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0 Soft computing is a collection 
of methodologies that aim to 
exploit the tolerance for impreci- 
sion and uncertainty to achieve 
wactability, robustness, and low 
solution cost. Its principal con- 
stituents are f izzy logic, neuro- 
computing, and probabilistic rea- 
soning. Soft computing is likely 
to play an increasingly impor- 
tant role in many application 
areas, including sof2ware engi- 
neering. The role modelfor SOB 
computing is the human mind. 

Lomputing 
1 ;r’ and Fuzzy 

Logic 
LOTFI A. ZADEH, University of California at Berkeley 

0 ne of the deepest 
traditions in science is that of accord- 
ing respectability to what is quantita- 
tive, precise, rigorous, and categorical- 
ly true. It is a fact, however, that we 
live in a world that is pervasively 
imprecise, uncertain, and hard to be 
categorical about. It is also a fact that 
precision and certainty carry a cost. 
Driven by our quest for respectability, 
we tend to close our eyes to these facts 
and thereby lose sight of the steep 
price we must pay for high precision 
and low uncertainty. Another visible 
concomitant of the quest for 
respectability is that in much of the 
scientific literature elegance takes 
precedence over relevance. 

A case in point is the traveling 
salesman problem, which is frequently 
used as a testbed for assessing the 
effectiveness of various methods of 
solution. What is striking about this 
problem is the steep rise in computing 

time as a function of precision of solu- 
tion. As the data in Table 1 show, low- 
ering the accuracy to 3.50 percent 
reduces the computing time by an 
order of magnitude for a ten-fold 
increase in the number of cities. 

A more familiar example that illus- 
trates the point is the problem of 
parking a car. W e  find i t  relatively 
easy to park a car because the final 
position of the car is not specified pre- 
cisely. If it were, the difficulty of park- 
ing would increase geometrically with 
the increase in precision, and eventu- 
ally parking would become impossible. 

Guiding principle. These and many 
similar examples lead t o  the basic 
premises and the guiding principle of 
soft computing. 

The basic premises of soft comput- 
ing are 

+ T h e  real world is pervasively 
imprecise and uncertain. 
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+ Precision and certainty carry a soft computing is aimed at accommo- 
cost. dating the pervasive imprecision of the 

The guiding principle of soft com- real world. Although soft computing 
puting is has not as yet had a visible impact on 

+ Exploit the tolerance for impre- software engineering, it is likely to do 
cision, uncertainty, and partial truth to so in the years ahead. Among the areas 
achieve tractability, robustness, and in which it is likely to be applied are 
low solution cost. programming languages, computer 

The label soft computing is grow- security, database management, user- 
ing in use. What does it mean? Where 1 friendly interfaces, automated pro- 
does it stand today and where is it ~ gramming, fault diagnosis, and net- 
headed? And what is the role of fuzzy 
logic in soft computing? In this article, I will focus on some 

i of the basic ideas that underlie soft 
Sample application. Some of the most 1 computing and relate them to its guid- 

working. 

striking examples of the application of ~ ing principle. 
the guiding principle of soft comput- 
ing are the data-compression tech- 
niques that play a key role in high- 
definition television and audio record- ~ 

ing and reproduction. ~ Basically, soft computing is not a 
For example, in N H K s  Muse sys- ’ homogeneous body of concepts and 

