How to Use the ¥rtex Compiler and Evironment

The Cecil Group

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle, Washington 98195-2350
cecil@cs.washington.edu

Abstract

This documendescribesiow to usethe Vortex compilationervironment.We begin with a brief overview
of the compilationmodel.We thendetailthe stepsinvolvedin compilinganapplication,anddescribehow
to usethe deluggerandthe Cecil evaluator We describehow to setup separatelycompiledlibraries,use
non-Cecil front ends, and then finish with some installation and configuration directions.

1 Introduction

The Vortex compiler’s whole-programanalysesntroducecomplex intermoduledependenciesendering
the standarcheadeffile and nak e-basedapproachto incrementakcompilationuntenablelnstead,Vortex

tracksintermoduledependencieis aprogramdatabasegnablingit to determinevhich compiledfiles must
be recompiledafter a programmingchange.The currentVortex compilerkeepsthis databasén memory
while runningandsupportsoperationgo dumpthe programdatabasé¢o disk andlater readthe program
databaséackfrom disk. Thefile containingthe programs databasendotherinformationaboutthe state
of the compiler is called the prograseheckpoint.

Given whole-programanalysisand optimization,eachprograms compiled code (including libraries) is
tunedto that particularapplicationandconsequentlyt cannotbe sharedwith otherapplicationgwith the
exceptionof sharableseparatelycompiledlibraries; seesection5). In general,eachapplicationmustbe
compiledinto its own directory We call this directorythe applications gen directory(shortfor “generated
code”). Vortex placesall generatediles (exceptfor files that are part of separatelycompiledlibraries)
including the final ecutable and the prograsntheckpoint in the gen directory

Vortex compilationoccursin threephasesln PhaseZero,a Vortex front endtranslatesion-Cecilprograms
into the Vortex RTL intermediatdanguageln PhaseéOne,Vortex translateg RTL or Cecil sourceprogram
into eitherC++ or assemblycode.In Phaselwo, a C++ compileror anassembletranslateghe outputof
Vortex into objectfiles andan executable Currentlythe SFARC is the only architecturewith anassembly
code back-end.

For an éample of a compiler session, see Section 2.2.1.

2 Building Your Program

This sectiondescribeshow to useVortex to build an applicationin stand-alonenode.As discussedn
sectionb, Vortex alsosupportcompilingapplicationsagainstasharegre-compiledibrary (the Cecil stdlib
for example).

Normally, a wrapperscript configuredonceper site setsnecessargnvironmentvariablesbeforeinvoking
the underlying drtex executable. See section 8 for details on setting up this wrapper script.

How to Use the ®rtex Compiler and Evironment

2.1 Gen directories

It is easiesto run the compilerfrom the directory containingyour sourcefiles. During the first compile,

Vortex createsa subdirectoryof the currentdirectorycalledgen which becomeshe gendirectoryfor your

application.The programs executablés createdn this directory Its nameis the nameof the applications

mainfile with the suffix removed.For example,if your programis callednypoi nt . ceci | , theexecutable
will be gen/ nmypoi nt .

If you have several applicationsjust put the sourcedor eachapplicationin their own directory so each
application has itsvan gen directory(Section 2.4.3)»@lains hav to adjust the gen directoyy

2.2 Running the compiler

2.2.1 Typical compiler session

Vortex normally runs interactively, reading and executing user commands.The notation Vor t ex>
sonme_comand indicatesthat sone_command (followed by pressingthe returnkey) is typedat the
compilerprompt.Compilercommandsppeain bol df ace, and%is usedasasampleUnix shellprompt.

To compileanew program(say nypr og. ceci |) runamake commandwhich specifieghe nameof your
programMort ex> nmake myprog. ceci | . Themake commandarseshefile namedwpr og. ceci |
andary filestransitively includedby thisfile, constructglobaldatastructureslescribingheprogram(e.g.,
the object inheritancegraph and the table of definedmethods),producesPhase-1“compiled{C++ or
assemblyxodefor the applicationin the gendirectory(whichis createdf necessary)andtheninvokesa
Phase-2nale” to compiletheintermediatdilesinto . o filesandlink the. o filesinto atametexecutable,
gen/ mypr og. The generatedxecutablecanbe run eitherfrom a UNIX promptor by typing r un atthe
Vortex prompt.

Oncea programhas beencompiled, further invocationsof the make command(the programnameis
optional after the first time) incrementally recompile only files that changed (or depend on a changed file).

The save commandwrites the programcheckpointto a file namedprogram. db, whereprogram is the
nameof the applicationbeing compiled.The checkpointcontainsa snapshobf the applications source
code,theinterprocedurainformationcomputedby the compiler andrecompilationdependenciegswell

asthe currentsettingsof the Vortex compiler’s options.At this point, it is safeto quit Vortex by typing the
qui t command.r(eal | y_qui t skips asking for confirmation.)

To reloada programs checkpointfile, usethe | oad program. db command.The compilers stateis
restoredto whereit wasat the point of the previous save, permittingmoreincrementaldevelopmentto
proceedlf you do notloadacheckpoinffile, thefirst make commandwill performafull non-incremental
compilation.

2.2.2 Start-up commands

Uponstartup,Vortex searchesor a file named. vor t exr ¢ firstin the currentdirectory thenin theusers
homedirectory Eachline is executedasif it weretypedat the Vortex prompt.If theline containsthe #
symbol,the partof theline betweerthefirst # andthe endof theline is ignored.For example,if youwant

" Vortexassumethatgmake is availableto run Phase-2ompiles Section8 describesiowto changethis assumption.

