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Abstract purely functional subset of ML; Tempo uses function-level

. ) - annotations, annotations on global variables and structure types,
We present the design of a dynamic compilation system for C.4nq alias analysis to drive dynamic compilation in C; and our
Directed by a few declarative user annotations specifying where yreyious system uses intraprocedural annotations to drive dynamic
and on what dynamic compilation is to take place, a binding time ¢ompilation in C. Each of these declarative approaches adapts ideas
analysis computes the set of run-time constants at each progrargrom partial evaluation, expressing dynamic compilation as off-line
point in each annotated procedure’s control flow graph; the analysis,n_time specialization, where static values correspond to run-time
supports program-point-specific  polyvariant division and giate on which programs are specialized. Declarative approaches
specialization. The analysis results guide the construction of augfer the advantages of an easier interface to dynamic compilation
specialized run-time specializer for each dynamically compiled o the programmer (since dynamic optimizations are derived from
region; the specializer supports various caching strategies fOrihe annotations automatically, rather than being programmed by
managing dynamically generated code and supports mixes Olhang py the programmer) and easier program understanding and
speculative and demand-driven specialization of dynamic bramhdebugging (since declarative annotations can be designed to not
successors. Most of the ke_y cost/bgnefit trade-offs in the bindingafrect the meaning of the underlying programs). However,
time analysis and the run-time specializer are open to user controgeciarative systems usually offer less expressiveness and control

through declarative policy annotations. Our design is being gyer the dynamic compilation process than do imperative systems.
implemented in the context of an existing optimizing compiler. ) .
We have developed a new declarative annotation language and

: underlying run-time specialization primitives that are more
1 Introduction expressive, flexible, and controllable than previous annotation-
Dynamic compilation offers the potential for increased program based systems, Wh”e_ still being easy to use. Our system supports
performance by delaying some parts of program compilation until the following features:

run time and then exploiting run-time state to generate code <« program-point-specific rather than function-level special-
specialized to actual run-time behavior. The principal challenge and ization,

trade-off in dynamic compilation is achieving high-quality . sypport for both polyvariant specialization and polyvariant
dynamically generated code at low run-time cost, since the time to  givision" (both of which have practical utility), with the degree

perform run-time compilation and optimization must be recovered  of gpecialization for different variables under programmer
before any benefit from dynamic compilation can be obtained. control,

Consequently, a key design issue in developing an effective
dynamic compilation system is the method for determining where, .
when, and on what run-time state to apply dynamic compilation. separately compilable,

Ideally, the compiler would make these decisions automatically, as ¢ arbitrary nested and overlapping regions of dynamically
in other compiler optimizations; however, this ideal is beyond the generated code,

current state-of-the-art for general-purpose programs. automatic caching, reuse, and reclamation of dynamically
generated code, with cache policies under control of the

intra- and interprocedural specialization, with caller and callee

Instead, current dynamic compilation systems rely on some form of
programmer direction to indicate where dynamic compilation ~ Programmer,

would most profitably be applied. Some previous dynamic automatic interleaving of specialization and dynamic execution
compilation systems, such as “C [Engleal. 96, Polettcet al. 97] to avoid unbounded static specialization for terminating
and its predecessodcg [Engler & Proebsting 94], take a programs, with the exact trade-off between speculative
procedural approach to user direction, requiring the user to write  specialization and demand-driven specialization under
programs that explicitty manipulate, compose, and compile programmer control,

program fragments at run time. This kind of system offers great « automatic interleaving of specialization and dynamic execution
flexibility and control to the programmer, at the cost of significant  to delay specialization of some code until the appropriate run-
programmer effort and debugging difficulty. time values have been computed,

Alternatively, several dynamic compilation systems, including ¢ run-time optimizations, including constant propagation,
Fabius [Leone & Lee 96], Tempo [Consel & Noél 96], and our own constant folding, strength reduction, conditional branch folding
previous system [Auslandet al. 96], take a declarative approach, and dead code elimination, loop unrolling and merge splitting,
with user annotations guiding the dynamic compilation process.  and procedure call specialization.

