
1

ABSTRACT
We present MultiJava, a backward-compatible extension to Java
supporting open classes and symmetric multiple dispatch. Open
classes allow one to add to the set of methods that an existing class
supports without creating distinct subclasses or editing existing
code. Unlike the “Visitor” design pattern, open classes do not
require advance planning, and open classes preserve the ability to
add new subclasses modularly and safely. Multiple dispatch offers
several well-known advantages over the single dispatching of
conventional object-oriented languages, including a simple solution
to some kinds of “binary method” problems. MultiJava’s multiple
dispatch retains Java’s existing class-based encapsulation
properties. We adapt previous theoretical work to allow compilation
units to be statically typechecked modularly and safely, ruling out
any link-time or run-time type errors. We also present a novel
compilation scheme that operates modularly and incurs
performance overhead only where open classes or multiple
dispatching are actually used.

1. INTRODUCTION
In this paper we introduce MultiJava, a backward-compatible
extension to Java [Gosling et al. 00, Arnold & Gosling 98] that
supports open classes and symmetric multiple dispatch. An open
class is one to which new methods can be added without editing the
class directly [Chambers 98, Millstein & Chambers 99]. An open
class allows clients to customize their interface to the needs of the
client’s application. Unlike customization through subclasses, in-
place extension of classes does not require existing code
referencing the class to be changed to use the new subclass instead.
The “Visitor” design pattern [Gamma et al. 95, pp 331-344] also is
intended to allow new client-specific operations to be added to an
existing family of classes, but unlike open classes, the Visitor
pattern requires class implementors to plan ahead and build
infrastructure in the class with which clients can indirectly add
behavior to the class. Moreover, unlike open classes, use of the
Visitor pattern makes it difficult to add new subclasses modularly,

since the existing Visitor infrastructure must be edited to account
for the new subclasses. Open classes can be used to organize
“cross-cutting” operations separately from the classes to which they
belong, a key feature of aspect-oriented programming [Kiczales et
al. 97]. With open classes, object-oriented languages can support
the addition of both new subclasses and new methods to existing
classes, relieving the tension that has been observed by others
[Cook 90, Odersky & Wadler 97, Findler & Flatt 98] between these
forms of extension.

Multiple dispatch, found in Common Lisp [Steele 90, Paepcke 93],
Dylan [Shalit 97, Feinberg et al. 97], and Cecil [Chambers 92,
Chambers 95], allows the method invoked by a message send to
depend on the run-time classes of any subset of the argument
objects. A method that takes advantage of the multiple dispatch
mechanism is called a multimethod. In contrast, single dispatch,
found in C++, Smalltalk, and Java, selects the method invoked by a
message send based on the run-time class of only the distinguished
receiver argument. In C++ and Java, the static types of the
arguments influence method selection via static overload
resolution; the dynamic types of the arguments are not involved in
method dispatch. Multimethods provide a more uniform and
expressive approach to overload resolution. For example, they
support safe covariant overriding in the face of subtype
polymorphism, providing a natural solution to the “binary method”
problem [Bruce et al. 95].

Multiple dispatch is symmetric if the rules for method lookup treat
all dispatched arguments identically. Asymmetric multiple dispatch
typically uses lexicographic ordering, where earlier arguments are
more important; a variant of this approach selects methods based
partly on the textual ordering of their declarations. We believe that
symmetric multiple dispatch is more intuitive and less error-prone,
reporting possible ambiguities rather than silently resolving them in
potentially unexpected ways. Symmetric multiple dispatch is used
in Cecil, Dylan, Kea [Mugridge et al. 91], the λ&-calculus
[Castagna et al. 92, Castagna 97], ML≤ [Bourdoncle & Merz 97],
and Tuple [Leavens & Millstein 98].

A major obstacle to adding symmetric multimethods to an existing
statically-typed programming language has been their modularity
problem [Cook 90]: independently-developed modules, which
typecheck in isolation, may cause type errors when combined. In
contrast, object-oriented languages without multimethods do not
suffer from this problem; for example, in Java, one can safely
typecheck each compilation unit in isolation. Because of the
multimethod modularity problem, previous work on adding
multimethods to an existing statically-typed object-oriented
language has either forced global typechecking [Leavens &

MultiJava:
Modular Open Classes and Symmetric Multiple Dispatch

for Java

Curtis Clifton and Gary T. Leavens
Department of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA
+1 515 294 1580

{cclifton, leavens}@cs.iastate.edu

Craig Chambers and Todd Millstein
Department of Computer Science and Engineering

University of Washington
Box 352350

Seattle, WA 98195-2350 USA
+1 206 685 2094

{chambers, todd}@cs.washington.edu

To be presented at the 2000 ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA
’00), Minneapolis, MN, October 2000.

2

Millstein 98] or has employed asymmetric multiple dispatch in
order to ensure modularity [Boyland & Castagna 97]. Open classes
can suffer from a similar modularity problem, if two unrelated
clients each add the same method to the same class.

Our MultiJava language supports both open classes and symmetric
multiple dispatch while retaining Java’s modular encapsulation,
typechecking, and compilation model. In particular, no new link-
time or run-time typechecking or compilation needs to be
performed. We achieve this goal by adapting previous work on
modular static typechecking for open classes and multimethods in
Dubious, a small multimethod-based core language [Millstein &
Chambers 99]. One of our contributions is the extension of this
previous theoretical result to the much larger, more complicated,
and more practical Java language. A second contribution is a new
compilation scheme for open classes and multimethods that is
modular (each class or class extension can be compiled separately)
and efficient (additional run-time cost is incurred only when
multimethods or class extension methods are actually invoked).
MultiJava is a conservative extension to Java: existing Java
programs are legal MultiJava programs and have the same
meaning. MultiJava retains backward-compatibility and
interoperability with existing Java source and bytecode.

In the next two sections we present MultiJava’s support for open
classes and multiple dispatch. In Section 4 we more precisely
describe MultiJava’s modular static type system, and in Section 5
we outline the compilation of MultiJava source code into Java
bytecode. In Section 6 we discuss an alternative language design
for adding multiple dispatching to Java. Section 7 discusses related
work and Section 8 concludes with several avenues for future work.

2. OPEN CLASSES

2.1 Motivation
Java allows a new subclass to be added to an existing class in a
modular way—without requiring any modifications to existing

code. However, Java (along with all other single-dispatch languages
of which we are aware) does not allow a new method to be added to
an existing class in a modular way. Instead, the programmer is
forced to add the new method directly to the associated class
declaration, and then to retypecheck and recompile the class. Of
course, this requires access to the class’s source code. Additionally,
the new operation is then visible to all programs that use the class.
Adding operations that are specific to a particular program can thus
pollute the interface of the modified class, resulting in pressure to
keep such ancillary operations out of the class. However, leaving an
operation out of the class forfeits the benefits of run-time
dispatching on different subclasses of the class, and it causes such
“outside” methods to be invoked differently from methods declared
inside the class declaration.

One potential approach to adding a new method to an existing class
modularly is to add the new method in a new subclass of the class.
This does not require modification of the original class declaration
and allows new code to create instances of the new subclass and
then access the new operation on subclass instances. However, it
does not work if existing code already creates instances of the old
class, or if a persistent database of old class instances is present. In
such cases, non-modular conversions of existing code and
databases to use the new subclass would be required, largely
defeating the purpose of introducing the subclass in the first place.
This approach will also work poorly if new subclass objects are
passed to and later returned from existing code, since the existing
code will return something whose static type is the old class,
requiring an explicit downcast in order to access the new operation.

A second approach is to use the Visitor design pattern, which was
developed specifically to address the problem of adding new
functionality to existing classes in a modular way. The basic idea is
to reify each operation into a class, thereby allowing operations to
be structured in their own hierarchy.

For example, consider the Node class hierarchy in Figure 1.
Instances of these classes are used by a compiler to form abstract

public class WhileLoopNode extends Node {
protected Node condition, body;
/* ... */
public void accept(NodeVisitor v) {
v.visitWhileLoop(this);

}
}

public class IfThenNode extends Node {
protected Node condition, thenBranch;
/* ... */
public void accept(NodeVisitor v) {
v.visitIfThen(this);

}
}

public abstract class NodeVisitor {
/* ... */
public abstract void visitWhileLoop(WhileLoopNode n);
public abstract void visitIfThen(IfThenNode n);

}

public class TypeCheckingVisitor extends NodeVisitor {
/* ... */
public void visitWhileLoop(WhileLoopNode n) { n.getCondition().accept(this); /* ... */ }
public void visitIfThen(IfThenNode n) { /* ... */ }

}

Figure 1: Java code for some participants in the Visitor design pattern

Node

accept(NodeVisitor v)

WhileLoopNode

accept(NodeVisitor v)

IfThenNode

accept(NodeVisitor v)

3

syntax trees. The compiler might perform several operations on
these abstract syntax trees, such as typechecking and code
generation. These operations are structured in their own class
hierarchy, each operation becoming a subclass of an abstract
NodeVisitor class. The client of an operation on nodes invokes
the accept method of a node, passing a NodeVisitor instance
representing the operation to perform:

rootNode.accept(new TypeCheckingVisitor(...))

The accept method of each kind of node then uses double-
dispatching [Ingalls 86] to invoke the visitor object’s method
appropriate for that type of node.

The main advantage of the Visitor pattern is that new operations can
be added modularly, without needing to edit any of the Node
subclasses: the programmer simply defines a new NodeVisitor
subclass containing methods for visiting each class in the Node
hierarchy. However, use of the Visitor pattern brings several
drawbacks, including the following, listed in increasing
importance:

• The stylized double-dispatching code is tedious to write and
prone to error.