How to Use the ®rtex Compiler and Evironment

Vortex to loadtheprograms checkpoinuponstartupyoucancreatea. vor t exr ¢ containingthefollowing
lines:

put this .vortexrc in the directory where you start the conpiler
| oad nyprog. db

After . vortexrc is processedif found), ary command-lineargumentsare processedin order Each
command-lineargumentis executedasif it weretypedatthe Vor t ex> prompt.As a specialcase,f the
commandine startswith - F, no startupfile is read;if with - f filenamefile filenameis usedfor the startup
file’s name.

For example, \rtex can compile a program in batch mode whewoked as follevs:
% vortex "load myprog.db"” make save really_quit
2.2.3 Compiler commands
This section describes the majariéx compiler commands. The follang notation is used:

» [phrasg -- phraseis optional
* phrase] phrase2-- eitherphraselor phrase2
* ... --the last parameter may be repeated

More commandsiredescribedn Sections2.3,2.4,and2.5. This manualdescribe®nly themorecommon
commandsa completelist of commandsandtheir brief descriptionscanbe obtainedby usingthe hel p
command. Multiple commands separated by semicolons candre@i the same line.

* hel p [helptopid -- displayallist of compilercommandsvith brief descriptiongrelatedto helptopic
if specified;possiblehelptopis are:make, opti ons, br owse, t ypechecker, advanced, and
startup)

* make [prognameext] -- setthe currentprogramto be prognameext if specifiedthencompilethe
currentprogram.The executablecalledprognameis producedn the gendirectory The .ext extension
may be omitted,in which caseaninput-language-specifiextension(e.g.. ceci | for Cecil programs,
.rt| for Java programs, o for C++ programs, andstrt| for Smalltalk programs) is appended.

Therearea numberof variationsof the make commandsupportingparallelPhaselwo compilation,

PhaseOne or PhaseTwo only compilation,and/oroptimized compilation,derived from the regular

expression: pJmake[1|2][o1l]|o2] [prognameext]

* p -- Usesthe pmscriptto performthe Phaselwo compilesin parallel.(Seesection8 for information
on hav to configure the list of machine names used dned for parallel compiles.)

* [1|2] -- Only do Phase One or Phaseolcompilation.

* [01|0o2] -- Recompileall file that have beencompiledwith a lower optimizationlevel than that
specifiedin command(seesection2.3 for a descriptionof possibleoptimizationlevels and some
examples ofrake commands).

i nf 0 -- reportthe status(up-to-date put-of-date need-to-parseneed-to-codgen) of all of the files
making up the current program

" If thefilenamedoesn'talreadyhavethe defaultextensionthenthe filenamewith the defaultextensiorappendeds
searchedor first. If this filenameisn’t locatedin the currentsourcesearchpath (seesection2.4.3 aboutthe
sour ce_pat hs option), thenthe flenameas given by the useris searchedor. For example,| ang Ceci | ;
make foo. bar first searchesor afile namedf 0o. bar . ceci | , andif thisfails thensearchesor afile named
f 0o. bar.

How to Use the ®rtex Compiler and Evironment

« save [filenameg] -- sare the compilerstateto a checkpointfile filename, if given, or curprog. db
otherwise, whereurprog.ext is the name of the current program

« | oad filename -- load the checkpoint from fikdename

e qui t,"D--exit Vortex. Youwill bepromptedo make sureyoureallywantedto quit. Notethatquitting
thecompilerdoesnotsavethecompilerstate If youwantto save thecompilerstatebeforequitting, you
mustusethe save commandandthenquit. real | y_qui t canbe usedto avoid the confirmation
message.

ereally quit --likequit, but does not require interaai user confirmation

A stringtypedatthe Vortex promptis interpretedasfollows. If it startswith aword thatmatcheneof the
compilercommandssuchasmake, that commandis executed.Otherwise,if the first word matchesan
optionname,suchasopt i m ze, thevalueof the optionis displayedor modified (section2.4 describes
options). Otherwise,the string is evaluatedas a Cecil expression,statementpr declaration(section4
describeghe evaluator).If the evaluatordoesnot recognizethe stringasa valid Cecil construct,t reports
an error

2.2.4 Typechecking

Vortex includesatypecheckr for Cecil. (Programsn languagestherthanCecil aretypecheckdby their

correspondingfront-ends.) The typecheckr has to be invoked explicitly by the typecheck or

ful | t ypecheck commandsit isn’t runwhenamake commandsissuedf ul | t ypecheck rechecks
thewhole programfor type errors,while t ypecheck only recheckscodein modifiedfiles andfiles that

previously hadtypeerrors.t ypecheck is fasterfor smallprogramchangesbut it canmisserrorsthatare
introduced in files that were not touched.

The current typecheckr implementationdoes not perform ary “implementation-side”typechecking
(checkingwhethersignaturesare fully and unambiguouslymplemented)jput doesperform mostother

“client-side” typecheckinglt alsoincludesa few known bugsandweaknessesyhereit mayreportsome
type errors unnecessarily

2.3 Controlling the compiler configuration

Vortex's behaior is controlledby configurationparameterand options;the primary distinctionbetween
themis thatoptionsaresetandqueriedby aregularsetof commandswhile manipulationof configuration
parameterss currentlymoreadhoc. This sectiondescribesonfigurationparametersanda few important
options. Section 2.4 describes options ana twset or display them in more detail.

Vortex displaysits configurationupon startup;you canalso requestt with the conf i g command.The
configuration is part of the compiler stateeshin a checkpoint.

