
Abstract
In this paper, we compare the behavior of pointers in C programs,
as approximated by static pointer analysis algorithms, with the
actual behavior of pointers when these programs are run. In order
to perform this comparison, we have implemented several well
known pointer analysis algorithms, and we have built an
instrumentation infrastructure for tracking pointer values during
program execution.

Our experiments show that for a number of programs from the
Spec95 and Spec2000 benchmark suites, the pointer information
produced by existing scalable static pointer analyses is far worse
than the actual behavior observed at run-time. These results have
two implications. First, a tool l ike ours can be used to supplement
static program understanding tools in situations where the static
pointer information is too coarse to be usable. Second, a feedback-
directed compiler can use profile data on pointer values to improve
program performance by ignoring aliases that do not arise at run
time (and inserting appropriate run-time checks to ensure safety).
As an example, we were able to obtain a factor of 6 speedup on a
frequently executed routine from m88ksim.

Keywords
Points-To analysis, alias analysis, dynamic analysis, program
understanding, program optimization, Calpa, program
instrumentation.

1. INTRODUCTION
Many programming languages in use today, such as C, allow the
use of pointers. Pointers are used extensively in C programs to
simulate call-by-reference semantics in procedure calls, to emulate
object-oriented dispatch via function pointers, to avoid the
expensive copying of large objects, to implement list, tree or other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’01, June 18-19, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-413-4/01/0006...$5.00.

complex data structures, and as references to objects allocated
dynamically on the heap. While pointers are a useful and powerful
feature, they also make programs hard to understand, and often
prevent an optimizing compiler from making code-improving
transformations.

In an attempt to compensate for these negative effects, many
pointer analysis algorithms have been devised over the past decade
[1,4,5,8,9,12,13,18,20,21,22]. These algorithms produce a
conservative approximation of the possible sets of variables, data
structures, or functions a particular pointer could point to at a
specific program point; these are referred to as points-to sets.
These sets can be used, for instance, by an optimizing compiler to
determine that two expressions might be aliased, i.e., refer to the
same object.

Several kinds of pointer analysis algorithms have been designed.
Flow- and context-sensitive algorithms potentially produce the
most precise results, but they generally do not scale well, which
limits their applicability to relatively small programs (50, 000 lines
of code at most). In addition, recent work [6,11] suggests that for
typical C programs (e.g. SPEC benchmarks) flow- and context-
sensitivity produce only insignificant improvements over Das’s
fast One-Level Flow algorithm [5], which has been shown to scale
up to over a mill ion lines of C code. However, even though it is
generally the most precise among scalable algorithms, its points-to
sets are stil l on the order of tens or even hundreds of objects.
Clearly, such points-to sets are too large to be very useful in a
program understanding tool, where the user might like to know
what objects a pointer store might modify.

Instead of designing yet another pointer analysis algorithm, we
wanted to find out how well the statically computed points-to sets
agree with actual program behavior, i.e., how many different
objects are referenced at a particular pointer dereference compared
to the number of objects in the points-to set computed by a scalable
pointer analysis algorithm. Dynamic points-to sets may tell us how
close actual algorithms are to the theoretical optimum1, may be
used to improve program understanding tools, and enable dynamic
optimizations that take alias relationships into account.

For example, instead of presenting the user with hundreds of
potential candidate targets of a pointer dereference *p, the
program understanding tool could use the dynamically observed
targets of *p and present those to the user; in addition, when the

Dynamic Points-To Sets: A Comparison with Static
Analyses and Potential Applications in Program

Understanding and Optimization
Markus Mock*, Manuvir Das+, Craig Chambers*, and Susan J. Eggers*

Department of Computer Science & Engineering
University of Washington

Box 352350
Seattle, W 98195-2350

{mock,eggers,chambers}@cs.washington.edu

Microsoft Research
Redmond, WA 98052

manuvir@microsoft.com

static and dynamic sets agree, it could also inform the user that the
static information is in fact optimal and not just a conservative
approximation. This could be used to find out where a more
precise, but more expensive, algorithm might be beneficial.
Moreover, in some situations the potentially unsound dynamic sets
are more useful for program understanding than optimal points-to
sets: if the user is interested in what a pointer pointed to in a
particular program run, for instance when debugging a program, it
is actually more desirable to present only the dynamically
observed targets rather than all potential targets for all possible
executions.

