheintermediatefiles into .o files andlink the.o files into a targetexecutable,
gen/myprog. The generatedexecutablecanbe run eitherfrom a UNIX promptor by typing run at the
Vortex prompt.

Oncea programhasbeencompiled,further invocationsof the make command(the programnameis
optional after the first time) incrementally recompile only files that changed (or depend on a changed file).

Thesave commandwrites the programcheckpointto a file namedprogram.db, whereprogram is the
nameof the applicationbeingcompiled.The checkpointcontainsa snapshotof the application’s source
code,theinterproceduralinformationcomputedby thecompiler, andrecompilationdependencies,aswell
asthecurrentsettingsof theVortex compiler’s options.At this point, it is safeto quit Vortex by typing the
quit command. (really_quit skips asking for confirmation.)

To reloada program’s checkpointfile, usethe load program.db command.The compiler’s stateis
restoredto whereit wasat the point of the previoussave, permittingmoreincrementaldevelopmentto
proceed.If you do not loada checkpointfile, thefirst make commandwill performa full non-incremental
compilation.

2.2.2 Start-up commands

Uponstartup,Vortex searchesfor a file named.vortexrc first in thecurrentdirectory, thenin theuser’s
homedirectory. Eachline is executedasif it weretypedat the Vortex prompt.If the line containsthe#
symbol,thepartof theline betweenthefirst # andtheendof theline is ignored.For example,if you want

* Vortexassumesthatgmake is availableto runPhase-2compiles.Section8 describeshowto changethisassumption.



3

How to Use the Vortex Compiler and Environment

Vortex to loadtheprogram’scheckpointuponstartup,youcancreatea.vortexrc containingthefollowing
lines:

# put this .vortexrc in the directory where you start the compiler
load myprog.db

After .vortexrc is processed(if found), any command-lineargumentsare processed,in order. Each
command-lineargumentis executedasif it weretypedat theVortex> prompt.As a specialcase,if the
commandline startswith -F, nostartupfile is read;if with -f filename, file filenameis usedfor thestartup
file’s name.

For example, Vortex can compile a program in batch mode when invoked as follows:

% vortex "load myprog.db" make save really_quit

2.2.3 Compiler commands

This section describes the major Vortex compiler commands. The following notation is used:

• [phrase] -- phrase is optional

• phrase1|phrase2 -- eitherphrase1 or phrase2

• ... -- the last parameter may be repeated

Morecommandsaredescribedin Sections2.3,2.4,and2.5.Thismanualdescribesonly themorecommon
commands;a completelist of commandsandtheir brief descriptionscanbeobtainedby usingthehelp
command. Multiple commands separated by semicolons can be given on the same line.

• help [helptopic]-- displaya list of compilercommandswith brief descriptions(relatedto helptopic
if specified;possiblehelptopics are:make, options, browse, typechecker, advanced, and
startup)

• make [progname.ext] -- set the currentprogramto be progname.ext if specified,thencompilethe
currentprogram.Theexecutablecalledprognameis producedin thegendirectory. The .ext extension
maybeomitted,in which caseaninput-language-specificextension(e.g..cecil for Cecil programs,
.rtl for Java programs,.o for C++ programs, and.strtl for Smalltalk programs) is appended.*

Therearea numberof variationsof themake commandsupportingparallelPhaseTwo compilation,
PhaseOneor PhaseTwo only compilation,and/oroptimizedcompilation,derived from the regular
expression: [p]make[1|2][o1|o2] [progname.ext]

• p -- Usesthepm scriptto performthePhaseTwo compilesin parallel.(Seesection8 for information
on how to configure the list of machine names used by Vortex for parallel compiles.)

• [1|2] -- Only do Phase One or Phase Two compilation.

• [o1|o2] -- Recompileall file that have beencompiledwith a lower optimization level than that
specifiedin command(seesection2.3 for a descriptionof possibleoptimizationlevels andsome
examples ofmake commands).

• info -- report the status(up-to-date,out-of-date,need-to-parse,need-to-codegen)of all of the files
making up the current program

* If thefilenamedoesn’talreadyhavethedefaultextension,thenthefilenamewith thedefaultextensionappendedis
searchedfor first. If this filename isn’t locatedin the current sourcesearchpath (seesection2.4.3 about the
source_paths option), thenthe filenameasgiven by the useris searchedfor. For example,lang Cecil;
make foo.bar first searchesfor a file namedfoo.bar.cecil, andif this fails thensearchesfor a file named
foo.bar.



4

How to Use the Vortex Compiler and Environment

• save [filename] -- save the compilerstateto a checkpointfile filename, if given, or curprog.db
otherwise, wherecurprog.ext is the name of the current program

• load filename -- load the checkpoint from filefilename

• quit,^D -- exit Vortex. Youwill bepromptedtomakesureyoureallywantedtoquit.Notethatquitting
thecompilerdoesnotsavethecompilerstate.If youwantto savethecompilerstatebeforequitting,you
mustusethesave commandandthenquit. really_quit canbe usedto avoid the confirmation
message.