• The need for the Visitor pattern must be anticipated ahead of
time, when the Node class is first implemented. For example,
had the Node hierarchy not been written with an accept
method, which allows visits from the NodeVisitor
hierarchy, it would not have been possible to add typechecking
functionality in a modular way. Even with the accept method
included, only visitors that require no additional arguments and
that return no results can be programmed in a natural way;
unanticipated arguments or results can be handled only
clumsily through state stored in the NodeVisitor subclass
instance.

• Although the Visitor pattern allows the addition of new
operations modularly, in so doing it gives up the ability to add
new subclasses to existing Node classes in a modular way. For
example, if a new Node subclass were introduced, the
NodeVisitor class and all subclasses would have to be
modified to contain a method for visiting the new kind of node.
Proposals have been advanced for dealing with this well-known
limitation [Martin 98, Nordberg 98, Vlissides 99], but they
suffer from additional complexity (in the form of hand-coded
type-cases and more complex class hierarchies) that make them
even more difficult and error-prone to use.

2.2 Open Classes in MultiJava

2.2.1 Declaring and Invoking Top-Level Methods
The open class feature of MultiJava allows a programmer to add
new methods to existing classes without modifying existing code
and without breaking the encapsulation properties of Java. The key
new language feature involved is the top-level method declaration,
whose syntax is specified in Figure 2. Using top-level methods, the
functionality of the typechecking visitor from Figure 1 can be
written as follows:

// compilation unit “typeCheck”
package oopsla.examples;

// Methods for typechecking
public boolean Node.typeCheck()
{ /* ... */ }

public boolean WhileLoopNode.typeCheck()
{ /* ... */ }

public boolean IfThenNode.typeCheck()
{ /* ... */ }

A program may contain several top-level method declarations that
add methods to the same class. As in Java, the bodies of top-level
methods may use this to reference the receiver object.

Clients may invoke top-level methods exactly as they would use the
class’s original methods. For example, the typeCheck method of
rootNode is invoked as follows:

rootNode.typeCheck()

where rootNode is an instance of Node or a subclass. This is
allowed even if rootNode was created by code that did not have
access to the typeCheck methods, or was retrieved from a
persistent database. Code can create and manipulate instances of
classes without being aware of all top-level methods that may have
been added to the classes; only code wishing to invoke a particular
top-level method needs to be aware of its declaration.

2.2.2 Generic Functions, External and Internal
It is helpful at this point to define some technical terms.

Conceptually, one can think of each method in the program
(whether top-level or declared within classes) as implicitly
belonging to a generic function, which is a collection of methods
consisting of a top method and all of the methods that (dynamically)
override it. For example, the typeCheck top-level methods above
introduce a single new generic function, providing implementations
for three receiver classes. Each message send site invokes the
methods of a particular, statically determined generic function.

TypeDeclaration: // §7.6
ExternalMethodDeclaration
…

ExternalMethodDeclaration: // new
ExternalMethodHeader MethodBody

ExternalMethodHeader: // new
MethodModifiersopt ResultType ExternalMethodDeclarator Throwsopt

ExternalMethodDeclarator: // new
ClassType . Identifier (FormalParameterListopt)

Figure 2: Syntax extensions for MultiJava open classes
The grammar extends the Java syntax given in The Java Language Specification [Gosling, et al. 00, §2.4]. For standard Java
nonterminals we just list the new productions for MultiJava and indicate the existence of the other productions with an ellipses

(…). Existing Java nonterminals are annotated with the pertinent section numbers from The Java Language Specification.

4

More precisely, given a method declaration Msub whose receiver is
of class or interface T, if there is a method declaration Msup of the
same name, number of arguments, and static argument types as
Msub but whose receiver is of some proper supertype of T, then Msub
belongs to the same generic function as Msup, hence Msub overrides
Msup. Otherwise, Msub is the top method of a new generic function.
The top method may be abstract, for example if it is declared in an
interface.

We say that a class S is a subtype of a type T (equivalently, T is a
supertype of S) if one of the following holds:

• T is a class and S is either T or a subclass of T,
• T is an interface and S is a class that implements T, or
• T is an interface and S is an interface that extends T.

We say that S is a proper subtype of T if S is a subtype of T and S is
not the same as T.

We call a method declared via the top-level method declaration
syntax an external method if the class of its receiver is not declared
in the same compilation unit. (A Java compilation unit corresponds
to a single file in Java implementations based on file systems
[Gosling et al. 00, §7.6].) All other methods are internal. Besides
methods declared in class declarations, this includes methods
declared via the top-level method declaration syntax whose receiver
class is declared in the same compilation unit. Calling such
methods “internal” is sensible, since they can be added to the
receiver’s class declaration by the compiler.

Analogously, a generic function is external if its top method is
external. All other generic functions are internal. Some methods of
an external generic function can be internal methods (see
Subsection 2.2.4).

2.2.3 Scoping of External Generic Functions
To invoke or override an external generic function, client code first
imports the generic function using an extension of Java’s existing
import mechanism. For example,

import oopsla.examples.typeCheck;

will import the compilation unit typeCheck from the package
oopsla.examples, which in this case declares the
typeCheck generic function. Similarly

import oopsla.examples.*;

will implicitly import all the compilation units in the package
oopsla.examples, which will make all types and generic
functions in that package available for use. Each compilation unit
implicitly imports all the generic functions in its package.

The explicit importation of external generic functions enables client
code to manage the name spaces of the classes they manipulate.
Only clients that import the typeCheck compilation unit will have
the typeCheck operation in the interface to Node. Other clients
will not have their interfaces to Node polluted with this generic
function. Furthermore, a compilation unit that did not import the
typeCheck compilation unit could declare its own typeCheck
generic function without conflict.

Java allows at most one public type (class or interface) declaration
in a compilation unit [Gosling et al. 00, §7.6].1 This concession
allows the implementation to find the file containing the code for a
type based on its name. In MultiJava we extend this restriction in a
natural way: each file may contain either one public type with

associated internal methods, or the top method (and any number of
overriding methods) of one public external generic function.

2.2.4 Subsuming the Visitor Pattern
A key benefit of open classes is that they obviate the need for the
Visitor pattern infrastructure; the Visitor class hierarchy and
accept methods of the Nodes are now unnecessary. Instead, the
client-specific operations to be performed can be written as top-
level methods of Node and its subclasses, outside of the class
declarations. Unlike with the Visitor pattern, there is no need to
plan ahead for adding the new operations, i.e., new external generic
functions. Each new external generic function can define its own
argument types and result type, independently of other operations.
More importantly, this idiom still allows new Node subclasses to
be added to the program modularly, because there is no Visitor
hierarchy that needs to be updated. For example, a new subclass of
Node can be added without changing any existing code, as follows:

import oopsla.examples.Node;
import oopsla.examples.typeCheck;
public class DoUntilNode extends Node {
/* ... */
public boolean typeCheck()
{ /* ... */ }

}

MultiJava extends Java’s notion of method inheritance to open
classes. A client of DoUntilNode can invoke any visible Node
method on an instance of DoUntilNode, regardless of whether
that method was visible in DoUntilNode’s compilation unit.

A subclass also can override any visible inherited (internal or
external) methods, as in the example above. (This example also
illustrates that regular internal methods can be added to external
generic functions.)

The ability to write external methods gives programmers more
flexibility in organizing their code. For example, the original three
typeCheck methods can all be put in a single file separate from
the compilation units defining the classes of the Node hierarchy.
Open classes also allow new methods to be added to an existing
class even if the source code of the class is not available, for
example if the class is in a Java library. New methods can even be
added to a final class without violating the property that the class
has no subclasses.

2.2.5 Encapsulation
MultiJava retains the same encapsulation properties as Java
[Gosling et al. 00, §6.6]. All Java privileged access modifiers are
allowed for external methods. For example, a helper method for a
public external method may be declared private and included in
the same compilation unit as the public method. These modifiers
have the usual meaning for methods, with the exception that a
private external method may only be invoked or overridden from
within the compilation unit in which it is declared. (This differs
from Java because the context of an external method is a
compilation unit instead of a class.)2

Further, an external method may access:

• public members of its receiver class, and

• non-private members of its receiver class if the external
method is in the same package as that class.

1. Java’s restriction is somewhat more complex to account for its default
access modifier, which gives access to all other classes in the package.

2. In Java, a protected method can be overridden within subclasses of its
receiver class. In MultiJava one can also define protected external
methods; these can be overridden both in subclasses and also within the
compilation unit in which they are introduced.

5

All other access to receiver class members is prohibited. In
particular, an external method does not have access to the private
members of its receiver class. A top-level internal method has the
same access privileges as a regular Java method, including the
ability to access private members of its receiver class.

2.2.6 Restrictions for Modular Typechecking
As a consequence of MultiJava’s modular typechecking scheme
discussed in Section 4, external methods may not be annotated as
abstract, nor can they be added to interfaces. Since concrete
subclasses of the extended abstract class or interface can be
declared in other compilation units, without knowledge of such an
abstract external method and vice versa, purely modular
typechecking could not guarantee that the external generic function
was implemented for all concrete subclasses of the abstract class or
interface.

A second consequence of modular typechecking is that a top-level
method must either belong to a generic function whose top method
is in the same compilation unit, or it must be an internal method.
Without this restriction, it would be possible for independent
compilation units to declare top-level methods in the same generic
function with the same receiver class, leading to a clash.

