
Calpa: A Tool for Automating Selective Dynamic Compilation

Markus Mock, Craig Chambers, and Susan J. Eggers
Department of Computer Science and Engineering

University of Washington
Box 352350, Seattle WA 98195-2350

{mock, chambers, eggers}@cs.washington.edu

Abstract
Selective dynamic compilation systems, typically

driven by annotations that identify run-time constants, can
achieve significant program speedups. However, manually
inserting annotations is a tedious and time-consuming
process that requires careful inspection of a program’s
static characteristics and run-time behavior and much trial
and error in order to select the most beneficial annotations.
Calpa is a system that generates annotations automatically
for the DyC dynamic compiler. Calpa combines execution
frequency and value profile information with a model of
dynamic compilation cost and dynamically generated code
benefit to choose run-time constants and other dynamic
compilation strategies. For the programs tested so far,
Calpa generates annotations of the same or better quality as
those found by a human, but in a fraction of the time. The
result was equal or better program speedups from dynamic
compilation, but without the need for programmer
intervention.

1. Introduction

Dynamic compilation optimizes programs at run time,
based on information available only at run time, thus
offering the potential for greater performance than purely
statically compiled code. Some dynamic compilation
systems, including Smalltalk-80 [27], Self [28, 29], and
just-in-time compilers for Java (for example, [30]),
perform virtually all compilation during program
execution. Others are selective about which parts of
programs they dynamically compile. Selective dynamic
compilation systems can focus the additional run-time
effort of dynamic compilation on those portions of the
program that most benefit from dynamic compilation,
leaving the remainder of the program to be compiled
statically.

Selective dynamic compilers usually base their
optimizations on run-time-computed values of particular
variables and data structures (called run-time constants). A
region of a procedure that references these run-time

constants (called a dynamic region) is specialized at
dynamic compile time for the particular run-time values of
these variables, with the dynamic compiler performing
various constant-propagation- and loop-unrolling-like
optimizations on the dynamic region. The specialized code
can be reused for any future executions of the dynamic
region where the run-time constants have the same values
as was assumed when the code was specialized. If a
dynamic region is invoked with different values for the run-
time constants, multiple specialized versions of the
dynamic region can be generated and maintained. On entry
to the dynamic region at run time, a dispatcher selects the
appropriate specialized version, based on the values of the
run-time constants, or invokes the dynamic compiler to
produce a new version.

Dynamic compilation involves additional overheads
during program execution that statically compiled
programs don’t incur, namely, specialization and
dispatching. In order for dynamic compilation to be
profitable, the run-time benefits dynamic compilation
obtains must outweigh these run-time costs. This requires
that the code that is specialized to the values of the run-
time constants be sufficiently better optimized and reused
sufficiently often to more than recoup the costs of
producing it and dispatching to it; typically, this precludes
performing any expensive analysis at run time. Hence, the
effectiveness of a selective dynamic compilation system
depends critically on choosing good run-time constants
and dynamic regions. On the positive side, since the actual
values of the constants don’t have to be known until run
time, dynamic compilation systems can optimize code in
situations where a compile-time specializer can either not
be used at all, or may suffer from code explosion because
code may have to be specialized for all possible values
instead of only the values that actually occur at run time.

Previous dynamic compilation systems require the
programmer to choose run-time constants and dynamic
regions manually. The selections are communicated to the
dynamic compilation system through declarative
annotations. Fabius [17] and Tempo [5,20] allow the user

to annotate formal parameters of procedures as run-time
constants, causing the annotated procedures to be
specialized for the particular values of the annotated
parameters. DyC [10,12,11] provides finer-grained
dynamic optimization, by allowing users to annotate
individual variables at arbitrary points within a procedure;
the variables are treated as run-time constants up to the end
of their scope, or until another annotation returns them to
run-time-variable status. DyC also has a set of annotations
with which programmers can regulate the aggressiveness
of specialization and certain other dynamic compilation
costs.

For the most part, annotations do not affect the behavior
of the program, only how it is implemented. However,
because they do not include a whole-program side-effect
analysis, Tempo and DyC include some annotations that
the statically compiled portions of the program may render
unsafe; if the programmer uses an unsafe annotation
incorrectly, the program’s behavior can be changed through
dynamic compilation. (Fabius avoids the need for unsafe
annotations by handling only purely functional programs.)

To manually select annotations that will produce
program speedups. programmers must gain a good
knowledge of the application’s run-time behavior, perhaps
aided by an execution frequency profile of the various
regions of the program and a log of the values of variables
and selected data structures. They must understand the
effects of candidate annotations on the relative quality of
the dynamically compiled code versus the statically
compiled code, and on the run-time cost to produce it and
dispatch to it. They must anticipate how often the
specialized version(s) will be reused on a typical
application execution. Finally, when using an unsafe
annotation, they must be confident that the annotation’s
assumptions about program behavior are satisfied.

Consequently, manually annotating programs so that
they achieve good speedups is difficult and time
consuming, and often becomes the bottleneck for many
applications that could benefit from dynamic optimization.
Our experience with DyC serves as a case in point. To
annotate the applications for our initial evaluation of DyC’s
run-time optimizations [12], we first profiled them with
gprof. We then examined the functions that comprised
the most execution time, searching for invariant or quasi-
invariant function parameters, i.e. function parameters
with only one or a few values, respectively. In cases when
invariance was too difficult to infer by inspection, we
logged the values of the functions’ parameters by manually
inserting code into the applications, and then searched the
logs. Optimization opportunities were determined by trial
and error. For example, to determine whether complete
loop unrolling was beneficial, we generally first performed
the unrolling, but then disabled it (by removing an

annotation) if it did not improve performance. Since some
of DyC’s annotations control the aggressiveness of
specialization and the cost of run-time compilation,
choosing the best combination here turned out to be
laborious and time-consuming as well. All in all, although
DyC’s annotations are few and conceptually simple,
finding good candidates for run-time constants and picking
appropriate specialization strategies turned out to be a very
tedious process, taking us several weeks to annotate the
applications for that study.

