New Dynamic SPT Algorithm based on a
Ball-and-String Model

Paolo Narvéaez, Kai-Yeung Siu, Hong-Yi Tzeng

Abstract—

A key functionality in today’s widely used interior gate-
way routing protocols such as OSPF and IS-IS involves the
computation of a shortest path tree (SPT). In many exist-
ing commercial routers, the computation of an SPT is done
from scratch following changes in the link states of the net-
work. As there may coexist multiple SPTs in a network
with a set of given link states, such recomputation of an
entire SPT not only is inefficient but also causes frequent
unnecessary changes in the topology of an existing SPT and
creates routing instability.

This paper presents a new dynamic SPT algorithm that
makes use of the structure of the previously computed SPT.
Our algorithm is derived by recasting the SPT problem
into an optimization problem in a dual linear programming
framework, which can also be interpreted using a ball-and-
string model. In this model, the increase (or decrease) of an
edge weight in the tree corresponds to the lengthening (or
shortening) of a string. By stretching the strings until each
node is attached to a tight string, the resulting topology of
the model defines an (or multiple) SPT(s). By emulating
the dynamics of the ball-and-string model, we can derive an
efficient algorithm that propagates changes in distances to
all affected nodes in a natural order and in a most economi-
cal way. Compared with existing results, our algorithm has
the best-known performance in terms of computational com-
plexity as well as minimum changes made to the topology
of an SPT. Rigorous proofs for correctness of our algorithm
and simulation results illustrating its complexity are also
presented.

I. INTRODUCTION

In today’s Internet, each datagram is forwarded by a
router based on a forwarding table. Routing protocols are
employed to exchange topology information among routers
to facilitate the construction of forwarding tables. Exam-
ples of widely used link-state based routing protocols in-
clude Open Shortest Path First (OSPF) and IS-IS [16],
[22]. With these routing protocols, each link is associated
with a cost (weight) and routers exchange link state infor-
mation so that each router in a routing area has a complete
description of the network topology. Using the link costs,
each router computes a path with minimum cost from itself
to each other router in the region, yielding a shortest path
tree (SPT). The corresponding SPT is then used to build
a forwarding table which contains routing information for
forwarding a datagram to its destination along the shortest
path.

When the topology in a routing area changes (e.g., a link
fails, recovers, or changes its routing cost), every router in
the region ig notified of the change. After updating the

P. Narvdez and K.-Y. Siu are with the d’Arbeloff Laboratory for
Information Systems & Technology, Massachusetts Institute of Tech-
nology, Cambridge, MA. H.-Y. Tzeng is with the High Speed Net-
working Department, Bell Labs, Lucent Technologies, Holmdel, NJ.
Email: pnarvaezQlist.mit.edu, siu@list.mit.edu, htzeng@lucent.com

corresponding topology changes in its link state database,
each router recomputes its SPT. In most of today’s com-
mercial routers, this recomputation is done by deleting the
current SPT and recomputing it from scratch by using the
well known Dijkstra algorithm [20].

Usually, after some changes in the link states, the topol-
ogy of the new SPT does not differ significantly from the
old one. (In fact, most often it does not change at all.)
Static algorithms that recompute the SPT from scratch
are clearly inefficient because they do not take advantage
of available information about the outdated SPT. Another
drawback of using static SPT algorithms is that there may
coexist multiple routes of the same shortest distance from
one router to another; by recomputing a new SPT from
scratch, a router may unnecessarily choose a different route
of the same distance to forward its packets. This in turn
may cause the router to change many entries in its forward-
ing table frequently, increasing the risk of routing errors or
router failures.

In addition to redundant updates in forwarding tables,
unnecessary changes in SPT also cause undesirable fluctu-
ation of traffic load on a given route. (For an excellent
discussion on instability of other routing protocols in the
Internet, see [21], [23].)

In this paper, we will present an efficient algorithm that
can dynamically update the SPT following changes in the
link states. Our dynamic algorithm uses information of
the outdated SPT and updates only the part of the SPT
that is affected by the change. Our design objectives for
this dynamic algorithm are twofold. The first objective
is to minimize the computational complexity required to
update an SPT. The second objective is to maintain routing
stability by making minimal changes to the topology of an
existing SPT.

In the next section, we shall further discuss some prior
works. Section III sets up an example to illustrate the
problem and to give some intuition on the algorithm. Sec-
tion IV introduces graph-theoretic definitions and nota-
tions to be used in the paper. In Section V, we describe our
algorithm in detail. Section VI proves how the algorithm
works, proves its correctness, and analyzes its complex-
ity. Section VII presents simulation results illustrating the
complexity of the new algorithm. Concluding remarks are
given in VIIL

II. RELATED WORKS

The problem of routing in data networks has been a
subject of continual research interest for the past two
decades [1], [4], [10], [15], [25], [26] and many routing pro-

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

tocols have been studied and used in practical networks [6],
[12], [16], [24], [27]. Recently, the stability issues in Inter-
net routing have attracted much attention [21], [23]. In
fact, our interest in dynamic SPT algorithms was partly
motivated by the problem of routing instability in the In-
ternet.

To our knowledge, the earliest work on dynamic SPT
algorithms that appeared in the literature was [18]. A dy-
namic SPT algorithm for the Arpanet was also discussed
in [12]. This algorithm is basically a generalization of Di-
jkstra’s static SPT algorithm [20]. However, the work [12]
contains no analytical proofs nor simulation results.