• really_quit -- likequit, but does not require interactive user confirmation

A stringtypedat theVortex promptis interpretedasfollows.If it startswith aword thatmatchesoneof the
compilercommands,suchasmake, that commandis executed.Otherwise,if the first word matchesan
optionname,suchasoptimize, thevalueof theoption is displayedor modified(section2.4 describes
options).Otherwise,the string is evaluatedas a Cecil expression,statement,or declaration(section4
describestheevaluator).If theevaluatordoesnot recognizethestringasa valid Cecil construct,it reports
an error.

2.2.4 Typechecking

Vortex includesa typechecker for Cecil. (Programsin languagesotherthanCecil aretypecheckedby their
correspondingfront-ends.) The typechecker has to be invoked explicitly by the typecheck or
fulltypecheck commands;it isn’t runwhenamake commandis issued.fulltypecheck rechecks
thewholeprogramfor typeerrors,while typecheck only recheckscodein modifiedfiles andfiles that
previouslyhadtypeerrors.typecheck is fasterfor smallprogramchanges,but it canmisserrorsthatare
introduced in files that were not touched.

The current typechecker implementationdoes not perform any “implementation-side”typechecking
(checkingwhethersignaturesare fully andunambiguouslyimplemented),but doesperformmostother,
“client-side” typechecking.It alsoincludesa few known bugsandweaknesses,whereit mayreportsome
type errors unnecessarily.

2.3 Controlling the compiler configuration

Vortex’s behavior is controlledby configurationparametersandoptions;the primary distinctionbetween
themis thatoptionsaresetandqueriedby a regularsetof commands,while manipulationof configuration
parametersis currentlymoreadhoc.This sectiondescribesconfigurationparametersanda few important
options. Section 2.4 describes options and how to set or display them in more detail.

Vortex displaysits configurationuponstartup;you canalsorequestit with theconfig command.The
configuration is part of the compiler state saved in a checkpoint.

Current program. At eachmoment,Vortex workswith a singleprogram.If theprogramconsistsof one
file, this file is thecurrentprogram.If theprogramconsistsof multiple files, thecurrentprogramis thefile
from which the othersare included,possiblyindirectly. The currentprogramis setby any of the make
commands, for example,

• make progname.ext -- set current program toprogname.ext and compile it

No current program is assumed upon Vortex startup. See Section 2.2.3 for a detailed description ofmake.



5

How to Use the Vortex Compiler and Environment

Vortex cancompilemultiple languages.Cecil is themoststableinput language,but Java,C++, Modula-3,
andParcPlaceSmalltalkfront-endsarealsoavailable,with anIBM Smalltalkfront-endunderdevelopment.
To set the language being compiled, use thelang command:

• lang (Cecil|Java|C++|M3|ParcPlaceSmalltalk|IBMSmalltalk) -- change the
current accepted language

• lang -- display the current accepted language

Regardlessof thecurrentlanguage,thesetof compilercommandsandoptionsremainsthesame.Only Cecil
expressionsarerecognizedby theevaluator(sincethey areevaluatedin thecontext of theVortex compiler’s
implementation,which is written in Cecil).Filenameextensionshaveno influenceonthecurrentlanguage,
nor is any specific extension enforced, although each individual language has its own default extension.

Generated language. Vortex generateseither C++ or assemblycode. By default, it producescode
appropriate for the architecture/OS combination on which it is being run.

• gen (C|C_32|C_64|asm) -- generateC++ or assemblycode.The C_32andC_64flagscanbe
usedto controlwhetherthegeneratedC codeassumes32or 64bit pointers.(Assemblycodegeneration
is currently only supported on SPARC architectures for Cecil, Java, and Smalltalk.)

• gen (sun4|solaris) -- select the target OS for assembly codegen.

• gen -- display the current generated language and target OS (for assembly codegen).

Thegen commandscanbeusedto enablecross-compilation.For example,to useasun4 vortex executable
to produceanexecutablethatwould run on analpha, onewould issueagen C_64 command,followed
by amake1 commandat theVortex> prompt.Phasetwo compilationcould thenbedoneon analpha
usingeithermake or pm. pm takesanoptional-arch <archname> commandline argumentthatoverrides
its default assumption of compiling for the architecture/OS on which it is invoked.

Cecil standard library. TheCecil languageincludesnobuilt-in dataor controlstructures.Whencompiling
a Cecil program,Vortex canautomaticallyincludethe standard library, a selectionof standarddataand
control structures(e.g.numbers,loops,arrays)plus the Cecil evaluator, which facilitatesdebugging the
program. Alternately, you may select a subset of the standard library, or no library at all.

Thereare four levels of incorporatingthe Cecil standardlibrary (describedin moredetail in a separate
document),dependingon the top library file that is includedin theprogram(includinga file causesother
files referenced in it to be included, too). The levels are determined by compiler commands as follows:

• nostdlib -- no files are automaticallyincludedby Vortex, so no dataand control structuresare
implicitly available.