Both of these restrictions are discussed in Section 4.

2.2.7 Other Class Extensions
MultiJava currently allows only instance (non-static) methods
to be added to existing classes. However, it should be
straightforward to extend our work to allow top-level static
methods and even top-level static fields. Top-level instance fields
and top-level instance constructors would require more significant
extensions to our compilation strategy.

3. MULTIPLE DISPATCH

3.1 Motivation
In Java, the method invoked by a message can depend on the run-
time class of the receiver object, but it cannot depend on the run-
time classes of any other arguments. In some situations, this
restriction is unnatural and limiting. One common example
involves binary methods. A binary method is a method that
operates on two or more objects of the same type [Bruce et al. 95].
In the Shape class below, the method for checking whether two
shapes intersect is a binary method.

public class Shape {
/* ... */
public boolean intersect(Shape s) {
/* ... */

}
}

Now suppose that one wishes to create a class Rectangle as a
subclass of Shape. When comparing two rectangles, one can use a
more efficient intersection algorithm than when comparing
arbitrary shapes. The first way one might attempt to add this
functionality in a Java program is as follows:

public class Rectangle extends Shape {
/* ... */
public boolean intersect(Rectangle r) {
/* efficient code for two Rectangles */

}
}

Unfortunately, this does not provide the desired semantics. In
particular, the new intersection method cannot be safely considered
to override the original intersection method, because it violates the

standard contravariant typechecking rule for functions [Cardelli
88]: the argument type cannot safely be changed to a subtype in the
overriding method. Suppose the new method were considered to
override the intersection method from class Shape. Then a method
invocation s1.intersect(s2) in Java would invoke the
overriding method whenever s1 is an instance of Rectangle,
regardless of the run-time class of s2. Therefore, it would be
possible to invoke the Rectangle intersection method when s2
is an arbitrary Shape, even though the method expects its
argument to be another Rectangle. This could cause a run-time
type error, for example if Rectangle’s method tries to access a
field in its argument r that is not inherited from Shape.

To handle this problem, Java, like C++, considers Rectangle’s
intersect method to statically overload Shape’s method.
Statically overloaded methods belong to distinct generic functions,
just as if the methods had different names. Java uses the name,
number of arguments, and static argument types of a message send
to statically determine which generic function is invoked at each
message send site. In our example, because of the different static
argument types, the two intersect methods belong to different
generic functions, and Java determines statically which generic
function is invoked for each intersect message send site based
on the static type of the message argument expression. For
example, consider the following client code:

Rectangle r1, r2;
Shape s1, s2;
boolean b1, b2, b3, b4;
r1 = new Rectangle(/* ... */);
r2 = new Rectangle(/* ... */);
s1 = r1;
s2 = r2;
b1 = r1.intersect(r2);
b2 = r1.intersect(s2);
b3 = s1.intersect(r2);
b4 = s1.intersect(s2);

Although the objects passed as arguments in the four intersect
message sends above are identical, these message sends do not all
invoke the same method. In fact, only the first message send will
invoke the Rectangle intersection method. The other three
messages will invoke the Shape intersection method, because the
static types of these arguments cause Java to bind the messages to
the generic function introduced by the Shape intersect
method. Likewise, the first message is statically bound to the
generic function introduced by the Rectangle intersect
method.

In Java, one can solve this problem by performing explicit run-time
type tests and associated casts; we call this coding pattern a type-
case. For example, one could implement the Rectangle
intersection method as follows:

public class Rectangle extends Shape {
/* ... */
public boolean intersect(Shape s) {
if (s instanceof Rectangle) {
Rectangle r = (Rectangle) s;
// efficient code for two Rectangles

} else {
super.intersect(s);

}
}

}

This version of the Rectangle intersection method has the
desired semantics. In addition, since it takes an argument of type
Shape, this method can safely override Shape’s intersect
method, and is part of the same generic function. All message sends

6

in the example client code above will now invoke the Rectangle
intersect method.

However, this “improved” code has several problems. First, the
programmer is explicitly coding the search for what intersection
algorithm to execute, which can be tedious and error-prone. In
addition, such code is not easily extensible. For example, suppose a
Triangle subclass of Shape is added to the program. If special
intersection behavior is required of a Rectangle and a
Triangle, the above method must be modified to add the new
case. In general, whenever a new Shape subclass is added, the
type-case of each existing binary method of each existing Shape
subclass may need to be modified to add a new case for the new
Shape subclass.

A related solution to the binary method problem in Java is the use
of double-dispatching, as in the accept methods of the Visitor
pattern (see Figure 1). With this technique, instead of using an
explicit instanceof test to find out the run-time type of the
argument s, as in the above example, this information is obtained
by performing a second message send. This message is sent to the
argument s, but with the name of the message encoding the
dynamic class of the original receiver. Double-dispatching avoids
the need for the intersect method of every Shape subclass to
include an explicit type-case over all the possible argument shapes,
and it reuses the language’s built-in method dispatching mechanism
in place of user-written type-cases. However, double-dispatching is
even more tedious to implement by hand than type-casing. Finally,
double-dispatching is still not completely modular, since it requires
at least the root class (Shape in our example) to be modified
whenever a new subclass is to be added.

3.2 Multiple Dispatch in MultiJava

3.2.1 Declaring Multimethods
In part to provide a clean and modular solution to the binary method
problem, MultiJava allows programmers to write multimethods,
which are methods that can dynamically dispatch on other
arguments in addition to the receiver object. The syntax of our
multimethod extension is specified in Figure 3. Using
multimethods, the definition of the Rectangle class can be
changed to the following:

public class Rectangle extends Shape {
/* ... */
public boolean
intersect(Shape@Rectangle r) {
/* efficient code for two Rectangles */

}
}

This code is identical to the first solution attempt presented in
Subsection 3.1, except that the type declaration of the formal
parameter r is Shape@Rectangle instead of simply
Rectangle. The Shape part denotes the static type of the
argument r. Consequently, the revised Rectangle intersect
method belongs to the same generic function as the Shape
intersect method, because the name, number of arguments, and
(static) argument types match. The @Rectangle part indicates
that we wish to dynamically dispatch on the formal parameter r, in

addition to the receiver. As with standard Java, the receiver is
always dispatched upon. So this intersect method will be
invoked only if the dynamic class of the receiver is Rectangle or
a subclass (as with regular Java) and the dynamic class of the
argument r is Rectangle or a subclass.

3.2.2 Message Dispatch Semantics
In a formal parameter declaration, the class after an @ symbol is
referred to as the explicit specializer of the formal. For a given
method M, its tuple of specializers (S0,...,Sn) is such that S0 is M’s
receiver type and, for i ∈{1..n}, if M has an explicit specializer, Ui,
at the ith position, then Si is Ui, otherwise Si is the static type of the
ith argument. Thus the Shape class’s intersect method has the
tuple of specializers (Shape, Shape) while the Rectangle
class’s method has (Rectangle, Rectangle).

The semantics of message dispatch in MultiJava is as follows. For a
message send E0.I(E1,...,En), we evaluate each Ei to some value vi,
extract the methods in the generic function being invoked
(determined statically based on the generic functions in scope
named I that are appropriate for the static types of the Ei
expressions), and then select and invoke the most-specific such
method applicable to the arguments (v0,...,vn). Let (C0,...,Cn) be the
dynamic types of (v0,...,vn); if vi is not an object, let Ci be its static
type. We extend the subtype relation defined in Subsection 2.2.2 to
primitive types, which are subtypes of themselves only. A method
with tuple of specializers (S0,...,Sn) is applicable to (v0,...,vn) if
(C0,...,Cn) pointwise subtypes from (S0,...,Sn) (that is, for each i, Ci
is a subtype of Si). The most-specific applicable method is the
unique applicable method whose tuple of specializers (S0,...,Sn)
pointwise subtypes from the tuple of specializers of every
applicable method. If there are no applicable methods, a message-
not-understood error occurs; we say a generic function is
incomplete if it can cause message-not-understood errors when
invoked. If there are applicable methods but no unique most-
specific one, a message-ambiguous error occurs; we say a generic
function is ambiguous if it can cause message-ambiguous errors
when invoked. (Static typechecking, described in Section 4, can
always detect and reject generic functions that are potentially
incomplete or ambiguous.)

Given this dispatching semantics, the above code indeed solves the
binary method problem. For example, consider an invocation
s1.intersect(s2), where s1 and s2 have static type Shape.
If at run time both arguments are instances of Rectangle (or a
subclass of Rectangle), then both the Shape and Rectangle
intersect methods are applicable. Of these applicable methods,
the Rectangle method is the most specific, and therefore it will
be selected and invoked. Otherwise, only the Shape method is
applicable, and it will therefore be invoked.

MultiJava’s dispatching semantics naturally generalizes Java’s
dispatching semantics. If a MultiJava program uses no @ argument
specializers, then dispatching occurs only on the receiver and the
behavior of the program is exactly as in regular Java. The semantics
of both dynamic dispatching and static overloading are unchanged.
The addition of @ argument specializers extends Java’s normal
dynamic dispatching semantics to these additional arguments.

