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The Chaotic Mobile Robot

Yoshihiko Nakamura and Akinori Sekiguchi

Abstract—In this paper, we develop a method to impart the chaotic na-
ture to a mobile robot. The chaotic mobile robot implies a mobile robot
with a controller that ensures chaotic motions. Chaotic motion is charac-
terized by the topological transitivity and the sensitive dependence on ini-
tial conditions. Due to the topological transitivity, the chaotic mobile robot
is guaranteed to scan the whole connected workspace. For scanning mo-
tion, the chaotic robot neither requires the map of the workspace nor plans
the global motion. It only requires the measurement of the local normal
of the workspace boundary when it comes close to it. We design the con-
troller such that the total dynamics of the mobile robot is represented by
the Arnold equation, which is known to show the chaotic behavior of non-
compressive perfect fluid. Experimental results and their analysis illustrate
the usefulness of the proposed controller.

Index Terms—Arnold equation, chaos, mobile robot.

I. INTRODUCTION

Chaos characterizes one of mysterious rich behaviors of nonlinear
dynamical systems. Many research efforts have been paid to establish
the mathematical theory behind chaos. Applications of chaos are also
being studied and include, for example, controlling chaos [1]–[4] and
chaotic neural networks [5]–[8].

This paper proposes a method to impart chaotic behavior to a mobile
robot. This is achieved by designing a controller which ensures chaotic
motion. The topological transitivity1 property of chaotic motions guar-
antees a complete scan of the whole connected workspace. The pro-
posed scheme neither requires a map of the workspace nor plans a path
through it. It only requires the measurement of the local normal of the
boundary when it comes close to it.

A mobile robot with such characteristics may find its applications as
a patrol robot or a cleaning robot in a closed room, floor, or building
(Fig. 1). The sensitive dependence on initial condition also yields a
favorable nature as a patrol robot since the scanning trajectory becomes
highly unpredictable.

II. CHAOTIC MOBILE ROBOT WITH THE ARNOLD EQUATION

A. Mobile Robot

As the mathematical model of mobile robots, we assume a two-
wheeled mobile robot as shown in Fig. 2. Let the linear velocity of the
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1ConsiderCCC (r � 1) autonomous vector fields onRRR denoted as_x =
f(x). Let the flow generated by this equation be denoted as�(t; x) and let
� � RRR be a invariant compact set for this flow. A closed invariant set� is
said to be topologically transitive [10] if, for any two open setsU; V � �,
t 2 RRR; �(t; U) \ V 6= ;:

Fig. 1. Chaotic patrol.

Fig. 2. Mobile robot.

robot v [m/s] and the angular velocity! [rad/s] be the inputs to the
system. The state equation of the mobile robot is written as follows:
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where (x [m], y [m]) is the position of the robot and� [rad] is the angle
of the robot.

B. The Arnold Equation

In order to generate chaotic motions of the mobile robot, we employ
the Arnold equation, which is written as follows:
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whereA, B, andC are constants. The Arnold equation describes a
steady solution to the three-dimensional (3-D) Euler equation
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which expresses the behaviors of noncompressive perfect fluids on a
3-D torus space. (x1; x2; x3) and (v1; v2; v3) denote the position and
velocity of a particle andp, and (f1; f2; f3) and� denote the pressure,
external force, and density, respectively. It is known that the Arnold
equation shows periodic motion when one of the constants, for example
C, is 0 or small and shows chaotic motion whenC is large [9].

1) The Poincaré Section:We compose Poincaré sections [10] of
the Arnold equation by numerical computation. The results are shown
in Figs. 3–5. The sections and coefficients of the Arnold equation are
shown in Table I. Figs. 6 and 7 show trajectories of the Arnold equation
in a 3-D torus space, corresponding to Figs. 3 and 5, respectively.
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Fig. 3. Poincaré section of Arnold flow (A = 1; B = 0.5; C = 0).

Fig. 4. Poincaré section of Arnold flow (A = 1; B = 0.5; C = 0.05).

Fig. 5. Poincaré section of Arnold flow (A = 1; B = 0.5; C = 0.5).