tem, a motion-compensating tech- techniques. Rather, it is a partnership 
nique determines the outline, direc- of distinct methods that in one way or 
tion, and speed of the moving body, another conform to its guiding princi- 
then shifts the moving image without ple. L4t this juncture, the dominant aim 
waiting to receive all the pixel data. of soft computing is to exploit the tol- 
The resulting moving image does not erance for imprecision and uncertainty 
have the resolution of the still picture. to achieve tractability, robusmess, and 
Muse exploits the fact that the human ~ low solution cost. The principal con- 
eye cannot grasp the details of moving ’ stituents of soft computing are fuzzy 
objects with the same precision as still logic, neurocomputing, and proba- 
objects. Even more impressive is what bilistic reasoning, with the latter sub- 
is achieved in the recently developed suming genetic algorithms, belief net- 
digital HDTV systems. For example, ~ works, chaotic systems, and parts of 
the General Instrument system, learning theory. In the partnership of 
instead of transmitting data for every fuzzy logic, neurocomputing, and 
color dot in a blue sky, sends an probabilistic reasoning, fuzzy logic is 
instruction to paint the sky. The com- mainly concerned with imprecision 
pression ratio this system achieves is and approximate reasoning; neuro- 
on the order of 60 to  1. In audio computing with learning and curve- 
recording and reproduction, similar fitting; and probabilistic reasoning 
ideas are embodied in Sony’s R/ID-l with uncertainty and belief propaga- 
system and Philips’ DCC. tion. 

In its current incarnation, the con- In large measure, fuzzy logic, neu- 
cept of soft computing has links to rocomputing, and probabilistic rea- 
many earlier influences, among them , soning are complementary, not com- 
my 1965 paper on fuzzy sets;’ 1973 ~ petitive. I t  is becoming increasingly 
paper on the use of linguistic variables clear that in many cases it is advanta- 
in the analysis and control of complex geous to combine them. A case in 
systems;‘ and 1979 report (1981 paper) point is the growing number of “neu- 
on possibility theory and soft data rofuzzy” consumer products and sys- 
analysis.3 tems that use a combination of fuzzy 

Unlike traditional hard computing, logic and neural-network techniques. 