3.2.3 Mixing Methods with Multimethods
Any subset of a method’s arguments can be specialized. A class can
declare several methods with the same name and static argument
types, provided they have different argument specializers and no
ambiguities arise. For example, a Circle class could be defined
with a selection of intersection methods:

FormalParameter: // §8.4.1
Type @ ClassType VariableDeclaratorId
…

Figure 3: Syntax extensions for MultiJava multimethods

7

public class Circle extends Shape {
/* ... */
public boolean
intersect(Shape s) {
/* code for a Circle against any Shape */

}
public boolean
intersect(Shape@Rectangle r) {
/* efficient code against a Rectangle */

}
public boolean
intersect(Shape@Circle c) {
/* very efficient code for two Circles */

}
}

All these methods have static argument type Shape, so they all are
in the same generic function (introduced by the intersect
method in the Shape class). However, they have different
combinations of specializers, causing them to apply to different
run-time circumstances. For example, consider again the
s1.intersect(s2) invocation, where s1 and s2 have static
type Shape. If at run time both arguments are instances of
Circle, then the first and third of these methods are applicable,
along with the Shape class’s default intersect method. The
third Circle method is pointwise most specific, so it is invoked.
If s1 is a Circle but s2 is a Triangle, then only the first
Circle method and the Shape method are applicable, and the
first Circle method is invoked. If s1 is a Rectangle and s2 is
a Circle, then only the Shape intersect method remains
applicable.

In general, a generic function can include methods that specialize
on different subsets of arguments, as long as it is not ambiguous.
(Ambiguity detection is discussed in Section 4.) Invocations of
generic functions use regular Java message syntax, and do not
depend on which arguments are specialized. A regular Java method
can be overridden in a subclass with a multimethod, without
modifying the overridden class or any invocations of the method.

3.2.4 Super Sends

Java’s super construct allows a method to invoke the method it
directly overrides. Java also allows such a super send to invoke a
method in a different generic function, if the name of the message is
different than the sender’s name or if the arguments differ in
number or static type from the formal parameters of the sender.

For MultiJava, a multimethod may override some other method in
the same compilation unit. For example, the third Circle
intersect method above overrides the first Circle
intersect method. MultiJava super sends should thus be able to
walk up the chain of overriding methods, even within the same
compilation unit. However, MultiJava should also retain backward
compatibility with Java in that super should be able to invoke a
method from a different generic function than the sender.

Our solution is first to statically identify for each super send
whether it will invoke a method from the same generic function as
the sender. We do this based on the name of the message and the
number and static types of the arguments. If the target generic
function is the same as the sender’s, then the semantics of the super
send is the same as the semantics of a regular MultiJava message
send, except that the set of applicable methods is filtered to include
only methods that are overridden (directly or indirectly) by the

sending method. If, on the other hand, the target generic function is
different from the sender’s, then as in Java, MultiJava filters the set
of applicable methods to include only methods declared for or
inherited by the sender’s immediate superclass.

To illustrate these semantics, consider an implementation of the
third Circle intersect method that contains a super send to
intersect with the same arguments:

public boolean intersect(Shape@Circle c) {
... super.intersect(c) ...

}

This invocation is known (statically) to invoke a method in the
same generic function as the sender’s. Consequently, the set of
applicable methods are those whose receiver and argument
specializer types are pointwise supertypes of the run-time receiver
and argument classes, filtered to contain just those that are
overridden by this intersect method. In this case, the filtered
applicable methods are the first Circle intersect method and
the intersect method from Shape. The unique, most-specific
applicable method is the first Circle intersect method—so it
is invoked. If that method itself contains a super send of the same
form, then the only filtered applicable method would be Shape’s.
A super send of the same form in Shape’s intersect method
would lead to a static type error, as there would be no applicable
methods.

Now consider an alternative implementation of the third Circle
intersect method containing a different super send:

public boolean intersect(Shape@Circle c) {
... super.specialIntersect(c) ...

}

This invocation is directed to a different generic function than the
sender’s, and so the set of applicable methods consists of only those
applicable methods of the specialIntersect generic function
that are declared in or inherited by Shape, Circle’s immediate
superclass.

3.2.5 Other Uses of Multimethods

While binary methods are a commonly occurring situation where
multimethods are valuable, other situations can benefit from
multiple dispatching as well. For one example, consider a
displayOn generic function defined over shapes and output
devices. Default displayOn algorithms would be provided for
each shape, independent of the output device. However, certain
combinations of a shape and an output device might allow more
efficient algorithms, for instance if the device provides hardware
support for rendering the shape. To implement this generic
function, the Shape class could introduce a displayOn method:

public class Shape {
/* ... */
public void displayOn(OutputDevice d) {

/* default display of shape */
}

}

Each subclass of Shape would be able to provide additional
overriding displayOn multimethods for particular kinds of
output devices. For example, the Rectangle class might provide
a few displayOn multimethods:

8

public class Rectangle extends Shape {
/* ... */
public void
displayOn(OutputDevice d) {
/* default display of rectangle */

}
public void
displayOn(OutputDevice@XWindow d) {
/* special display of rectangle on X Windows */

}
public void
displayOn(OutputDevice@FastHardware d) {
/* fast display of rectangle using hardware support */

}
}

Top-level methods added to open classes can also be multimethods.
For example, the above displayOn generic function could be
implemented as an external generic function.

3.2.6 Restrictions for Modular Typechecking
When a multimethod is external all the restrictions for open classes
apply; for example, external multimethods cannot be abstract.

Whether a multimethod is internal or external, default
implementations must be provided for arguments that have non-
concrete static types. For example, assuming that the
OutputDevice class above is abstract, the first displayOn
method for the Rectangle class provides this default
implementation for the argument tuple (Rectangle,
OutputDevice). We discuss this restriction further in Subsection
4.2.2.

4. TYPECHECKING
In this section we describe how to extend Java’s static type system
to accommodate MultiJava’s extensions. We present the overall
structure of our modular type system in Subsection 4.1. In
Subsection 4.2 we describe several challenges that open classes and
multimethods pose for modular typechecking, and we discuss the
restrictions we impose in MultiJava to meet those challenges.

4.1 Overall Approach
The MultiJava type system ensures statically that no message-not-
understood or message-ambiguous errors can occur at run time.
Ruling out these errors involves complementary client-side
checking of message sends and implementation-side checking of
methods [Chambers & Leavens 95]. We begin by describing what
we mean by modular typechecking, and then discuss the two kinds
of checks.

4.1.1 Modular Typechecking
Modular typechecking requires that each compilation unit can be
successfully typechecked only considering static type information
from the compilation units that it imports. If all compilation units
separately pass their static typechecks, then every combination of
compilation units (that pass the regular Java link-time checks) is
safe: there is no possibility of a message-not-understood or
message-ambiguous error at run time.

We say that a type is visible in a compilation unit U if it is declared
in or referred to in U, or if the type is a primitive type. A tuple of
types is visible if each component type is visible. A method is
visible in a compilation unit U if it is declared in U, declared in a
type T that is visible in U, or is an external method declared in a
compilation unit that is imported by U. A modular typechecking
strategy only needs to consider visible types and visible methods to
determine whether a compilation unit is type-correct.

4.1.2 Client-side Typechecking
Client-side checks are local checks for type correctness of each
message send expression. For each message send expression
E0.I(E1,...,En) in the program, let Ti be the static type of Ei. Then
there must exist a unique generic function in scope named I whose
top method has a tuple of argument types (T0′,...,Tn′) that is a
pointwise supertype of (T0,...,Tn). This check is already performed
in standard Java. In our extension, however, external generic
functions that are imported must be checked along with regular
class and interface declarations.

For a send whose receiver is super, the typechecker must
additionally ensure that there exists a unique, most-specific, non-
abstract method invoked by the send. This check extends the
checking on super sends that Java performs already.

4.1.3 Implementation-side Typechecking
Implementation-side checks ensure that each generic function is
fully and unambiguously implemented. These checks have two
parts.

4.1.3.1 Checks on Individual Method Declarations
The first part applies to each method declaration M in isolation:

• For each of M’s explicit specializers, S, the associated static
type must be a proper supertype of S, and S must be a class.

• If M is an overriding method then its privileged access
modifiers must satisfy the following:

- If M overrides a method M2 of the same compilation unit
with the same receiver, then M must have the same access
level as M2.

- If M belongs to an external generic function, then it must
have the same access level as the generic function’s top
method.

- Otherwise, the standard Java rules for privileged access and
overriding apply [Gosling et al. 00, §8.4.6.3].

Requiring an explicit specializer to be a proper subtype of the
associated static type ensures that the specializer will affect
dynamic dispatching. If the specializer were a supertype of the
associated static type, then the specializer would be applicable to
every legal message send of the generic function, which is
equivalent to not specializing at that argument position.
Furthermore, if the specializer were unrelated to the associated
static type, then the specializer would be applicable to no legal
message sends of the generic function, so the method would never
be invoked. The explicit specializers are required to be classes
rather than interfaces because the form of multiple inheritance
supported by interfaces can create ambiguities that elude modular
static detection [Millstein & Chambers 99].

The restrictions on privileged access level for overriding methods
are intended to simplify the compilation scheme. For example, the
restrictions ensure that the set of methods in a compilation unit that
are part of the same generic function have the same privileged
access modifiers. Therefore, these methods can be compiled into a
single Java method. We leave exploring ways to relax these
restrictions as future work.

4.1.3.2 Checks on Entire Generic Functions
The second part of the implementation-side checks treats all the
visible multimethods in a visible generic function as a group.
Consider a generic function whose top method has argument types
(T0,...,Tn). A tuple of types (C0,...,Cn) is a legal argument tuple of
the generic function if (T0,...,Tn) is a pointwise supertype of
(C0,...,Cn) and each Ci is concrete. We say that a type is concrete if

9

it is a primitive type or if it is a class that is not declared
abstract. Abstract classes and interfaces are non-concrete.The
checks are that for each visible generic function, each visible legal
argument tuple has a visible, most-specific applicable method to
invoke. This part of implementation-side typechecking is critical
for ruling out ambiguities between multimethods and for ensuring
that abstract top methods are overridden with non-abstract methods
for all combinations of concrete arguments.