Two semi-dynamic algorithms to update SPTs are pre-
sented in Franciosa et al. [7]. Each semi-dynamic algo-
rithm handles the case when the change in an edge weight
is either positive or negative. The algorithms are dynamic
versions of the Dijkstra algorithm, but can only handle in-
teger edge weights. The paper only analyzes the worst-case
complexity of the algorithm in terms of the total size of the
graph rather than the number of nodes whose distances
have changed (denoted by 4, in this paper). Therefore,
the complexity cannot be shown to be better than that of
a static algorithm.

Frigioni et al. [9], [8] present an algorithm similar to the
one in [7] but it allows the edge weights to be non-integers.
The algorithm is also a dynamic version of the Dijkstra al-
gorithm. The complexity of the algorithm in [8] is analyzed
in terms of the number of nodes whose optimal distance to
the source change. Their algorithm also introduces some
optimization for cases where there is a large number of
edges (where the node degree is not bounded) in order to
bound the worst-case complexity in such cases.

Our previous work on dynamic SPT algorithms [13] in-
troduces a new framework to convert various conventional
static SPT algorithms into dynamic ones. By adjusting
various parameters, the framework can produce dynamic
versions of not only the Dijkstra algorithm, but also the
Bellman-Ford [2] and D’Esopo-Pape [3] algorithms. This
framework characterizes dynamic SPT algorithms in a uni-
fied way and establishes a general proof of correctness for
all the algorithms that fit the framework. The difference
between each of the specific dynamic algorithms in this
framework is the way in which nodes are stored and ex-
tracted from a general set. The work in [13] only considers
extraction criteria that are derived from the search criteria
of the corresponding static SPT algorithms. The new al-
gorithm presented in this paper fits in this framework but
uses an original search criterion, not derived from any ex-
isting static SPT algorithm, and is provably better than the
existing dynamic SPT algorithms. An extended version of
this paper is can be found in [14].

I1I. EXAMPLE

We introduce the SPT recomputation problem with a
simple example. Figure 1 shows a network comprising six
nodes, where each node is labeled with a letter (A to F).
The links between the nodes are illustrated with either dot-
ted or solid lines, and the number next to each line is the

Fig. 2. Shortest path tree after link change.

weight of that edge. When the link between nodes A and
C has a weight of 8, the SPT rooted at node A consists of
the solid lines in the figure; the shortest distance of each
node is the number inside each node.

At some point in time, the edge between nodes A and
C changes its weight from 8 to 2. This weight change
will significantly alter the structure of the SPT. The new
SPT is shown in Figure 2. We will follow step by step
the different computations that one needs to do in order to
dynamically change the tree corresponding to the old SPT
into the new SPT. The entire computation will be done
using two different methods. The first method uses the
familiar notion of shortest distance as used by the Dijkstra
algorithm (and its dynamic versions). The second method
employs a new notion (that of maximum decrement) which
will prove to be more efficient for this task.

First of all, it is clear that the edge between A and C
(which decreases its weight) will remain in the SPT and
that the shortest distance of node €' will decrease to 2.
Because node C has a shortest distance of 2, it can further
decrease the potential shortest distance of nodes B (from
7 to 6) and E (from 10 to 7) by becoming their parent in
the new tree. Now we have the choice of continuing the
modification of the tree by following node B or following

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

node E.

If we give preference to nodes with the smallest potential
distances (similar to the Dijkstra algorithm), we will choose
node B because its potential shortest distance 6 is smaller
than the potential shortest distance of node E (7). When
we are at node B, its parent in the tree is changed from
A to C and its distance label is reduced to 6. Since node
B has a child D, the distance label of D is now reduced
from 11 to 10. Since D does not have a directed edge to
another neighbor, its distance change does not affect any
other node. Then, we return to node E and decrease its
distance label to 7 by making it a child of C. Since F is
the child of E, its distance label is reduced from 12 to 9.
Finally, node D decreases its distance label from 10 to 9
by becoming a child of E.

On the other hand, if after C’s distance label change,
we decide to modify E before B (E has the the greatest
distance label decrease), the total computation becomes
simpler. In this case, the parent of E becomes C and its
distance label becomes 7. The distance label of its child F
becomes 9. We now have a choice of modifying node B or
node D. Since node D has the largest potential shortest
distance decrease (from 11 to 9, rather than from 7 to 6),
node D will become a child of node E and acquire a dis-
tance label of 9. Finally, B will become a child of C' and
acquire a distance label of 6.

Notice that when nodes E and D were chosen ahead of
node B, the total computation is smaller. Specifically node
D is visited only once and its distance label changes directly
from 11 to 9, rather than changing in two steps first from
11 to 10 and then from 10 to 9. The notion that we have
used in the second computation is to give priority to nodes
whose potential shortest distance decreases the most (or
increases the least). It is by generalizing this notion, that
we obtain the general algorithm described in this paper.

IV. ProBLEM FORMULATION
A. Shortest Path Tree

Let G = (V,&) denote a directed graph where V is the
set of nodes and £ is the set of edges in the graph. Let
N denote the total number of nodes in V and E the total
number of edges in £. The graph ¢ consists of a root node
denoted by ng, and all other nodes ny, ...,ny—1 are assumed
to be reachable from ng by a directed path in §. Each edge
e; (i =0,...,F — 1) has an associated weight (cost) of w;,
which is assumed to be positive.