Current program. At eachmoment,Vortex works with a single program.If the programconsistsof one
file, thisfile is thecurrentprogram.If the programconsistof multiple files, the currentprogramis thefile
from which the othersareincluded, possiblyindirectly. The currentprogramis setby ary of the make
commands, forxample,

* make progname.ext -- set current program fwogname.ext and compile it

No current program is assumed upantek startup. See Section 2.2.3 for a detailed descriptiombké.

How to Use the ®rtex Compiler and Evironment

Vortex cancompilemultiple languagesCecil is the moststableinput languagebut Java, C++, Modula-3,
andParcPlacesmalltalkfront-endsarealsoavailable,with anIBM Smalltalkfront-endunderdevelopment.
To set the language being compiled, usd #ieg command:

elang (Cecil]|Java| C++| M3| ParcPl aceSmal I tal k| | BMSmal | t al k) -- changethe
current accepted language

* | ang -- display the current accepted language

Regardlesof thecurrentianguagethesetof compilercommandsndoptionsremainghesameOnly Cecil
expressionarerecognizedy theevaluator(sincethey areevaluatedn thecontext of the Vortex compilers
implementationyhichis writtenin Cecil). Filenameextensionshave no influenceon the currentlanguage,
nor is a specific @ension enforced, although each indual language has itsvm default extension.

Generated language. Vortex generateseither C++ or assemblycode. By default, it producescode
appropriate for the architecture/OS combination on which it is being run.

* gen (C C_ 32| C_64|asn -- generateC++ or assemblycode.The C_32andC_64flagscanbe
usedto controlwhetherthegenerate codeassume82 or 64 bit pointers (Assemblycodegeneration
is currently only supported on ARC architectures for Cecil, Ja, and Smalltalk.)

e gen (sun4|sol ari s) -- select the tget OS for assembly coglen.
» gen -- display the current generated language amgtadS (for assembly cogien).

Thegen commandganbeusedio enablecross-compilationk-or example to useasun4 vortex executable
to produceanexecutablehatwould run onanal pha, onewouldissueagen C 64 commandfollowed
by amakel commandattheVor t ex> prompt.Phasdwo compilationcouldthenbe doneon anal pha

usingeithermake or pm pmtakesanoptional- ar ch <ar chnane> commandine argumentthatoverrides
its defwult assumption of compiling for the architecture/OS on which itvisked.

Cecil standard library. TheCecillanguagéncludesno built-in dataor controlstructureswWhencompiling
a Cecil program,Vortex canautomaticallyincludethe standard library, a selectionof standarddataand
control structures(e.g. numbers oops, arrays)plus the Cecil evaluator which facilitatesdehugging the
program. Alternatelyyou may select a subset of the standard libaargo library at all.

Therearefour levels of incorporatingthe Cecil standardibrary (describedn more detail in a separate
document)dependingon thetop library file thatis includedin the program(including a file causesther
files referenced in it to be included, too). Theels are determined by compiler commands asvialio

e nostdl i b -- no files are automaticallyincluded by Vortex, so no dataand control structuresare
implicitly available.

e smal Il stdlib -- prelude.smal|.cecil is automaticallyincluded. It provides only the core
standarddata structures Note: the smallstdlibis incomplete(in particularit excludesbig_ints and
streams)thusanumberof warningmessage@vhich canbeignored)will begeneratedvhencompiling
the smallstdlis files.

* noeval stdl i b--prel ude. noeval . ceci | isincluded.Ilt providesall thestandardiatastructures,
including those pndaded by smallstdlib, it excludes the Cecihaluator

e stdli b (default) -- prel ude. ceci | is included,providing the Cecil evaluatorin additionto the
standard data structures

How to Use the Vortex Compiler and Environment

These commands are processed in addition to any files included by the Cecil program. Choosing
nost dl i b and explicitly including pr el ude. ceci | from one of the files comprising a program is
equivalent to choosing st dl i b when compiling that program (even if it contains no explicit includes).

(When compiling Java, thefilest dl i b. rt | isincluded asthe default standard library; nost dl i b can be
used to disable this default library. Other languages have no standard libraries.)

Optimization level. When debugging code, it is convenient to compile it without optimizations both to
reduce turnaround time and to make it easier to use the Cecil evaluator and debugger (discussed in sections
3 and 4). Wetypically make some source changes, do a series of incremental, non-optimizing compilations
while debugging, and finally perform an optimizing compilation once things seem to work. Optimization
speeds up applications by roughly an order of magnitude, so it generaly is a good idea to optimize a
program before running it on alarge input set.

Which optimizations are performed depends on the value of the integer option opt i mi zati on_| evel ;
larger values of opt i nmi zati on_I| evel correspond to more aggressive combinations of optimizations.
Its default value is O (perform no optimizations). It may be set using the following commands:

Value of
Commands oo I mpact
optimization_level
o0 or 0 Perform no optimizations
no_optim ze
olor Only perform afew highly profitable optimizations (class
optim ze 1 | analysis, splitting, class hierarchy analysis, class predic-
tion, closure delaying, and inlining)
02 or 2 Augment 01 with useful, but smaller-impact optimiza-
full _optimze tions such as CSE

Since separately compiled libraries (such as the precompiled standard library that comes with the
distribution) are compiled with no optimization, you need to disable separate compilation (i.e., enable
whole-program optimization) to achieve higher performance. This is controlled by the option
use_shared_libraries.

e set use_shared libraries (true|fal se) --alow sharing of compiled library code (if
true)/make a specialized version of al library code in the application’s gen directory (if false; default
valueistrue)

Be prepared for along compilation time when you first set use_shared_|i brari es tof al se, since
all the library fileswill need to be recompiled. You may want to switch to asmaller standard library before
specializing library code.