Fabius uses function currying to drive dynamic compilation, in @ The next section illustrates many of the capabilities of our system
using an annotated bytecode interpreter example. Section 3
describes our run-time specializer and its capabilities, and then

* Polyvariant division allows the same program point to be analyzed for
different combinations of variables being treated as static, and polyvariant
. specialization allows multiple compiled versions of a division to be
In PEPM’97 Proceedings produced, each specialized for different values of the static variables.



void interp_program(int bytecodes[], int arg) {
printf(“%d\n”, interp_fn(bytecodes, 0, arg));

int interp_fn(int bytecodes][], int pc, int arg) {
int stack[N], sp = 0;
make_static(bytecodes, pc, sp);
stack[sp++] = arg;
for(;;)
switch (bytecodes static  [pc++]) {
case CONST:
stack[sp++] = bytecodes static [pc++];
break;
case ADD:
stack[sp-1] = stack[sp-1] + stack[sp]; sp--;
break;

Eése LT:
stack[sp-1] = stack[sp-1] < stack[sp]; sp--;
break;

case IF_GOTO:
int nextpc = bytecodes static  [pc++];
if (stack[sp--]) {
pc = nextpc;

break;
case GOTO:
pc = bytecodes static  [pc++];
break;
case COMPUTED_GOTO:
pc = stack[sp--];
break;

case RETURN:
return stack[sp];

Figure 1: Simple Interpreter Example

int count[N];
#define threshold ...
specialize interp_fn(bytecodes, pc, arg)
on (bytecodes, pc);
int interp_fn(int bytecodes]], int pc, int arg) {
int stack[N], sp = 0, callee;
if (++count[pc] >= threshold) {
make_static(bytecodes, pc, sp);
}else {
make_dynamic(bytecodes, pc, sp);

stack[sp++] = arg;
for(;;) {
switch (bytecodes static [pc++]) {
... [* same as above */
case GOSUB:
callee = bytecodes static [pc++];
stack[sp] =
interp_fn(bytecodes, callee, stack[sp]);
break;
}
}
}

Robson 83, Lindholm & Yellin 97]. In boldface are the annotations
we added to turn the interpreter into a program that produces at run
time an interpreter specialized for the particular array of bytecodes,
i.e., a run-time compiler.

The main control annotation ieake_static , whose argument

list of variables the system is to treatran-time constantsvhen
run-time execution reaches that point. By default, the system will
apply polyvariant division and specialization as needed on all
control-flow paths downstream of theake_static  annotation,

until the variables go out of scope, in order to preserve the run-time
constant bindings of each annotated variable. For examplgg the
variable is annotated as static. The system will specialize code so
that, at each program point in the specialized codgaheariable

will have a known run-time constant value. The incremenfxof

in theswitch  body do not cause problems, since the valygcof
after the increment is a run-time constant, if the valyscdbefore

the increment is. The loop head at the top ofdhe loop requires
additional work: our system will automatically produce a separate
specialized version of the loop body for each distinct valpe aft

the loop head, in effect unrolling the loop fully.

The references to the contents of the bytecode array are annotated
as static references, implying that the contents of the referenced
memory location is a run-time constant if its address This
enables the system to constant-fold the switch branch within each
iteration (sincéytecodes andpc are run-time constants and the
loaded bytecode is a run-time constant), selecting just one case arm
in each iteration and eliminating the others as dead code. All the
code manipulating thbytecodes array and the@c value itself

are also eliminated as dead, once all the interpretation overhead on
these data values is constant-folded away. Similarly, at each
program point in the unrolled loop tlep variable will have a
specific run-time constant value, and so all the references and
updates tosp will be eliminated as dead code, once the index
expressions into thetack array are replaced with particular run-
time constant values. The contents ofdtaek array are not run-

time constants, as they depend on the inidigj value and
subsequent input program execution.