For example, consider implementation-side checks on the
intersect generic function, from the perspective of a
compilation unit containing only the Rectangle class as defined
in Subsection 3.2. From this compilation unit, Shape and
Rectangle are the only visible Shape subclasses (Circle is
not visible, because it is not referenced by the Rectangle class).
The intersect generic function is visible, as are two
intersect methods (one each in Shape and Rectangle).
There are four visible legal argument tuples: all pairs of Shapes
and Rectangles. The intersect method in class
Rectangle is the most specific applicable method for the
(Rectangle, Rectangle) tuple while the intersect method
in class Shape is the most specific applicable method for the other
three tuples. Conceptually, this checking involves an enumeration
of all combinations of visible legal argument tuples, but more
efficient algorithms exist that only check the “interesting” subset of
tuples [Chambers & Leavens 95, Castagna 97].

4.2 Restrictions for Modular Type Safety
Unfortunately, the typechecking approach described above can miss
message-not-understood or message-ambiguous errors that may
occur at run time, caused by interactions between unrelated
compilation units [Millstein & Chambers 99]. In the rest of this
subsection, we describe the kinds of errors that can occur, and
explain the restrictions we impose in MultiJava to rule them out.

4.2.1 Abstract Classes and Open Classes
As mentioned previously in Subsection 2.2.6, abstract external
methods can lead to message-not-understood errors. This is
illustrated in Figure 4. The JPEG class is a concrete
implementation of the abstract Picture class. The external
method declaration in the draw compilation unit adds a new
abstract method, draw, to the abstract Picture class. The draw
compilation unit passes the implementation-side typechecks
because the JPEG class is not visible. However, if a client ever
invokes draw on a JPEG, a message-not-understood error will
occur.

To rule out this problem, we impose restriction R1:

(R1) Implementation-side typechecks of a local, external
generic function must consider any non-local, non-concrete
visible subtypes of its receiver type to be concrete at the
receiver position.

A type or method is local if it is declared in the current compilation
unit, and otherwise it is non-local. A generic function is local if its
top method is local, and otherwise it is non-local.

In Figure 4, the external draw method in the compilation unit draw
introduces a new generic function with the non-local, non-concrete
receiver Picture. By restriction R1, implementation-side
typechecks must consider Picture to be concrete, thereby finding
an incompleteness for the legal argument tuple (Picture).
Therefore, the draw compilation unit must provide an
implementation for drawing Pictures, which resolves the
incompleteness for the unseen JPEG class.

As a consequence of restriction R1, it is useless to declare an
external method abstract, since the restriction will force the
receiver class to be treated as concrete anyway. For the same
reason, MultiJava cannot support open interfaces, i.e., the ability to
add method signatures to interfaces.

4.2.2 Abstract Classes and Multimethods

Abstract classes coupled with multimethods can also lead to
message-not-understood errors. Consider the example in Figure 5.
Since the Picture class is declared abstract, it need not
implement the similar method. Implementation-side checks of

// compilation unit “Picture”
package oopsla;
public abstract class Picture {
/* ... no draw method ... */

}

// compilation unit “JPEG”
import oopsla.Picture;
public class JPEG extends Picture {
/* ... no draw method ... */

}

// compilation unit “draw”
import oopsla.Picture;
public abstract void Picture.draw();

Figure 4: Incompleteness problem with
abstract classes and open classes

// compilation unit “Picture”
package oopsla;
public abstract class Picture {
public abstract boolean similar(Picture p);

}

// compilation unit “JPEG”
import oopsla.Picture;
public class JPEG extends Picture {
public boolean similar(Picture@JPEG j)
{ /* ... */ }

}

// compilation unit “GIF”
import oopsla.Picture;
public class GIF extends Picture {
public boolean similar(Picture@GIF g)
{ /* ... */ }

}

Figure 5: Incompleteness problem with
abstract classes and multimethods

// compilation unit “intersect”
import oopsla.Shape;
import oopsla.Rectangle;
public boolean
Shape.intersect(Shape@Rectangle r)
{ /* ... */ }

// compilation unit “Triangle”
import oopsla.Shape;
public class Triangle extends Shape {
public boolean intersect(Shape s) {
/* ... */ }

}

Figure 6: Ambiguity problem with
unrestricted multimethods

10

the JPEG compilation unit verify that the single visible legal
argument tuple, (JPEG, JPEG), has a most-specific similar
method, and similarly for the GIF compilation unit. However, at
run time, a message-not-understood error will occur if the
similar message is sent to one JPEG and one GIF.

To rule out this problem, we impose restriction R2:

(R2) For each non-receiver argument position,
implementation-side typechecks of a generic function must
consider all non-concrete visible subtypes of its static type to
be concrete at that argument position.

In Figure 5, since Picture is abstract, by restriction R2
implementation-side typechecks on the similar generic function
from JPEG’s compilation unit must consider Picture to be
concrete on the non-receiver argument position. Therefore, these
checks will find an incompleteness for the legal argument tuple
(JPEG, Picture), requiring the JPEG class to include a method
handling this case, which therefore also handles the (JPEG, GIF)
argument tuple. Similarly, the GIF class will be forced to add a
similar method handling (GIF, Picture). In general,
restriction R2 forces the creation of method implementations to
handle abstract classes on non-receiver arguments of multimethods.
This ensures that appropriate method implementations exist to
handle any unseen concrete subclasses of the abstract classes.

Restriction R1 complements R2, addressing the case of abstract
classes at the receiver position. As in R2, the existence of
appropriate method implementations to handle the abstract classes
is ensured. However, restriction R1 applies only to external generic
functions, so internal generic functions may safely use abstract
classes in the receiver position. This permits all the uses of abstract
classes and methods allowed by standard Java, as well as some uses
with multimethods. For example, in Figure 5 the abstract Picture
class may safely omit an implementation of the internal similar
generic function.

4.2.3 Unrestricted Method Overriding
Message-ambiguous errors that elude static detection can occur if
arbitrary methods can be added to a generic function by any
compilation unit. These errors can occur without multiple dispatch
(as mentioned in Subsection 2.2.6). In this section we give an
example that uses multiple dispatch.

Consider the example in Figure 6, assuming the Shape class from
Subsection 3.1 and Rectangle class from Subsection 3.2. The
external method declaration in compilation unit intersect overrides
the default Shape intersect method for arguments whose
dynamic class is Rectangle. Shapes and Rectangles are
visible in the intersect compilation unit, and every pair of these
classes has a most-specific applicable method. Similarly, Shapes
and Triangles are visible in the Triangle compilation unit, and
its implementation-side checks also succeed. However, at run time,
an intersect message send with one Triangle instance and
one Rectangle instance will cause a message-ambiguous error to
occur, because neither method in the example is more specific than
the other.

One way to partially solve this problem is to break the symmetry of
the dispatching semantics. For example, if we linearized the
specificity of argument positions, comparing specializers
lexicographically left-to-right (rather than pointwise) as is done in
Common Lisp [Steele 90, Paepcke 93] and Polyglot [Agrawal et al.
91], then the method in Triangle would be strictly more specific
than the method in intersect. However, one of our major design
goals is to retain the symmetric multimethod dispatching semantics.
Furthermore, unrestricted external methods would allow one to

create two methods with identical type signatures; breaking the
symmetry of dispatching cannot solve this part of the problem.

Our solution is to impose restriction R3:

(R3) An external method must belong to a local generic
function.

In Figure 6, the external method declaration in the intersect
compilation unit violates restriction R3. In particular, the associated
intersect method does not belong to a local generic function;
the intersect generic function’s top method is in the non-local
Shape class. Therefore, by restriction R3, the only legal location
for the declaration of an intersect method with tuple of
specializers (Shape, Rectangle) is within the same compilation
unit as the Shape class. In that case, the method declaration and
the Rectangle class would be visible to the Triangle compilation
unit, which would therefore check for a most-specific applicable
method for the argument tuple (Triangle, Rectangle),
statically detecting the ambiguity. To resolve this ambiguity one
must write a method that dispatches on the (Triangle,
Rectangle) tuple.

As a result of restriction R3, each method declaration M must be in
the same compilation unit as either the receiver’s class or the
associated generic function’s top method. In either case, any unseen
method M2 of the same generic function must have a different
receiver than M, or M2 would be in violation of restriction R3.
Therefore, method M cannot be ambiguous with any unseen
method M2, so the modular implementation-side typechecks are
enough to rule out any potential ambiguities.

In Java, one can declare that a method is final, which prevents it
from being overridden. Similarly, the MultiJava type system can
prevent a method M that is declared to be final from being
overridden, in the sense that there can be no other method in the
same generic function whose tuple of specializers is a pointwise
subtype of M’s. Restriction R3 allows this condition to be easily
checked. That is, R3 ensures that the methods that a particular
method M overrides are all available when M’s compilation unit is
typechecked.