In alarge program, often only afew files are being debugged at atime. In such a case, it is reasonable to
optimize the other files. Thisis achieved by first compiling everything with optimization (Vor t ex> set

use_shared_libraries fal se; 02; make)andthenturning optimization off (Vor t ex> 00).
After these actions, every file that is modified will be recompiled without optimization (thus making
debugging easier and reducing turnaround time). The command Vor t ex> nakeo2 will then recompile
unoptimized files with optimization, bringing the current program up to full optimization. makeol and

How to Use the Vortex Compiler and Environment

makeo?2 set the optim zation_| evel option for only the immediately succeeding compile. It is
reasonable to keep opt i m zati on_I evel setto O, but periodically use makeol or nakeo?2 to bring
things up to full speed.

2.4 Compiler options

24.1 General commands

Compiler options control various aspects of compilation, such as optimization level, verboseness of
messages, gen directory, etc. The following commands are used to display and modify options:

* opti ons -- display the more interesting options

e opti ons topic-- display options on agiven topic (for example, confi g, di rect ori es, etc.)
e options topics --display available option topics

* show optname. . . -- display option optname (multiple option names are allowed)

* set optname optvalue -- set option optname to val ue optvalue

For convenience, Vor t ex> optname isashortcut for showoptname; Vor t ex> optname optvalueis short
for set optname optvalue.

Each option receives a default value upon start-up. The current option values are by default part of the
compiler state saved in a checkpoint. For more options and option-related commands, see:
* hel p opti ons -- display information about options
24.2 Kindsof options
Vortex has four classes of options:

Boolean options (e.g., opti mi ze, show _phases). They can havet r ue andf al se asvalues.
Integer options(e.g., opt _ver bosi ty_| evel). Ther values areintegers.

String options (e.g., gen_di r). Their values are strings. When changing their values, the double quotes
around the new string value (that would be required by the Cecil syntax) should be omitted. To set a string
option to the empty string, use set optname (with no explicit option value, i.e., the empty string).

String list options (e.g., sour ce_pat hs). Their values are lists of strings. When changing the value of a
string list option, the new value isthe list of words that are separated by spaces in the user’'s command. As
with string options, the quotes around the strings should be omitted, and set optname sets an option to the
empty list.

String and string list options allow pr epend and append operations:
e (prepend| append) str_opt_name value. .. -- prepend/append value(s) to string or string list
option str_opt_name
2.4.3 Frequently used options

Here we describe some of the frequently used options. A complete list of optionsis given by the command
options all.

How to Use the Vortex Compiler and Environment

sour ce_pat hs -- the set of directories where the source files are searched. With current implementation,
once Vortex finds a file in some directory, it will always look for that file in that same directory during
subseguent incremental recompilations.

gen_di r -- the gen directory for the application, absolute or relative to the directory where Vortex is run

debug_support -- determines availability of source-level debugging support in the compiled program.
A program compiled without debugging support runs faster, but does not provide the features described in
Section 3.

show _di rectory_i n_pronpt -- determines how many directory levels are displayed as part of the
compiler prompt. This option alows one to distinguish more easily between Vortex processes compiling
different programs.

| oud_conpi | e -- controls display of individual methods being compiled

show_phases -- controls display of individual optimization passes (with optimization-specific
characters) performed for each method being compiled.

2.5 Browsing the program’s inheritance hierarchy, methods, and fields

Severa Vortex commands are available to examine the inheritance hierarchy, methods, and fields of the
program currently being compiled. To use them, it is necessary first to run a make command (like meke or
gr aphs) onthe program, or, instead, load a checkpoint that was saved after amake command had been run.

e par ent s aobjectspec -- display (immediate) parents of the object specified by objectspec
(objectspec isthe object name followed by the number of itstype parameters, if non-zero, e.g.,i nt or
[ist 1)

e al | _parents objectspec -- same, but include indirect ancestors

e chil dren objectspec -- display (immediate) children of the object specified by objectspec (except
for descendants of predicate objects)

e all _chil dren objectspec -- same, but include indirect descendants

» met hods objectspec -- display methods and fields where the specified object is the specializer of at
least one formal

* al | _met hods objectspec -- same, but the specified object may be either the specializer or inherit
from the specializer (the speciaizer any doesn’'t count)

«[all _]fields objectspec-- same, but display only fields

e met hdef s methodname [[nparams] nargs] -- display all implementations of the message with
the given name, number of type parameters and number of formal arguments (0s by default)

» mat chnet hs name -- display all message names that include string name
Two options affect the selection of displayed objects, methods, or fields
* browse_predi cat e_obj ect s - when false, don't include predicate objects
* browse_privat e_met hods - when false, don't include private methods or fields

Typing hel p br owse will print asummary of these commands.

How to Use the ®rtex Compiler and Evironment

2.6 Gathering and applying profile information

Vortex canexploit dynamicprofile informationto generatehighly optimizedcode,rangingfrom 50% to
500%fasterthanwithout profile data.In orderto reapthe benefitsof this optimization,profile information
must be gthered and therxploited. Gathering profile informationvalves the folleving steps:

« Build aninstrumentedxecutable This requiresa full phasetwo re-compilationlt doesnot requirea
phaseone(\ortex) re-compilation.You canbuild aninstrumentedxecutableby typing make pi c or
pm - pi ¢ atthe Unix shellpromptin your gendirectory” If the programis namedf oo. ceci | then
the instrumentedexecutableis namedf oo. pi c. An instrumentedexecutableis typically 10-50%
slower than a normalxecutable.