Fig. 3 represents the Poincaré section whenC = 0. It is observed
that the topological transitivity does not emerge in this case, since tra-
jectories in the Poincaré section are closed. WhenjCj exceeds a cer-
tain small number and gets larger, there grow regions in which closed

TABLE I
PARAMETERS FORCOMPUTATIONS

Fig. 6. Arnold flow (A = 1; B = 0.5; C = 0).

Fig. 7. Arnold flow (A = 1; B = 0.5; C = 0.5).

trajectories disappear and scattered discrete points appear. The regions
characterize chaos and its behavior. Since the Arnold equation is a con-
servative system, it is an important feature that the descrete trajectory
of a point initially started in such a region remains there and is never
attracted by the closed trajectories outside the region.

2) The Lyapunov Exponent:The Lyapunov exponent is used as a
measure of the sensitive dependence on initial conditions, that is, one
of two characteristics of chaotic behavior [11]. There aren Lyapunov
exponents in ann-dimensional state space and the system is concluded
to have the sensitive dependence on initial conditions when the max-
imum Lyapunov exponent is positive.

We calculated the Lyapunov exponents of the Arnold equation, using
the method proposed by Shimada and Nagashima [12]. The parameters
and the initial states are as follows:

coefficients : A =0:5; B = 0:25; C = 0:25

initial states : x1 =4; x2 = 3:5; x3 = 0

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 13, 2009 at 00:59 from IEEE Xplore.  Restrictions apply.



900 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001

and the Lyapunov exponents are

�1 =4:3� 10�2

�2 =1:1� 10�4

�3 =� 4:3� 10�2:

Since the maximum exponent�1 is positive, the Arnold equation has
the sensitive dependence on initial conditions.

In case of the Arnold flow, the sum of the Lyapunov exponents,�1+
�2 + �3, equals zero since the volume in the state space is conserved.
This results in the fact that a trajectory which started from a chaotic
region will not be attracted into attractors like limit cycles. The total
of the computed Lyapunov exponents became slightly larger than zero,
which is due to the numerical computation error.

C. Integration of the Arnold Equation

In order to integrate the Arnold equation into the controller of the
mobile robot, we define and use the following state variables:

_x1 = D _y + C cosx2
_x2 = D _x+B sinx1
x3 = �

(5)

whereB, C, andD are constants. Substituting (1) into (5), we obtain
a state equation onx1, x2 andx3 as follows:

_x1 = Dv + C cosx2
_x2 = Dv +B sinx1
_x3 = !

: (6)

We now design the inputs as follows:

v = A

D

! = C sinx2 +B cosx1
: (7)

Consequently, the state equation of the mobile robot becomes

_x1
_x2
_x3
_x

_y

=

A sinx3 + C cosx2
B sinx1 + A cosx3
C sinx2 +B cosx1

v cosx3
v sinx3

: (8)

Equation (8) includes the Arnold equation. The Arnold equation be-
haves chaotically or not, depending upon the initial states. We choose
the initial states of the Arnold equation such that the trajectory should
behave chaotically. As explained in Section II-B, it is guaranteed that
a chaotic orbit of the Arnold equation is not attracted to a limit cycle
or a quasi-periodic orbit.

The whole states evolve in a 5-D space according to (8), which in-
cludes a 3-D subspace of the Arnold flow. The state evolution in the
2-D complementary space is highly coupled with that in the 3-D sub-
space as seen in (8). The coupling is physically interpreted by the fact
that the mobile robot moves with a constant velocity and being steered
by the third variable of the Arnold equation. Although it is likely that
the trajectory in thex–y space also behaves chaotic, it is difficult to
prove. The nature of the mobile robot trajectory is to be numerically
evaluated in the following section.

The inputs to the mobile robot become continuous since the Arnold
equation is a continuous system. Though the Rössler equation, the
Lorenz equation, and so on are well known as low-dimensional
continuous chaotic systems, the Arnold equation has some advantages
as follows.

• The structures of the Arnold equation and the mobile robot equa-
tion are similar.

Fig. 8. Trajectories of the mobile robot inx-y plane (v = 1; A = 1; B =

0.5; C = 0.5).

• It is easy to deal with because the state variablesx1, x2, andx3
are limited within a 3-D torus space.

• The range of the input! becomes�(jBj+jCj) � ! � jBj+jCj
and suitable for a robot input.

• The maximums ofj _x1j; j _x2j; j _x3j are determined by the parame-
tersA, B, andC.