A rooted tree T is a subgraph of G such that every node
in G is reachable from the root 1y through a unique directed
path using only edges in 7. The length of a path is the sum
of the weights of the edges in that path. The distance of a
node n, (i =1,...,N —1)in 7 is the length of the directed
path in 7 connecting ng to n,. The shortest distance of
a node n, is the length of a shortest path in ¢ connecting
connecting ng to n;. A tree T is said to be a shortest path
tree (SPT) for G if the distance of every node n; in 7T is
the shortest distance of n; in G. Note that there can be
multiple SPTs in a graph, but the shortest distance of any
node is unique.

B. Linear Programming Framework

It is well known that the SPT problem can be formu-
lated as an optimization problem in a linear programming
framework.! To see this, for every directed edge e; con-
necting node n; to node ny, we create a (row) vector @,
of dimension N (number of nodes) which contains all 0’s
except a ‘ — 1’ at the j®® entry and a * + 1’ at the kP
entry. The concatenation of all such vectors ¥; results in
a connectivity matrix A (of dimension F x N). Let @ be
an N-dimensional (column) vector such that its i** entry
u; corresponds to a potential distance of node n;. If u}
is the shortest distance of node n; (u§ = 0), then clearly
uj —uy < we, where wy is the weight of the edge connecting
n; to nj. Thus, if @ denotes the (column) vector of edge
weights and 4* represents the vector of shortest distances,
then @* must satisfy the following feasibility constraint:

Aa S w 4 Ug = 0. (1)

Clearly, there are infinitely many vectors @ that satisfy
the above matrix inequality and only one of them corre-
sponds to the vector of shortest distances #*. However, it
can be shown that 4* can be found by solving the following
linear optimization problem:

maz(bT @) (2)

subject to the feasibility constraint given by Eqn. (1),
where b is an N-dimensional vector with each entry equal
to 1. Note that bTa represents the sum of the potential
distances of all nodes.

The feasibility constraint of Eqn. (1) ensures that the
difference of the distances u; and u, associated with nodes
n; and n; is always no greater than the weight of the edge
connecting the nodes. This is clearly the case in an SPT
where the distance u; is the length of a shortest path from
no to n;. Interestingly, the vector of shortest distances
can be obtained by maximizing the sum of the potential
distances u; of all nodes, while respecting the feasibility
constraint.

In order to determine an SPT from the solution 4* of the
above optimization problem, one can substitute @* into the
feasibility constraint ATd < W. If the row 4 of the matrix
inequality is an equality, it means that edge e; can be used
in an SPT.

C. Physical Interpretation of SPT in a Ball-and-String
Model

There is an intuitive way of interpreting the linear pro-
gramming formulation of the SPT problem using a ball-
and-string model. Consider a collection of balls, each of
which corresponds to a node in V. Each edge e; with weight
w; > 0 connecting nodes n; and n in G is associated with

!There are both primal and dual formulations of the SPT prob-
lem in a linear programming framework. We present here the dual
formulation to motivate the ball-and-string model.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

an inelastic string of length w; connecting the balls repre-
senting n; and ng. Let u; denote the Euclidean distance
between the balls representing ng and 7;. In the following,
the terms “ball” and “node” will be used interchangeably.

Since none of the strings is allowed to be stretched be-
yond its length, it is clear that in this illustration, the
vector of Euclidean distances % always satisfies the fea-
sibility constraint (1). Moreover, a string becomes “tight”
as soon as the Euclidean distance between the two nodes
attached equals its length. The optimal solution of (2) is
then achieved by sequentially pulling the balls (in the same
direction) so as to maximize their distances from the ball
representing the root node ng. In other words, when the
balls are stretched out from ng as much as possible, their
distances form a vector @* that corresponds to the optimal
solution. If there is only one SPT in the graph, the strings
that are tight will then define the SPT. If there are mul-
tiple SPTs, each string that is tight will correspond to an
edge that is part of some SPT.Our algorithm can be easily
extended to compute all such edges.

In fact, the execution of the original (static) Dijkstra
algorithm can also be interpreted in terms of the above
ball-and-string model. Let us imagine that the ball corre-
sponding to the root node ng is anchored at a fixed position,
while other balls are “floating” in the sense that their at-
tached strings are not tight. All the balls are initially in
the same position. In the first iteration, the ball connected
to no with the shortest string is first pulled away from ng
(always in the same direction) and will be anchored along
with ng.

In the second iteration, the floating ball that has a string
connected to the anchored nodes and is closest (through
that string) to ng is then pulled away (along the same di-
rection as before) until that string becomes tight and the
ball is anchored. The procedure is repeated until all float-
ing balls are anchored. The Euclidean distance of an an-
chored ball from the root ball then represents its shortest
distance.

V. DyNnamic SPT ALGORITHM
A. Algorithm Ezecution in the Ball-and-String Model

Recall that in computing a new SPT from an outdated
SPT, our objectives are to minimize the computational
complexity and the changes to the topology of the SPT.
In fact, the ball-and-string model gives us useful insights
into how an efficient dynamic SPT algorithm with these
objectives should be designed. Before we present a formal
specification of our algorithm, we next describe its execu-
tion in terms of the ball-and-string model.

Let us now imagine that the root node ng is anchored
at a fixed position and the rest of the nodes are allowed to
drop under gravity. Since gravity pulls down on these nodes
as much as possible, the resulting Euclidean distance of a
node n, from the anchored root node is equal to the shortest
distance of n;. When the length of a string increases, the
ball attached to the lower end of the string (as well as
others) will fall down for some distance until at least one
of its attached string becomes tight. When the length of a

~
o0

Fig. 3. The ball-and-string models for the networks in Fig. 1 (left)
and Fig. 2 (right).

string decreases, the ball attached to the lower end of the
string (as well as others) will be raised accordingly. After
the length of the string is modified, the hanging ball-and-
string model always represents the set of valid SPTs.