• smallstdlib -- prelude.small.cecil is automaticallyincluded. It provides only the core
standarddatastructures.Note: the smallstdlib is incomplete(in particular it excludesbig_ints and
streams),thusanumberof warningmessages(whichcanbeignored)will begeneratedwhencompiling
the smallstdlib’s files.

• noevalstdlib -- prelude.noeval.cecil is included.It providesall thestandarddatastructures,
including those provided by smallstdlib, but excludes the Cecil evaluator.

• stdlib (default) -- prelude.cecil is included,providing the Cecil evaluatorin addition to the
standard data structures



6

How to Use the Vortex Compiler and Environment

These commands are processed in addition to any files included by the Cecil program. Choosing
nostdlib and explicitly including prelude.cecil from one of the files comprising a program is
equivalent to choosing stdlib when compiling that program (even if it contains no explicit includes).

(When compiling Java, the file stdlib.rtl is included as the default standard library; nostdlib can be
used to disable this default library. Other languages have no standard libraries.)

Optimization level. When debugging code, it is convenient to compile it without optimizations both to
reduce turnaround time and to make it easier to use the Cecil evaluator and debugger (discussed in sections
3 and 4). We typically make some source changes, do a series of incremental, non-optimizing compilations
while debugging, and finally perform an optimizing compilation once things seem to work. Optimization
speeds up applications by roughly an order of magnitude, so it generally is a good idea to optimize a
program before running it on a large input set.

Which optimizations are performed depends on the value of the integer option optimization_level;
larger values of optimization_level correspond to more aggressive combinations of optimizations.
Its default value is 0 (perform no optimizations). It may be set using the following commands:

Since separately compiled libraries (such as the precompiled standard library that comes with the
distribution) are compiled with no optimization, you need to disable separate compilation (i.e., enable
whole-program optimization) to achieve higher performance. This is controlled by the option
use_shared_libraries.

• set use_shared_libraries (true|false) -- allow sharing of compiled library code (if
true)/make a specialized version of all library code in the application’s gen directory (if false; default
value is true)

Be prepared for a long compilation time when you first set use_shared_libraries to false, since
all the library files will need to be recompiled. You may want to switch to a smaller standard library before
specializing library code.

In a large program, often only a few files are being debugged at a time. In such a case, it is reasonable to
optimize the other files. This is achieved by first compiling everything with optimization ( Vortex> set

use_shared_libraries false; o2; make) and then turning optimization off ( Vortex> o0).
After these actions, every file that is modified will be recompiled without optimization (thus making
debugging easier and reducing turnaround time). The command Vortex> makeo2 will then recompile
unoptimized files with optimization, bringing the current program up to full optimization. makeo1 and

Commands
Value of

optimization_level
Impact

o0 or
no_optimize

0
Perform no optimizations

o1 or
optimize 1

Only perform a few highly profitable optimizations (class
analysis, splitting, class hierarchy analysis, class predic-
tion, closure delaying, and inlining)

o2 or
full_optimize

2
Augment o1 with useful, but smaller-impact optimiza-
tions such as CSE



7

How to Use the Vortex Compiler and Environment

makeo2 set the optimization_level option for only the immediately succeeding compile. It is
reasonable to keep optimization_level set to 0, but periodically use makeo1 or makeo2 to bring
things up to full speed.

2.4 Compiler options

2.4.1 General commands

Compiler options control various aspects of compilation, such as optimization level, verboseness of
messages, gen directory, etc. The following commands are used to display and modify options:

• options -- display the more interesting options

• options topic -- display options on a given topic (for example, config, directories, etc.)

• options topics -- display available option topics

• show optname... -- display option optname (multiple option names are allowed)

• set optname optvalue -- set option optname to value optvalue

For convenience, Vortex> optname is a shortcut for show optname; Vortex> optname optvalue is short
for set optname optvalue.

Each option receives a default value upon start-up. The current option values are by default part of the
compiler state saved in a checkpoint. For more options and option-related commands, see:

• help options -- display information about options

2.4.2 Kinds of options

Vortex has four classes of options:

Boolean options (e.g., optimize, show_phases). They can have true and false as values.

Integer options (e.g., opt_verbosity_level). Their values are integers.

String options (e.g., gen_dir). Their values are strings. When changing their values, the double quotes
around the new string value (that would be required by the Cecil syntax) should be omitted. To set a string
option to the empty string, use set optname (with no explicit option value, i.e., the empty string).

String list options (e.g., source_paths). Their values are lists of strings. When changing the value of a
string list option, the new value is the list of words that are separated by spaces in the user’s command. As
with string options, the quotes around the strings should be omitted, and set optname sets an option to the
empty list.

String and string list options allow prepend and append operations:

• (prepend|append) str_opt_name value... -- prepend/append value(s) to string or string list
option str_opt_name

2.4.3 Frequently used options

Here we describe some of the frequently used options. A complete list of options is given by the command
options all.