D. Mirror Mapping

Fig. 8 shows an example of motions of the mobile robot with the
proposed controller, obtained by numerical simulation. The initial con-
dition was chosen from a region where the Poincaré section forms no
closed trajectory. It is observed that the motion of the robot is unpre-
dictable and sensitively dependent on initial conditions.

In (8), it is assumed that the robot moves in a smooth state space with
no boundary. However, a real robot moves in spaces with boundaries
like walls or surfaces of obstacles. To solve this problem, we consider
the motion of the robot in an imaginary space as shown in Fig. 9. This
imaginary space is obtained by smoothly connecting boundaries of two
spaces that have the same shape as the real space.

In Fig. 9, the real space has a topologically circular shape. The real
space is assumed to be a closed space and placed on another imaginary
space with an equivalent shape to the real one in such a way that every
corresponding pair of points on the two spaces meet. The two spaces
are glued and connected on the boundaries. Blowing air in between the
surfaces and allowing elastic deformation, we obtain a smooth manifold
as shown in the top-left figure in Fig. 9, where the robot can move be-
tween the two sides smoothly at the boundaries. The mobile robotmoves
on the surface of the manifold in the mathematical model of the work
space, while in the real space it moves as if we observe its motion in the
mathematical model through the transparent manifold from the above.
However,notethat, for theobservation throughthetransparentmanifold,
we have to apply coordinate transformation from the left-hand system
to the right-hand system. This is why we call it mirror mapping. In the
real space, the mobile robot moves as if it is reflected by the boundary.

III. N UMERICAL ANALYSIS OF THEBEHAVIOR OF THEROBOT

We investigate by numerical analysis whether the mobile robot with
the proposed controller actually behaves in a chaotic manner. Examples
of trajectories of the robot are obtained by applying the mirror mapping
and are shown in Figs. 10 and 11. The parameters and the initial states
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Fig. 9. Mirror mapping.

Fig. 10. Simulated trajectory of the mobile robot in thex–y plane
(Environment 1).

used are as follows:

coefficients : v =1 [m/s]; A = 0:5 [1=s];

B =0:25 [1=s]; C = 0:25 [1=s]

initial states : x1 =4; x2 = 3:5;

x3 =0; x = 5 [m]; y = 5 [m]

period : 8000 [s]:

The trajectories generated by (8) scanned the whole workspace regard-
less of the shape of workspace. The trajectories from other initial po-
sitions of the robot scan the whole workspace similarly. The coeffi-
cients and the initial state of the Arnold equation are chosen so that
the trajectory should behave chaotic. For example, we choose an ini-
tial state from the regions in which scattered discrete points appear in
the Poincaré map of the Arnold equation. Though the magnitude of
the coefficients would affect the efficiency of scanning the workspace,
it is not difficult to choose appropriate magnitude of the coefficients
since the Arnold equation accelerate or slow down its motion with the
same shape of trajectories when the magnitude of the coefficients are
changed with a fixed ratioA : B : C.

Figs. 12 and 13 show the Poincaré sections atx3 = �=4 obtained
from Figs. 10 and 11. The descrete points are distributed over the whole
workspace, which indicates that the motion generated by the proposed
controller shows the topological transitivity in the workspaces.

Fig. 11. Simulated trajectory of the mobile robot in thex–y plane
(Environment 2).

Fig. 12. Poincaré map of the simulation (Environment 1).

Fig. 13. Poincaré map of the simulation (Environment 2).

We calculated the Lyapunov exponents of the robot. Three Lyapunov
exponents on the trajectory in 3-D space (x; y; x3), projected from 5-D
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Fig. 14. Prototype mobile robot.

Fig. 15. Experimental environment.

state space of (8), became as follows:

�1 =1:2� 10�2

�2 =� 6:6� 10�5

�3 =� 6:9� 10�4:

The maximum exponent,�1, is positive and, therefore, the motion of
robot possesses the sensitive dependence on initial conditions.

From the numerical computations, we can conclude that the motion
of the robot due to the proposed controller is chaotic.

IV. EXPERIMENT

We made experiments using a two-wheeled mobile robot shown in
Fig. 14 and setting up an experimental environment (1.8 m� 1.8 m)
shown in Fig. 15. The robot has six proximity sensors at the front. The
mirror mapping is applied based on the information.