Calpa1 [19] is the first system to automate this process.
Calpa combines program analysis and profile information
to automatically derive the annotations that drive dynamic
compilation (in our case, of C programs using DyC). Calpa
consists of two modules: an instrumentation tool and an
annotation selection tool. The programmer first runs the
instrumentation tool on the program to produce an
instrumented version of the program that will generate and
summarize value and frequency data. (Figure 1 presents an
overview of the process for using Calpa and DyC.) The
instrumented version is then executed on some
representative input, yielding an execution profile of this
run-time information. The programmer then invokes the
annotation selection tool on the program and the profile.
The annotation selector searches the space of possible
dynamic compilation annotations, using an internal model
of the costs and benefits of dynamic compilation and the
execution profile to estimate the overall impact of each
candidate annotation. The selection tool reports its choices
by producing an annotated program. This annotated
program is then compiled by DyC to yield a final
executable program that contains specialized dynamic
compilers. In essence, Calpa uses DyC as a back-end to
carry out its chosen dynamic compilation strategy; Calpa
encapsulates the policy decisions about where, on what and
how aggressively to dynamically compile, while DyC
encapsulates the mechanism of performing dynamic
compilation. Unlike programmer-inserted annotations,
Calpa’s selected dynamic compilation strategy is
guaranteed to be safe, i.e., it will not change the observable
behavior of the program.

To test Calpa’s effectiveness in automatic annotation
against the “gold standard” of manual annotation, we used
Calpa to derive annotations for some kernels and
applications we had previously hand-annotated. The entire
profiling and annotation process was completed for the
kernels within seconds and for the applications either in
minutes or hours, depending on the program. Calpa
produced all the annotations that we had identified with our
manual process, and, in addition, for some programs,

1 Calpa was an important Inca oracle ritual, which was performed before
making important decisions.

inserted others that improved their performance.

This paper presents Calpa’s approach to automating
selective dynamic compilation. We describe Calpa’s
instrumentation and annotation selection tools and the
interface between them. We also report our initial
performance results using a prototype implementation of
Calpa, including the time and space it takes to instrument
and profile the applications and to derive the annotations,
and the speedups of Calpa-annotated, dynamically
optimized programs relative to those that were manually
annotated. The paper makes the following contributions:

• We present a program analysis that combines various
static analyses with value profile information to
identify good candidate variables and dynamic regions
for dynamic compilation.

• We develop a multi-faceted cost/benefit model based on
run-time specialization that enables the automatic
evaluation of the costs and benefits of dynamically
compiling different annotation choices.

• We demonstrate experimentally that these techniques
produce annotations for a dynamic compiler that results
in comparable or better program speedups than manual
annotations, at a small fraction of the time a human
annotator would need to understand and profile the
programs. While each of the techniques by itself is not
new, Calpa’s merit lies in its special combination of
techniques that provides useful value.
In the next section we summarize Calpa’s targeted

dynamic compilation system, DyC. Section 3 describes
Calpa. Section 4 describes the experiments we carried out
to assess the effectiveness and the resource use of Calpa.
Section 5 discusses related work and section 6 concludes.

2. Overview of DyC

DyC is an annotation-driven, selective dynamic
compilation system that attains speedups of up to 4.6× on a
group of medium-sized (< 15K lines of code) C programs
[12]. To achieve this level of performance, DyC contains

Figure 1. Overview of Calpa

C program

Calpa

Instrumenter

Calpa

Annotation Selector

DyC

Compiler

instrumented
C program

sample input value profile annotated
C program

compiled
C program

dynamic
compilers

“reads”

“generates”

(1) a sophisticated form of partial-evaluation-style binding
time analysis (BTA) that supports program-point-specific
polyvariant division and specialization,1 (2) low-cost,
dynamic versions of traditional global optimizations that
include zero and copy propagation and dead-assignment
elimination, and (3) dynamic peephole optimizations, such
as strength reduction.

To trigger dynamic compilation, programmers annotate
their source code to identify static variables (run-time
constants) on which many calculations depend. Loads from
memory can be annotated as static if their contents are
static, and called procedures can be annotated as static if
their results are static whenever given static arguments.
DyC’s BTA analyzes code downstream of the annotations,
intraprocedurally, to separate those computations that
depend solely on the annotated static variables, plus
additional static variables that are derived from them,
(called the static computations) from the computations that
depend at least in part on run-time variables (called the
dynamic computations). Static computations are executed
just once, at dynamic compilation time. By delaying final
compilation of the dynamic computations until run time,
the results of the static computations can be treated as
embedded constants in the dynamic computations. A part
of a procedure that contains static computations and the
directly dependent dynamic computations constitutes a
dynamic region. Since the BTA is program-point-specific
and flow-sensitive, a dynamic region can start and stop at
any program point, and a variable may be static at some
program points and not at others.

For each dynamic region, DyC builds a custom dynamic
compiler (also called a generating extension [16]) that
generates code at run time, using the values of the static
variables once they become known. To minimize dynamic
compilation overhead, DyC performs much of the analysis
and planning for dynamic optimization during static

compile time, freeing the custom dynamic compiler from
needing an intermediate representation and iterative
analyses at run time.

When a dynamic region is entered at run time, the
region’s dispatcher checks an internal cache of previously
dynamically generated code for a version that was
compiled for the current values of the annotated variables.
If one is found, it is executed. If not, the dispatcher invokes
the region’s custom dynamic compiler to generate code
specialized to the current values of the annotated variables.
The custom compiler evaluates the static computations and
emits machine code for the dynamic computations. When
done, the newly generated code is saved in the dynamic-
code cache and then executed. Invoking the dynamic
compiler and dispatching to dynamically generated code
are the principal sources of run-time overhead.