The IF_GOTO bytecode rebinds the value p€ conditionally
based on the run-time variable outcome of a previous test. At the
merge after théf , pc may hold one of two possible run-time
constant values, depending on whi€h arm was selected. By
default, becauspc is annotated amake_static , our system

will apply polyvariant specialization to the merge and all
downstream code, making potentially two copies of the merge and
successors, one copy for each run-time constant vape &or an
input program containing a tree ¢F_GOTO bytecodes, this
specialization will produce a tree of unrolled interpreter loop
iterations, reflecting the expected structure of a compiled version of
the input program. We call the ability to perform more than simple
linear unrollings of loopsnulti-way loop unrolling (Our system
allows the programmer to specify less aggressive specialization
policies for static variables, to provide programmers finer control
over the trade-offs between run-time specialization overhead and

Figure 2: Interprocedural and Conditional Specialization  run-time specialization benefit.)

At each of thesepecializable merge pointby default our system

will maintain a cache of all the previously specialized versions,
indexed by the values of the static variables at that merge point.
When encountering a specializable merge point during run-time
specialization, the cache will be examined to see whether a version
of that code has already been produced, and, if so, that previous
version will be reused. In the interpreter example, the cache checks

sections 4 through 6 present our annotation language, our analysi
to compute program-point-specific information, and our approach
to producing an (optimized) run-time specializer from the program-
point-specific information, respectively. Section 7 compares our
system to related work, and section 8 concludes with our plans for
future work.

2 Example ; . , ,

Our system currently does no automatic alias or side-effect analysis,
Figure 1 presents a simple interpreter of a bytecode program like unlike some other systems, so these annotations are necessary to achieve
those in the Smalltalk and Java virtual machines [Goldberg & the desired effect.



at the loop head merge have the effect of connecting backwarcinterp_fn procedure where the corresponding actual arguments
branch bytecodes directly to previously generated iterations,are static, a specialized versioniterp_fn is produced (and
forming loops in the specialized code as desired, and similarly tocached for later reuse) for the run-time constant values of the actual
introduce sharing of iterations if there exist other control flow arguments. The body of the specializetrp_fn is compiled
merge points in the input interpreted program. (Our system allowsas if its formal parameters were annotatednake_static  at

the programmer to specify alternative caching policies or even thatentry. (The callee procedure and each of its call sites can be
no caching should be used, to provide finer control to the compiled separately, given ttepecialize annotation in the
programmer over this potentially expensive primitive.) shared header file.) This specialization has the effect of

The COMPUTED_GOTi@tecode assigns thec variable to a streamlining the calling sequence for speciali@z@5UBbytecodes
dynamic expression. By default, our system will suspend program!© Specialized callees: neither thgtecodes  array nor the pc.
specialization until run-time execution reaches that program point, Variable will be passed in the specialized call, and the specialized

at which point the system will resume specialization using the INterpreter for the target function (i.e., the compiled code for the
actual value assigned fc at that point. As with specializable target funptlon) will be invoked directly. If the callee functlor_1 is not
merge points, each sudynamic-to-static promotiopoint has an Y&t heavily executed, then after entry theake_dynamic
associated cache of specialized versions indexed by the values c@hnotation will turn off specialization for that input procedure; all
the promoted variables, and the specializer consults this cache oP°dies of infrequently executed procedures will branch to the same
previously specialized versions to see whether a previous versiorPrécompiled version of the unspecialized interpreter.

can be reused or a new version must be produced. The initial . L

make_static  entry is also a dynamic-to-static promotion point 3 Run-Time Specializer

with an associated cache of versions specialized for different run-
time values of the initial static variables. (Again, programmer-
supplied policies support finer control over the aggressiveness o
dynamic-to-static promotion and the caching scheme to be used a
promotion points.)

A standard issue in specialization is how aggressively to specializeQUr run-time specializer is an adaptation of the strategy for
control-flow paths ahead of actually reaching those branches durincPlyvariant program-point specialization of a flow chart language
normal program execution. Aggressispeculativespecialization ~ described by Jones, Gomard, and Sestoft [Jer@s93]. The main