« Runtheinstrumentedxecutableto gatherprofile information. The mostimportantaspecbf this step
is running the programon a representatie input set. The program should be startedwith the
- - pi cst at s commandline option.T Profile datais dumpedto standardoutputwhenthe program
terminatesGenerallyyouwantto redirectthe outputof theprograminto afile. For example,you could
gather profile information for thedvtex compiler using the follwing command:
% conpiler.pic --picstats "optimze; nake towers.tst" > c.pic
A moresophisticate@xampleis ${ VORTEX_HOVE} / Ceci | / bi n/ shel | / make_pr ofi | e, thescript
which gathers profile data forovtex itself.

» Processheprofile outputinto the properform. Severalperl scriptsin ${ VORTEX_HOVE} / bi n/ shel |
dothis processingThemostusefulform of profile datais n-CCP(call-chainprofile data)which canbe
produced in the folwing manner (assumirg{ VORTEX_HOVE}/ bi n/ shel | is in your path):

% cal | -chain.perl < c.pic > c.nCCP

After profile datahasbeengatheredgexploiting it is fairly easyA file containingprocessegbrofile datacan
bereadinto Vortex by usingthel oad_pr of i | e commande.g.,Vort ex> | oad_profil ec. nCCP.
Onceprofile datahasbeernreadin, it is automaticallyexploitedduringoptimizingcompilations Profiledata
is savedin the programcheckpointsoit canbe utilized acrossmary compilationsessionsvithout having
to bereadin eachtime. It alsois reasonablyobustin the faceof small programchangesso profile data
from an older ersion of the program can continue to be used for modiéiezsions of the program.

3 Using the Cecil Dealgger

Most featuresof the Cecil detuggerrequirethe applicationbeingdehuggedto have beencompiledwith
deluggingsupport(thedebug_support compileroptionmusthave beensetto true,whichis its default
setting).Therearethreemainwaysto enterthedehugger First, run-timeerrorslike message-not-understood
invoke the detuggerin the contet of the error Secondtyping ctrl-C interruptsa programcompiledwith
deluggingandinvokesthe delugger(typing ctrl-C kills a programcompiledwithout deluggingsupport).
Third, the Cecibr eakpoi nt function inserts anxglicit delugger entry point. & example,

if(x >5, { breakpoint(); });

"To gettheseandotherutility programdor manipulatingprofiling informationinto your path,you shouldsourcethe
${ VORTEX_HOVE} / bi n/ shel | / vort ex. cshrc file in your~/ . cshrc.

TCommandine argumentsghatstartwith - - areinterpretedoy the Cecil runtimesystemandarenot passeanto the
userprogram.They may appeamanywhereonthecommandine. Passing - hel p asacommandine argumento a
Vortex-compiled executable will cause it to list the recognized run-time system command line arguments.

How to Use the Vortex Compiler and Environment

invokes the debugger if X is greater than 5 at this point in program execution. In the Vortex source code we
often embed breakpoints guarded by compiler integer optionsinto key routines; this allows usto simply set
the integer option to a“high” enough level and easily enter the debugger at critical points when debugging
that piece of the program. Alternatively, the assert and error functions can be used as defensive
programming measures to invoke the debugger whenever unexpected situations arise.

When you first enter the debugger, you will see something like:

Current stack frane:
0 run (t: <anon/DeviceTaskRec/: 0x183f 55>,
wor k: <anon/ Packet/: 0x15e859>), richards.cecil: 153

debug>
The stack frame description tells you the method being executed when the debugger was invoked, and the
values and types of its formal parameters and local variables. In the example above, we are in the r un
method which has two arguments and no local variables. Variable wor k contains an object which is an
anonymous (not specifically named) descendant of Packet . If amessage-not-understood error invoked the
debugger, then the message that was not understood and its arguments appear above the stack frame.

3.1 Displaying stack traces

Typing di spl ay at thedebug> prompt displays aview of the program stack, similar to typing wher e in
gdb or dbx (wher e isavailable as a synonym for di spl ay). The default display option is to display the
lexical chain, which is a subset of the dynamic chain. Since all control structuresin Cecil are user-defined,
you rarely want to see the complete (dynamic) chain of stack frames. The lexical chain isintended to hide
most of the stack frames that are introduced by user-defined control structures. Thelexical chainisbuilt by
starting at the top-most stack frame and tracing up the program’s stack. If the current stack frameisaclosure
stack frame, then itslexical parent isthe next stack frame displayed. If the current stack frame is a method
stack frame, then its dynamic parent is displayed next. We build the lexical chain by applying these rulesto
select which stack frames from the current program stack should be displayed. You can see the complete
dynamic chain by typing di spl ay dyn at thedebug> prompt.

For example,

debug> di spl ay
Lexi cal call stack:
#16 run_richards (count: 1), richards.cecil: 397
#14 eval ({...}) in run_richards, richards.cecil: 398
#10 eval ({...},
i: 0) inrun_richards, richards.cecil: 399

9 richards (), richards.cecil:290
8 schedule (), richards.cecil:<unknown |ine>
4 eval ({...}) in schedule, richards.cecil:304
2 eval ({...}) in schedule, richards.cecil:309
1 runTask (tch: <anon/Devi ceTaskRec/: 0x183f55>), richards.cecil: 126
0 run (t: <anon/Devi ceTaskRec/: 0x183f 55>,
wor k: <anon/ Packet/: 0x15e859>), richards.cecil: 153
debug>

debug> di splay dyn

Dynam c call stack

#16 run_richards (count: 1), richards.cecil: 397

#15 time (closure: <closure 0x171011>), systemcecil:72

10

How to Use the Vortex Compiler and Environment

#14 eval ({...}) in run_richards, richards.cecil:398
#13 do (count: 1
c: <closure 0x171009>), snall _int.cecil:<unknown |ine>