If a load is annotated as static, the dynamic compiler
assumes that the contents of the referenced memory
location remains the same for all invocations of the
dynamic region. If the memory location is later updated,
then the affected dynamically compiled code should be
thrown away and redynamically compiled for the new
value. In the current DyC system, whenever a store
changes the contents of a memory location upon which
code might be specialized, the program must invoke DyC’s
invalidate() operation, which flushes the compiled
code caches of all affected functions, and resets the
dynamic region’s code pointer to point to the dynamic
compiler. The dynamic compiler will then produce new
code for the invalidated dynamic region, based on the new
contents of the memory location.

DyC is driven primarily by annotations that identify
initial run-time constant variables and data structures.
Optional policy annotations allow the programmer to
specify whether specialization and division should be
mono- or polyvariant, whether code downstream of
conditional branches or switches should be dynamically
compiled eagerly or lazily, and whether the dynamic code
cache for each region should keep many, one, or zero code
versions. A final annotation identifies program points
where invalidate() should be inserted. DyC’s
annotations are described in detail elsewhere [11].

3. The Calpa System

Calpa combines program analysis and profile
information to automatically derive annotations that drive
selective dynamic compilation systems like DyC. These
systems specialize parts of programs for particular values
of run-time constants, dynamically generate the specialized
code, and cache it for later reuse. They implement a variety
of dynamic optimizations and techniques for caching and
dispatching to the compiled code. Calpa models all these

1 Polyvariant division allows the same piece of code to be analyzed with
different combinations of variables being treated as run-time constants;
each combination is called a division. Polyvariant specialization allows
multiple compiled versions of a division to be produced, each
specialized for different values of the run-time-constant variables.
Program-point-specific polyvariance commences at arbitrary points in
programs, not just at function entries. Polyvariant specialization can
result in complete loop unrolling by creating a specialized copy of a loop
body for each set of values of the run-time-constant loop induction
variables. Complete loop unrolling is unlike unrolling done by
traditional static compilers in that the loop is eliminated rather than
enlarged. For simple loops, such as those that merely increment a
counter until an exit condition is reached, a linear chain of unrolled loop
bodies results (which we call single-way loop unrolling). For more
complex loops, however, one iteration may lead to several alternative
loop iterations (e.g., if it contains branch paths that update the loop
induction variables differently), or even return to a previously executed
loop iteration, producing in general a directed graph of unrolled loop
bodies (which we call multi-way loop unrolling).

capabilities and automatically selects and places
annotations to govern them.

Calpa consists of two components, an instrumentation
tool and an annotation selection tool, both of which
analyze C source code. The job of the instrumenter is to
provide the selection tool with profile information from an
application execution that will aid it in making reasonable
annotation choices. It does this by automatically
instrumenting its input application to track the execution
frequencies of basic blocks and log the values of variables
at all definitions and uses. The Instrumenter performs a
pointer analysis to compute a conservative approximation
to the set of variables referenced by each load and store
instruction. Finally, to enable cache invalidation costs to be
assessed, the instrumenter tracks the execution frequencies
of store instructions and the targets they are updating.

Calpa’s annotation selection tool first identifies, for each
instruction in potential dynamic regions, the minimal set of
static variables that cause the instruction that uses them to
be static. In order to increase the number of simultaneously
static computations, the selection tool combines the sets,
and uses its cost/benefit model, with key parameters
derived from the profile log information, to estimate the
run time for each combination. If a new combination is
predicted to produce faster dynamically generated code, it
is retained as the current best choice. After all
combinations have been considered, Calpa automatically
generates the selected DyC annotations and outputs
annotated C source code, which DyC compiles.

At Calpa’s core is the cost/benefit model that predicts
the effect of annotations on the run time of a dynamically
compiled application. The model’s cost function estimates
the run-time overhead of dynamically generating and
dispatching to specialized code. It is comprised of several
subfunctions, all of whose parameters are derived from
actual costs in DyC. It includes the following:
• The basic cost function accounts for specializing a

region of code for a particular combination of run-time
constant values. The function takes into account the
frequency of static variable value changes, i.e., the
number of re-dynamic compilations.

• Optimization-specific cost functions reflect the
additional dynamically generated code needed to
implement code-expanding optimizations, such as
complete loop unrolling.

• Other cost functions account for dispatching to the
correct dynamically generated code version. Calpa
handles two basic dispatch models: cache-lookup and
invalidation-based caching. In cache-lookup, the
values of the static variables and data structures are
used as a lookup key into the dynamic-code cache. If
the key matches, the cached code is executed;
otherwise a new version is dynamically compiled.

Invalidation-based caching dispatches according to the
value of the pointer that is set by the invalidate()
operation. If the pointer contains a code address, the
previously generated code version is reused, avoiding a
code-cache lookup; otherwise, it will contain a pointer
to the customized dynamic compiler that will generate
a new version. Both models have several
implementations (including one that combines them)
that trade off dispatch speed, lookup key size, and
frequency and cost of invalidations [8].
The benefit function predicts the execution-time savings

when running the dynamically generated code. It takes into
account the savings obtained by executing static
instructions only once for each dynamic code version and
executing the optimized, dynamically generated code
instead of the original instructions. Since instructions not
on the critical path of a specialized procedure are unlikely
to contribute to saved cycles on a wide-issue processor,
Calpa computes the critical path of the procedure to
determine which instructions qualify; because it ignores
instructions off the critical path, Calpa conservatively
underestimates the potential benefit of executing them only
once during specialization. All qualifying instructions are
weighted by their latency and the frequency of their
execution.

The following subsections provide more detail on
Calpa’s features that comprise our current prototype and on
which our experimental results are based.