has the lowest cost, assuming that all specialized paths will Process is to produce specialized code famit(a generalization of -
eventually be taken at run time, but it incurs the cost of specializing® Pasic block that has a single entry but multiple possible exits)
any path not actually executed at run time, and it can lead to non-9iven thecontexti.e., the run-time values of the static variables, on
termination in the presence of loops or recursion. Alternatively, €Ntry to the unit. The static compiler is responsible for breaking up
demand-driverspecialization only specializes code when it can be dynamically compiled regions of the input program into units of
proven to be executed at run time, typically by suspending specu.alllzatlon,' producmg the stqtlg: data structurgs and. (;qde
specialization at each successor of a dynamic (non-constant) brancdescribing units and their connectivity, and generating the initial
in the program being specialized, resuming specialization only call to theSpecialize  function with the initial unit and context
when that successor is actually taken. This strategy avoids non@at the entries to dynamically compiled code.

termination problems and unneeded specialization, but incurs theTheSpecialize  function first consults a cache to see if code for
cost of suspension and resumption of specialization. Our systermthe unit and entry context being specialized has already been
allows the programmer to specify policies with variables to control produced (using the unit's caching policy to customize the cache
speculative specialization based on those variables, with the defaullookup process), and reuses the existing specialization if so. If not,
policy introducing suspension points at each specializable loopthe unit's ReduceAndResidualize function is invoked to
head. produce code for the unit, specialized to the input context. The

Figure 2 extends the simple single-procedure interpreter to supporUpdated values of the context at each of the program points
interpreting programs made up of multiple procedures. It also corresponding to unit exits is returned. The specialized code is
illustrates several other of our system’s capabilities, in particular added to the cache (again customized by the unit's caching policy).

how polyvariant division can be exploited to support conditional Finally, the specializer determines how to process each of the exits
specialization, and annotations that support interproceduralof the specialized unit. Each exit edge can eitheager in which
specialization. case the successor unit is specialized right awdszgrindicating

In the modifiedinterp_fn routine, acount array associates that specialization should be suspended until run-time execution
with eachpc corresponding to a function entry point the number of reaches that edge; lazy edges are implemented by generating stub
times that function has been invoked. In order to apply dynamic code at that edge that will call back into the specializer when
compilation only to heavily used functions, the programmer has executed. Points of dynamic-to-static promotion always correspond
made the originainake_static  call from Figure 1 conditional,  to lazy edges between units; code is generated at these lazy edges
occurring only when the invocation count of some interpreted that will inject the promoted run-time values into the context before
procedure reaches a threshold. At the merge afterifthe invoking the specializer.

bytecodes , pc, andsp are static along one predecessor but The caching structure for units is one of the chief points of
dynamic along the other. By default, our system applies polyvariantqeyinility in our system. Each of the variables in the context has an
division to produce two separate versions of the remainder of theggqqciated policy QacheAllUnchecked CacheAll

body ofinterp_fn , one where the three variables are static and c4cheOne, and CacheOneUnchecked | listed in decreasihg
lead to run-time specialization as in Figure 1, and one where they, qer of specialization aggressiveness), derived from user
are dynamic and no run-time specialization takes place, leading tcnnotations and static analysBacheAllunchecked  variables
regular interpretation of the input at no run-time cost. are considered to be so rapidly changing that there is no value in
The specialize annotation directs the compiler to produce an checking and maintaining a cache of specializations; each time the
alternate entry point to theterp_fn  procedure to be used when unit is specialized, a new version of code is produced, used, and
its first two parameters are run-time constants. At call sites of thethrown away. FoiCacheAll variables, the system caches each

In this section we describe our run-time specializer. Later sections
jpresent our annotation language and describe how annotated
programs get translated down into static precompiled code and run-
time specializers. Figures 3 and 4 sketch our specializer.