Figure 3 illustrates the ball-and-string models for the
networks in Figure 1 and Figure 2. The straight lines repre-
sent the tight strings and the curly lines represent the loose
strings. The shortest paths from node A to all other nodes
are composed of the straight lines in the figures. When
the link distance between A and C is reduced from 8 to 2,
node C is “raised” to a higher level. It can be seen from
the figure that some loose strings in the original model now
become tight and that the affected nodes rearrange them-
selves in a natural way into their optimal positions. When
the length of the string between A and C is reduced grad-
ually, the sequence of distance changes that takes place
with this ball-and-string model corresponds to the optimal
execution we discussed for our example at the end of sec-
tion III.

The execution of our algorithm simulates the dynamics
of the balls when a string gets longer or shorter. When
there are multiple strings that change lengths, the algo-
rithm separates the length increments and decrements of
the strings into two sets, and then simulates the dynamics
for one set after the other. Within each set, the changes in
the string lengths are simulated as if they took place at the
same rate. In other words, all the balls that will change
distances will move at the same rate. The efficiency of our
algorithm is due to the fact that the changes in distances
are propagated to all affected nodes in a natural order and
in a most economical way.

If the directed edge ej connecting n; to n; has a different
weight than the edge €; connecting n; to n;, then we need
to stretch our imaginations a little and change the inelastic
string for a magic elastic string. This elastic string repre-
senting the two edges has a nominal zero length but can be
stretched up to a certain distance when pulled. When n,
is above n; (due to gravity), the elastic will stop stretching
at length wg; when n; is above n;, it will stop stretching

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

at length w;.

B. Algorithm Specification

For each directed edge e € &£, we use W(e) to denote the
weight (distance) associated with e, S(e) and E(e) to denote
respectively the source node and the end node of e. The
length or distance of a directed path is the sum of weights
of the edges on the path. Given a set of nodes N’ C V, we
associate with it two sets of edges: {N) = {ec £ | E(e) €
N} (the set of edges directed into the nodes in N) and
O(W) = {e € £ S(e) € N'} (the set of edges directed out
of the nodes in N). The variable root(G) denotes ng, the
root node of the SPT. These parameters only depend on
the topology of the network, and their values do not change
during the execution of the algorithm.

A tree data structure, denoted by 7', is maintained by
our algorithm to keep track of an existing potential short-
est path tree. In particular, every node n in the graph G,
along with its parent attribute P(n,'f’), a list of children
C(n,T), its distance attribute D(n,7), and a Boolean at-
tribute V(n,7) with value floating or anchored, is present
in 7. This data structure 7 changes progressively during
the computation, and when the execution of the algorithm
is completed, it will represent an SPT and each node n will
have its Boolean attribute V(n,7) = anchored.

In addition to the data structure 7", our algorithm also
maintains a list @ that temporarily contains a subset of
nodes together with three attributes. In particular, each
element in Q is of the form {n, (p,d,A)}, where p denotes
a potential parent for node n, d denotes a potential distance
for node n, and A denotes the potential distance change
for n.

The instruction ENQUEUE(Q, {n, (p,d,A)}) adds one
more element to Q. If node n is already in Q, the new
attributes (p,d, A) will replace the old ones only if the new
A is smaller than the old one. At any instant, only one set
of attributes is maintained for each node in Q. When an
EXTRACTMIN(Q) instruction is executed, the element
with the smallest A is selected and removed from Q If
there is more than one element with the minimum A, the
smallest distance d is used as a tie breaker. If more than
one element has the smallest d among the elements with
the smallest A, then any of these elements can be chosen
by EXTRACTMIN. A REMOVE(n, Q) operation removes
the entry for node n from the list Q.

The algorithm also uses two more auxiliary subroutines.
The function Bpa.x(n, 7) denotes the set of nodes (including

n) that are descendents of n in the tree 7. This set can be
easily computed by descending directly down T. Likewise,
the function B,y (n,7) denotes the subset of Bmax(n,7)
that is reachable from n through some path of anchored
nodes. It can be easily computed by descending directly
down T and stopping when a node found in the path is
floating.

The algorithm contains an initialization procedure (step
1) and an iterative loop (steps 2-4). If there are multiple
edge weight changes, only the weight increments or the

weight decrements can be handled at a time.

STEP 1: Initialization

(A) Static Version
YV (n €V) # root(G)
P(n,7) + 0
D(n,7) <0
V(n,T) « floating
Cn,T) « 0
ENQUEUE (Q, {root(G), (0,0,0)})
Go To Step 2

(B) Dynamic Version
(applicable when an outdated SPT exists)
Case 1 (Edge e; € £T increases its weight by T';):
Neo
Ve; € £F
Wi(e) «+ W(e) + T
if S(e;) = P(E(e;), T)
N + Bua(E(e),T)
VneN
V(n,T) « floating
N« NuN
Veel(N)
if V(S(e),T) = anchored
newdist = D(S(e), T) + W(e)
ENQUEUE(Q, {E(e), (S(e), newdist, A)})
Go To Step 2