3.0.1. Calpa’s Instrumenter

To provide the necessary data for the cost/benefit
analysis, the instrumenter instruments an application to
collect information about program variables and program
point execution frequencies during its execution. The
instrumenter inserts code into the application to monitor
and summarize three kinds of information: basic block
frequencies (currently the number of executions, not
execution time), variable definitions, and variable uses.
When a variable or data structure is accessed via a pointer,
the instrumenter uses the results of its pointer analysis1 to
insert code that associates the pointer’s value with a
corresponding variable or data structure from its points-to
set.2 This serves two purposes: first, it attributes the use or
definition of a particular value to the variable or data

1 Calpa’s current default pointer analysis uses Das’ improvement [32]
over Steensgaard’s almost linear-time context- and flow-insensitive
algorithm [23] for pointers to static and stack-allocated variables and
data structures; heap-allocated data is handled by creating one distinct
variable for each allocation site. In lieu of Das’ algorithm the standard
Steensgaard algorithm, or an extension proposed by Shapiro & Horwitz
[31] can also be chosen for stack-allocated variables. In addition, Ghiya
& Hendren’s algorithm [7] can be run for pointers to heap-based data
structures, after one of the previously mentioned points-to algorithms
has been run.

structure that is defined or used; second, it identifies
potential invalidation points of variables and data
structures, so that the instrumenter can insert code to
monitor the points’ execution frequencies. To account for
definitions that take place in library functions for which no
source code is available, Calpa conservatively assumes that
any variable or data structure that escapes to a library
function is possibly modified by it.

An instrumented application logs values of definitions
and uses as they occur, storing them as a per-invocation
histogram of values and their number of occurrences. Each
value-occurrence pair is tagged by the invocation number
of the procedure in which it was produced (to obtain more
accurate cost information for loop indices that are
dependent on procedure parameters (see section 3.1.2)).
Data is kept in a hash table in memory up to a user-
specifiable maximum memory usage. When necessary, the
values for the least recently used variables or data
structures are written out to disk to make room for new
values. To limit overall log size, monitoring is dynamically
disabled for variables and data structures for which more
than a user-specified number of distinct values have been
recorded. (Because of dynamic compilation overhead, it is
unlikely that these data will be run-time constants.) Before
the application terminates, the profile data is written to a
log file.

3.1. Calpa’s Annotation Selection Tool

3.1.1 Candidate Static Variable and Candidate Divi-

sion Sets

The first task in Calpa’s annotation selection tool is the
computation of the basic sets of variables which, if
annotated as static, cause the operations that use them to
become static. We call these sets candidate static variable
(CSV) sets. The dot-product code fragment shown in
Figure 2 illustrates CSV sets; next to each statement is the
CSV set that makes the statement static. In general, the
CSV set for an instruction is the set of variables used as

source operands to the instruction, or the empty set if there
are no source variable operands. For example, the
comparison between i and size is static if and only if
both variables are static; hence the statement’s CSV set is
{i,size}. For memory loads, the contents of the
memory must also be static for the load to be static. For
example, the load of u[i] is static if and only if both i
and the array u is static, so the statement’s CSV set is
{i,u[]}, where u[] represents both the address u and
its contents. Since DyC’s binding time analysis will
determine that instructions are static if their arguments are
computed by unique static instructions, Calpa treats
operands with a single reaching definition specially. In this
case, the static variables for the operand are those that
correspond to the CSV set of the reaching definition
(instruction). For example, in the statement
t=uelem*velem, since uelem and velem each have
exactly one definition, the CSV set for this statement is
{i,u[]} ∪ {i,v[]} = {i,u[],v[]}.

Calpa can build bigger dynamic regions with greater
degrees of run-time optimization by merging CSV sets into
larger sets of variables, called candidate divisions (CDs).
The set of static instructions for a CD is the union of the
instructions whose CSV sets are subsets of the CD. In
general, if there are n CSV sets, there are 2n ways to
combine them. However, since CSV sets tend to overlap,
not all combinations will produce different sets. For
instance, if we combine {u[],i} and {u[],v[],i},
we obtain the same set as when we combine {v[],i} and
{u[],v[],i}. In the dot-product example above, we get
the following set of possible CDs (called the CD set): {},
{i}, {i,size}, {i,u[]}, {i,v[]},
{i,u[],v[]}, {i,size,u[]}, {i,size,v[]},
{i,size,u[],v[]}, {i,sum,u[],v[]}, and
{i,size,sum,u[],v[]}.

The CD set captures all possible combinations of
annotated variables that result in distinct collections of
static instructions, i.e., distinct dynamic regions. Other
combinations of static variables never have to be
considered, since they will produce the same results as
some CD already in the CD set. For instance, {sum,i}
leads to the same instructions being static as {i}, which is

2 Where these analyses determine that only one monitored variable or
data structure can be accessed (a points-to set of size 1), no run-time
matching is performed.

i = 0 {}
L1: if i >= size goto L2 {i,size}

uelem = u[i] {i,u[]}
velem = v[i] {i,v[]}
t = uelem * velem {i,u[],v[]}
sum = sum + t {i,sum,u[],v[]}
i = i + 1 {i}
goto L1 {}

L2:

Figure 2. Example of Candidate Static Variable Sets

already included in the CD set. Therefore, it suffices to
evaluate only the CDs in the CD set to estimate the
potential benefits that specialization can achieve, rather
than evaluating all 2k possible combinations of k variables;
for instance, in the dot-product example, the CD set size is
only 11, whereas there are 32 sets in the power set of the
five variables.

For each procedure, Calpa first computes the CSV sets
of all instructions. The CD set is then enumerated, using a
gradient search strategy. Variables are first sorted by their
number of distinct values, obtained from the profile. Then,
beginning with the CSV sets that contain the more
invariant variables, new candidate divisions are generated
and their run-time benefit and cost estimated. The search
process remembers the best candidate division choice and
its estimated speedup. The search terminates if all choices
have been enumerated (feasible for small applications,
such as dotproduct), a set time quota has expired, or
the gradient of improvement over the best choice so far
drops below a preset threshold.

3.1.2 The Cost Model

The DyC system incurs three different costs when
dynamically compiling a program: a one-time
specialization cost for producing a dynamically compiled
region for particular static values, periodic dispatching
costs which are paid each time a section of dynamically
generated code is executed, and an invalidation check cost
for variables and data structures for which invalidation-
based caching is used.
Specialization Cost

The specialization cost is roughly proportional to the
number of dynamic instructions generated for all code
versions. Therefore, when computing its specialization cost
estimate, Calpa uses the profile data to estimate the number
of different code versions that will be produced. Its
estimate of the total number of instructions generated at
run time is proportional to the product of the number of
specializations and the number of dynamic instructions
generated for each.