8

How to Use the Vortex Compiler and Environment

source_paths -- the set of directories where the source files are searched. With current implementation,
once Vortex finds a file in some directory, it will always look for that file in that same directory during
subsequent incremental recompilations.

gen_dir -- the gen directory for the application, absolute or relative to the directory where Vortex is run

debug_support -- determines availability of source-level debugging support in the compiled program.
A program compiled without debugging support runs faster, but does not provide the features described in
Section 3.

show_directory_in_prompt -- determines how many directory levels are displayed as part of the
compiler prompt. This option allows one to distinguish more easily between Vortex processes compiling
different programs.

loud_compile -- controls display of individual methods being compiled

show_phases -- controls display of individual optimization passes (with optimization-specific
characters) performed for each method being compiled.

2.5 Browsing the program’s inheritance hierarchy, methods, and fields

Several Vortex commands are available to examine the inheritance hierarchy, methods, and fields of the
program currently being compiled. To use them, it is necessary first to run a make command (like make or
graphs) on the program, or, instead, load a checkpoint that was saved after a make command had been run.

• parents objectspec -- display (immediate) parents of the object specified by objectspec
(objectspec is the object name followed by the number of its type parameters, if non-zero, e.g., int or
list 1)

• all_parents objectspec -- same, but include indirect ancestors

• children objectspec -- display (immediate) children of the object specified by objectspec (except
for descendants of predicate objects)

• all_children objectspec -- same, but include indirect descendants

• methods objectspec -- display methods and fields where the specified object is the specializer of at
least one formal

• all_methods objectspec -- same, but the specified object may be either the specializer or inherit
from the specializer (the specializer any doesn’t count)

• [all_]fields objectspec -- same, but display only fields

• methdefs methodname [[nparams] nargs] -- display all implementations of the message with
the given name, number of type parameters and number of formal arguments (0s by default)

• matchmeths name -- display all message names that include string name

Two options affect the selection of displayed objects, methods, or fields

• browse_predicate_objects - when false, don’t include predicate objects

• browse_private_methods - when false, don’t include private methods or fields

Typing help browse will print a summary of these commands.



9

How to Use the Vortex Compiler and Environment

2.6 Gathering and applying profile information

Vortex canexploit dynamicprofile informationto generatehighly optimizedcode,rangingfrom 50% to
500%fasterthanwithoutprofiledata.In orderto reapthebenefitsof thisoptimization,profile information
must be gathered and then exploited. Gathering profile information involves the following steps:

• Build an instrumentedexecutable.This requiresa full phasetwo re-compilation.It doesnot requirea
phaseone(Vortex) re-compilation.Youcanbuild aninstrumentedexecutableby typing make pic or
pm -pic at theUnix shellpromptin your gendirectory.* If theprogramis namedfoo.cecil then
the instrumentedexecutableis namedfoo.pic. An instrumentedexecutableis typically 10-50%
slower than a normal executable.

• Runthe instrumentedexecutableto gatherprofile information.Themostimportantaspectof this step
is running the program on a representative input set. The program should be startedwith the
--picstats commandline option.† Profile datais dumpedto standardoutputwhenthe program
terminates.Generally, youwantto redirecttheoutputof theprograminto afile. For example,youcould
gather profile information for the Vortex compiler using the following command:
% compiler.pic --picstats "optimize; make towers.tst" > c.pic

A moresophisticatedexampleis ${VORTEX_HOME}/Cecil/bin/shell/make_profile, thescript
which gathers profile data for Vortex itself.

• Processtheprofileoutputinto theproperform. Severalperl scriptsin ${VORTEX_HOME}/bin/shell

dothisprocessing.Themostusefulform of profiledatais n-CCP(call-chainprofiledata)whichcanbe
produced in the following manner (assuming${VORTEX_HOME}/bin/shell is in your path):
% call-chain.perl < c.pic > c.nCCP

After profiledatahasbeengathered,exploiting it is fairly easy. A file containingprocessedprofiledatacan
bereadinto Vortex by usingtheload_profile command,e.g.,Vortex> load_profile c.nCCP.
Onceprofiledatahasbeenreadin, it is automaticallyexploitedduringoptimizingcompilations.Profiledata
is savedin theprogramcheckpoint,soit canbeutilized acrossmany compilationsessionswithout having
to be readin eachtime. It alsois reasonablyrobust in the faceof small programchanges,soprofile data
from an older version of the program can continue to be used for modified versions of the program.