SOFT COMPUTING AND FUZZY LOGIC 

~~~ . ~ 

Number Accuracy Computing 
of cities time 

_ _ _ _ _ _ ~  

Soztrce h$u. I‘07l Ti?iiu\ \1/19ib 12, 1991 

In this article, I focus on fuzzy 
logic. 

FUZZY LOGIC CONCEPTS 

As one of the principal constituents 
of soft computing, fuzzy logic is play- 
ing a key role in what might be called 
high MIQ (machine intelligence quo- 
tient) systems. 

Two concepts within fuzzy logic 
play a central role in its applications. 

+ The  first is a linguistic variable; 
that is, a variable whose values are 
words or sentences in a natural or syn- 
thetic language.? 

+ The other is afizzy $-then d e ,  
in which the antecedent and conse- 
quents are propositions containing lin- 
guistic variables.! 

The essential function of linguistic 
variables is that of granulation of vari- 
ables and their dependencies. In effect, 
the use of linguistic variables and fuzzy 
if-then rules results - through granu- 
lation - in lossy data compression. In 
this respect, fuzzy logic mimics the 
remarkable ability of the human mind 
to summarize data and focus on deci- 
sion-relevant information. 

With regard to fuzzy logic, there is 
an issue of semantics that is in need of 
clarification. Specifically, it is fre- 
quently not recognized that the term 
fuzzy logic is actually used in two dif- 
ferent senses. In a narrow sense, fuzzy 
logic (FLn) is a logical system - an 
extension of multivalued logic that is 
intended to serve as a logic of approxi- 
mate reasoning. In a wider sense, fuzzy 
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Figure 1. Interpretation of' middle-aged as a linguistic value. 

logic (FLm) is more o r  less synony- 
mous with fuzzy set theory; that is, the 
theory of classes with unsharp bound- 
aries. In this perspective, FL = FLU, 
and FLn is merely a branch of FL. 
\%%at is important to recognize is that 
today the term fuzzy logic is used pre- 
dominantly in its wider sense. It is in 
this sense that any field X can be 
"fuzzified" - and hence generalized 
- by replacing the concept of a crisp 
set in X by a fuzzy set. In application to 
basic fields such as set theory, arith- 
metic, topology, graph theory, proba- 
bility theory, and logic, fuzzification 
leads to fuzzy set theory, fuzzy arith- 
metic, fuzzy topology, fuzzy graph the- 
ory, and fuzzy logic in its narrow sense. 

Similarly, in application to applied 
fields like neurocomputing, stability 
theory, pattern recognition and mathe- 
matical programming, fuzzification 
leads to fuzzy neurocomputing, fuzzy 
stability theory, fuzzy pattern recogni- 
tion, and fuzzy mathematical program- 
ming. What is gained through fuzzifi- 
cation is greater generality, higher 
expressive power, an enhanced ability 
to model real-world problems, and - 
most important - a methodology for 
exploiting the tolerance for impreci- 
sion, a methodology that fits the guid- 
ing principle of soft computing and 
thus serves to achieve tractability, 

robustness. and low solution cost. 

linguistic variables. A concept in fuzzy 
logic that plays a key role in exploiting 
the tolerance for imprecision is the 
linguistic variable. A linguistic vari- 
able, as its name suggests, is a variable 
whose values are words or sentences in 
a natural or synthetic language. For 
example, age is a linguistic variable if 
its linguistic values are young, old, mid- 
dle-aged, very old, not very young, and so 
on. A linguistic variable is interpreted 
as a label of a fuzzy set that is charac- 
terized by a membership function, as 
illustrated in Figure 1. Thus, if u is a 
numerical age, say 53, then F , ~ ~ ~ ~ ~  
,,A53) is the grade of membership of 53 
in middle-aged. Subjectively, you ma) 
interpret F ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ( u )  as the degree tc 
which u fits your perception of mid- 
dle-aged in a specified context. 

In a general setting, a linguistic 
variable, V,  can be viewed as 2 

microlanguage with context-free gram- 
mar and attributed-grammar seman- 
tics. The context-free grammar define: 
the legal values of V. For example, ir 
the case of age, the legal values arc 
young, not young, not very young, quit( 
old, middle-aged, and so on. The attrib. 
uted-grammar semantics provides ; 
mechanism for computing the mem 
bership function of any value of L 

from the knowledge of the member- 
ship functions of the so-called przmary 