The chaotic mobile robot ran with the following conditions:

linear velocity : v =12 [cm/sec]

coefficients : A =0:27 [1=s]; B = 0:135 [1=s];

C =0:135 [1=s]

initial states : x1 =4; x2 = 3:5; x3 = 0

period : 2 hours:

Fig. 16. Resultant trajectory of the experiment (chaotic robot).

Fig. 17. Random walk.

Fig. 18. Resultant trajectory of the experiment (random walk).

The result is shown in Fig. 16, which was obtained by tracking the
robot using a camera above the experimental environment. The robot
successfully scanned the whole workspace.

V. DISCUSSION: CHAOS VERSUSRANDOMNESS

Random walk is another method used to scan some workspace
without the map. We need to discuss the usefulness of the chaotic
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(a)

(b)

(c)

Fig. 19. Plots of robot position at 10-min intervals (chaotic robot). (a)t =

0–10 [min]. (b)t = 10–20 [min]. (c)t = 20–30 [min].

mobile robot as compared with random walk. We also ran the robot
for 2 h by using random walk. Random walk was implemented in
such a way that the robot turns toward random direction after moving
straight for every 2 s (Fig. 17). The experimental environment and the
constant velocity of the robot were the same as those of the previous
experiment. The mirror mapping was also applied at boundaries.

(a)

(b)

(c)

Fig. 20. Plots of robot position at 10-min intervals (random walk). (a)t =

0–10 [min]. (b)t = 10–20 [min]. (c)t = 20–30 [min].

Fig. 18 shows the result. The density of resultant trajectory of
random walk is lower than that of the chaotic robot because the robot
must spend time to stop and turn after moving for 2 s. It is one of
the advantages of the proposed controller that the robot can move
continuously with the constant linear velocity.
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Fig. 21. Rate of covered area.

Figs. 19 and 20 are plots of the position of the robot after every 1
s during every 10 min. It can be seen that the chaotic mobile robot
in Fig. 19 could scan the workspace more efficiently. The presented
approach is not a method to plan a path to scan the whole workspace
when its geometry is known, but rather a method to scan a workspace
of which the geometry is unknown. Therefore, some areas might be
covered many times before the robot covers the whole area. However, in
our experiments, it can be seen that the density of coverage of the robot
over its environment is uniform in the whole space since the points in
Fig. 19 are scattered around the whole environment, while in the case
of the random walk the density is not uniform in Fig. 20.

Fig. 21 shows the growth of the ratio of the covered area by the robot
to the whole area. The chaotic mobile robot could cover 90% of the
whole area in one third of the time taken by the random walk method
to cover the same area.

There are many different ways to integrate random walk. Therefore,
the above conclusion is not in any sense general. However, there is a
possibility that the chaotic scan is stochastically superior to the scan
by randomness. On the manifold integral calculus by the Monte Carlo
method, Umeno [13] made a comparison between the algorithm using
an exactly solvable chaos and the conventional algorithm using random
numbers and showed superiority of the chaos computing. He explained
that long-term correlation and the non-Gaussian nature of chaos could
play important roles in this problem. Our problem of scanning the
whole connected workspace is considered as a Monte Carlo computing
to get the square measure of the workspace. The chaotic mobile robot
has a chance being sperior to random walk, although the Arnold equa-
tion in the proposed controller is not an exactly solvable chaos. Our
experiments with analysis of Figs. 19 and 20 clearly showed that the
chaotic mobile robot is superior to an algorithm of random walk in ef-
ficiency of scanning the workspace.

VI. CONCLUSION

In this paper, we proposed the chaotic mobile robot, which implies
a mobile robot with a controller that guarantees its chaotic motion.

The Arnold equation, which is known to show the chaotic behavior
of noncompressive perfect fluid, was adopted as the chaotic dynamics
to be integrated into the mobile robot and the behavior of the Arnold
equation was analyzed. We designed the controller such that the total
dynamics of the mobile robot is characterized by the Arnold equa-
tion. We proposed the mirror mapping, which is a method for an actual

chaotic mobile robot of moving in spaces with boundaries like walls or
obstacles. By the numerical analysis, it was illustrated that the behavior
of the robot due to the proposed controller is chaotic. The experimental
results illustrated the usefulness of the proposed controller.
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