Case 2 (Edge e; € £~ decreases its weight by T';):
Ve, € £~
W(e;) — W(e;) -I;
newdist « D(S(e)), T) + W(e;)
if newdist < D(E(e;), T)
A « newdist — D(E(e;), T)
ENQUEUE (Q, {E(e), (S(&;), newdist, A)})
Go To Step 2

STEP 2: Node Selection

ifQ=90
Terminate

else
{y, (z,d,A)} + EXTRACTMIN(Q)
C(z,7) « Cla,)+ {y}
C(P(Xv T)v T) « C(P(y7 T)’ T) - {y}
P(y,T) « x
N — Bmax(Y>T)

STEP 3: Distance Update
VneN
D(n,7) « D(n,T)+ A
V(n,7) = anchored
if n e Q AND P(n,7) #P(n, Q)
REMOVE(n, Q)

STEP 4: Node Search

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Vee OW)
if (D(E(e), T) > D(S(e), 7) + W(e)) OR
(V(E(e)) = floating)
newdist « D(S(e), T) + W(e)
A + newdist — D(E(e),)

ENQUEUE (Q, {E(e), (S(e), newdist, A)})
Go to Step 2

C. Informal Discussion of the Algorithm

To help understand the algorithm, here we shall give an
informal discussion of its executions. As the execution is
the same for the static version and the dynamic version
after initialization, we shall only discuss the dynamic ver-
sion, since the initialization of the static version is trivial.
Also note that the execution of the static version of this
algorithm is equivalent to Dijkstra’s algorithm.

First, the goal of the initialization phase is to identify
those nodes that may be affected by the changes in the
link states. The potentially affected nodes are those that
are no longer connected to the root through the same short-
est path as before. Moreover, in the initialization, we only
want to select a minimal set of such nodes whose changes in
distance will be subsequently propagated to their descen-
dents in the original tree, which can be updated.

It is assumed that in the existing (outdated) SPT, all
nodes were anchored. The potentially affected nodes when
there are edge weight increments will be marked floating
in the initialization. As mentioned earlier, the algorithm
works by first updating the SPT with all edges that increase
their weights (case 1) and then updating the SPT with all
edges that decrease their weights (case 2).

In case 1, after updating each edge e, with the new in-
creased weight, we check if the edge is in the existing SPT.
If it is, we select its end node E(e;) and all descendent
nodes of E(e;) that are reachable via anchored nodes in the
existing SPT. All such nodes will be marked floating and
included in a set A for further updating. The intuition
is that the set A covers all the affected nodes. Moreover,
we only have to consider those nodes that are directly at-
tached to anchored nodes in the existing SPT (their de-
scendent nodes will be updated in subsequent steps of the
algorithm).

Now for each anchored node that is attached to a link
directed into a floating node in N , we compute the poten-
tial distance newdist of the floating node by adding the
distance of the anchored node and the weight of the edge
connecting the two nodes. Moreover, we keep track of the
difference A between the old distance and the potential
new distance. The floating node with A, its potential dis-
tance newdist, and its potential new parent (the anchored
node) will be enqueued in the list Q.

Case 2 15 a bit simpler in the initialization step. After
updating each edge e, with the new decreased weight, we
compute the potential new distance newdist of its end node
E(e;) by adding the distance of its source node S(e;) and
the new weight W(e;). And if this potential new distance
is in fact smaller than the old distance of E(e;), then we

enqueue to the list Q the node E(e;) with its potential new
parent S(ej), its potential new distance newdist, and the
difference A between its old distance and newdist.

After the initialization step, we extract from the list Q in
step 2 an element with the smallest (least positive or most
negative) A. In other words, we select a node with the
smallest increase in distance (in case 1) or largest decrease
in distance (in case 2). This selected node is then updated
with its new parent indicated in 7 and the structure of
T is modified accordingly to reflect the new child-parent
relation. Moreover, the selected node together with all its
descendent nodes (denoted by the set N) in the existing
tree 7 will now have their correct distances updated as
their old distances incremented by A (step 3). In addition,
these nodes will be marked anchored. And if any such node
is already in the list @ (unless its parent attribute in Q is
the same as its parent in 7', indicating that further change
will take place) it will be removed from @ and no longer
considered by the algorithm.

In step 4, we consider each node E(e;) that is attached to
an edge e; directed out of a node S(g;) in A. If the potential
new distance newdist of E(e;) (which is equal to W(e;) plus
the distance of S(e;)) is smaller than its old distance, or if
E(e;) has been marked floating, we then enqueue in the list
Q the node E(e;) with its potential new distance, change
in distance, and its potential new parent S(e,) for further
updating. After this step is completed, the execution of
steps 2 and 3 will be repeated until the list Q is empty.

VI. ALGORITHM CORRECTNESS AND COMPLEXITY
A. Correctness

In this paper, we will only sketch the proof of correct-
ness of the algorithm and state some of its properties. A
complete proof and analysis can be found in [14].

The object of the algorithm is to compute a new SPT
after the weights of the graph change. Let G and G’ be the
old and new network respectively, and I is the set of weight
changes that occur in G. For brevity, we will refer to the
event when the topology of the network changes as 8. The
input to the algorithm is G, I'; as well as an old SPT tree
(T) valid for G. The desired output of the algorithm is a
new SPT tree (7') valid for G’. Furthermore, when there
are multiple new SPTs for §', the desired output of the
algorithm 7 is the new SPT that differs by the minimum
number of edges from 7T 2.