3 Using the Cecil Debugger

Most featuresof the Cecil debuggerrequirethe applicationbeingdebuggedto have beencompiledwith
debuggingsupport(thedebug_support compileroptionmusthavebeensetto true,which is its default
setting).Therearethreemainwaystoenterthedebugger. First,run-timeerrorslikemessage-not-understood
invoke thedebuggerin thecontext of theerror. Second,typing ctrl-C interruptsa programcompiledwith
debuggingandinvokesthedebugger(typing ctrl-C kills a programcompiledwithout debuggingsupport).
Third, the Cecilbreakpoint function inserts an explicit debugger entry point. For example,

if(x > 5, { breakpoint(); });

* To gettheseandotherutility programsfor manipulatingprofiling informationinto yourpath,youshouldsourcethe
${VORTEX_HOME}/bin/shell/vortex.cshrc file in your~/.cshrc.

†Commandline argumentsthatstartwith -- areinterpretedby theCecil runtimesystemandarenotpassedon to the
userprogram.Theymayappearanywhereon thecommandline. Passing--help asacommandline argumentto a
Vortex-compiled executable will cause it to list the recognized run-time system command line arguments.



10

How to Use the Vortex Compiler and Environment

invokes the debugger if x is greater than 5 at this point in program execution. In the Vortex source code we
often embed breakpoints guarded by compiler integer options into key routines; this allows us to simply set
the integer option to a “high” enough level and easily enter the debugger at critical points when debugging
that piece of the program. Alternatively, the assert and error functions can be used as defensive
programming measures to invoke the debugger whenever unexpected situations arise.

When you first enter the debugger, you will see something like:

Current stack frame:
# 0 run (t: <anon/DeviceTaskRec/: 0x183f55>,
         work: <anon/Packet/: 0x15e859>), richards.cecil:153
debug>

The stack frame description tells you the method being executed when the debugger was invoked, and the
values and types of its formal parameters and local variables. In the example above, we are in the run
method which has two arguments and no local variables. Variable work contains an object which is an
anonymous (not specifically named) descendant of Packet. If a message-not-understood error invoked the
debugger, then the message that was not understood and its arguments appear above the stack frame.

3.1 Displaying stack traces

Typing display at the debug> prompt displays a view of the program stack, similar to typing where in
gdb or dbx (where is available as a synonym for display). The default display option is to display the
lexical chain, which is a subset of the dynamic chain. Since all control structures in Cecil are user-defined,
you rarely want to see the complete (dynamic) chain of stack frames. The lexical chain is intended to hide
most of the stack frames that are introduced by user-defined control structures. The lexical chain is built by
starting at the top-most stack frame and tracing up the program’s stack. If the current stack frame is a closure
stack frame, then its lexical parent is the next stack frame displayed. If the current stack frame is a method
stack frame, then its dynamic parent is displayed next. We build the lexical chain by applying these rules to
select which stack frames from the current program stack should be displayed. You can see the complete
dynamic chain by typing display dyn at the debug> prompt.

For example,

debug> display
Lexical call stack:
#16 run_richards (count: 1), richards.cecil:397
#14 eval ({...}) in run_richards, richards.cecil:398
#10 eval ({...},

i: 0) in run_richards, richards.cecil:399
# 9 richards (), richards.cecil:290
# 8 schedule (), richards.cecil:<unknown line>
# 4 eval ({...}) in schedule, richards.cecil:304
# 2 eval ({...}) in schedule, richards.cecil:309
# 1 runTask (tcb: <anon/DeviceTaskRec/: 0x183f55>), richards.cecil:126
# 0 run (t: <anon/DeviceTaskRec/: 0x183f55>,

work: <anon/Packet/: 0x15e859>), richards.cecil:153
debug>
debug> display dyn
Dynamic call stack:
#16 run_richards (count: 1), richards.cecil:397
#15 time (closure: <closure 0x171011>), system.cecil:72



11

How to Use the Vortex Compiler and Environment

#14 eval ({...}) in run_richards, richards.cecil:398
#13 do (count: 1,

c: <closure 0x171009>), small_int.cecil:<unknown line>
#12 loop (c: DelayedComputation), closure.cecil:351
#11 eval ({...}) in do, small_int.cecil:353
#10 eval ({...},

i: 0) in run_richards, richards.cecil:399
# 9 richards (), richards.cecil:290
# 8 schedule (), richards.cecil:<unknown line>
# 7 while_true (cond: DelayedComputation,

c: DelayedComputation), closure.cecil:<unknown line>
# 6 loop (c: DelayedComputation), closure.cecil:19
# 5 eval ({...}) in while_true, closure.cecil:<unknown line>
# 4 eval ({...}) in schedule, richards.cecil:304
# 3 if (_anon_0: false,

tc: DelayedComputation,
fc: DelayedComputation), boolean.cecil:<unknown line>

# 2 eval ({...}) in schedule, richards.cecil:309
# 1 runTask (tcb: <anon/DeviceTaskRec/: 0x183f55>), richards.cecil:126
# 0 run (t: <anon/DeviceTaskRec/: 0x183f55>,

work: <anon/Packet/: 0x15e859>), richards.cecil:153
debug>

Each stack frame is numbered, with #0 being the most recent (topmost) stack frame. Each stack frame shows
the method invoked for that stack frame (methods named eval are often the bodies of closures), the names
and values of the formal parameters of the method, the lexically enclosing method (in the case of closure
eval methods), and the file name and line number where execution is suspended.

display n1 displays stack frames starting from number n1. display n1 n2 displays stack frames from
n1 to n2, inclusive. display dyn versions are also available.

display prints out a short description of each stack frame. To see a fuller description, including local
variable values, use the show [n] command to display frame n:

debug> show 15
#15 time (closure: <closure 0x171011>), system.cecil:72
  Locals: start: 900,
          end: Uninitialized
debug>

show by itself shows the current frame; entering a blank line acts like show.