In order to obtain dynamic points-to information in this study, we
used a slightly modified version of the Calpa instrumentation tool
[15] to observe the dynamic points-to sets of a set of programs
taken from the SPEC95 and SPEC2000 benchmark suites. The
static average points-to set sizes ranged from 1.0 to 177 for the
best of the scalable static pointer analysis algorithms we used,
while the dynamic points-to set sizes were on average (geometric
mean) a factor of 5 smaller. Additionally, for the large majority
(over 97%) of dereferences the dynamic points-to sets were
actually singletons. This means that 97% of the time a tool similar
to ours that is integrated into a program understanding tool, would
be able to tell the user the exact target of a dereference (for the
particular input data set). This is a much higher fraction than what
is possible with static analysis alone (14% of executed
dereferences), demonstrating the considerable potential benefit to
program understanding systems.

Furthermore, dynamic optimizers can take advantage of the fact
that a dereference accesses only one object at run time. Having
smaller dynamic points-to sets may cause fewer expressions to be
aliased in a program, which may allow the optimizer do a better
job; Section 2 shows an example of exploiting dynamic alias
information and the ensuing performance benefits.

This paper makes the following contributions:

• we present a tool to observe points-to information at run time;
• we show that there is a large gap between the sizes of dynamic

points-to sets and static points-to sets produced by scalable
static analyses, which produce sets that are in general an order
of magnitude larger;

• we show that dynamic points-to sets are almost always (97%
of the time) of size 1; with the average size being close to 1
across all dereferences executed at run time;

• we outline how these results might be used to improve both
program understanding tools and dynamic program optimizers.

The rest of the paper is organized as follows: in Section 2 we
present an example illustrating the optimization potential of
dynamic pointer information. We describe our instrumentation
methodology in Section 3. Section 4 discusses our experimental
results. Section 5 discusses related work, and in Section 6 we
present our conclusions.

2. OPTIMIZATION EXAMPLE
The following example il lustrates the potential benefits of
exploiting dynamic pointer information:

void align(uint* low, uint* high, uint*
result, uint diff) {

for (*result = 0; diff>0; diff--) {
*result |= *low & 1;
*low >>= 1;
*low |= *high << 31;
*high >>= 1;

}
}

The example shows a simpli fied version of a routine found in the
m88ksim SPEC95 benchmark. The routine is called from a number
of places in the code and none of the static alias analyses we
looked at was able to determine that at run time the arguments
low, high, and result were not aliased. Therefore, a code
optimizer would have to assume that the store *result might
overwrite the value of *low, preventing a register allocation of
*low. Similarly, *high or *result cannot be allocated to
registers but have to be reloaded from memory each time.

If dynamic points-to sets are available, however, and indicate that
low, high, and result are not aliased, a feedback-directed
optimizer could allocate their memory targets to registers, inserting
a run-time check to ensure that the arguments are in fact not
aliased. If the aliasing check fails, the slower code version, where
the memory targets are reloaded before each use, would be
executed instead. The resulting code would look as follows:

void align_opt(uint* low, uint* high, uint*
result, uint diff) {

if ALIASED(low, high, result) {
/* slow version with reloading */

 for (*result = 0; diff>0; diff--) {
*result |= *low & 1;
*low >>= 1;
*low |= *high << 31;
*high >>= 1;

}
} else {
/* fast register-allocated version*/
 register uint r, l=*low, h=*high;

 for (r=0; diff>0; diff--) {
r |= l & 1;
l >>= 1;
l |= h << 31;
h >>= 1;

}
*result = r; *low = l; *high = h;

}
}

Dynamic points-to information is required to ensure that this
transformation will be beneficial, because the execution time
penalty that is incurred by the run-time check that assures
soundness will only be recouped if the faster code version is
selected suff iciently often at run time (this is generally unknown in
the absence of profile information).