We first take a look at how the optimal SPT tree is
affected by the weight changes. We separate the full set
of nodes in the graph A into k smaller subsets K;, Ko,

K. Within each subset (referred to as branch), the
structure of the SPT can remain unchanged after the link
weight changes. The branch containing the root node in N/
will be called the root branch o . More formally, we use
the following definition:

Definition 1: Two nodes n; and n; are said to be in
the same branch K, if they are connected in both the old

277 is not necessarily unique since there can still be several SPTs
that differ from 7" by the minimum number of edge changes

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

and new optimal trees by some edge that does not change
weight during event §.

This definition of can be used transitively to find all the
nodes in a given branch. For a given old 7 and new G’, the
definition of branch gives unique sets of nodes. This can be
easily seen graphically by using the ball and string model.
We first represent G’ using the ball and string model, and
then discard all the string (edges) that are not tight. The
remaining tight edges gives us all the possible edges that
can be part of some SPT for G'. Clearly this set of edges
is unique. If we now overlap the old SPT 7T onto this set
of edges, we immediately obtain our branches K;. The
branches will consists of the nodes that are connected by
overlapping edges of 7 (that did not change weight) and
the tight edges of the ball-and-string model.

We can think of a branch X as a subtree of the original
SPT (7)) that does not change internally but only changes
its position with respect to the rest of the tree. We show
in [14] that our algorithm recomputes the SPT by rear-
ranging these branches in the minimum number of itera-
tions, without modifying their internal structure. At each
iteration of the algorithm, a new branch is identified and
placed in the correct position. If there are k branches in
the graph (excluding the root branch), after k iterations,
the algorithm is done.

B. Complexity

From the proof of correctness, the complexity of the al-
gorithm follows directly. For the single edge change, as well
as well for case 1 and 2 of the multiple edge changes, the
algorithm follows an easily determined number of steps.

Every edge departing from a node in a non-root branches
is visited exactly once. Furthermore, for every branch, its
mini-root needs to be extracted from Q. The maximum size
of @ is the total number of nodes in the non-root branches.
The maximum number of insertions and key decrements in
@ is the total number of edges whose source is a node in a
non-root branch.

We let 6, be the number of branches defined by the old
tree 7 and the new graph G’ (excluding the root branch).
Let 0, be the total number of nodes in these branches, and
8. be the total number of edges whose sources correspond
to these nodes. The number of operations of the algorithm
can be expressed as follows:

o Algorithm iterations: d.

o Extractions from Q: 4,

Node visits: 6,

e Maximum size of Q: 6,

o Maximum number of insertions into Q: 6,

o Maximum number of removals from O: §, — 6,
o Maximum number of key decrements in Q: &,

The exact complexity of the algorithm depends on how
the underlying priority queue Q is implemented. The sim-
plest way of implementing it is using a linked list. A more
efficient, as well as practical, way involves using binary
heaps. In theory, using Fibonacci heaps should yield the
lowest asymptotic complexity; however, in practice they are
inefficient because of the large overhead involved in using

them. The following are the total resulting complexities:

o Linked List: O(de + d.65)
« Binary Heap: O(d.log(5,))
« Fibonacci Heap: O(6, + 6,l0g(6,))

Note that the best assymptotic complexity of existing
dynamic algorithms is that of dynamic Dijkstra and its
variations [13]. For linked list structure, the above com-
plexity is better than for dynamic Dijkstra ((6,)?). For the
heap structures, the above complexity matches that of Dy-
namic Dijkstra. Nevertheless, the number of extractions d.
performed by our algorithm is smaller than for any known
algorithm that satisfies the above upper bounds (all algo-
rithms that satisfy this bound, have extraction operations
from a priority queue). Even though in the worst-case the
smaller number of extractions does not improve the upper
bound, in practice a lower number of extractions means
that less nodes need to enter the priority queue, and the
number of operations performed on the queue is smaller.
The number of insertions can be as small as §., while for
all the known algorithms that satisfy the above bound, the
number of insertions is at least §,,.

Furthermore, the highest key (in this case A) used in the
priority queue of the new algorithm is at most the maxi-
mum weight of an edge. For dynamic Dijkstra, the max-
imum key can be as much as the length of the path from
one side of the network to the other. Because the keys are
much smaller, it is much easier to implement the priority
queue using bucket search.

VII. SIMULATION RESULTS

In this section we investigate via simulations the com-
plexity of our new shortest path algorithm. The algorithm
is compared with other existing dynamic SPT algorithms.
The existing algorithms used for comparison purposes are
the dynamic versions of the Bellman-Ford, D’Esopo-Pape,
and Dijkstra algorithms. For a full treatment of these al-
gorithms and on how to create dynamic SPT algorithms
based on static ones, please see [13].

The dynamic Dijkstra algorithm implemented in this
simulation is basically the same as most dynamic algo-
rithms that have been proposed in the literature [12], [7],
[9], (8], [13]. It conmsists of propagating the disturbance
caused by the edge weight change throughout the network
one node at a time. The next node is selected based on the
minimum distance criterion. On the other hand, our new
algorithm speeds up the operation by spreading the distur-
bance one branch (containing usually more than one node)
at a time, using the minimum distance change criterion.
Because both of these two algorithms require searching
for a minimum key, the simulation uses a standard binary
heap to perform this operation. The dynamic Bellman-
Ford and dynamic D’Esopo-Pape are dynamic generaliza-
tions of well-known Bellman-Ford and D’Esopo-Pape al-
gorithms. A detailed specification of these algorithms can
be found in [13]. The details of how the simulation was
performed can be found in [14].