Specialize(unit:Unit,
context:Context,
backpatch_addr:Addr):Addr {
/* see if we've already specialized this unit for
this particular context */
(found:bool, start_addr:Addr) :=
CacheLookup(unit, context);
if not found then
/* need to produce & cache the specialization */
(start_addr,
edge_contexts:List<Context>,
edge_addrs:List<Addr>) :=
unit.ReduceAndResidualize(context);
CacheStore(unit, context, start_addr);
/* see how to handle each successor of the
specialized unit */
foreach edge:UnitEdge,
edge_context:Context,
edge_addr:Addr
in unit.edges, edge_contexts, edge_addrs do
if edge.eager_specialize then
/* eagerly specialize the successor now */
Specialize(edge.target_unit,
edge_context,
edge_addr);
else
[* lazily specialize the successor by
emitting code to compute the values of
promoted variables and then call the
specializer with the revised context */
addr:Addr :=
edge.ResolvePromotions(edge_context);
Backpatch(edge_addr, addr);
Emit(“pc := Specialize(‘edge.target_unit’,
promoted_context,
NULL)");
Emit(“jump pc”);
endif
endfor
endif
/*make the predecessor unit branch to this code */
Backpatch(backpatch_addr, start_addr);
return start_addr;

type Context = Tuple<Value>;
class Unit {
id:int,
cache_policies: Tuple<CachePolicy>;
edges:List<UnitEdge>;
ReduceAndResidualize(context:Context)
‘(start_addr:Addr,
out_contexts:List<Context>,
edge_addrs:List<Addr>);
/* Take the the values of the static vars and
produce specialized code for the unit.
Return the address of the start of the unit’s
specialized code and, for each successor unit,
the new values of the static variables at that
edge and the address of the exit point in the
specialized code for the unit */

}

class UnitEdge {
target_unit:Unit;
eager_specialize:bool;
ResolvePromotions(context:Context):Addr;

/* Generate code to extract the current run-time
values of any static variables being promoted
at this edge, updating the input
context and leaving the result in the
“promoted_context” run-time variable.
Return the address of the start of the
generated code. */

enum CachePolicy {
CacheAll, CacheAllUnchecked,
CacheOne, CacheOneUnchecked
}

Figure 3: Run-Time Specializer, Part |

CacheLookup(unit:Unit, context:Context)
:(found:bool, start_addr:Addr) {
if CacheAllUnchecked O unit.cache_policies then
/* always produce a new specialization */
return (false, NULL);
else
/* first index on CacheAll values */
let cache_alls :=
elements of context  with CacheAll policy;
(found, sub_cache) :=
cache.lookup(unit.id, cache_alls);
if not found then return (false, NULL);
/* then index on CacheOne values
in nested cache */
let cache_ones :=
elements of context  with CacheOne policy;
(found, start_addr) :=
sub_cache.lookup(cache_ones);
/* no need to index on CacheOneUnchecked */
return (found, start_addr);
endif

CacheStore(unit:Unit, context:Context,
start_addr:Addr):void {

if CacheAllUnchecked 0 unit.cache_policies then
/* don't store it, since we won't reuse it */
else

/* first index on CacheAll values */
let cache_alls :=
elements of context  with CacheAll policy;
(found, sub_cache) :=
cache.lookup(unit.id, cache_alls);
if not found then
sub_cache := new SubCache;
cache.add(unit.id, cache_alls, sub_cache);
endif
/* then index on CacheOne values
in nested cache */
let cache_ones :=
elements of context  with CacheOne policy;
[* store the new specialization in the cache,
replacing any there previously */
sau_]p_cache.replace(cache_ones, start_addr);
endi

}
Backpatch(source:Addr, target:Addr):void {
/* if source != NULL, then backpatch the branch
instruction at source to jump to target */

Emit(instruction:Code) {
[* append a single instruction to the current
code-generation point */

Figure 4: Run-Time Specializer, Part Il

combination of those variables for potential future reuse, assuming
that previous combinations are likely to recur. RacheOne
variables, only one specialized version is maintained, for the
current values of those variables. If the values of any of the
variables change, the previously specialized code is dropped from
the cache, assuming that combination of values is not likely to
recur. The values ofCacheOneUnchecked variables are
invariants or are pure functions of other non-
CacheOneUnchecked variables, so the redundant cache checks
for those variables are suppressed. Our run-time caching system
supports mixes of these cache policies, by skipping cache lookups
and stores if any variable in the context is
CacheAllUnchecked , and otherwise by first performing a
lookup in an unbounded-sized cache based onCtuzheAll
variables (if any), and then (if successful) performing a lookup in
the resulting single-entry cache based ordheheOne variables,

in turn resulting if successful in the address for the appropriate
specialized codeCacheOneUnchecked variables are ignored
during cache lookup.



