
 
 

 

  

Abstract— In this paper an application of the adaptive neuro-
fuzzy inference system has been introduced to predict the 
behavior of a chaotic robot. The chaotic mobile robot implies a 
mobile robot with a controller that ensures chaotic motions. 
Chaotic motion is characterized by the topological transitivity 
and the sensitive dependence on initial conditions. We have 
used the controller such that the total dynamics of the mobile 
robot is represented by the Arnold equation, which is known to 
show the chaotic behavior of non-compressive perfect fluid. 
Then we have used the adaptive neuro fuzzy inference system 
for predicting of this chaotic mobile robot. 

We propose to predict the behavior of the chaotic mobile 
robot by using an adaptive neuro-fuzzy inference system. This 
system is functionally similar to fuzzy inference systems which 
based on hybrid learning rule and also are more quick and 
accurate than methods used neural networks or Kalman filter. 
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I. INTRODUCTION 

Chaos characterizes one of mysterious rich behaviors of 

nonlinear dynamical systems. Many research efforts have 
been paid to establish the mathematical theory behind chaos. 
This paper introduces a chaotic mobile robot that the chaotic 
behavior is achieved by designing a controller which ensures 
chaotic motion. A mobile robot with such characteristics 
may find its applications as a patrol robot or a cleaning robot 
in a closed room, floor, or building. The sensitive 
dependence on initial condition also yields a favorable 
nature as a patrol robot since the scanning trajectory 
becomes highly unpredictable. 

A. Chaotic mobile robot with the Arnold equation 
As the mathematical model of mobile robots, we assume a 

two wheeled mobile robot as shown in Fig. 1. Let the linear 
velocity of the robot v [m/s] and the angular velocity ω  
[rad/s] be the inputs to the system. The state equation of the 
mobile robot is written as follows [1] : 
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Where (x [m], y [m]) is the position of the robot and θ  
[rad] is the angle of the robot. 

 

 
Fig. 1. Mobile robot 

 
In order to generate chaotic motions of the mobile robot, 

we employ the Arnold equation, which is written as follows: 
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Where A, B, and C are constants. 

B.  Integration of the Arnold equation 
In order to integrate the Arnold equation into the 

controller of the mobile robot, we define and use the 
following state variables: 
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Where B, C and D are constants. Substituting (1) into (3), 

we obtain a state equation on x1, x2 and x3 as follows: 
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We now design the inputs as follows: 
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Consequently, the state equation of the mobile robot 

becomes: 
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Equation (6) includes the Arnold equation. The Arnold 

equation behaves chaotically or not, depending upon the 
initial states. We choose the initial states of the Arnold 
equation such that the trajectory should behave chaotically. 
The whole states evolve in a 5-D space according to (6), 
which includes a 3-D subspace of the Arnold flow. Fig. 2 
shows an example of motion of the mobile robot with the 
introduced controller, obtained by numerical simulation. 
 

 
Fig 2. Chaotic mobile robot trajectory  

 
Here we propose to predict the behavior of a chaotic robot 

by using an adaptive neuro-fuzzy inference system. This 
system is functionally similar to fuzzy inference systems 
which based on hybrid learning rule and also are more quick 
and accurate than methods used neural networks or Kalman 
filter. 

Adaptive neural fuzzy inference system (ANFIS) is an 
idea by combining the fuzzy inference system with neural 
network. The fuzzy inference system is used widely in fuzzy 
control, it can number rules by leading into a new ideal of 
membership function to deal with structural knowledge. 
ANFIS fully makes use of the excellent characteristics of 
neural network and fuzzy inference system. ANFIS can 
approach all nonlinear system with less training data and 
quicker weakening speed and higher precision.  

 

 
     In the following sections, the structure of the neuro-fuzzy 
inference system and prediction of the chaotic robot 
trajectory by using the ANFIS algorithm will be explained, 
respectively. Finally, the result of simulation and conclusion 
can be seen.  

II. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 
In this section, we describe a class of adaptive network 

that are functionally equivalent to fuzzy inference systems. 
The propose architecture is referred to as ANFIS [2], which 
stands for adaptive network-based fuzzy inference system. 
We describe how to decompose the parameter set to 
facilitate the hybrid learning rule for ANFIS architecture 
representing both the Sugeno and Tsukamoto fuzzy models. 

A. ANFIS architecture  
For simplicity, we assume that the fuzzy inference 

system under consideration has two input x and y and output 
z. For a first-order Sugeno fuzzy model, a common rule set 
with two fuzzy if-then rules is the following [2]: 

Rule 1: If x is A
1 
and y is B

1
, then f

1
=p

1
x+q
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1
,  

Rule 2: If x is A
2 
and y is B

2
, then f

2
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2
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2
y+r

2
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Figure 3 illustrate the reasoning mechanism for this 
Sugeno model; the corresponding equivalent ANFIS 
architecture is shown in figure 4, where nodes of the same 
layer have similar functions, as described next  

 
 

 
Fig. 3 Sugeno fuzzy model, with two inputs and two fuzzy if-then rules has 
been shown. 