#12 1 oop (c: Del ayedConputation), closure.cecil:351
#11 eval ({...}) in do, small _int.cecil:353

#10 eval ({...},
i: 0) inrun_richards, richards.cecil: 399

9 richards (), richards.cecil:290
8 schedule (), richards.cecil:<unknown |ine>
7 while true (cond: Del ayedConputation
c: Del ayedConput ation), closure.cecil:<unknown |ine>

6 loop (c: DelayedConputation), closure.cecil:19
5 eval ({...}) in while_true, closure.cecil:<unknown |ine>
4 eval ({...}) in schedule, richards.cecil:304
3 if (_anon_0: false

tc: Del ayedComput ati on,

fc: Del ayedComput ati on), bool ean. cecil: <unknown | i ne>
2 eval ({...}) in schedule, richards.cecil:309
1 runTask (tcb: <anon/Devi ceTaskRec/: 0x183f55>), richards.cecil: 126
0 run (t: <anon/Devi ceTaskRec/: 0x183f 55>,

wor k: <anon/ Packet/: 0x15e859>), richards.cecil: 153
debug>

Each stack frameisnumbered, with #0 being the most recent (topmost) stack frame. Each stack frame shows
the method invoked for that stack frame (methods named eval are often the bodies of closures), the names
and values of the formal parameters of the method, the lexically enclosing method (in the case of closure
eval methods), and the file name and line number where execution is suspended.

di spl ay nldisplaysstack framesstarting from number nl. di spl ay nl n2displaysstack framesfrom
nlton2, inclusive. di spl ay dyn versionsare also available.

di spl ay prints out a short description of each stack frame. To see a fuller description, including local
variable values, use the show[n] command to display frame n:

debug> show 15
#15 time (closure: <closure 0x171011>), systemcecil:72
Local s: start: 900,
end: Uninitialized
debug>

showby itself shows the current frame; entering a blank line acts like show

In the presence of optimization, some line numbers are not available, but all stack frames, even those inlined
away through optimization, appear in the stack trace. Also, optimization can cause certain values to not be
computed. In particular, often closures areinlined away; their values print out asDel ayedConput at i on
in the stack trace. Finally, some variables may not be initialized at the point the stack trace is printed, and
these variables print out asUni ni ti al i zed.

3.2 Moving around in stack traces

You can move around in the stack by using theup, down, and got o commandsto change the current stack
frame.

* up - Move up to the calling stack frame.
» upl ex - Move up to the lexically enclosing stack frame, or the caller frameif already a method frame.

11

How to Use the Vortex Compiler and Environment

» down - Move down to the callee stack frame.
» downl ex - Move down to the lexically enclosed callee stack frame.
» got o n- Goto stack framen.

Moving to a particular frame implicitly shows the target frame.

3.3 Setting breakpoints

Simple breakpoints can be set using the br eak command. br eak name sets a breakpoint on entry to any
of the methods named name. (For those methods that are called through dynamic dispatching; see section 4
for moreinfo.) br eak by itself lists the current set of breakpoints. Individual breakpoints can be disabled
and enabled using the di sabl e and enabl e commands. cl ear removesall breakpoints.

Thereisno way to set abreakpoint at aparticular line of aCecil program. To do this, edit the method directly
toincludeabr eakpoi nt () call at the desired place, and either recompile and rerun (slow) or install the
edited method directly using the evaluator (see below) (fast, but doesn’t always work in the presence of
optimization).

3.4 Resuming program execution

Typing cont or ctrl-D exits the debugger and continues running the program, either to completion or until
the next breakpoint is hit. However, if the debugger was entered because of an error, and there is no
enclosing error handler (see recover below), then this will exit the program.

st ep continues execution until the next message is sent. Since messages are sent very frequently, thiswill
advance execution only a small amount.

next continues execution until the next message is about to be sent from the current frame or the current
frame is about to return (if no other breakpoint is hit first). next isakin to the similar command in gdb,
and can be used to step over a message send. If next is done in some frame, and then a closure lexically
nested within that frame is either entered or about to send a message, then execution is also suspended; this
alowsnext -ing through amethod, seamlessly stepping into and out of any lexically nested closureswithin
that method.

f i ni sh resumes execution until the current active stack frameis about to return (if no other breakpoint is
hit first). Execution will suspend, and the value about to be returned (if any) will be printed. Entering
f i ni sh when suspended at the finish point of a stack frame will finish from the frame it returns to.

3.5 Evauating expressions

If you are debugging a program that includes the Cecil evaluator (such as any program compiled with the
full standard library), then any input that is not recognized as a debugger command is evaluated in the
context of the current active stack frame. For example, if x isalist of Handl er TaskRec, you could find
all the tasks of priority >2000 that are currently elements of x by doing the following:

debug> x.do(&(y){ if(y.priority > 2000, { y.print_line; }); })
If the result of evaluation isnon-voi d, thenthepri nt _stri ng messageis sent to the result to compute
a user-defined printable representation of the resuilt.

Section 4 discusses the evaluator in more detail .