We hand-simulated register-allocation for the example by loading
the memory targets of the arguments into local variables and
storing them back before procedure return. To make the

1 Since the dynamic points-to set sizes may be distinct for different
inputs, they are potentially unsound and could be smaller than the
optimal sound solution, which in general is not computable, since
pointer-analysis has been shown to be undecidable [17].
However, for programs exercising a large fraction of their
execution paths, such as the SPEC benchmarks, we expect the
dynamic sets to be not much smaller than an optimal solution.

transformation sound, we also inserted a check at the beginning of
the routine to test whether the arguments were aliased. The
speedup over the unoptimized version was a factor of 6.2 for the
routine alone, and 1% for m88ksim as a whole, when executed on a
Compaq True64 Unix workstation with an Alpha 21264 processor
running at 667 Mhz. Both versions were compiled with the vendor
compiler and optimization flags -O2. These speedups show the
potential benefits of using dynamic pointer information.

3. INSTRUMENTATION
We used the Calpa instrumentation tool [15] to instrument our
applications. In the Calpa [14,15] system, the instrumenter is used
to obtain a value profile of the variables and data structures of a
program. When a variable or data structure is accessed via a
pointer p, the instrumenter inserts a call to a runtime library
function that compares the pointer value to the addresses of
potential target data structures or variables for that pointer
dereference; the potential target objects are identified by a static
alias analysis that is run before the instrumenter. Once the actual
target object has been identified, the object’s value profile is
updated.

For this study we changed the instrumenter to simply count how
often each potential target object of a pointer dereference was
accessed during a program run. For each load or store instruction
the instrumenter inserts an array of counter variables; a distinct
array variable is created for each dereference point, and its size is
made equal to the size of the static points-to set at the particular
dereference. Before the load or store the instrumenter inserts a call
to a library routine that matches the pointer address with the
addresses of the potential target objects at the dereference. At run-
time this matching routine returns an integer which identifies
which object matched, and the corresponding counter is
incremented. For example, a pointer store *p = val is changed
to:

temp = match_object(p, object_addrs[]);
counter[temp]++;
*p = val

where object_addrs[] is a data structure created and updated
by code inserted by the instrumenter to always contain the
addresses of the variables or data structures that p might refer to at
that point. For example, if the static points to set size for p is {x,
y, z}, object_addrs[] would contain {&x, &y, &z};
both object_addrs[] and counter are specific to the
particular program point.

To be able to match data structures on the heap, calls to memory
allocation routines such as malloc, are instrumented as well. At
run time a list of (address, malloc-site) pairs is
maintained, so that an address corresponding to a heap-allocated
data structure can be matched to the corresponding malloc site. A
malloc site is a program point where a memory-allocating function
(e.g. malloc) is called. Since a particular malloc call may be
executed multiple times at run time, multiple heap objects may be
represented by the same malloc site. Consequently, when a
dynamic points-to set of size 1 represents a malloc site, it may
correspond to multiple heap data structures at run time. This is
similar to static points-to analyses which typically represent a
malloc site by one symbol; some even represent all heap data
structures by just one representative heap symbol.

Once the instrumented program has finished, the contents of all
counter variables are written out to disk. Using a map file that
maps a particular counter variable to the corresponding static
points-to set, the dynamic points-to set is computed as the set of
objects that had a non-zero counter value. For instance, if the
values of the counter array in the example are {0, 100, 200},
we know that variable x was never accessed, y was accessed 100
times, and variable z 200 times at that dereference. Therefore, the
dynamic points-to set for *p would be {y,z} with a dynamic
points-to set size of 2.

Since the counters also tell us how often a particular dereference
was executed (in the example 300 times), we can use these
execution frequencies to compute a weighted average of all
dereferences executed in the program. For instance, if there is only
one other dereference *q in the program which is executed 200
times and has a dynamic points-to set size of 1, the (unweighted)
points-to average would be 1.5, whereas the weighted average
would be 1.6. Since this measure gives more importance to heavily
executed dereferences, the weighted average may be more
significant in a context where not only the points-to set size but
also the execution frequency is relevant, for instance, in dynamic
optimizations.

4. EXPERIMENTS
To compare static and dynamic points-to sets, we first ran an alias
analysis on each application. We used the fast and scalable
algorithms developed by Steensgaard [20] and Das [5], as well as
an extension of Steensgaard’s algorithm proposed by Shapiro and
Horwitz [18], where feasible within time and memory-
constraints1. Both the points-to algorithms and the instrumentation
tool are implemented using the Machine SUIF infrastructure
[10,19].