In more detail, for each procedure and each of the
procedure’s choice of static variables, the following steps
are performed. First, for each basic block the number of
dynamic instructions d is computed. Then, for each static
variable, d is multiplied by the number of the variable’s
profiled values v. If a loop induction variable is static,
different versions of the loop iteration, one for each value
of the induction variable, will be produced. To account for
this additional generated code, a second multiplier is used
for each static loop induction variable, based on the
number of profiled induction variable values. For multi-
way loops, in which the choice of the next loop path is
determined at run time, Calpa scales d * v, based on the

number of different paths and how often each is executed.
Finally, to obtain the estimated specialization time, the
estimate for the total number of instructions generated is
multiplied by a constant factor. (We currently use 40 cycles
per instruction generated1).

When loops are completely unrolled, Calpa constrains
code blowup by guarding the loop-unrolling annotation
with a condition that is generated by the specialization cost
model. It generates the expression d * range(i) <
limit, where range(i) is the actual number of
different values observed for the loop induction variable i
and limit is a predetermined constant (modifiable by a
Calpa command-line argument) to guard the unrolling.
Hence, the loop unrolling will only be performed if the
number of values of i remains below the threshold of
limit generated instructions. If the preset limit is too
large (causing performance degradation due to cache
effects) or too conservative, limit can be changed.
Currently Calpa makes the programmer do this; however,
future work will automate this process by observing the
resulting cache behavior of the generated application and
dynamically adjusting the limit.
Code Caching Cost

Using a simple binding-time analysis, Calpa identifies
program points at which dynamically-generated-code
cache lookups are necessary. However, a cost need not be
incurred at all cache lookup points. For example, DyC
includes a caching policy (cache_one_unchecked) to
specify that it is safe to omit a cache lookup for invariant
static variables − in this case, specialized code is generated
for the variable’s first encountered value, cached and used
thereafter without a cache lookup. Alternatively,
cache_all_unchecked is used for variables that step through
a small sequence of values. When the cache lookup point is
encountered, a new version of code is generated without a
lookup. This policy is useful for complete (single-way)
loop unrolling, where the induction variable is
monotonically incremented.

Calpa uses profile information as a hint to decide
whether an unchecked policy should be used; if a variable
has only one value, it becomes a candidate for
cache_one_unchecked; if it has only a few values and the
variable is a loop index, then it may be suitable for
cache_all_unchecked. To guarantee the safety of the
cache_one_unchecked policy, the invalidation point
analysis will ensure that the variable, once defined, will not
be redefined. The cache_all_unchecked policy is always
safe when specialization is performed on demand. Calpa
can choose eager specialization if it can determine that the
loop termination condition is static; if it cannot (e.g., for

1 DyC typically takes between tens to a few hundred cycles per instruction
generated, depending on the dynamic optimizations being applied [9].

multi-way loop unrolling), it chooses the safe, lazy option.
When Calpa uses the more costly cache_all policy

(which does a cache lookup), it assesses a per-lookup fee to
allocate memory for a cache key and do a hash table
lookup (85 cycles in the model), plus a small additional
cost to construct the cache key from the set of variables
whose values must be checked in order to dispatch to the
correct version of code (5 cycles per variable). Since the
caching cost is paid each time the cache point is executed,
it is multiplied by the execution frequency of the point,
obtained from the profile.
Invalidation Cost

When Calpa uses invalidation-based caching for a
variable or data structure, it first computes its invalidation
points. The cost of each invalidation point is the product of
its execution frequency and some fixed cost (100 cycles in
the model). The sum over all invalidation points is the
variable or data structure’s total invalidation cost.

3.1.3 The Benefit Model

Calpa’s benefit estimation identifies all instructions that
are made static by the particular CD being evaluated. For
each procedure and choice of static variables, it runs a
simple and fast binding time analysis (a simplified version
of DyC’s BTA [11]) to compute the derived static variables
and the division of variables and instructions into static or
dynamic. (The BTA also computes the program points that
require dynamically-generated-code cache lookups,
important for the estimation of caching costs, described
above.) In the current implementation, the BTA assumes
that the variables are specialized throughout the procedure.
In some cases, specializing a smaller region of the
procedure may result in the same number of static
instructions, but with a smaller specialization or caching
cost. In such a case, the current implementation will tend to
overestimate these costs.

The benefit of specializing a procedure for a particular
choice of static variables is computed by estimating the

number of saved cycles that will result from their
instructions becoming static.1 Since static instructions off
the critical path of the specialized procedure are unlikely to
contribute to saved cycle time, Calpa first computes the
critical path of the procedure. The total number of cycles
saved is obtained by multiplying the latency of each static
instruction on the critical path by its profile-derived
execution frequency.

4. Experiments and Results

Calpa’s instrumentation and annotation selection tools
are implemented using the SUIF compiler infrastructure
[26], together with the Machine SUIF libraries for CFG-
construction and data flow analysis [14]. All analysis,
instrumentation, and insertion of annotations are carried
out on the SUIF intermediate representation (IR).
Processed IR is converted back to C code and then
compiled with the GNU gcc compiler (for the instrumented
application) or DyC (for the annotated application).

Our experiments profile and automatically annotate a
number of commonly used kernels and applications,
described in Table 1. In this initial study, the same inputs
were used for profiling and the final performance runs that
determine application speedup. Studying the variance of
value profiles across different inputs and the effects of
varying levels of precision of different alias analysis
algorithms is beyond the scope of this paper; we will
analyze Calpa’s sensitivity to these factors once we finish
calibrating our cost/benefit model. All experiments were
done on a lightly loaded DEC Alpha 21164 workstation
with 1.5GB of physical memory. Timings were obtained by
using the UNIX time command; reported times are wall
clock time.