In the presence of optimization, some line numbers are not available, but all stack frames, even those inlined
away through optimization, appear in the stack trace. Also, optimization can cause certain values to not be
computed. In particular, often closures are inlined away; their values print out as DelayedComputation
in the stack trace. Finally, some variables may not be initialized at the point the stack trace is printed, and
these variables print out as Uninitialized.

3.2 Moving around in stack traces

You can move around in the stack by using the up, down, and goto commands to change the current stack
frame.

• up - Move up to the calling stack frame.

• uplex - Move up to the lexically enclosing stack frame, or the caller frame if already a method frame.



12

How to Use the Vortex Compiler and Environment

• down - Move down to the callee stack frame.

• downlex - Move down to the lexically enclosed callee stack frame.

• goto n - Goto stack frame n.

Moving to a particular frame implicitly shows the target frame.

3.3 Setting breakpoints

Simple breakpoints can be set using the break command. break name sets a breakpoint on entry to any
of the methods named name. (For those methods that are called through dynamic dispatching; see section 4
for more info.) break by itself lists the current set of breakpoints. Individual breakpoints can be disabled
and enabled using the disable and enable commands. clear removes all breakpoints.

There is no way to set a breakpoint at a particular line of a Cecil program. To do this, edit the method directly
to include a breakpoint() call at the desired place, and either recompile and rerun (slow) or install the
edited method directly using the evaluator (see below) (fast, but doesn’t always work in the presence of
optimization).

3.4 Resuming program execution

Typing cont or ctrl-D exits the debugger and continues running the program, either to completion or until
the next breakpoint is hit. However, if the debugger was entered because of an error, and there is no
enclosing error handler (see recover below), then this will exit the program.

step continues execution until the next message is sent. Since messages are sent very frequently, this will
advance execution only a small amount.

next continues execution until the next message is about to be sent from the current frame or the current
frame is about to return (if no other breakpoint is hit first). next is akin to the similar command in gdb,
and can be used to step over a message send. If next is done in some frame, and then a closure lexically
nested within that frame is either entered or about to send a message, then execution is also suspended; this
allows next-ing through a method, seamlessly stepping into and out of any lexically nested closures within
that method.

finish resumes execution until the current active stack frame is about to return (if no other breakpoint is
hit first). Execution will suspend, and the value about to be returned (if any) will be printed. Entering
finish when suspended at the finish point of a stack frame will finish from the frame it returns to.

3.5 Evaluating expressions

If you are debugging a program that includes the Cecil evaluator (such as any program compiled with the
full standard library), then any input that is not recognized as a debugger command is evaluated in the
context of the current active stack frame. For example, if x is a list of HandlerTaskRec, you could find
all the tasks of priority >2000 that are currently elements of x by doing the following:

debug> x.do(&(y){ if(y.priority > 2000, { y.print_line; }); })

If the result of evaluation is non-void, then the print_string message is sent to the result to compute
a user-defined printable representation of the result.

Section 4 discusses the evaluator in more detail.



13

How to Use the Vortex Compiler and Environment

3.6 Low-level printing and tracing

The print command prints, in a very low-level way, the object contained in any variable visible through
lexical scoping from the current stack frame. For example,

debug> goto 0
# 0 run (t: <anon/DeviceTaskRec/: 0x183f55>,
/Packet/: 0x15e859>), richards.cecil:153
debug> print t
<anon/DeviceTaskRec/: 0x183f55>
  map: CecilMap 0x119978, id: 203 (anon/DeviceTaskRec/)
8 fields:
        packetPending@TaskState, offset 0: false
        taskWaiting@TaskState, offset 1: false
        taskHolding@TaskState, offset 2: false
        link@TaskControlBlock, offset 3: <anon/DeviceTaskRec/: 0x183f79>
        ident@TaskControlBlock, offset 4: 6
        priority@TaskControlBlock, offset 5: 5000
        input@TaskControlBlock, offset 6: 0
        pending@DeviceTaskRec, offset 7: 0