Since invoking the specializer is a source of overhead for run-time

Table 1: Policies

specialization, our system performs a number of optimizations of
this general structure, principally by producing a specialized
version of theSpecialize function for each unit. Section 6

describes these optimizations in more detail.

Policy Description
poly_divide perform polyvariant division
mono_divide perform monovariant division

4  Annotations

Given the target run-time specializer described in the previous
section, we now present the programmer-visible annotation

poly_specialize

perform polyvariant specialization at merges
within dynamic regions (specialization is alwa
polyvariant at promotion points)

language (in this section) and then the analyses to construct the rur

mono_specialize

perform monovariant specialization at merge

time specializer based on the annotations (in sections 5 and 6
Appendix A specifies the syntax of our annotations, expressed a
extensions to the standard C grammar rules [Kernighan & Ritchie

auto_promote

automatically insert a dynamic-to-static prom
tion when the annotated static variable is pog
bly assigned a dynamic value

88].
4.1 make_static and make_dynamic

manual_promote

introduce promotions only at explicit

The basic annotations that drive run-time specialization are
make_static  andmake_dynamic . make_static  takes a

list of variables, indicating that each of them is to be treated as

run-time constant at all subsequent program points until reachin
either amake_dynamic annotation that lists the variable or the
end of the variable’s scope (which acts as an implicit

make_dynamic annotation). We call the region of code between
amake_static  for a variable and the corresponding (explicit or

make_static  annotations
cache_all specialize at merges, assuming that the context is
_unchecked different than any previous or subsequent spe-
cialization
cache_all cache each specialized version at merges
cache_one cache only latest version at merges, throwing
away previous version if context changes
cache_one cache one version, and assume the context is the
_unchecked same for all future executions of this merge

implicit) make_dynamic a dynamic specialization regioror

promote_all

specialize at promotion points, assuming that

the

dynamic region for short. B_ecause t_he _placgment of _unchecked promoted value is different than any previoud or

make__statlc_ andmake__dynamlc annotations is arbltraryz the _ subsequent specialization

dynamic region for a variable can have multiple entry points (if — - -
promote_all cache all specialized versions at promotion

separatenake_static  annotations for a variable merge together
downstream) and multiple exit points. A dynamic region can be

points

nested inside or overlap with dynamic regions for other variables,

promote_one

cache only latest version at promotion points

as in the following graph fragment (static variables shown in | promote_one cache one version, and assume promoted vdlue
boldface): _unchecked is the same for all future executions of this pro-
make_static(x); | make_static(x); | motion
XY Xy... lazy suspend specialization at all dynamic branchgs,
\/ avoiding all speculative code generation
make_staticly); specialize_lazy suspend specialization at all dynamic branch

Xy Yo

make_dynamic(x); make_dynamic(y);

successors dominating specializable merge
points and specializable call sites, avoiding s|
ulative specialization of multiple versions of
code after merges

pec-

WX, Y e XY
make_dynamic(y); make_dynamic(x);
XY XY

This flexibility in form for dynamic regions is one major difference
between our system and other dynamic-compilation systems.

A convenient syntactic sugar for a nested dynamic region is

loop_specialize

suspend specialization at all dynamic branch

make_static  followed by a compound statement enclosed in
braces, for instance

_lazy successors dominating specializable loop head
merge points and specializable call sites, allgw-
ing speculative specialization except where it
might be unbounded

eager eagerly specialize successors of branches,

make_static(x, y) {

assuming that no unbounded specialization
result, allowing full speculative specialization

}
This placesnake_dynamic annotations for the listed variables at
each of the exits of the compound statement.

4.2 Policies

Each variable listed in make_static  annotation can have an
associated list of policies. These policies control the aggressivenes
of specialization, division, and dynamic-to-static promotion, the
caching policies, and the laziness policies. The semantics of thesi
policies is described in Table 1, with the default policy in each
category in bold. Annotations in italics are unsafe; their use can
lead to changes in observable program behavior or non-terminatior.
of specialization, if their stated assumptions about program
behavior are violated. All of our default policies are safe, so the
novice programmer need not worry about simple uses of run-time

specialization. Unsafe policies are included for sophisticated users
who wish to get finer control over dynamic compilation for better
performance.