Table 1. Workload

Program Size (lines) Description Input

binary 111 binary search over an array array of 4K entries

dotproduct 136 dot-product of two integer vectors vectors of size 100 that were 90% zero-filled

query 226 database query for an exact match a query with 21 comparisons

romberg 134 function integration by iteration an iteration bound of 8

dinero
(version III)

2,397 cache simulator [13] L1 cache (8KB, 32B blocks, direct-mapped)

pnmconvol 333 image convolution routine that is part of the
netpbm toolkit for image transformations

3×3 convolution matrix on a 2.2 MB image file

m88ksim 11,549 Motorola 88000 simulator, taken from the
SPEC95 benchmark suite [21].

SPEC-provided null breakpoint set

1 We use instruction latencies, and currently assume L1 cache hits, again
a conservative estimate.

4.1. Instrumentation and Profiling Results

To assess the viability of our profiling tool, we
measured (1) the time to instrument the applications, (2)
the impact of instrumentation on the size and execution
time of the applications, and (3) the size of the resulting log
files. The results are summarized in Table 2.

Instrumenting the source code was fast, ranging from
fractions of a second for the kernels to 10 minutes for
m88ksim.

Instrumenting programs increased their size by roughly
an order of magnitude. For most of the applications, this
increase is predominantly due to including portions of
Calpa’s instrumentation library. Making this a dynamically
linked library and removing its debugging support would
greatly reduce the code space cost of instrumentation.

The run time of the instrumented executables was 1 to 3
orders of magnitude slower than that of the original code.
In contrast, Calder et al. [4] report average slowdowns in
the range of 10× to 33× for their profiling schemes. Calpa’s
much slower profiling performance is caused by its
straightforward tracking of all variables, at all definition
and use points. While Calpa currently disables tracking for
variables with more than a thousand values, a much lower
cut-off point seems more appropriate, i.e., the costs of
redynamic compiling for each of a thousand values will
surely swamp the gains of executing the specialized code.
In addition, simple static analysis could be applied to
reduce the number of redundant points of instrumentation,
e.g., attributing dominated use counts to the instrumented,
dominating use in the same control region (assuming no
intervening definition), and binary patching schemes could
be used to eliminate, for example, cut-off-point checking.
Both techniques would reduce the costs associated with
over-profiling variables [33]; for instance, binary patching
of disabled tracking calls alone improved the run time from

18 to 3.5 hours for m88ksim. However, despite its
straightforward instrumentation approach, Calpa’s
instrumented run times were a matter of seconds or
minutes for the kernels and medium-sized applications,
and hours for m88ksim.

Monitoring and storing data for all variables produced
profile log files that ranged from 92KB to 275KB for the
kernels and 266KB to 7.5 MB for the applications.
Summarizing profile data in memory, rather than simply
saving values to a file as they stream out of the
instrumented program, turned out to be a good time-space
trade-off; in particular, high repeat counts for value uses
indicate that a non-summarizing profile log would be much
larger.

4.2. Annotation Generation Results

Based on the profile data, Calpa generated annotations
for all programs. We measured the execution time of the
annotation selection tool and compared the set of Calpa’s
annotated variables to those chosen by a programmer. The
results are shown in Table 2.

For all programs Calpa generated the same set of
annotations that had been produced by the manual
methodology. In addition, despite the current simple
functionality of the profiling tool and the coarse-grain
estimates of the analysis cost/benefit model, Calpa
occasionally annotated other variables. The additional
annotations increased the speedups of the dynamically
compiled programs over their statically compiled versions.
Although preliminary, the results demonstrate the promise
for automatic dynamic compilation based on the approach
taken by Calpa. A discussion of the individual programs
follows.
• In binary, the procedure search is called repeatedly

for the same array of values. We had manually

Table 2. Profiling Results. This table shows the effects of instrumentation on application code size and execution time,
and the resulting profile log size.

Program
Instrumentation

Time
Original

Binary Size
Instrumented
Binary Size a

a.Instrumented binary sizes include required portions of a 409KB instrumentation library.

Binary
Expansion

Factor

Original
Run Time
(seconds)

Instrumented
Run Time

Profile Log
File Size

binary 0.2 seconds 25 KB 224 KB 9.0 < 0.1 1.9 seconds 275 KB

dotproduct 0.1 seconds 25 KB 224 KB 9.0 < 0.1 0.3 seconds 92 KB

query 0.4 seconds 27 KB 224 KB 8.3 < 0.1 7.8 seconds 939 KB

romberg 0.3 seconds 26 KB 224 KB 8.6 < 0.1 0.4 seconds 102 KB

dinero 4.6 seconds 57 KB 448 KB 7.9 1.3 13.8 minutes 6.8 MB

pnmconvol 1.2 seconds 66 KB 288 KB 4.4 3.0 17.1 minutes 266 KB

m88ksim 10.7 minutes 213 KB 2.6 MB 12.6 180.1 3.5 hoursb

b.Using a limited amout of binary patching improved m88ksim’s instrumented run time from 18 to 3.5 hours.

7.5 MB

annotated as static this array, its size and the loop
induction variables used to search it. This resulted in a
complete unrolling of the search loop. Calpa identified
the same variables for annotation, and, in addition,
decided to make the search key static. The driver
routine that calls search uses only 3 different key values
to do the search, making the search key appear quasi-
invariant, an artifact of this particular use of the search
routine by the driver. Therefore, Calpa chose to
specialize for the search key values thereby increasing
binary’s speedup from 2.3 to 3.1.

• For dotproduct Calpa also generated the same
annotations as had been done manually (vector u). In
addition, it annotated the second vector v, which was
also constant, an artifact of the use of the dotproduct
procedure by the driver routine. Annotating both
vectors instead of one, improved the speedup from 6.6
to 22.6.