For each algorithm we measure the points to set sizes at each
executed dereference point in the program (a load or a store
instruction in the SUIF intermediate representation), and compute
the average over all dereference points; in addition we compute an
average weighted by the execution frequency of each dereference.

4.1 Workload
Our workload consists of the SPEC95 (m88ksim, perl) and
SPEC2000 (the others) benchmarks shown in Table 1. With each
benchmark we list a short description of the benchmark, the
number of lines of C code (in thousands), and the static average
dereference size for each pointer analysis algorithm.

We also looked at the programs in Todd Austin’s pointer-intensive
benchmark suite [2] but did not use them in this study. In addition
to being relatively small they showed the same dynamic points-to
sets results as the benchmarks we used in this study.

4.2 Static Points-To Sets Results
Table 1 shows the average points-to set sizes for the alias analysis
algorithms that we implemented. The average static points-to sets
sizes produced by the One-Level Flow (OLF) algorithm ranged

1 The Shapiro-Horwitz algorithm is parameterized by the number
of symbol categories, and the number of runs. We randomly
assigned symbols to 5 categories, and ran the algorithm 2 times,
taking the intersection of the resulting points-to sets as the final
result.

from 1 for equake to 247 for mesa. Steensgaard’s algorithm fares
worse, with points-to sets of up to a factor of 16.8 larger (m88ksim)
than those produced by the OLF algorithm. The largest application
for which we could run our implementation of the Shapiro-
Horwitz algorithm was gzip; for the larger applications it ran out of
memory.

The points-to set sizes that we report for Steensgaard’s and Das’
algorithm, are slightly different from the ones reported in [5]. The
differences come from a number of sources: (1) We use a different
intermediate representation for the C programs. In particular, a
structure field access s.f typically creates a pointer dereference
in our representation but not in Das’. (2) We treat constant strings
differently; since they are read-only (which is, however, typically
not enforced by compilers), they can be ignored as targets (of
stores). Das’ numbers ignore them completely; our results include
one representative for all string constants.

Like [5] we do not include pointers to functions in the points-to
sets at dereference points. The only benchmarks for which the
points-to set sizes would be significantly different if procedure
targets were included are vortex and gap, which both simulate
object-oriented dispatching via function pointers.

4.3 Dynamic Points-To Sets Results

To obtain the dynamic points-to sets we instrumented the
applications as described in Section 3, and executed the
instrumented applications on the SPEC-provided test inputs. We
chose the test inputs, because the reference inputs take much
longer to run. Since the instrumentation slows down the
applications by about 2 orders of magnitude, running the reference

inputs would generally not finish within a day. However, we

expect the results to be largely unchanged for the larger reference

inputs, which tend to run the same program parts, only more

often.To confirm this intuition, we ran gzip, parser, perl and mesa

also on the reference inputs, and found the results to be the same.

Tuning our profiling infrastructure for speed, would allow us to

also run with larger inputs in reasonable time (less than a day or

two which it takes now for the reference inputs).

In Table 2 we compare the average sizes of the dynamically

observed points-to sets for each application with the average sizes

of the corresponding static sets. While in Table 1 the static points-

to set sizes include all dereference points, in Table 2 only those

dereference points are included, that were actually executed.1 This

allows a comparison with dynamic points-to sets, which are

determinable only at executed dereferences. We show simple

average points-to sets sizes, and a weighted average points-to-set

size, weighted by the execution frequency of each dereference.

While the average dynamic points-to set sizes are very close to 1,

ranging from 1 to a maximum of 1.2, the averages produced by

static analyses are much higher. For the generally most precise

analysis used in this study, the One-Level Flow algorithm, the

sizes were 1.1 to 171 times larger. For equake, art, and bzip2 all

algorithms were able to produce the same or almost the same result

as the dynamic points-to sets; common to these programs is that

they pass around pointers to just one data structure, so that the

context-insensitivity does not appear to introduce any imprecision

for them.

Table 1. Description of the workload. The average dereference sizes shown are arithmetic means over all dereference
points in the program; shown are the results for the One-Level Flow (OLF), Steensgaard, and Shapiro-Horwitz algorithms.

Empty entries indicate that our implementation ran out of memory before finishing.