It is also possible to print the object addressed by any of the hex numbers printed out by a stack dump or a
print command (other than the address of the internal CecilMap data structure). Note that if there is not
an object that starts at the requested address, the debugger is likely to crash. This second usage of print
can be used to trace through data structures. For example, we can look at the object stored in the link field
of the t formal parameter:

debug> print 0x183f79
<anon/DeviceTaskRec/: 0x183f79>
  map: CecilMap 0x119978, id: 203 (anon/DeviceTaskRec/)
8 fields:
        packetPending@TaskState, offset 0: true
        taskWaiting@TaskState, offset 1: false
        taskHolding@TaskState, offset 2: true

link@TaskControlBlock, offset 3: <anon/HandlerTaskRec/: 0x17b5f1>
        ident@TaskControlBlock, offset 4: 5
        priority@TaskControlBlock, offset 5: 4000
        input@TaskControlBlock, offset 6: <anon/Packet/: 0x15e8e9>
        pending@DeviceTaskRec, offset 7: <anon/Packet/: 0x15e8b9>

debug>

trace toggles printing a line for every dynamically dispatched message sent.

3.7 Restarting, recovering, and quitting

The restart command restarts program execution from the beginning. It’s useful when you find a bug,
fix it by redefining the method (see section 4), and then want to test your bug fix. No re-initialization of
global variables or named concrete objects takes place.

Some programs, such as the Vortex compiler, install explicit error handling wrappers around sections of
code. For example, the compiler wraps execution of compilation commands in an error handler, so that
message-not-understood errors during compilation return you to the Vortex> prompt, rather than abort
the Vortex program. The recover command returns to the last point in the program where an error handler



14

How to Use the Vortex Compiler and Environment

was installed. This is useful if you’ve identified a problem, installed a fix, and want to return to the error
handling level rather than continuing program execution.

Typing quit or really_quit terminates program execution and returns you to the Unix shell prompt.

3.8 Help

Typing help at the debug> prompt displays a short description of the available debugger commands.

4 Using the Cecil Evaluator

The Cecil evaluator functions like a Lisp read-eval-print loop. You can type Cecil code to be evaluated at
the Vortex> and debug> prompts; there also is a stand-alone Cecil read-eval-print program named
cecil that can be run. The Cecil code is typechecked, and then it is evaluated (whether or not there were
any type errors) and any results are displayed. (The Vortex compiler itself is the one Cecil program that is
unable to do typechecking of its evaluator inputs.) New global variables, objects, and fields can be declared,
and new methods can be added and existing methods can be replaced by entering method declarations to the
evaluator. Expressions and declarations can span multiple lines, as long as open brackets, parentheses, or
braces remain unmatched at line boundaries. For speed, the evaluator invokes precompiled code wherever
possible, and interprets expressions otherwise.

Predicate object and precedence declarations are not currently supported by the evaluator. Top-level let
declarations made in the evaluator create global variables available to the evaluator and interpreted methods
(but not the pre-compiled code) in the same run of the program. (As with regular Cecil programs, module
declarations are parsed but ignored.)

The evaluator is extremely useful for debugging programs. The ability to redefine methods is especially
helpful when debugging, since a corrected method can simply be typed into the program and tested without
having to wait for the program to be recompiled. However, there are some situations in which it does not
work. Interpreted methods are invoked only through dynamically dispatched message sends. Therefore, if
a message send is either inlined or statically bound (and thus does not go through the dynamic dispatching
mechanism), then any new or replacing interpreted methods won’t be invoked at that call site. Similarly,
breakpoints are implemented only for methods called through dynamically dispatched call sites.

With some knowledge of the optimizations performed by the compiler, it is possible to predict whether a
particular call site will be dynamically dispatched, and thus a call site at which an interpreted method could
be invoked. However, it is likely that a casual user will not want to figure this out. A simple rule is that if a
call site is located in a file which was compiled without optimization, then the call site will be dynamically
dispatched and thus interpreted methods will perform as expected. Alternatively, if a file includes the
(**debug**) pragma, then all methods in that file can be replaced by an interpreted method (i.e., all calls
to the methods defined in the file will be forced to be dynamically dispatched). Individual methods can also
be annotated (**debug**) as follows:

method testing(x@:int, y:string) (** debug **) { method_body }

Interpreted methods only persist for as long as the program is running. If you add a method to a program,
and then exit the program and restart it, the new method will not be present. Interpreted methods are not
saved in Vortex checkpoint files either.



15

How to Use the Vortex Compiler and Environment

5 Libraries and Separate Compilation

For best performance of the generated code, Vortex can compile and optimize library code for the client
application. However, this approach precludes sharing compiled code for libraries across applications. For
simple applications, sometimes best performance is not required. To speed compilation and reduce disk
space usage, Vortex can compile libraries in a special mode that makes the generated code sharable across
applications. Because of inter-file dependencies created by optimizations, and to enable applications to add
methods and fields and children to objects defined in separately compiled libraries, these libraries are
compiled without optimization. The generated library code is put in a separate directory. By default, Vortex
compiles libraries separately. For best performance, libraries can be specialized to the client application by
disabling the use_shared_libraries option.