terms -young and old, for example. A 
primary term plays the role of a gener- 
ator whose meaning (its membership 
function) must be calibrated in context. 
For example, the meaning of not very 
young might be computed as 

knot i.m "OUnE (4 = 1 - ( J l y o u n g ( 4 ) 2  

where very plays the role of an intensi- 
fier and young is a primary term whose 
membership function is specified in 
context. 

Most current applications of fuzzy 
logic employ a simpler framework, 
illustrated in Figure 2 .  Specifically, the 
membership functions are assumed to 
be triangular or trapezoidal, and the 
number of linguistic values is usually in 
the range of three to seven. 

The concept of a linguistic variable 
plays a central role in the applications 
of fuzzy logic because it goes to the 
heart of the way in which humans per- 
ceive, reason, and communicate. 
Quintessentially, the use of words 
may be viewed as a form of data com- 
pression that exploits the tolerance 
for imprecision to achieve tractabili- 
ty, robustness, and economy of com- 
munication. This fits almost precisely 
the guiding principle of soft comput- 
ing. 

Granulation. In a related sense, the 
use of words may be viewed as a form 
of fuzzy quantization or more general- 
ly as granulation, as Figure 3 shows. 

Basically, granulation involves a 
replacement of a constraint of the form 

X = a  

with a constraint of the form 
Xis A 

where A is a fuzzy subset of U, the uni- 
verse of X. For example, 
x= 2 

might be replaced with 
X is small 

In fuzzy logic, X is a is interpreted as a 
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characterization of the possible values 
of X ,  with A representing a possibility 
distribution. Thus, the possibility that 
X can take a value U is given by 

Pon{X = U] = M(U) 

It is in this sense that X is ~ ( u ) ,  with 
possibility interpreted as ease of attain- 
ment or assignment, may be interpret- 
ed as an elastic constraint on X .  

not, the calculi of fuzzy rules and fuzzy 
graphs provide an alternative method- 
ology aimed at results that are in the 
spirit of the guiding principle of soft 
computing. 

X X 0 

__ __- 

lSJ 3oc\ . 1 .o 

0 0 

Figure 3. (A) Quantization versus (B) granulation @zzy quantization). 

achieving a higher MIQ. 
Interestingly, the development of 

fuzzy-set theory was motivated by the 
first situation, but today most applica- 
tions of fuzzy logic in the realm of 
consumer products are motivated by 
the second. 

FDCL has many facets. Here, I 
shall sketch some of the basic ideas 
that underlie FDCL and the calculi of 
fuzzy rules and fuzzy graphs. 

Like any language, FDCL is char- 
acterized by its syntax and semantics. 
T h e  syntax of FDCL is concerned 
with the form of admissible fuzzy 
rules; the semantics is concerned with 
their meaning. It is important to note 
that FDCL is not a “fuzzified” version 
of a standard programming language, 
as is true of Fuzzy Prolog.6 

Fuzzy rules. FDCL allows the use of 
a wide variety of fuzzy if-then rules, or 
simply fuzzy rules. A typical fuzzy 
rule relates m antecedent variables 
X I ,  ..., X ,  to n consequent variables, 

Y, ,..., Y,.and has the form: 
if X ,  is A ,  and ... X ,  is A, 
then Y, is B ,  and ... Y, is B, 

where X = ( X ,  ,..., X,) and Y = (Y ,  
,..., YJ are linguistic variables and (A, 
,... 4,) and (B,  ,..., B,) their respective 
linguistic values. For example: 

if Pressure is high and Tmperature 
is high then Volume is small 

For simplicity, I will discuss only rules 
in which m= n = 1. 

A rule can have a rurface stmctzlre or 
a deep stmcture. The surface stmcture is 
the rule in its symbolic form: 

i f X i s  A then Yis  B 

Such a rule is said to be uncalibrated, 
which means that the membership 
functions of A and B are not specified. 

T h e  deep structure is the surface 
structure together with a characteriza- 
tion of the membership functions of 
linguistic values of variables. In this 
case, the rule is said to be calibrated. 
- 
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Control rules i- 1. If (speed 1s low) ond (shift IS high) lhen (-3) 
1 2 l l (speed 15 high) and (shift is low) then (4) 

3 If (throt IS low) and (speed is high) then (t3) 
4 If (throt IS low) and (speed is low) then (tl) 

5 If (throt is high) ond (speed is high) then (-1) 
6 If (throt is high) and (speed IS low) then (-3) 

4 