5. COMPILATION
We have developed a compilation strategy from MultiJava into
standard Java bytecode that retains the modular compilation and
efficient single dispatch of existing Java code while supporting the
new features of open classes and multiple dispatching. Additional
run-time cost for these new features is incurred only where such
features are used; code that does not make use of multiple
dispatching or external generic functions compiles and runs exactly
as in regular Java. MultiJava code can interoperate seamlessly with
existing Java code. MultiJava code can invoke regular Java code,
including all the standard Java libraries. Additionally, subclasses of
regular Java classes can be defined in MultiJava, and regular Java
methods can be overridden with multimethods in MultiJava
subclasses. Client source code and compiled bytecode is insensitive
to whether the invoked method is a regular Java method or a
MultiJava multimethod. Aside from the need to import external
generic functions, client source code is also insensitive to whether
the invoked method is internal or external.

However, internal and external generic functions require different
styles of compilation. (Recall that an external generic function is
one which has an external top method.) An internal generic
function can be compiled as if it were a regular Java method
declared inside its receiver class or interface. Internal generic
functions are invoked using the same calling sequence as a regular

11

Java method. An external generic function must be compiled
separately from its receiver class or interface. An external generic
function uses a different implementation strategy and calling
convention than an internal one.

When compiling code that refers to a generic function (either code
that adds a method to it or invokes it), the compiler can always tell
whether or not the generic function is internal. The compiler has
enough information because the code must have imported both the
compilation unit declaring the generic function and the one
declaring the generic function’s receiver type. The generic function
is internal if and only if these compilation units are one and the
same.

The next subsection describes how declarations and invocations of
internal generic functions are compiled. Subsection 5.2 describes
the same for external generic functions. Subsection 5.3 describes
compilation of super sends. Although compilation is directly to
Java bytecode, to simplify discussion we will generally describe
compilation as if going to Java source. However, in some situations
we need to exploit the additional flexibility of compiling directly to
the Java virtual machine.

5.1 Internal Generic Functions
All the multimethods of an internal generic function with the same
receiver class are compiled as a unit into a single Java method that
we call a dispatch method. Consider the set of intersect
methods in Figure 7. For such a set of multimethods, the MultiJava
compiler produces a dispatch method within the receiver class that
contains the bodies of all multimethods in the set. Figure 8 shows
the result of translating the MultiJava code from Figure 7.3 In the
translation, the dispatch method has the same name as the generic
function (intersect in this case), and has the same static

argument types as all the generic function’s methods. The dispatch
method internally does the necessary checks on the non-receiver
arguments with explicit specializers to select the best of the
applicable multimethods from the set. This is implemented using
cascaded sequences of instanceof tests. If multiple paths
through these sequences lead to the same method body, goto
bytecodes could be exploited to avoid the code duplication that
would arise in a straightforward compilation to Java source.
Alternatively one could compile such a method body into a static
method and use a static method call instead of a goto. In lieu of
cascaded sequences of instanceof tests, there are other efficient
dispatching schemes that could be exploited [Chambers & Chen
99].

For the set of multimethods compiled into a dispatch method, the
dynamic dispatch tests are ordered to ensure that the most-specific
multimethod is found. If one of the multimethods in the set is
applicable to some argument tuple, then the typechecking
restrictions ensure that there will always be a single most-specific
check which succeeds. Moreover, the multimethod body selected
by this check will be more specific than any applicable superclass
method, so there is no need to check superclass multimethods
before dispatching to a local multimethod.

If every multimethod compiled into a dispatch method has an
explicit specializer on some argument position, then it is possible
that none of the checks will match the run-time arguments. In this
case, a final clause passes the dispatch on to the superclass by
making a super call. Eventually a class must be reached that
includes a method that does not dispatch on any of its arguments;
the modular typechecking rules ensure the existence of such a
method when checking completeness of the generic function. In
this case, the final clause will be the body of this “default” method.

Compiling regular Java singly dispatched methods is just a special
case of these rules. Such a method does not dispatch on any
arguments and has no other local multimethods overriding it, and so
its body performs no run-time type dispatch on any arguments; it
reduces to just the original method body.

An invocation of an internal generic function is compiled just like a
regular Java singly dispatched invocation. Clients are insensitive to
whether or not the invoked generic function performs any multiple
dispatching. The set of arguments on which a method dispatches
can be changed without needing to retypecheck or recompile
clients.

There is no efficiency penalty for regular Java code compiled with
the MultiJava compiler. Only methods that dispatch on multiple
arguments get compiled with typecases. A Java program would
likely use typecases whenever a MultiJava program would use
multimethods anyway, so there should be little performance
difference. If a Java program used double-dispatching to simulate
multimethods, then it might be possible to generate more efficient
code than MultiJava (two constant-time dispatches, plus perhaps
some forwarding if inheritance is needed on the second argument),
but double-dispatching sacrifices the ability to add new subclasses
modularly.

5.2 External Generic Functions
An external generic function must have been introduced by an
external method declaration. Since the generic function’s receiver
class has already been compiled separately, the external generic
function cannot be added as a method of that class. Instead, we
generate a separate class, called an anchor class, to represent the
external generic function.3. Of course the compiler must be careful to avoid variable capture.

public class Square extends Rectangle {
/* ... */
public boolean
intersect(Shape@Rectangle r) {
/* method 1 body */

}
public boolean
intersect(Shape@Square s) {
/* method 2 body */

}
}

Figure 7: Internal generic functions

public class Square extends Rectangle {
/* ... */
// the “intersect” dispatch method
public boolean intersect(Shape r) {
if (r instanceof Square) {
Square s_ = (Square) r;
/* method 2 body, substituting s_ for s */

} else if (r instanceof Rectangle) {
Rectangle r_ = (Rectangle) r;
/* method 1 body, substituting r_ for r */

} else {
return super.intersect(r);

}
}

}

Figure 8: Translation of internal generic functions

12

Figure 9 shows the objects generated in the compilation of external
generic functions. An anchor class instance has a single static field,
function, containing a dispatcher object. During an invocation
of the generic function, the dispatcher object is responsible for
running one of the generic function’s methods based on the
dynamic types of the arguments. A dispatcher object is the Java
version of a first-class function. It contains all the methods of a
particular generic function that are declared in a single compilation
unit.

As an example, Figure 10 introduces the rotate external generic
function and its first three methods. Figure 11 shows the results of
compiling it. The privileged access level of the top method
determines the privileged access level of the anchor class, its
function field, and the dispatcher interface. The names for the
anchor class and generic function interface are formed by
concatenating the name of the compilation unit containing the top
method with the generic function name and the appropriate suffix

(anchor or d respectively.) Thus in this example, the anchor class
is named rotate$rotate$anchor and the dispatcher interface
is named rotate$rotate$d. As with internal generic functions,
dispatching is performed using cascaded instanceof tests; the
same optimizations apply.

To invoke an external generic function, the client loads the
dispatcher object from the anchor class’s function field and
invokes its apply method on all the arguments to the generic
function, including the receiver. So the following MultiJava code:

Shape s1 = new Rectangle();
Shape s2 = new Square();
if (s1.intersect(s2)) {
s2 = s2.rotate(90.0);

}

is translated to:

Figure 9: Objects used in the compilation of external generic functions

/* compilation unit “rotate” */

public Shape Shape.rotate(float a) {
/* method 3 body */

}
public Shape Rectangle.rotate(float a) {
/* method 4 body */

}
public Shape Square.rotate(float a) {
/* method 5 body */

}

Figure 10: A compilation unit defining an external generic function

public interface rotate$rotate$d { // type of a dispatcher object in this example
Shape apply(Shape this_, float a);

}

public class rotate$rotate$anchor { // an anchor class

public static rotate$rotate$d function = new rotate$rotate$dispatcher();

// an inner class implementing a dispatcher object
private class rotate$rotate$dispatcher implements rotate$rotate$d {
public Shape apply(Shape this_, float a) {
if (this_ instanceof Square) {
Square this2_ = (Square) this_;
/* method 5 body, substituting this2_ for this */

} else if (this_ instanceof Rectangle) {
Rectangle this2_ = (Rectangle) this_;
/* method 4 body, substituting this2_ for this */

} else {
/* method 3 body, substituting this_ for this */

}
}

}

}

Figure 11: Translation of Figure 10

anchor object

function field dispatcher object

apply method dispatches based on the dynamic
types of the arguments

13

Shape s1 = new Rectangle();
Shape s2 = new Square();
if (s1.intersect(s2)) {
s2 = rotate$rotate$anchor

.function.apply(s2,90.0);
}

As with internal generic functions, clients invoking external generic
functions are insensitive to whether or not the generic function
performs any multiple dispatching. Once again the set of arguments
on which a method dispatches can be changed without needing to
retypecheck or recompile clients.

Next we consider the compilation of methods that add to a non-
local external generic function. These additional methods are
defined in the same compilation unit as their receiver classes, as
required by typechecking restriction R3. There could be several
such receiver classes in the same compilation unit. For each of
these receiver classes, the translation creates a new dispatcher
object to contain the set of the generic function’s methods with that
receiver class.

Figure 12 shows a new dispatcher object created for such a set of
methods. The anchor class’s function field from Figure 9 is
updated to reference this new dispatcher object. In turn, the new
dispatcher object contains an old_function field that

references the original dispatcher object. When the generic function
is invoked, the apply method of the new dispatcher object is
called. It checks if any of its methods are applicable. If none are, it
calls the apply method of the original dispatcher object (using the
old_function field).

For example, Figure 13 shows a class, Oval, containing a method
that is added to the non-local external generic function, rotate.
Figure 14 shows the results of compiling this class. A new
dispatcher class, Oval$rotate$dispatcher, is defined
whose apply method checks whether the run-time arguments
should dispatch to the local rotate method. The static class
initialization for Oval creates an instance of this dispatcher object
and sets the dispatcher’s old_function field to the previous
dispatcher object (using the dispatcher’s constructor). Next the new
dispatcher object is assigned to the function field.