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

50000

-~ Bellman-Ford
-+ D’Esopo-Pape
Linear Dijkstra

40000 | 7+—FHeap Dijkstra = 1
2 ;
S 30000 | : 1
0 o oy
g) A
= o <
Q /‘ e AR
S 20000 | R 4
©

10000 -

0 500 1500
Nodes

Fig. 4. Complexity of static algorithms.

A. Observed Complezity

During the simulation, we compare the average observed
complexity of the different dynamic SPT algorithms as the
network size increases. For each network size, 40 different
networks of that size are randomly generated (L = 0.5,
D = 7). For each network, 175 link failures and 175 link
recoveries were simulated. After each simulation the ob-
served complexity (the number of comparisons performed)
of that single-failure event is recorded. The average ob-
served complexity over the 40 x 350 events of the same
network size is then computed.

Figure 4 first illustrates the average observed complexity
of conventional static SPT algorithms as the network size
increases. These results are obtained from [13] where they
are analyzed in detail. It is worth noticing the really large
number of comparisons needed as the network increases its
size. It is clear that using linear search for the priority
queue in Dijkstra’s algorithm quickly becomes inefficient.
It is also interesting to note that the algorithm with the
worst worst-case bound (D’Esopo-Pape) actually performs
the best on average. This is because of some clever heuris-
tic that it uses (revisited nodes are given higher priority -
see [13]. However, this heuristic will prove to be counter-
productive when using the dynamic version of these algo-
rithms.

When we perform the same experiment using the various
dynamic algorithms discussed, we notice a tremendous re-
duction in the algorithmic complexity. Figure 5 compares
the average observed complexities, which as expected, are
orders of magnitudes lower than for the static algorithms.

The dynamic version of the D’Esopo-Pape algorithm now
becomes quite inefficient with large networks. Dynamic
Dijkstra performs slightly better than Dynamic Bellman-
Ford because of its improved node selection method. Our
now algorithms clearly performs much better on average
than the other three dynamic algorithms.

We now give an example of what happens inside each
algorithm when some important link failure occurs. Table I
shows the events that took place during the execution of

70

| 6——o Dyanmic Bellman-Ford

- Dynamic D’Esopo-Pape
< Dynamic Dijkstra
&4 New Algorithm

Comparisons
(4]
(=]

wW
o
T

10

0 500 1000 1500
Nodes

Fig. 5. Complexity of dynamic algorithms.

each algorithm after such a failure took place.

The first column contains the number of edges visited
by each algorithm. Recall that each time an edge is vis-
ited a comparison is made between the nodes at each end
of the edge. Dynamic Bellman-Ford and D’Esopo-Pape
end up visiting the same edges more than once. Dynamic
D’Esopo-Pape seems to be particularly inefficient at this.
On the other hand, both Dynamic Dijkstra and our new al-
gorithm visit only the minimum number of edges necessary,
and each edge is visited only once. This number (2627) is
equivalent to what we previously defined as 4., the number
of edges departing from the nodes of the non-root branches
(nodes affected by the change).

The second column shows the number of extractions or
iterations performed by each algorithm. This is the num-
ber of times that a new node has to be chosen from the
list @. The number of extractions is by far lower with
the new algorithm. In fact, the new algorithm performs
the minimum number of extractions. This number (13) is
equivalent to d., the number of non-root branches (clusters
of nodes that need to be reordered).

The third column shows the number of comparisons per-
formed by the search functions in each algorithm. Since
Dynamic Bellman-Ford and D’Esopo-Pape have no priority
queues, they don’t have to perform any such comparisons.
However, the extra cost suffered by Dynamic Dijkstra and
our new algorithm is compensated by the smaller number
of edges needed to be visited. Since our new algorithm
needs to do less extractions and searches than Dynamic
Dijkstra, less search comparisons are performed.

Finally, the last column shows the number of times that
the parent attributes are changed during the execution of
the algorithms. Dynamic Bellman-Ford and D’Esopo-Pape
change the parent attributes of a large number of nodes
more than once. Dynamic Dijkstra only changes once the
parent attribute of any given node. However, it changes
more parent attributes than necessary. The resulting SPT
has 6 nodes unnecessarily changing parent. On the other
hand, our new algorithm only makes the minimum number

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Edges | Extr. | Comps. | Par.

Dyn. Bellman-Ford 5582 646 0 347

Dyn. D’Esopo-Pape || 30676 | 4880 0 2375

Dyn. Dijkstra 2627 | 186 1876 19

New Algorithm 2627 13 602 13
TABLE I

OBSERVED ALGORITHM BEHAVIOR AFTER A LINK FAILURE.

of changes in the SPT structure. There is only one edge
change for each of the 13 non-root branches.

VIII. CONCLUSION

In this paper, we have presented a new algorithm to re-
compute the shortest path tree (SPT) in a network after
some edges have changed weights. The algorithm is heav-
ily based on the dual linear programming technique and
on its physical interpretation. This physical interpretation
uses balls and strings to model the system of constraints
involved in computing a SPT. Our new algorithm can be
seen as a simulation of how such a physical model would
naturally reconfigure itself.

The new algorithm uses a new search criterion (that of
minimum distance change) to determine in which direction
the information should be propagated. Unlike existing dy-
namic SPT algorithms which select one node at a time, the
new algorithm can select entire branches at a time. This al-
lows the algorithm to use the intact structure of the SPT to
spread information in the right direction without having to
perform as many searches. The new algorithm also makes
the minimum number of changes to the SPT structure.