Our policies currently support either caches of size one or caches of
unbounded size. It is reasonable to wish for caching policies that
take an argument indicating the desired cache size. However,
bounded multiple-entry caches necessitate a non-trivial cache
replacement policy, over which we would want to offer
programmer control. More generally, we might wish to provide
programmers with direct access to the various caches that the run-
time specializer maintains. We leave the design of such interfaces
to future work.

The polyvariant vs. monovariant specialization policy controls
whether merge points should be specialized for different values of



a variable flowing in along different merge predecessors. In However, the semantics of this annotation still delays specialization
contrast, promotion points suchraake_static  always perform until program execution reaches the dereference point the first time.
polyvariant specialization of the promoted value beginning at the To avoid any run-time overhead in the specialized code for this

promotion point. dereference, the programmer must state that the load instruction
. itself is a static computation, returning a run-time constant result if
4.3 Common Idioms its argument address is a run-time constant. In our annotation

We designed the annotations to effect particular optimizations, sucH@nguage, a memory-reference operation (a variable access, a
as specializing for true run-time constants (variables whose valuesPOinter dereference, or an array index expression) can be prefixed

remain invariant after initialization at run time) or multi-way loop With thestatic  keyword, indicating that the associated memory
unrolling (specializing a loop along multiple dynamic paths as in load should pe done at spgmallzatlon time, assuming the pointer or
Figure 1). Hence, these common optimizations can easily be@T@y iS static at that point. The programmer can use a static
obtained by the use of concise idioms. For example, a region ofdereference in this example as follows:

code may be specialized for the value of a true run-time constant  make_static(p);

by using thegromote_one_unchecked  policy:

o ) t = static* p;
make_static(x:promote_one_unchecked); I later uses of t are specialized for t 's value
Alternatively, to conditionally unroll loops shorter than some at specialization time */ ...
threshold, the following idiom is used: Thestatic  prefix is a potentially unsafe programmer assertion.
if (n < threshold) make_static(n,i:eager); Alternatively, we could attempt to perform alias and side-effect
for (i=0; i<n; i++) { analysis to determine automatically which parts of data structures

} are run-time constants. Unfortunately, it is extremely challenging to

) ) o . produce a safe yet effective alias and side-effect analysis for this
We achieve a substantial effect with little annotation because thetask, because the analysis would have to reason about aliasing
default policies of the annotations induce the most aggressive (safere|ationships over the whole program (not just within dynamic
level of specialization (polyvariant specialization and division, and regions) and also about the temporal order of execution of different
automatic dynamic-to-static promotion). We have also placed aparts of the program (e.g., side-effects that occur to construct the
significant burden on our analyses in that they must clean upryn-time data structures before the dynamic region is first entered
“sloppy” annotations. In this example, the programmer most likely should be ignored). Sound, effective interprocedural alias analysis
does not require automatic promotion foror i, or polyvariant for lower-level languages like C is an open problem and the subject
specialization forn at control-flow merges. Furthermore, the of ongoing research [Wilson & Lam 95, Steensgaard 96], and so we
programmer annotateswhen itis dead, and probably also does not do not attempt to solve the full problem as part of our dynamic
wish to specialize code following the loop for However, the  compilation system; our current system includes only simple, local
programmer is not penalized for specifying more powerful policies jnformation, such as that local variables that have not had their
than are required, and our system uses live-variables analysis anaddresses taken are not aliases of any other expression. When
performs other optimizations (e.g., unit-boundary clustering, effective alias analyses are developed, we can include them as a
described in section 6.3) to minimize the cost of the specified run-component of our system; even so, there may still be need for

time specialization. explicit programmer annotations to provide information that the
Finally, note thai is a derived static variable after it is assigned automatic analysis was unable to deduce. Other dynamic
zero, and no dynamic-to-static promotion bf is required. compilation systems either include an analysis that operates only

However, the loop would not be unrolled ifwere not annotated ~ Within a dynamic region and is unsafe in the face of some legal C
because we treat unannotated derived static variables as if thePprograms (Tempo), disallow side-effects entirely (Fabius), or rely
were set to the weakest level of specialization (monovariant On the programmer to perform only legal optimizations ("C).
specialization and division and manual promotion), to avoid
incurring run-time specialization expense without explicit user
direction.