• For the remaining programs, the set of variables
automatically annotated by Calpa exactly matched the
manual annotations. Speedups for those programs were
1.4 (query), 1.2 (romberg), 1.5 (dinero), 1.1
(m88ksim), and 3.0 (pnmconvol).
The column named “annotation time” shows the time to

generate annotations from the profile data logs. It took only
a few seconds to generate the annotations for the kernels,
and minutes for most applications (the exception,
m88ksim, took eight hours).

5. Related Work

Calder et al. [3] were the first to expose quasi-invariant
behavior by profiling. They then went on to show [4] that

the values found during profiling could be used to
potentially guide automated optimization by demonstrating
via hand optimization that two codes could get substantial
benefit from using the value profiles. Their value profiler
identifies (quasi-) invariant variables and their top n values;
two metrics are defined to measure the invariance of
variables, and a cache is used during profiling to store the
values. They do not collect information about particular
sequences of variable values, which we need to compute
precise caching and specialization costs. An advantage of
their tool is that no recompilation of a program is necessary
in order to profile it, since they instrument the executable
using ATOM [22]. However, to exploit the invariance
information, a mapping of the instruction-level information
back to the source code is necessary.

Value prediction [18] is a hardware technique that is
complementary to our compiler- and profiler-based
approach of value-specific optimizations. It uses processor
hardware to predict instruction results and speculatively
executes subsequent data-dependent instructions, based on
the predicted values.

Dynamo [2] is a run-time optimizer that tries to improve
performance by identifying frequently taken paths (traces)
through a program. Speedup results from accumulating the
traces in a code cache and executing the streamlined code
instead of the original code with branches. To obtain
control over an application’s execution and monitor its
performance, execution starts in Dynamo, which interprets
native code until it finds a hot path. Hot paths execute from
the code cache and return control to Dynamo when
finished. When a path is no longer hot, the code cache is
flushed and monitoring and interpretation of the code is

Table 3. Application & Annotation Characteristics. This table shows, for each program, the variables that
were automatically annotated, and the selection tool annotation time. The variables in bold are those that Calpa

annotated, but the human missed.

Program Annotated Static Variables
Annotation

Time

binary size & contents of the input array
induction variable for the search loop
the search key

6 seconds

dotproduct the contents of vector u
the loop index and duration bound
the contents of vector v

2 seconds

query a query 15 seconds

romberg the iteration bound 26 seconds

dinero cache configuration parameters 27 minutes

pnmconvol 4 loop indices in two doubly-nested loops
3 color arrays
image format flag
maximum size of the image array

75 seconds

m88ksim an array of breakpoints
loop index
flag that indicates whether breakpoint-checking is enabled

8.0 hours

resumed. If too much time is spent in interpretation mode,
Dynamo bails out to native execution. Because of bail-out,
Dynamo can limit the maximum slowdown an application
may suffer. Since Dynamo tries to speed up an application
in executable format, its approach is complimentary to
Calpa’s. Applications annotated by Calpa and compiled by
DyC could be run under Dynamo, which might further
improve their performance.

While there is a large body of research on dynamic
compilation, only a small fraction relates to automation.
Autrey and Wolfe [1] proposed a loop-level analysis to
identify variables that are modified much less frequently
than they are referenced, which they call glacial variables.
Variables that are defined at loop nesting level n, and not
modified at any higher nesting levels are identified as
candidates for dynamic compilation at loop nesting level n.
They do not report results of applying their analysis in a
real dynamic compilation system. TypeGuard and
MemGuard are two tools used in the Synthetix project [24]
to identify where invariant values are modified. In
TypeGuard the programmer tags fields in C struct types
with a guard specification. TypeGuard then analyzes the C
program and identifies all places where the tagged fields
are potentially modified. This information is used by the
Synthetix system to trigger respecialization for the field’s
new value. However, due to pointer type casts, TypeGuard
can not safely identify all potential definition points. In
addition, since struct types rather than particular variables
are guarded, scalar variables cannot be handled, because
too many (mostly spurious) messages would be generated.
MemGuard puts a static data structure into a protected
memory page. On a write to the page, the page fault
handler triggers respecialization for the new values in the
data structure. The MemGuard approach requires a
modification to the operating system, something we did not
want to do.

IPERF [15] is a framework for the automatic
construction of performance prediction models. It uses a
database of performance models of computation, the
memory hierarchy, and virtual address translation and tries
to fit a linear combination of these as closely as possible to
observed performance. In its model of computation it
distinguishes only between different compiler optimization
levels (e.g., -O2); in contrast, Calpa takes both the
estimated benefit from dynamically compiling code and
the compilation cost into account when deciding whether
to use dynamic compilation. Wang [25] proposed a
framework for the performance prediction of superscalar-
based computers to guide the optimization in the PTRAN2
compiler for High Performance Fortran. He reported
results for straight-line code only (no loops or other control
structures). Dean et al. [6] estimated the benefit of function
inlining in an object-oriented language by performing the

inlining and subsequent optimization in a trial; their
approach was able to amortize the trial cost by reusing the
benefit estimate for call sites whose receiver arguments
belonged to the same type groups. Calpa’s approach of
specializing conditionally, using conditions that are based
on variable values and architecture-specific parameters,
such as I-cache size, is similar to Debray’s concept of
resource-bounded partial evaluation [34], where a cost-
benefit model is used to prevent a partial evaluator from
specializing too aggressively, e.g., producing too much
code for the I-cache.