When invoked, the dispatcher object checks whether the receiver
object is an Oval. If so, then Oval’s rotate method is run. If
not, then dispatching continues by invoking the apply method of
the previous dispatcher object (as in the Chain of Responsibility
pattern [Gamma et al. 95, pp. 223-232]). This may be from some
other class that also added methods to the rotate generic
function. Eventually dispatching either finds a function with an

Figure 12: Objects used when adding methods to non-local external generic functions

// compilation unit “Oval”
public class Oval extends Shape {
/* ... */
public Shape rotate(float a) { /* method 6 body */ }

}

Figure 13: Adding a multimethod to an external generic function

public class Oval extends Shape {

// static initializer:
{ rotate$rotate$anchor.function =

new Oval$rotate$dispatcher(rotate$rotate$anchor.function); }

/* ... */

// an inner class implementing a dispatcher object
private class Oval$rotate$dispatcher implements rotate$rotate$d {
public rotate$rotate$d oldFunction;
public Oval$rotate$dispatcher(rotate$rotate$d oldF) { oldFunction = oldF; }
public Shape apply(Shape this_, float a) {
if (this_ instanceof Oval) {
Oval this2_ = (Oval) this_;
/* method 6 body, substituting this2_ for this */

} else {
return oldFunction.apply(this_, a);

}
}

}

}

Figure 14: Translation of Figure 13

anchor object

function field

dispatcher object

apply method

new dispatcher object

apply method

old_function field

14

applicable method that was added to the chain, or the search ends at
the initial dispatcher object installed when the generic function was
created. Completeness checking ensures that this last dispatcher
object includes a default method that handles all arguments,
guaranteeing that dispatching terminates successfully. While
potentially slow, this Chain of Responsibility pattern is only used
for compiling external generic functions, which cannot be written
in standard Java. There is no efficiency penalty for methods that can
be written in standard Java.4

The order in which dispatcher objects are checked depends on the
order in which they are put into the chain referenced by
rotate$rotate$anchor’s function field. Java ensures that
superclasses are initialized before subclasses [Gosling et al. 00,
§12.4], so dispatcher objects for superclasses will be put onto the
chain earlier than subclass dispatchers, causing subclass dispatchers
to be checked before superclass dispatchers, as desired. Unrelated
classes can have their dispatchers put onto the chain in either order,
but this is fine because modular typechecking has ensured that the
multimethods of such unrelated classes are applicable to disjoint
sets of legal argument tuples, so at most one class’s multimethods
could apply to a given invocation.

As noted in Subsection 2.2, internal methods that are part of
external generic functions are granted access to the private data of
their receiver class. To achieve this, the dispatcher object for these
methods is compiled as an inner class nested in the corresponding
receiver class [Gosling et al. 00, §6.6.2].

5.3 Super Sends
The compilation of super sends divides into two cases, depending
on whether the super send invokes a method that will be compiled
into a different Java (bytecode) method. If the target of the super
send will be compiled into a different Java method, then the super
send is compiled just as in regular Java, eventually leading to an
invokespecial bytecode. This implementation strategy is even
applicable in the case of a super send from within the dispatcher
object of an external generic function, where the class of the
dispatcher object is not a subclass of the class referred to by
super. The invokespecial bytecode can still be used because
this bytecode does not require an inheritance relationship between
the caller and callee.

The other possibility is that the super send invokes a method that
will be compiled into the same Java (bytecode) method. In this
case, the super send should have the effect of one branch of the
compiled method invoking a different branch. To avoid duplicating
the code of the called branch, we compile such an intra-method
invocation into a jsr bytecode along with suitable argument and
result shuffling code. The callee part should then end with a ret
bytecode and be invoked via jsr from all points in the compiled
method where it is reached (both by normal dispatching and by
super sends).

6. AN ALTERNATIVE DESIGN
An early plan for adding multimethods to Java was to apply the
concept of multiple dispatch as dispatch on tuples [Leavens &
Millstein 98], leading to TupleJava. In TupleJava, all multimethods
would be external to classes. A multimethod that dispatched at two

Shape arguments and took an additional non-dispatched Shape
argument would be declared like

public boolean
(Shape q, Shape r).nearest(Shape s)

{ /* ... */ }

and invoked like

(myShape1, myShape2).nearest(myShape3)

Conceptually invocation is like sending a message to a tuple of
objects. TupleJava offers several advantages. The syntax of both
defining and invoking a method cleanly separates the dispatched
arguments (which occur in the tuple) from the non-dispatched ones
(which occur following the method identifier). This separation of
arguments maintains a clear parallel between the syntax and the
semantics. The tuple syntax also clearly differentiates code that
takes advantage of multiple dispatch from standard Java code,
which might ease the programmer’s transition from a single-
dispatch to a multiple-dispatch mind-set.

However, the separation of arguments into dispatched and non-
dispatched sets also brings several problems. TupleJava does not
provide for robust client code. For example, suppose one wanted to
modify the example above to include the dynamic type of the third
argument in dispatching decisions. The tuple method declaration
above would be rewritten as

public boolean
(Shape q, Shape r, Shape s).nearest()

{ /* ... */ }

Furthermore, all method invocations in client code would need to
be changed to move the third argument into the tuple. Thus the
invocation above would become

(myShape1, myShape2, myShape3).nearest()

With MultiJava, such a modification requires editing the original
method, but all client source code and compiled code can remain
unchanged, as such code is insensitive to the set of arguments
dispatched upon by the methods of a generic function.

TupleJava also requires all multimethods of a given generic
function to dispatch on the same arguments. In particular, this
means that multimethods cannot be added to existing singly
dispatched methods, which includes all existing Java code.
MultiJava does not have this restriction. For example, in MultiJava
one could override the equals method of the Object class to use
multiple dispatch as in the following:

public class Set extends Object {
/* ... */
public boolean equals(Object@Set s)
{ /* ... */ }

}

With TupleJava the best one could do is the following:

public boolean (Set, Set).equals()
{ /* ... */ }

But this attempt would create a new equals generic function,
completely distinct from the one for testing equality of Objects.
Thus, with TupleJava, the invocation in the code

Object obj1, obj2;
/* ... */
... obj1.equals(obj2) ...

will never invoke the special equality operation for Sets, even if
both arguments have dynamic type Set.

4. One can imagine a strategy in which the static initializers that currently
add new multimethods to the Chain of Responsibility instead use
reflection to analyze the current generic function and then use dynamic
compilation to create a new global dispatching method “on-the-fly”. The
load-time cost of this strategy might be high, but run-time invocation costs
could be greatly reduced.

15

A final argument in MultiJava’s favor is that it is strictly more
expressive than TupleJava. Indeed, tuple-based method declarations
and invocations could be added as syntactic sugar in MultiJava, but
not vice-versa.

It remains to be seen whether the ease-of-learning advantages of
TupleJava outweigh the expressiveness and code maintenance
advantages of MultiJava. We plan to investigate this further once
we have completed the implementation of MultiJava.

7. RELATED WORK
The typechecking restrictions for MultiJava are derived from
previous work by two of us [Millstein & Chambers 99]. That work
presents Dubious, a simple core language based on multimethods
and open classes, and describes several type systems for Dubious
that all achieve safe static typechecking with some degree of
modularity. The type systems differ in their trade-offs between
expressiveness, modularity of typechecking, and complexity. We
base our MultiJava type system on the simplest and most modular
of those systems, called System M.

Encapsulated multimethods [Castagna 95, Bruce et al. 95] are a
design for adding asymmetric multimethods to an existing singly
dispatched object-oriented language. Encapsulated multimethods
involve two levels of dispatch. The first level is just like regular
single dispatch to the class of the receiver object. The second level
of dispatch is performed within this class to find the best
multimethod applicable to the dynamic classes of the remaining
arguments. The encapsulated style can lead to duplication of code,
since multimethods in a class cannot be inherited for use by
subclasses. Our compilation strategy for internal generic functions
yields compiled code similar to what would arise from encapsulated
multimethods, but we hide the asymmetry of dispatch from
programmers.

Boyland and Castagna demonstrated the addition of asymmetric
multimethods to Java using “parasitic methods” [Boyland &
Castagna 97]. To avoid the then-unsolved modularity problems
with symmetric multimethods, their implementation is based on the
idea of encapsulated multimethods. Parasitic methods overcome the
limitations of encapsulated multimethods by supporting a notion of
multimethod inheritance and overriding. Parasitic methods are
allowed to specialize on interfaces, causing a potential ambiguity
problem due to the form of multiple inheritance supported by
interfaces. To retain modularity of typechecking, the dispatching
semantics of parasitic methods is complicated by rules based on the
textual order of multimethod declarations. Additionally, overriding
parasitic methods must be declared as parasites, which in effect
adds @ signs on all arguments, but without a clean ability to resolve
the ambiguities that can arise in the presence of Java’s static
overloading. By contrast, our approach offers purely symmetric
dispatching semantics and smooth interactions with static
overloading, along with modularity of typechecking and
compilation. Our approach also supports open classes.