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Figure 4. Fuzzy rules used in Honda i fizzy-logic transmission. Here, the meaning of the numeric values associated with the 
d e s  is not important; they only illustrate how d e s  are calibrated 

Figure 4 shows an example of the cali- ’ later, one of the central problems in 
brated fuzzy rules used in Honda’s ~ the applications of fuzzy logic is that of expressed as 
fiiz7y-logic transmission. .As I explain deriving the deep structure of a set of 1 

the proposition ;l/lary is young might be 

,wdF3, isvozrng --$ is young 1 fuzzy rules from U 0  data. I where Age(Mary) is the focal variable 
and young is a fuzzy constraint on 

Applying this concept of meaning 

i f x i S A  then y i s  ’ we can express the meaning of the rule 
in question as a fuzzy constraint on the 
joint variable (X,Y). More specifically, 

Age(lMd?y). 
-71 .______ 

, DERIVING RULES AND GRAPHS 

~ In the semantics of FDCL, the 1 basic questions are, what is the mean- 
ing of a single rule and what is the 
meaning of a collection of rules? 

. . . . . . . . . . . . . . . . . . . representation to the fuzzy rule 

i ! 
I A 1 i f X i s A  then I’is B + (X,q is A xB ,  ? U I I type of rule: 

Deriving rules. Consider the simplest 

n 

1 , if X is A then Y is B I 
where A x B is the Cartesian product 
of A and B The membership function 

I 
Fig41-e 5. .I x E ~ n t c i p r  ctrd 1 i r  n f i i z : )  where A and B are linguistlc values of 

X and Y, respectlvely. The questlon is, ’ of A x B is given by 

the membership functlons of A and B? 1 
In fuzzy logic, the meaning of a 

propositlon p is expressed as a ranonzcal 
film 

what 1s the meaning of this rule P e n  p ,xR (.,i) = p I (U) r\ p&) 

1 where A is the conjunction operator, 
usually defined as min. A x B may be 1 interpreted as afizzy point or a grunule, ’ p + Z 1 s C  as shown in Figure 5 .  

I 

f‘ 

I 
I where + means “translates into,” Z is Deriving graphs. In the case of a col- 

lection of rules expressed as 1 the constrained variable, and C is an 
fuzzy relation that plays the role of a 
fuzzy constraint  on 2. W h a t  this 
implies is that the meaning of p is 
expressed as a fuzzy - or, equivalent- 

variable. T o  illustrate, the meaning of 
Figzlre 6. InteVretation of a colkction ly, elastic - constraint on a designated 
of&zzy rules as a@zzy graph. 

52 

i f X i s , 4 , t h e n I ’ i s B , , t = l ,  ..., n 

and the meaning of the collection is 
defined as 

IfXisA, then 1-1s B,, 
( 2  = 1, ..., n) + (XY) 1s 

- 
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(A, x B ,  + ... +A,>x BJ  

where + is used in place of v to denote 
the disjunction operator, which is usu- 
ally defined as max. For simplicity, the 
right-hand member of the collection 1 
may be written as 

~ 

(X,  I.? is (E, 4 x BJ 

T h e  expression 1, A, x B, may be 
viewed as a superposition of fuzzy 
points o r  granules, as illustrated in 
Figure 7 .  In effect, i t  represents a 
coarse - or, equivalently, compressed 
- characterization of the dependency 
and for this reason it is called a&zzy 
graph.5 Thus,  a collection of fuzzy 
rules is represented as a fuzzy graph. 
For example: 

if X is small then Y is small 
if X is medium then Y is large 
if X is large then Y is small 

I 

is a coarse characterization of the 
dependency illustrated in Figure 6. 

INTERPOLATION 

If we interpret a collection of rules 
as a coarse representation of the func- 
tional dependence of Yon X ,  the prob- 
lem of interpolation may be defined as 
that of computing the value of Y given 
a value of X that may not be a perfect 
match with any of the antecedent vari- 
ables in the collection. More specifi- 
cally, this problem can be expressed as 
the inference schema 

(X, r? is (1, A,  x B,) 
X i s A  
Y is? B 

in which ? B  signifies that B is the 
object of computation. In graphical 
terms, as shown in  Figure 8 ,  the 
problem may be viewed as that of 
assigning a linguistic value to X and 
computing the corresponding linguis- 
tic value of Y. 

In fuzzy logic, computation of B is 
carried out through the basic rule of 
inference, called the compositional rule 
of inference.? T h e  rule in question 
reads 

Figure 7.  Rcpm~ti t ing n collection of fiizzy rr1le.r ns n fiizzy gmph, f: which 
nppl~orlltI"rer to f .  

Figure 8. Interpolation of  a@zzy gvaph. The value of Y may be interpreted as the 