The algorithm visits each affected node only once. It
makes fewer extractions from the priority queue (one per
branch) than any other algorithm of comparable complex-
ity (one per node). As a result, when using underlying
linear search or bucket search, the new algorithm has a
lower asymptotic complexity than any other known algo-
rithm. When using a more complicated ordered structure
(such as a heap), the asymptotic complexity is the same a3
for the best known algorithms. Nevertheless, simulations
indicate that on average, the new algorithm has the lowest
observed complexity.

REFERENCES

[1} C. Baransel, W. Dobosiewicz, and P. Gburzynski, “Routing in
multihop packet switching networks: Gb/s challenge,” IEEE
Network, vol. 9, pp. 38-61, May/June 1995.

[2] R. Bellman. “On a Routing Problem,” Quarterly of Applied
Mathematics, vol. 16, 1958, p. 87-90.

[3] D. Bertsekas. Linear Network Optimization: Algorithms and
Codes The MIT Press, Cambridge, Massachusetts.

[4] L. Breslau and D. Estrin. “Design of inter-administrative do-
main routing protocols,” Proceedings of SIGCOMM’90. Sept.
1990, pp. 231-241.

[5] T.Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms
The MIT Press, Cambridge, Massachusetts.

{6] S.Deering and D. Cheriton. “Multicast routing in datagram in-
ternetworks and extended LANs,” ACM Transactions on Com-
puter Systems, vol. 8, no. 2, pp. 85-110, May 1990.

[71 P. Franciosa, D. Frigioni, and R. Giaccio. “Semi-Dynamic
Shortest Paths and Breadth-First Search in Digraph,” Pro-

[to]

(11]

(12]

(13]

(16]

(17]

[26]
[27]

ceedings of 14th Annual Symposium on Theoretical Aspects
of Computer Science, March 1997, p. 33-46.

D. Frigioni, A. Marchetti-Spaccamela, U. Nanni, “Fully Dy-
namic Qutput Bounded Single Source Shortest Path Problem,”
Technical Report.

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. “Incre-
mental Algorithms for Single-Source Shortest Path Trees,” Pro-
ceedings of Foundations of Software Technology and Theoreti-
cal Computer Science, Dec. 1994, p. 113-124.

C. Huitema. Routing in the Internet. Englewood Cliffs, NJ:
Prentice-Hall, 1995.

G. Italiano, A. Marchetti-Spaccamela, U. Nanni, “Incremental
Algorithms for Minimal Length Paths,” Journal of Algorithms,
vol. 12, 1991, p. 615-638.

J. McQuillan, I. Richer, E. Rosen, “The New Routing Algo-
rithm for the ARPANET,” IEEE Transactions on Communica-
tions, vol. COM-28, no. 5, May 1980, p. 711-719.

P. Narvaez, K.-Y. Siu, H.-Y. Tzeng, “New Dynamic Algo-
rithms for Shortest Path Tree Computation,” Technical Memo-
randum BL0113470-980505-04TM, Bell Labs, Lucent Technolo-
gies, May 5, 1998.

P. Narvaez, K.-Y. Siu, H.-Y. Tzeng, “New Dynamic SPT
Algorithm based on a Ball-and-String Model ,” Tech-
nical Report, December 1998. http://list.mit.edu/ pnar-
vaez/publications.html

R. Perlman and G. Varghese. “Pitfalls in the design of dis-
tributed routing algorithms,” Proceedings of SIGCOMM’88.
August 1988, pp. 43-54.

R. Perlman. “A comparison between two routing protocols:
OSPF and IS-IS,” IEEE Network, Sept. 1991, vol. 5, pp. 18-24.
G. Ramalingam and T. Reps. “An Incremental Algorithm for
a Generalization of the Shortest-Path Problem,” Journal of Al-
gorithms, vol 21, 1996, p. 267-305.

P. Spira and A. Pan. “On Finding and Updating Spanning Trees
and Shortest Paths,” SIAM Journal on Computing, vol. 4, no.
3, Sept. 1975, p.375-380.

E. Feuerstein, A. Marchetti-Spaccamela “Dynamic Algorithms
for Shortest Paths in Planar Graphs,” Theoretical Computer
Science, vol. 116, 1993, p. 359-371.

E. Dijkstra “A note two problems in connection with graphs,”
Numerical Mathematics, vol. 1, 1959, p. 269-271.

C. Labovitz, G. Malan, and F. Jahanian. “Internet Routing
Instability,” Proceedings of SIGCOMM’97. Sept. 1997, pp. 115-
126.

J. Moy. “OSPF Version 2,” Internet Draft, rfc 2178, July 1997.
V. Paxson. “End-to-end routing behavior in the Internet,”
IEEE/ACM Transactions on Networking, Oct. 1997, vol.5,
(no.5):601-15.

Y. Rekhter and T. P. Gross. “Applications of the Border Gate-
way Protocol in the Internet,” RFC 1772, DDN Network Infor-
mation Center, March 1995.

M. Schwartz and T. Stern. “Routing techniques used in com-
puter communication networks,” IEEE Transactions on Com-
munications, April 1980, vol.28, pp. 539-552

M. Streenstrup, Ed. Routing in Communications Networks,
Englewood Cliffs, NJ: Prentice-Hall, 1995.

P. Traina, Ed., “BGP-4 protocol analysis,” RFC 1774, DDN
Network Information Center, March 1995.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