5.1 Defining a library

A library is a source file that contains a library pragma, plus all files included from this root library file
that do not have their own library pragmas. The library pragma specifies the name of the library, e.g.
(**library("my-lib")**). The only restriction on a library name is that it should be a legal UNIX
directory name. The Cecil standard library is currently broken down into a core smallstdlib, a larger
noevalstdlib, and the complete stdlib.

5.2 Compiling libraries

By default, Vortex assumes separate compilation of libraries. In this mode, only non-library code is
compiled into the gen directory (i.e., those files that are not in any library). Code for files in a library, say,
my-lib, is compiled into the subdirectory my-lib of the directory determined by the string option
libs_dir, e.g., ${VORTEX_HOME}/Cecil/lib.

When compiling a program, Vortex automatically checks if the libraries the program includes are
up-to-date, and if not, recompiles them. The first time a library is compiled, Vortex creates the appropriate
directory for its compiled code.

5.3 Disabling separate compilation

To turn off separate compilation, set the use_shared_libraries option to false. When
use_shared_libraries is false, Vortex acts as if no library pragmas were in the program,
compiling and optimizing library files into the same directory as application files.

5.4 Implementation limitations

The current implementation of separate compilation in Vortex imposes two minor restrictions on how the
library objects and methods can be extended by an application. In particular, applications compiled with
use_shared_libraries set to true (the default value) may not extend a library by either:

• defining a global variable that is used, but not defined, in the library, or

• adding a predicate child to an object defined in the library.

However, since dependencies are not maintained for library code when compiling in library mode,
violations of these restrictions will not be automatically caught by Vortex and may result in unexpected
behavior. The only safe way to allow an application to extend a library in one of these two forbidden



16

How to Use the Vortex Compiler and Environment

manners is to disable separate compilation for the application (by setting use_shared_libraries to
false) and recompiling with make.

Vortex does not provide a way for a programmer to modify some of the library files while still using the rest
of the precompiled libraries. If you want to have your own file supercede the file with the same name in the
library, you need to disable separate compilation (see Section 5.3).

6 Utilities

The directories ${VORTEX_HOME}/bin and ${VORTEX_HOME}/Cecil/bin contain utilities that support
Vortex application development. Some of these utilities can be invoked from within Vortex, which is
responsible for ensuring that the environment is set up correctly. To use these programs at a Unix prompt,
source ${VORTEX_HOME/bin/shell/vortex.cshrc from your ~/.cshrc to define the appropriate
environment variables and add the appropriate directories to your path. Some of the most useful utilities are:

• Phase Two compilation tools: Phase two compilations can be completed in parallel across a number of
machines. Parallel compiles are synchronized via lock files (_foo.cecil.c.lock is a lock file for
foo.cecil.c) that are created and removed in the gen directory during phase 2 compilation. The
scripts pm, pmwait, and pzap are used to drive parallel compilation. To immediately spawn parallel
compiles, use pm; pmwait waits until the current phase 1 compilation completes (time stamp on
Makefile in the gen directory changes) and then spawns the parallel compile jobs; pzap kills the
spawned compile jobs.

• Profile-guided class prediction: The scripts call-chain.perl, call-site.perl, and
summary.perl all invoke pic-filter.perl to format raw profile data into the form expected by
Vortex (see section 2.6).

• An Emacs mode for editing Cecil programs appears in
${VORTEX_HOME}/Cecil/bin/shell/cecil-mode.el.

• The run-vortex script invokes Vortex after modifying the environment. It enables “casual” Cecil
programmers to run Vortex without having to modify their environments or explicitly source
vortex.cshrc.

7 Non-Cecil Front Ends

To use Vortex on languages other than Cecil, see the README files for each of the desired languages:

• ${VORTEX_HOME}/Java/README for compiling Java programs

• ${VORTEX_HOME}/C++/README for compiling C++ programs

• ${VORTEX_HOME}/Smalltalk/parcplace/README for compiling ParcPlace Smalltalk programs

• ${VORTEX_HOME}/Smalltalk/ibm/README for compiling IBM Smalltalk programs

• ${VORTEX_HOME}/M3/README for compiling Modula-3 programs

8 Installation

To install and configure Vortex at your site, follow the instructions on the Vortex release web page at:
http://www.cs.washington.edu/research/projects/cecil/www/Release

or in the INSTALL file availble by anonymous ftp from:
ftp.cs.washington.edu/pub/cecil/INSTALL



17

How to Use the Vortex Compiler and Environment

The installation process creates a sharable, baseline tree for Vortex and any languages to be compiled by
Vortex (e.g. Cecil). If only one person is going to use the Vortex installation, then it is probably simplest to
place your source and gen directories right in the baseline tree. If more than one user will be writing Cecil
programs or otherwise modifying the baseline tree, then they will need their own copies of any Cecil source
code they plan to modify. If several people are going to be making substantial changes to Cecil
compiler/stdlib code you’ll probably want to set up some kind of revision control system. We use CVS,
available via ftp from ftp://prep.ai.mit.edu/pub/gnu/.