Program Description KLOC
Average dereference size

OLF Steensgaard Shapiro-Horwitz

equake seismic wave propagations
simulation

1.2 1.00 1.04 1.00

art image recognition, neural net-
works

1.2 1.14 1.27 1.00

mcf combinatorial optimization 1.9 2.9 2.9 2.9

bzip2 compression 3.9 1.0 1.9 1.0

gzip compression 7.6 7.9 35.9 25.0

parser Word processing 10.3 6.7 66.2

vpr FPGA circuit placement and
routing

13.6 2.5 12.6

m88ksim Motorola 88000 instruction
set simulator

19.4 5.7 96.8

perl perl interpreter 26.8 21.2 56.1

gap group theory interpreter 62.5 7.2 86.4

mesa 3D graphics library 81.8 247.3 423.8

Other than these three applications, Steensgaard’s algorithm fared
much worse, with ratios of static to dynamic sizes ranging up to
411. In general, our version of the Shapiro-Horwitz algorithm
produced points-to sets larger than the OLF algorithm, but smaller
than the sets produced by Steensgaard. Table 2 includes the
numbers for those benchmarks for which we were able to run the
algorithm to completion before running out of memory.

One of the most striking results of our experiments is shown in
Table 3, which shows the number of points-to sets that were
singletons, i.e., that had a size of 1. For the dynamic points-to sets
89.4% to 100% were singletons, with an average of 97%. This
result is surprising because even in a single program run some
routines are called multiple times from different places and with
different arguments (e.g. addresses of different locals). The result
implies that in almost all cases a program understanding tool that
uses the dynamic information could present the user with a single
target of a pointer dereference.

The number of singleton sets produced by static analysis is
generally much smaller. For the OLF algorithm, with the exception
of equake and bzip2, where the number of dynamic and static
singleton sets were identical, the number of singleton sets is a
factor of 1.1 to 37 smaller. Consequently, an average (geometric
mean) of 14% of all executed dereferences with dynamic singleton
sets also had static singleton sets. For the remaining 86% of
dereferences, a program understanding tool, or an optimizer with

purely static information, would deal with uncertainty (sets of size
2 or larger), whereas the dynamic information would pinpoint
exactly one pointer target (at least for the particular input data set).

In summary, the static points-to sets were a factor of 5 larger than
their static counterparts (geometric mean). Comparing the
weighted average points-to sets sizes improves the ratios for some
programs (art, mcf, parser), whereas they get worse or stay the
same for the others.

1 The executed dereference points represented between 9% (mesa)
to 78% (equake) of all dereferences present in the program.

Table 2. Dynamic versus static points-to set size average; both simple and weighted averages are shown.

Average dynamic Average static size of executed dereferences

Program dereference size One-Level Flow Steensgaard Shapiro-Horwitz

simple weighted simple weighted simple weighted simple weighted

equake 1 1 1 1 1.04 1.00 1.00 1.00

art 1 1 1.11 1.10 1.17 1.20 1 1

mcf 1 1 2.83 2.63 2.83 2.63 2.83 2.63

bzip2 1 1 1.00 1.00 1.82 1.23 1.00 1.00

gzip 1.20 1.06 9.01 8.46 39.6 50.7 28.5 38.5

parser 1.12 1.68 6.84 8.38 66.7 68.7

vpr 1.04 1.01 2.63 2.95 13.2 15.9

m88ksim 1.14 1.01 6.65 10.6 99.7 136

perl 1.04 1.06 21.2 23.1 57.3 59.0

gap 1.00 1.01 6.86 6.95 86.3 86.8

mesa 1.03 1.05 177 215 423 450

Table 3. Number of dereferences with singleton dynamic
points-to sets and percentage of total dereferences

Program
Number of

static
singleton sets

Number of
dynamic

singleton sets

Percentage of
dynamic

singleton sets
(weighted)

equake 395 395 100 (100)

art 124 124 100 (100)

mcf 165 424 100 (100)

bzip2 400 400 100 (100)

gzip 137 361 89.4 (97.0)

parser 442 2365 96.3 (87.7)

vpr 782 1749 97.9 (99.6)

m88ksim 397 970 91.6 (99.2)

perl 165 1711 97.9 (95.3)

gap 178 6596 99.9 (99.5)

mesa 733 2053 97.9 (95.4)

We also computed a lower bound on the number of cases when the

static pointer information was optimal, by counting the number of

static points-to sets that were identical to the dynamic sets.1 With

the exception of bzip2 and equake, for which all of the

dereferences were optimal, the percentages ranged from 88.7%
(art) down to 2.7% for perl, with an averge of 48.0% of optimal

static points-to sets.