projection of the intersection of thehzzy graph with the cylindrical extension ofA. 

(A', kJ is K 

X i s A  
Y is R*A 

in which the composition operation is 
defined by 

p R  e.3 (v) = rLip&R(zi,z') Ap4(')) 

in which pR(u,u) and pz4(u) are, respec- 
tively, the membership functions of R 
and A. 

In the example considered earlier, R 
is given by 

R = (E, A, x B,) 

or, equivalently, 
B = Z, p, A B ,  

in which 

P2 = (F,4,(.) A 1 ,(U) 

The sequence of computations that 
leads to B is standard in most fuzzy 
logic applications and is usually imple- 
mented in software or hardware. In 
some implementations, called max- 
product implementations, the conjunc- 
tion A is interpreted as the arithmetic 
product. 

Interpolation lies at the heart of the 
utility of fuzzy rule-based systems 
because it makes it possible to employ 
a relatively small number of fuzzy rules 
to characterize a complex relationship 
between two or more variables. In a 
typical application in a consumer 
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11 Figure 9. Interpolation of t w o  mles and defizzq5cation. 

product or industrial-control system, 
the number of rules is on the order of 

In applications in which B plays the 
role of a control variable (an input to a 
motor,  for example), B must be 
"defuzzified" - converted to a single- 
ton - before it is applied. In current 
practice, the center-of-gravity method 
is generally used to achieve defuzzifi- 
cation. Figure 9 shows a simple exam- 
ple of interpolation and defuzzifica- 
tion. 

io  to 20.73 

In this figure, the rules are 

i f X i s  A,  then Yis B,  
if X is A, then  Y is B, 

and the input is 
X i s  A 

ml and m2 are, respectively, the 
degrees to which A matches A1 and 
A2. The expression for the output is 

P B ( U )  = 2, P/ A P d 4  

which upon center-of-gravity dehzzi- 
fication leads to a numerical value of 
E. 

1 Grodient pragromming 1 4 Genetic: olgorithms 1 
1 Reinforcement learning f I I 

Figure 10. Summary of alternative methods t o  deduce the deep stmctures of a set 1 1  oj-rmles. 

INDUCING RULES FROM OBSERVATION 

One of the central problems in the 
applications of fuzzy logic relates to 
the question, how can rules be inferred 
from observations; that is, from the 
knowledge of a collection of U 0  pairs? 
[n the context of self-organizing sys- 
tems, this problem was first formulat- 
ed and analyzed by T.J. Procyk and 
E.H. Mamdani. Later, a seminal paper 
by T. Takagi and M. Sugeno made a 
major contribution.9 

During the past several years, 
researchers have made important 
advances toward at least a partial solu- 
tion to the problem by applying neur- 
al-network techniques or, more gener- 
ally, dynamic and gradient program- 
ming,7.10-J 1 Other promising approach- 
es involve the use of genetic algo- 
rithmsl?$13 and reinforcement learn- 
ing.'+ Figure 10 summarizes the ways 
to derive the deep structure of a set of 
rules from the surface structure. 

A basic idea underlying these 
approaches involves representing a 
fuzzy rule-based system as a multilay- 
ered structure, such as that shown in 
Figure 11 . ' I  In a simple version of this 
architecture11 that is rooted in the 
Takagi-Sugeno-Kang approach,Y the 
rules are assumed to be of the form 

(ifX, isA,, and ... andX,isA,, 
then Y =  bJ,  i = I,..,,n 

where b, are constants (singleton con- 
sequents). If the numerical values of 
X I ,  ... X ,  are U,, , ... U,, , respectively, 
and the grades of membership of uI ,  , 
... U,, , in A,, , ... A,, are p Ir (ul ,  ) ,... 
~ ~ ~ ( u ~ ~ ) ,  then the combined degree to 
which the input n-tuple X(uI , ,  ... u,J 
matches the antecedents is taken to be 
the product 

m, = P I I ( U l i  I,... Ilrn,(U,"J, 

Then, defining the normalized weight 
wr as 

w, = m,/ mi + ... + mrn 

the output is expressed as 
Y = Z, m,b, 

l! 
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Note that in this architecture there 
is no defuzzifier because the inputs X,, 
... X ,  are assumed to be singletons. 

In the application of gradient pro- 
gramming to  this architecture, the 
membership functions of A,,  , ... A,, 
are assumed to be triangular, trape- 
zoidal, or Gaussian in form. Then,  
using backward iteration, the values of 
membership-function parameters are 
computed from right to left.10-11 In 
this way, from the knowledge of 110 
pairs we can compute the values of 
parameters and thereby induce the 