Aspect-oriented programming [Kiczales et al. 97] provides an
alternative to the traditional class-based structuring of object-
oriented programming. Among other things, an aspect may
introduce new methods to existing classes without modifying those
classes, thus supporting open classes. However, aspects are not
typechecked or compiled modularly. Instead, the whole program is
preprocessed as a unit to yield a version of the program where the
aspects have been inserted into the appropriate classes. Source code
is required for all classes extended through aspects, and
recompilation of these classes is required if aspects are changed.
MultiJava’s open class technique does not require the source code

for classes that are being extended. Indeed, a client of a library that
had no source code access could still add new methods to the
classes of that library. MultiJava does not require source code
access to the whole program because its static typechecking and
compilation are modular. On the other hand, because it cannot edit
the whole program’s source code and because it does not have
pattern-based metaprogramming, MultiJava cannot handle cross-
cutting concerns as well as aspect-oriented programming.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how to extend Java with open classes
and multimethods. Moreover, we have shown that it is possible to
modularly typecheck and efficiently compile these new features.
This work extends earlier work on modular typechecking of
multimethods [Millstein & Chambers 99] to function properly in a
richer programming language (including coping with the existing
treatment of single dispatching, static overloading, and compilation
units). This extension also supports super sends and compilation
that is efficient, modular, and interoperable with existing Java code.

There are several possible areas for future work. Work continues on
the implementation of our MultiJava compiler. Extensions to
MultiJava to support top-level static methods, static fields, instance
fields, and instance constructors could be investigated. Some
straightforward extensions to Java’s reflection API could also be
considered, for example to answer queries on methods added via
the open class mechanism. Finally, further increases in MultiJava’s
expressiveness could be studied. One area of interest is replacing
some of the static typechecking restrictions with static warnings,
backed up by link-time checking. Among other things, this change
could allow the declaration of abstract external methods and the
declaration of top-level methods in arbitrary compilation units,
provided their use does not lead to incompleteness or ambiguity at
link time.

9. ACKNOWLEDGMENTS
The work of Gary Leavens was supported in part by NSF grant
CCR-9803843. Craig Chambers and Todd Millstein were supported
in part by NSF grant CCR-9970986, NSF Young Investigator
Award CCR-945776, and gifts from Sun Microsystems and IBM.
Part of this work was performed while Craig Chambers was on
sabbatical at Carnegie Mellon University.

Thanks to Clyde Ruby and Gerald Baumgartner for several
discussions about this work and to the anonymous reviewers for
their helpful comments.

10. REFERENCES
[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce

G. Lindsay. Static Type Checking of Multi-Methods. OOPSLA’91
Conference Proceedings, Phoenix, AZ, October, 1991, volume
26, number 11 of ACM SIGPLAN Notices, pp. 113-128. ACM,
New York, November, 1991.

[Arnold & Gosling 98] Ken Arnold and James Gosling. The Java
Programming Language. Second Edition, Addison-Wesley,
Reading, Mass., 1998.

[Bourdoncle & Merz 97] François Bourdoncle and Stephan Merz.
Type Checking Higher-Order Polymorphic Multi-Methods.
Conference Record of POPL ’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
Paris, France, pp. 302-315. ACM, New York, January 1997.

[Boyland & Castagna 97] John Boyland and Giuseppe Castagna.
Parasitic Methods: An Implementation of Multi-Methods for
Java. Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications,
volume 32, number 10 of ACM SIGPLAN Notices, pp. 66-76.
ACM, New York, November 1997.

16

[Bruce et al. 95] Kim Bruce, Luca Cardelli, Giuseppe Castagna, The
Hopkins Object Group, Gary T. Leavens, and Benjamin Pierce.
On Binary Methods. Theory and Practice of Object Systems,
1(3):221-242, 1995.

[Cardelli 88] Luca Cardelli. A Semantics of Multiple Inheritance.
Information and Computation, 76(2/3): 138-164, February-
March, 1988. An earlier version appeared in Semantics of Data
Types Symposium, LNCS 173, pp. 51-66, Springer-Verlag, 1984.

[Castagna et al. 92] Giuseppe Castagna, Giorgio Ghelli, and
Giuseppe Longo. A Calculus for Overloaded Functions with
Subtyping. Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, San Francisco, June, 1992, pp. 182-
192, volume 5, number 1 of LISP Pointers. ACM, New York,
January-March, 1992.

[Castagna 95] Giuseppe Castagna. Covariance and contravariance:
conflict without a cause. ACM Transactions on Programming
Languages and Systems, 17(3):431-447, 1995.

[Castagna 97] Giuseppe Castagna. Object-Oriented Programming A
Unified Foundation, Birkhäuser, Boston, 1997.

[Chambers 92] Craig Chambers. Object-Oriented Multi-Methods in
Cecil. ECOOP ’92 Conference Proceedings, Utrecht, the
Netherlands, June/July, 1992, volume 615 of Lecture Notes in
Computer Science, pp. 33-56. Springer-Verlag, Berlin, 1992.

[Chambers 95] Craig Chambers. The Cecil Language: Specification
and Rationale: Version 2.0. Department of Computer Science and
Engineering, University of Washington, December, 1995. http://
www.cs.washington.edu/research/projects/cecil/www/Papers/
cecil-spec.html.

[Chambers & Chen 99] Craig Chambers and Weimin Chen. Efficient
Multiple and Predicate Dispatching. OOPSLA ’99 Conference
Proceedings, pp. 238-255, October, 1999. Published as SIGPLAN
Notices 34(10), October, 1999.

[Chambers & Leavens 95] Craig Chambers and Gary T. Leavens.
Typechecking and Modules for Multi-Methods. ACM
Transactions on Programming Languages and Systems,
17(6):805-843. November, 1995.

[Chambers 98] Craig Chambers. Towards Diesel, a Next-Generation
OO Language after Cecil. Invited talk, The Fifth Workshop on
Foundations of Object-oriented Languages, San Diego,
California, January 1998.

[Cook 90] William Cook. Object-Oriented Programming versus
Abstract Data Types. Foundations of Object-Oriented
Languages, REX School/Workshop Proceedings,
Noordwijkerhout, the Netherlands, May/June, 1990, volume 489
of Lecture Notes in Computer Science, pp. 151-178. Springer-
Verlag, New York, 1991.

[Feinberg et al. 97] Neal Feinberg, Sonya E. Keene, Robert O.
Mathews, and P. Tucker Withington. The Dylan Programming
Book. Addison-Wesley Longman, Reading, Mass., 1997.

[Findler & Flatt 98] Robert Bruce Findler and Matthew Flatt.
Modular Object-Oriented Programming with Units and Mixins.
International Conference on Functional Programming,
Baltimore, Maryland, September 1998.

[Gamma et al. 95] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass.,
1995.

[Gosling et al. 00] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification, Second Edition.
Addison-Wesley, Reading, Mass., 2000.

[Ingalls 86] D. H. H. Ingalls. A Simple Technique for Handling
Multiple Polymorphism. In Norman Meyrowitz, editor, OOPSLA
’86 Conference Proceedings, Portland, Oregon, November, 1986,
volume 21, number 11 of ACM SIGPLAN Notices, pp. 347-349.
ACM, New York, October, 1986.

[Kiczales et al. 97] Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, John Irwin. Aspect-Oriented Programming. In
proceedings of the Eleventh European Conference on Object-
Oriented Programming, Finland. Springer-Verlag LNCS 1241.
June 1997.

[Leavens & Millstein 98] Gary T. Leavens and Todd D. Millstein.
Multiple Dispatch as Dispatch on Tuples. Conference on Object-
oriented Programming, Systems, Languages, and Applications,
Vancouver, British Columbia, October 1998.

[Martin 98] Robert C. Martin. Acyclic Visitor. In Robert C. Martin,
Dirk Riehle, Frank Buschmann (editors), Pattern Languages of
Program Design 3, pp. 93-103. Addison-Wesley Longman, Inc.,
Reading, Mass., 1998.

[Millstein & Chambers 99] Todd Millstein and Craig Chambers.
Modular Statically Typed Multimethods. In proceedings of the
Fourteenth European Conference on Object-Oriented
Programming, Lisbon, Portugal, July 14-18, 1999. Volume 1628
of Lecture Notes in Computer Science, pp. 279-303, Springer-
Verlag, 1999.

[Millstein & Chambers] Todd Millstein and Craig Chambers.
Modular Statically Typed Multimethods. To appear in
Information and Computation.

[Mugridge et al. 91] W. B. Mugridge, J. Hamer, and J. G. Hosking.
Multi-Methods in a Statically-Typed Programming Language.
ECOOP ’91 Conference Proceedings, Geneva, Switzerland, July,
1991, volume 512 of Lecture Notes in Computer Science;
Springer-Verlag, New York, 1991.

[Nordberg 98] Martin E. Nordberg III. Default and Extrinsic Visitor.
In Robert C. Martin, Dirk Riehle, Frank Buschmann (editors),
Pattern Languages of Program Design 3, pp. 105-123. Addison-
Wesley Longman, Inc., Reading, Mass., 1998.

[Odersky & Wadler 97] Martin Odersky and Philip Wadler. Pizza
into Java: Translating Theory into Practice. Conference Record of
POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Paris, France, pp. 146-
159. ACM, New York, January 1997.

[Paepcke 93] Andreas Paepcke. Object-Oriented Programming: The
CLOS Perspective. MIT Press, 1993.

[Shalit 97] Andrew Shalit. The Dylan Reference Manual: The
Definitive Guide to the New Object-Oriented Dynamic Language.
Addison-Wesley, Reading, Mass., 1997.

[Steele 90] Guy L. Steele Jr. Common Lisp: The Language (second
edition). Digital Press, Bedford, MA, 1990.

[Vlissides 99] John Vlissides. Visitor into Frameworks. C++
Report, 11(10):40-46. SIGS Publications, November/December
1999.