Consequently, for about one out of two dereferences a tool l ike

ours would be able to establish the optimality of the statically

computed information, which could be used, for instance, to direct
more expensive, but more precise static analyses, to those

references for which optimality could not be established. Similarly,

in a program understanding system, this information might be used

to assign a confidence rating to pointer targets, focusing the user’s

attention on definitely feasible pointer targets. Furthermore, run-

time optimization techniques, such as the redundant load

elimination (as shown in the example in Section 2) can be used to

optimize code in those cases where purely static optimizations are

impeded by conservative static information.

5. RELATED WORK

As far as we know, our work represents the first application of

program instrumentation to observe points-to sets at run time and

compare them to their static equivalents.

Previous work in dynamic memory disambiguation by Bernstein et

al. [3] attempted to improve execution time for numeric programs

with array accesses. They used compile-time heuristics to select

inner loops that might benefit from optimization assuming no

aliasing. Such loops are duplicated, and at run time an aliasing

check selects the appropriate code version. To avoid slowdowns,
their heuristic had to be conservative, consequently, their approach

often achieved no speedups. Dynamic aliasing data is likely to

expose many more optimization opportunities than a purely static

heuristic alone.

Diwan et al. [7] used binary instrumentation to measure the
effectiveness of redundant load elimination based on memory

disambiguation through alias analysis. They compared a number of

simple algorithms for the strongly-typed object-oriented languages

Java and Modula-3 by measuring the remaining percentage of

redundant loads after eliminating those loads identified as

redundant by the particular alias analysis algorithm. For the

languages and benchmarks in their study they were able to show

that their best static algorithm was close to optimal. This suggests

that static alias analysis is more successful for strongly-typed

languages than for a weakly-typed language such as C that is
examined in this paper.

Recently, Postiff et al. [16] have proposed a hardware extension for
processors to support register allocation of variables that may
possibly be aliased. Using a hardware table and compiler support,
loads and stores to register-allocated aliased variables are
forwarded to the register in which they are allocated. In their
simulation they found a reduction of up to 35% of the loads and
15% of the stores. While their scheme requires a change in the
processor hardware, the scheme we sketched in Section 2 requires
no hardware modif ications.

Das et al. [6] looked at lower and upper bounds for the number of
possibly aliased data references in procedures. For each procedure
they used the memory references occurring in the procedure to
form pairs of memory references. For these pairs they used static
points-to sets to compute whether the pairs could be aliased and
compared these alias relationships to a lower bound where a pair
was considered aliased only if it consisted of two identical
references (e.g. (x,x) or (*p, *p)). They were able to show
that with existing static, scalable analyses the number of references
reported as aliased is very close to this lower bound. For the
remaining pairs, however, and also in cases where the actual
points-to set size matters (e.g. in debugging), dynamic points-to
sets would be useful.

6. CONCLUSIONS
In this paper we have presented a comparison of pointer analysis
information produced by static analyses and actual dynamically
occurring behavior. Using a slightly modif ied instrumentation tool
developed in the context of the Calpa system, we observed
dynamically occurring points-to sets. We found that while static
points-to sets are on the order of tens or hundreds of objects per
dereference, even for the best scalable algorithm, the actual
dynamically occurring sets are much smaller, with 97% of the sets
being singletons, and average sizes close to 1. This suggests that a
tool l ike ours can be used to supplement program understanding
tools and significantly enhance their usefulness by improving on
purely static information. Furthermore, profile data on pointer
values can be exploited in feedback-directed optimization with
potentially high performance benefits.

To assess the potential improvement that program understanding
tools might obtain by using dynamic points-to information, we are
currently integrating dynamic points-to sets information into a
program slicer for C. We plan to compare slices that use static
points-to information with slices based on dynamic points-to
information and to quantify the potential advantages of the smaller
dynamic sets.