rules from observations. 

The approach sketched here is one 
way the methodologies of fuzzy rule- 
based systems and neural networks can 
be combined, leading to “neurofuzzy” 
systems. Such systems are growing in 
number and visibility and are illustra- 
tive of the advantages derived from 
combining soft computing’s con- 
stituent methodologies. In this con- 
text, it is important to note that inter- 
polation and induction of rules from 
observations are key issues in both 
fuzzy logic and neurocomputing. 

approach that is model-dependent - 
in the sense of requiring a formulation 

FUZZY BALL AND BEAM PROBLEM 

Figure 11. Representing a fuzzy Jystem as a multilayered structure. Il and N 
denote multipliers and normalizers, respectively. 

of equations governing system behav- 
ior - can be employed because we do 
not know how to model a ball rolling 
or sliding on a rug-like surface. This 
rules out the use of classical control 
theory as well as any approach that 
requires simulation. 

The set-interval may be viewed as a 
disjunctive goal. This feature makes it 
difficult to employ neural-network 
techniques. 

By contrast, the problem is easy to 
solve with fuzzy logic because it is rel- 
atively easy for a human. In fact, the 
presence of a fuzzy layer makes the 
ball-and-beam problem easy for 
humans and difficult or impossible for 
alternative methodologies. As in most 
fuzzy-logic applications, the solution is 
in effect a translation of a human solu- 
tion into FDCL. A human solution 
would normally involve seven steps: 

1. Compile uncalibrated fuzzy or 
crisp rules from knowledge of natural 
laws, to govern the behavior of the 
ball and beam. For example 

if 0 isPegat ive 
then Y is positive 

if 0 is,positive 
then Y is negative 

the more negative 0, 
the more positive Y 
the more positive 0 ,  
the  more negative Y 

2 .  Construct a plan of action (an 

algorithm), expressed in terms of 
uncalibrated fuzzy rules of the form 

if State is A then Action is B 

3. Test the system without trying 
to solve the problem 

4. Calibrate the fuzzy rules in step 
2 using metarules, rules that modify 
other rules 

5. Test the algorithm constructed 
in step 2.  

6. Refine the calibrated fuzzy rules 
derived in step 5 .  

7 .  Iterate steps 5 and 6 until the 
ball stays in the set-interval. 

Figure 12. Fuzzy ball and beam prob- 
lem. 

I E E E  S O F T W A R E  5 5  

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 13, 2009 at 01:00 from IEEE Xplore.  Restrictions apply.



Translating these steps into a col- 
lection of fuzzy rules expressed in 
FDCL is by no means a trivial prob- 
lem. This is particularly true of the so- 
called gradual rulesls of the form 

the more Xis A the more Y is B 

because such rules describe the global 
behavior of a functional dependency 
rather  than i ts  local propert ies .  
However, what is important is that, 
though it is not easy, it is feasible to 
translate a human solution in to  
FDCL, whereas it is not feasible to 
translate it into anal~aical technisues. 

more difficult for a human because it 
involves a conjunction of two goals: 

+ confine the motion of the ball to 
the prescribed set-interval [a,, a,], and 

+ enter the set-interval a t  a time t 
which is constrained to lie in a pre- 
scribed temporal set-interval [t,, t J .  

In this case, formulating a human 
solution and translating it into FDCL 
is a real challenge. W e  do not  yet 
completely understand how to apply 
fuzzy logic to problems like this. But it 
is evident that  fuzzy logic - used 
alone or in combination with neuro- 
computing and probabilistic reasoning 
- is the methodology of choice when 

to reach the set interval at some time t ~ analytic models are impossible or hard 
Now suppose you wanted the ball 

and stay there. This is significantly to formulate. 
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A lthough soft computing is still in 
its initial stages of evolution, i t  is 
rapidly growing in importance and 
tisibility. In the years ahead, soft com- 
puting and its principal constituents 
- fuzzy logic, neurocomputing, and 
probabilistic reasoning - are likely to 
emerge as essential tools for the con- 
ception, analysis, and design of high 
MIQ systems. In the final analysis, the 
role model for soft computing is the 
human mind. 
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