12

How to Use the Vortex Compiler and Environment

3.6 Low-level printing and tracing

Thepri nt command prints, in avery low-level way, the object contained in any variable visible through
lexical scoping from the current stack frame. For example,

debug> goto 0

0 run (t: <anon/DeviceTaskRec/: 0x183f 55>,

/ Packet/: 0x15e859>), richards.cecil: 153

debug> print t

<anon/ Devi ceTaskRec/: 0x183f 55>

map: Cecil Map 0x119978, id: 203 (anon/Devi ceTaskRec/)

8 fields:
packet Pendi ng@askState, offset 0: false
taskWai ti ng@askState, offset 1. false
t askHol di ng@askState, offset 2: false
i nk@askControl Bl ock, offset 3: <anon/Devi ceTaskRec/: 0x183f 79>
i dent @askControl Bl ock, offset 4. 6
priority@askControl Bl ock, offset 5: 5000
i nput @askControl Bl ock, offset 6: 0
pendi ng@evi ceTaskRec, offset 7: 0

It isalso possible to print the object addressed by any of the hex numbers printed out by a stack dump or a
pri nt command (other than the address of the internal CecilMap data structure). Note that if there is not
an object that starts at the requested address, the debugger is likely to crash. This second usage of pri nt
can be used to trace through data structures. For example, we can look at the object stored inthel i nk field
of thet formal parameter:

debug> print 0x183f79
<anon/ Devi ceTaskRec/: 0x183f 79>
map: Cecil Map 0x119978, id: 203 (anon/Devi ceTaskRec/)

8 fields:
packet Pendi ng@askState, offset 0: true
taskWii ti ng@askState, offset 1: false
t askHol di ng@askState, offset 2: true
| i nk@askControl Bl ock, offset 3: <anon/Handl er TaskRec/: 0x17b5f 1>
i dent @askControl Bl ock, offset 4: 5
priority@askControl Bl ock, offset 5: 4000
i nput @askControl Bl ock, offset 6: <anon/Packet/: 0x15e8e9>
pendi ng@evi ceTaskRec, offset 7: <anon/Packet/: 0x15e8b9>

debug>
t r ace toggles printing aline for every dynamically dispatched message sent.

3.7 Restarting, recovering, and quitting

Ther est art command restarts program execution from the beginning. It's useful when you find a bug,
fix it by redefining the method (see section 4), and then want to test your bug fix. No re-initialization of
global variables or named concrete objects takes place.

Some programs, such as the Vortex compiler, install explicit error handling wrappers around sections of
code. For example, the compiler wraps execution of compilation commands in an error handler, so that
message-not-understood errors during compilation return you to the Vor t ex> prompt, rather than abort
the Vortex program. Ther ecover command returnsto the last point in the program where an error handler

13

How to Use the Vortex Compiler and Environment

was installed. Thisis useful if you've identified a problem, installed a fix, and want to return to the error
handling level rather than continuing program execution.

Typingquit orreal | y_quit terminates program execution and returns you to the Unix shell prompt.

3.8 Hep
Typing hel p at the debug> prompt displays a short description of the avail able debugger commands.

4 Using the Cecil Evaluator

The Cecil evaluator functions like a Lisp read-eval-print loop. You can type Cecil code to be evaluated at
the Vor t ex> and debug> prompts; there aso is a stand-alone Cecil read-eval-print program named
ceci | that can be run. The Cecil code is typechecked, and then it is evaluated (whether or not there were
any type errors) and any results are displayed. (The Vortex compiler itself is the one Cecil program that is
unable to do typechecking of its evaluator inputs.) New global variables, objects, and fields can be declared,
and new methods can be added and existing methods can be replaced by entering method declarationsto the
evaluator. Expressions and declarations can span multiple lines, as long as open brackets, parentheses, or
braces remain unmatched at line boundaries. For speed, the evaluator invokes precompiled code wherever
possible, and interprets expressions otherwise.

Predicate object and precedence declarations are not currently supported by the evaluator. Top-level | et
declarations made in the evaluator create global variables available to the evaluator and interpreted methods
(but not the pre-compiled code) in the same run of the program. (As with regular Cecil programs, module
declarations are parsed but ignored.)

The evaluator is extremely useful for debugging programs. The ability to redefine methods is especially
hel pful when debugging, since a corrected method can simply be typed into the program and tested without
having to wait for the program to be recompiled. However, there are some situations in which it does not
work. Interpreted methods are invoked only through dynamically dispatched message sends. Therefore, if
amessage send is either inlined or statically bound (and thus does not go through the dynamic dispatching
mechanism), then any new or replacing interpreted methods won't be invoked at that call site. Similarly,
breakpoints are implemented only for methods called through dynamically dispatched call sites.

With some knowledge of the optimizations performed by the compiler, it is possible to predict whether a
particular call site will be dynamically dispatched, and thus acall site at which an interpreted method could
be invoked. However, it is likely that a casual user will not want to figure thisout. A smpleruleisthat if a
call siteislocated in afile which was compiled without optimization, then the call site will be dynamically
dispatched and thus interpreted methods will perform as expected. Alternatively, if a file includes the
(**debug**) pragma, then all methodsin that file can be replaced by an interpreted method (i.e., all calls
to the methods defined in the file will be forced to be dynamically dispatched). Individual methods can also
be annotated (* * debug* *) asfollows:
met hod testing(x@int, y:string) (** debug **) { method body }

Interpreted methods only persist for as long as the program is running. If you add a method to a program,
and then exit the program and restart it, the new method will not be present. Interpreted methods are not
saved in Vortex checkpoint files either.

14

How to Use the Vortex Compiler and Environment

5 Libraries and Separate Compilation

For best performance of the generated code, Vortex can compile and optimize library code for the client
application. However, this approach precludes sharing compiled code for libraries across applications. For
simple applications, sometimes best performance is not required. To speed compilation and reduce disk
space usage, Vortex can compile libraries in a special mode that makes the generated code sharable across
applications. Because of inter-file dependencies created by optimizations, and to enable applicationsto add
methods and fields and children to objects defined in separately compiled libraries, these libraries are
compiled without optimization. The generated library code is put in a separate directory. By default, Vortex
compiles libraries separately. For best performance, libraries can be specialized to the client application by
disablingtheuse_shared_l i brari es option.