7. ACKNOWLEDGMENTS
We would like to thank Mike Smith and Glenn Holloway for
Machine SUIF and technical help using it.

8. REFERENCES
[1] L. Anderson. Program Analysis and specialization for the C

programming language. Ph.D. thesis, DIKU, University of
Copenhagen, May 1994. DIKU report 94/19.

[2] T. Austin, S. E. Breach, and G. S. Sohi. Eff icient detection of
all pointer and array access errors. In SIGPLAN ‘94
Conference on Programming Language Design and
Implementation, pages 290-301, June 1994.

1 As mentioned in the introduction, the dynamic sets may be
smaller than the optimal sets if they are unsound. However, static
points-to sets that are equal to their dynamic counterpart, must
definitely represent optimal information.

[3] D. Bernstein, D. Cohen, and D. E. Maydan. Dynamic
memory disambiguation for array references. In Proceedings
of the 27th International Symposium on Microarchitecture,
pages 105-111, November 1994.

[4] J. D. Choi, M. Burke, and P. Carini. Eff icient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In 20th Annual ACM SIGACT-SIGPLAN
Symposium on the Principles of Programming Languages,
pages 232-245, January 1993.

[5] M. Das. Unification-Based Pointer Analysis with Directional
Assignments. In SIGPLAN ’00 Conference on Programming
Language Design and Implementation, pages 35-46, June
2000.

[6] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating
the impact of scalable pointer analysis on optimization.
Microsoft Research Technical Report 2001-20. January
2001. Also to appear in Proceedings of 8th International
Static Analysis Symposium, July 2001.

[7] A. Diwan, K. S. McKinley, and J. E. Moss. Type-Based
Alias Analysis. in SIGPLAN ‘98 Conference on
Programming Language Design and Implementation, pages
106-117, June 1998.

[8] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In SIGPLAN ‘94 Conference on Programming
Language Design and Implementation, pages 242-256, June
1994.

[9] R. Ghiya and L.J. Hendren. Connection analysis: A practical
interprocedural heap analysis for C. International Journal of
Parallel Programming, 24(6):547–578, December 1996.

[10] G. Holloway and C. Young. The flow and analysis libraries
of machine SUIF. In Proceedings of the 2nd SUIF Compiler
Workshop, August 1997.

[11] M. Hind and A. Pioli. Which pointer analysis should I use?
In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2000), pages 113-123, August
2000.

[12] W. Landi and B. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. In SIGPLAN ‘92
Conference on Programming Language Design and
Implementation, pages 56-67, June 1993.

[13] D.Liang and M. J. Harrold. Efficient points-to analysis for
whole-program analysis. In Proceedings of the 7th European
Software Engineering Conference and ACM SIGSOFT
Foundations of Software Engineering, pages 199-215,
September 1999.

[14] M. Mock, M. Berryman, C. Chambers, and S.J. Eggers.
Calpa: A tool for automating dynamic compilation. In 2nd
Workshop on Feedback-Directed Optimization, November
1999.

[15] M. Mock, C. Chambers, and S. J. Eggers: Calpa: A Tool for
Automating Selective Dynamic Compilation. In Proceedings
of the 33rd Annual Symposium on Microarchitecture, pages
291-302, December 2000.

[16] M. Postiff, D. Greene, and T. Mudge. The store-load address
table and speculative register promotion. In Proceedings of
the 33rd Annual Symposium on Microarchitecture, pages
235-244, December 2000.

[17] G. Ramalingam. The undecidability of aliasing. ACM
Transactions on Programming Languages and Systems,
16(5):1467-1471, September 1994.

[18] M. Shapiro and S. Horwitz. Fast and Accurate Flow-
Insensitive Points-To Analysis. In Conference Record of
POPL’97: Symposium on Principles of Programming
Languages, January 1997.

[19] M. D. Smith. Extending SUIF for machine-dependent
optimizations. In Proceedings of the first SUIF compiler
workshop, pages 14-15, January 1996.

[20] B. Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages, pages
32–41, January 1996.

[21] R.P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C program. In SIGPLAN ‘95 Conference
on Programming Language Design and Implementation,
pages 1-12, June 1995.

[22] S. H. Yong, S.Horwitz, and T. Reps. Pointer analysis for
programs with structures and casting. In SIGPLAN ‘99
Conference on Programming Language Design and
Implementation, pages 91-103, May 1999.