 



 
 

 

 
Fig. 4  Structure of ANFIS algorithm 

 
Layer 1. Every node I in this layer is an adaptive node with 
a node function  
           )(,1 xO

iAi µ= , for i=1, 2                  (7)          or 
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    Where x (or y) is the input to node i and A

i 
(or B

i-2
) is a 

linguistic label (such as “small” or “large”) associated with 
this node. In other words, i is the membership grade of a 
fuzzy set A (=A

1
, A

2
, B

1 
or B

2
) and it specifies the degree to 

which the given input x (or y) satisfies the quantifier A. Here 
the membership function for A can be any appropriate 
parameterized membership function, such as the generalized 
bell function:  
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Where {a
i
, b

i
, c

i
} is the parameter set. As the values of these 

parameters change, the bell-shaped function varies 
accordingly, thus exhibiting various forms of membership 
for fuzzy set A. Parameters in this layer are referred to as 
premise parameters.  
Layer 2. Every node in this layer is a fixed node labeled Π, 
whose output is the product of all the incoming signals:  
          ( ) ( )yxwo

ii BAii µµ==,2 , i=1,2                 (10) 

     Each node output represents the firing strength of a rule. 
In general, any other T-norm operators that perform fuzzy 
AND can be used as the node function in this layer.  
Layer 3. Every node in this layer is a fixed node labeled N. 
The i-th node calculates the ratio of the i-th rule’s firing 
strength to the sum of all rule’s firing strengths.  
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For convenience, outputs of this layer are called normalized 
firing strengths.  
Layer 4. Every node I in this layer is an adaptive node with 
a node function  
 
       ( )iiiiiii ryqxpwfwO ++==,4             (12) 

     Where ϖ
1 

is a normalized firing strength from layer 3 
and {p

i
, q

i  
r

i
} is the parameter set of this node. Parameters in 

this layer are referred to as consequent parameters.  
Layer 5. The single node in this layer is a fixed node 
labeled Σ, which computes the overall output as the 
summation of all incoming signals.  
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B. Hybrid Learning Algorithm  
From ANFIS architecture shown in the figure 4, we observe 
that the values of the premise parameters are fixed, the 
overall output can be expressed as a linear combination of 
the consequent parameters. In symbols, the output f in the 
figure 4 can be rewritten as  
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    Which is linear in the consequent parameters p
1
,q

1
,r

1
,p

2
,q

2 
and r

2
.  

     The learning algorithm for ANFIS is a hybrid algorithm 
which is a combination between gradient descent and least-
squares method. More specifically, in the forward pass of 
the hybrid learning algorithm, node outputs go forward until 
layer 4 and the consequent parameters are identified by the 
least-squares method. In the backward pass, the error signals 
propagate backward and the premise parameters are updated 
by gradient descendent. Table1 summarizes the activities in 
each pass.  
     The consequent parameters are identified optimal under 
the condition that the premise parameters are fixed. 
Accordingly, the hybrid approach converges much faster 
since it reduced the search space dimensions of the original 
pure back propagation method. 
 
 

TABLE 1: LEARNING PARAMETERS OF THE ANFIS ALGORITHM  
 Forward pass Backward pass 

Premise 
parameters Fixed Gradient descent 

Consequent 
parameters 

Least-Squares 
estimator Fixed 

Signals Node Outputs Error signals 

III. PREDICTION  THE  BEHAVIOR OF THE CHAOTIC ROBOT 
USING ANFIS ALGORITHM  

In this part the application of the ANFIS algorithm in 



 
 

 

predicting the behavior of the chaotic robot and its next 
values is considered. 

The goal of the task is to use past values of the dynamic 
up to time t to predict the value at some point in the future 
t+P. The standard method for this type of prediction is to 
create a mapping from D points of the dynamic spaced D 
apart that is, [x(t-(D-1) ∆ ),..,x(t- ∆ ),x(t)], to a predicted 
future value x(t+P). In our simulation, the values D=4 and 
∆ =P=6 were used.  

We have extracted 1000 input-output data pairs of the 
following format from the robot trajectory and used ANFIS 
algorithm for prediction of next values:  
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The first 500 pairs were used as training data set for 

ANFIS, while the remaining 500 pairs were the checking 
data set for validating the identified ANFIS. For predicting 
of the chaotic robot behavior, we have considered it 
separately in two axis X and Y and used the ANFIS 
algorithm at each of these axes [3]. The number of 
membership functions assigned to each input of the ANFIS 
was set to two that have been selected bell shaped, so the 
number of rules is 16.  

     In next section, the results of simulation consisting of 
error diagram, main trajectory and ANFIS prediction of the 
chaotic robot will be reviewed [4]. 

IV. SIMULATION RESULTS 
In this part the results of simulation in X direction and 

then in Y direction are shown.  

A. Result of simulation in X direction: 

 
 

Fig. 5 chaotic robot trajectory in X direction 
(blue : main trajectory, red : ANFIS output) 

 

 
Fig. 6 chaotic robot trajectory prediction error in X direction 

 

B. Result of simulation in Y direction: 
 

 
 

Fig. 7 chaotic robot trajectory in Y direction 
(blue : main trajectory, red : ANFIS output) 

 
 
 
 

 
 

Fig. 8 chaotic robot trajectory prediction error in Y direction 



 
 

 

 

V. CONCLUSION  
In this paper, the prediction of the behavior of a chaotic 

robot by using an adaptive neuro-fuzzy inference system 
accomplished. We extracted 1000 input-output data pairs. 
The first 500 pairs were used as training data set for ANFIS, 
while the remaining 500 pairs were the checking data set for 
validating the identified ANFIS. For predicting the chaotic 
robot behavior, we have considered it separately in two axes 
X and Y and used the ANFIS algorithm at each of these 
axes.  

The result of ANFIS and prediction error of the 
considered robot shows that this algorithm is more accurate 
in compare with methods used neural networks or Kalman 
filter for predicting [5].            
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