6. Conclusions

In selective dynamic compilation systems like DyC,
finding the right annotations is a major challenge to
profitable run-time optimization. Sometimes several
person-weeks are spent in a tedious, trial-and-error process
until successful annotations are found. We have shown that
Calpa can quickly produce annotations for small- and
medium-sized programs, using its unique combination of
techniques, and its particular choice of parameters (for
example, cutoff limits for value profiling). While the
current combination provides useful value, it represents
only one particular point the design space. Our next step is
to explore this design space by varying Calpa’s parameters
and examining the trade-offs of different choices, in
particular, studying the sensitivity of Calpa results with
respect to different value profiles, alias algorithms, and cut-
off limits. With that study, we hope to come closer to the
long-term goal of making dynamic compilation just
another in a series of optimizations performed
automatically by compilers.
Acknowledgments

We’d like to thank Brian Grant, Matthai Philipose and
our anonymous reviewers for valuable comments on an
earlier draft, and Mike Smith and Glenn Holloway for
Machine SUIF source and technical help in using it. This
work was supported by ONR contract N00014-96-1-0402,
NSF grant CCR-9503741, and NSF Young Investigator
Award CCR-9457767.
References
[1] T. Autrey and M. Wolfe. Initial results for glacial variable

analysis. In Proceedings of the 8th International Workshop on
Languages and Compilers for Parallel Computing, pages
120–134, August 1996.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 1–12, June 2000.

[3] B. Calder, P. Feller, and A. Eustace. Value profiling. In
Proceedings of the 30th Annual International Symposium on
Microarchitecture, pages 259–269, December 1997.

[4] B. Calder, P. Feller, and A. Eustace. Value profiling and
optimization. Journal of Instruction Level Parallelism, 1:1–
37, March 1999.

[5] C. Consel and F. Noël. A general approach for run-time
specialization and its application to C. In Symposium on
Principles of Programming Languages, pages 145–156,
January 1996.

[6] J. Dean and C. Chambers. Towards better inlining decisions
using inlining trials. In Proceedings of the ACM Conference
on LISP and Functional Programming ’94, pages 273–282,
June 1994.

[7] R. Ghiya and L.J. Hendren. Connection analysis: A practical
interprocedural heap analysis for C. International Journal of
Parallel Programming, 24(6):547–578, December 1996.

[8] B. Grant, C. Chambers, and S.J. Eggers. Efficiently
dispatching to run-time specialized code. Submitted for
publication.

[9] B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J.
Eggers. The benefits and costs of DyC’s run-time
optimizations. Submitted for publication.

[10] B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J.
Eggers. Annotation-directed run-time specialization in C. In
Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 163–178, June 1997.

[11] B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J.
Eggers. DyC: An expressive annotation-directed dynamic
compiler for C. Theoretical Computer Science, 248(1-2):147–
199, October 2000.

[12] B. Grant, M. Philipose, M. Mock, C. Chambers, and S.J.
Eggers. An evaluation of staged, run-time optimizations in
DyC. In Conference on Programming Language Design and
Implementation, pages 293–304, May 1999.

[13] M.D. Hill and A.J. Smith. Experimental evaluation of on-chip
microprocessor cache memories. In Proceedings of the
International Symposium of Computer Architecture, pages
158–166, June 1984.

[14] G. Holloway and C. Young. The flow and analysis libraries of
machine SUIF. In Proceedings of the 2nd SUIF Compiler
Workshop, August 1997.

[15] C-H. Hsu and U. Kremer. A framework for automatic
construction of performance predication models. In
Proceedings of the 1st Workshop on Feedback-Directed
Optimization, October 1998.

[16] N.D. Jones, C.K. Gomarde, and P. Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall, 1993.

[17] M. Leone and P. Lee. Optimizing ML with run-time code
generation. In Conference on Programming Language Design
and Implementation, pages 137–148, May 1996.

[18] M.H. Lipasti, C.V. Wilkerson, and J.P. Shen. Value locality
and load value prediction. In Proceedings of the Seventh
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 138–
147, October 1996.

[19] M. Mock, M. Berryman, C. Chambers, and S.J. Eggers.
Calpa: A tool for automating dynamic compilation. In 2nd
Workshop on Feedback-Directed Optimization, November
1999.

[20] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Automatic,
template-based run-time specialization: Implementation and

experimental study. In International Conference on Computer
Languages, pages 132–142, May 1998.

[21] SPEC CPU, August 1995. http://www.specbench.org/.

[22] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. SIGPLAN Notices,
29(6):196–205, June 1994. Conference on Programming
Language Design and Implementation.

[23] B. Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages, pages
32–41, January 1996.

[24] SYNTHETIX TOOLKIT. http://www.cse.ogi.edu/projects/
synthetix/toolkit/.

[25] Ko-Yang Wang. Precise compile-time performance
prediction for superscalar-based computers. In Conference on
Programming Language Design and Implementation, pages
73–84, June 1994.

[26] R. Wilson, R. French, C. Wilson, S. Amarasinghe,
J. Anderson, S. Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall,
M.S. Lam, and J. Hennessy. SUIF: An infrastructure for
research on parallelizing and optimizing compilers. ACM
SIGPLAN Notices, 29(12), December 1994.

[27] L.P. Deutsch and A.M. Schiffman. Efficient Implementation
of the Smalltalk-80 System. In Conference Record of POPL
’84: Symposium on Principles of Programming Languages,
pages 297-302, January 1984.

[28] C. Chambers and D. Ungar. Making Pure Object-Oriented
Languages Practical. In Proceedings OOPSLA ’91, pages 1-
15, November 1991.

[29] U. Holzle and D. Ungar. Optimizing Dynamically-
Dispatched Calls with Run-Time Type Feedback. In
Proceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation, pages
326-336, June 1994.

[30] V.C. Sreedhar and M. Burke and J.-D. Choi. A Framework
for Interprocedural Optimization in the Presence of Dynamic
Class Loading. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 208-218, June 2000.

[31] M. Shapiro and S. Horwitz. Fast and Accurate Flow-
Insensitive Points-To Analysis. In Conference Record of
POPL ’97: Symposium on Principles of Programming
Languages, January 1997.

[32] M. Das. Unification-Based Pointer Analysis with Directional
Assignments. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 35-46, June 2000.

[33] O. Traub and S. Schechter and M.D. Smith. Ephemeral
Instrumentation for Lightweight Program Profiling. Technical
report, Harvard University, 2000.

[34] S.K. Debray. Unfold/Fold Transformations and Loop
Optimization of Logic Programs. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language Design
and Implementation, pages 297-307, June 1988.