5.1 Defining alibrary

A library isasourcefilethat containsal i br ary pragma, plusall filesincluded from thisroot library file
that do not havetheirown| i br ary pragmas. Thel i br ar y pragma specifiesthe name of thelibrary, e.g.
(**library("my-1ib")**).Theonly restriction on alibrary nameisthat it should be alegal UNIX
directory name. The Cecil standard library is currently broken down into acoresnal | st dl i b, alarger
noeval stdl i b, and thecompletest dl i b.

5.2 Compiling libraries

By default, Vortex assumes separate compilation of libraries. In this mode, only non-library code is
compiled into the gen directory (i.e., those files that are not in any library). Code for filesin alibrary, say,
my-1ib, is compiled into the subdirectory my-lib of the directory determined by the string option
l'ibs _dir,egq., ${ VORTEX_HOVE}/ Cecil /i b.

When compiling a program, Vortex automatically checks if the libraries the program includes are
up-to-date, and if not, recompiles them. The first time alibrary is compiled, Vortex creates the appropriate
directory for its compiled code.

5.3 Disabling separate compilation

To turn off separate compilation, set the use_shared_I| i braries option to fal se. When
use_shared_libraries is fase Vortex acts as if no | i brary pragmas were in the program,
compiling and optimizing library files into the same directory as application files.

5.4 Implementation limitations

The current implementation of separate compilation in Vortex imposes two minor restrictions on how the
library objects and methods can be extended by an application. In particular, applications compiled with
use_shared_l i braries settotrue (thedefault value) may not extend alibrary by either:

« defining aglobal variable that is used, but not defined, in the library, or
« adding a predicate child to an object defined in the library.

However, since dependencies are not maintained for library code when compiling in library mode,
violations of these restrictions will not be automatically caught by Vortex and may result in unexpected
behavior. The only safe way to alow an application to extend a library in one of these two forbidden

15

How to Use the Vortex Compiler and Environment

manners is to disable separate compilation for the application (by settinguse_shared_li brari es to
f al se) and recompiling with make.

Vortex does not provide away for a programmer to modify some of the library fileswhile still using the rest
of the precompiled libraries. If you want to have your own file supercede the file with the same name in the
library, you need to disable separate compilation (see Section 5.3).
6 Utilities
The directories ${ VORTEX_HOVE} / bi n and ${ VORTEX_HOVE} / Ceci | / bi n contain utilities that support
Vortex application development. Some of these utilities can be invoked from within Vortex, which is
responsible for ensuring that the environment is set up correctly. To use these programs at a Unix prompt,
source ${ VORTEX_HOVE/ bi n/ shel | / vort ex. cshrc from your ~/ . cshrc to define the appropriate
environment variables and add the appropriate directoriesto your path. Some of the most useful utilitiesare:
« Phase Two compilation tools: Phase two compilations can be completed in parallel across a number of
machines. Parallel compiles are synchronized via lock files (_f oo. ceci | . c. | ock isalock file for
f0o. ceci |l . c) that are created and removed in the gen directory during phase 2 compilation. The
scripts pm pmnai t, and pzap are used to drive parallel compilation. To immediately spawn parallel
compiles, use pnt pmrai t waits until the current phase 1 compilation completes (time stamp on

Makef i | e in the gen directory changes) and then spawns the parallel compile jobs; pzap kills the
spawned compile jobs.

 Profile-guided class prediction: The scripts call-chain.perl, call-site.perl, and
sunmary. perl al invokepic-filter.perl toformat raw profile data into the form expected by
Vortex (see section 2.6).

* An Emacs mode for editing Cecil programs appears in
${ VORTEX_HOME} / Ceci | / bi n/ shel | / ceci | - npde. el .

e The run-vort ex script invokes Vortex after modifying the environment. It enables “casual” Cecil
programmers to run Vortex without having to modify their environments or explicitly source
vortex. cshrc.

7 Non-Cecil Front Ends
To use Vortex on languages other than Cecil, see the README files for each of the desired languages:
* ${ VORTEX_HOME} / Java/ README for compiling Java programs
* ${ VORTEX_HOVE} / C++/ READVE for compiling C++ programs
* ${ VORTEX_HOME}/ Snal | t al k/ par cpl ace/ READVE for compiling ParcPlace Smalltalk programs
* ${ VORTEX_HOME}/ Smal | t al k/ i bml README for compiling IBM Smalltalk programs
* ${ VORTEX_HOVE} / M3/ README for compiling Modula-3 programs

8 Installation

To install and configure Vortex at your site, follow the instructions on the Vortex rel ease web page at:
htt p: // ww. cs. washi ngt on. edu/ r esear ch/ proj ect s/ ceci | / ww/ Rel ease

or inthe INSTALL file availble by anonymous ftp from:
ftp.cs.washi ngt on. edu/ pub/ ceci | /| NSTALL

16

How to Use the Vortex Compiler and Environment

The installation process creates a sharable, baseline tree for Vortex and any languages to be compiled by
Vortex (e.g. Cecil). If only one person is going to use the Vortex installation, then it is probably simplest to
place your source and gen directories right in the baseline tree. If more than one user will be writing Cecil
programs or otherwise modifying the baseline tree, then they will need their own copies of any Cecil source
code they plan to modify. If several people are going to be making substantia changes to Cecil
compiler/stdlib code you'll probably want to set up some kind of revision control system. We use CVS,
availableviaftpfromftp: // prep. ai . ni t. edu/ pub/ gnu/ .

17