Instead of, or in addition to, providing annotations at individual
dereference operations, we could provide higher-level annotations
of static vs. dynamic components along with variable or type
4.4 Partially Static Data Structures declarations. For example, the p variable could be declared with a
type such asconstant* rather than*, to indicate that all
Another common idiom is to perform a memory reference dereferences would result in run-time constant values; the
operation (reading a variable, dereferencing a pointer, or indexingbytecodes array in the initial example in Figure 1 could be
an array) whose result is intended to be a run-time constant. Thisdeclared asonstant int bytecodes]] to indicate that its
occurs, for example, when manipulating a (partially) static data contents were run-time constants, thereby eliminating the need for
structure. By default, the result of a load operation is not a run-timethe four static prefix annotations on theytecodes array
constant, even if its address is a run-time constant. To inform ourindex expressions in the example. Tempo follows this sort of
system that the loaded result should be treated as a run-timeapproach, at least for fields stfuct  types. This syntactic sugar

constant, the following code can be written: may be a worthwhile addition to our system.
make_static(t); )
t="p; o 4.5 Interprocedural Annotations
I later uses of t are specialized for t ’s value */ ...

This will introduce an automatic promotion and associated cacheRun-time specialization normally applies within the body of a
check at each execution of the load. If the programmer knows thaisingle procedure: calls to a proced&véom within a specialized

the result of the dereference will always be the same for a particulaiegion all branch to the same unspecialized versidn Bfitself
run-time constant address, the programmer can use themay have another specialized region in its body, but this break in

promote_one_unchecked  annotation: the specialized code will cause all the different specialized calls of
e . P to merge together, only to be split back apart again by the cache
k t: t heck P . . .
tm =a*g;_stat|c( promote_one_unchecked); checks at thenake_static  annotation aP’s entry. To avoid this

I later uses of t are specialized for t 's first value */ ... overhead, calls can themselves be specialized, branching to



correspondingly specialized versions of the callee procedure,differently in the other division; divisions that do not differ in the
thereby extending dynamic regions across procedure boundaries. policies of any variables annotated with the polyvariant division

The specialize  annotation names a procedure with a given POlicy will be merged together by the analysis.
number of arguments and provides a list of divisions for the For each division the analysis computes the following pieces of

procedure. Each division lists a non-empty subset of the formalinformation:

parameters of the procedure to be treated as run-time constants;
division can specify any of the same policies for listed variables that
amake_static  annotation can specify. As described in section
6, for each division, our system'’s static compiler produces a code-
generation procedure (i.e., a generating extension) for that division
that takes the static formals as arguments and, when invoked or
their run-time values, produces a specialized residual procedure
that takes the remaining arguments of the original procedure (if
any), in classical partial-evaluation style.

At each call site in a specialized region to a proceBundth an
associatedspecialize annotation, our system will search for
the division specified fdP that most closely matches the division
of actual arguments at the call site (favoring divisions listed earlier
in P's specialize annotation in case of ties). If one is found, the
static compiler produces code that, when specializing the call site a
run time, (1) invokes the generating extension for the selected
division of P, passing the necessary run-time constant arguments,
and (2) generates code that will invoke the resulting specialized
version forP, passing any remaining arguments. Thus, when the
specialized call is eventually executed, the call will branch directly
to the specialized callee and pass only the run-time variable
arguments. If no division specified fBrmatches the call, then the
general unspecialized version Bfis called. Calls td® outside of

any dynamic region continue to invoke the unspecialized version of
P.

The constant  prefix to thespecialize annotation is an

« The analysis computes the set of static variables (run-time
constants) at that program point, including both user-annotated
static variables and any derived static variables computed
(directly or indirectly) from an annotated variable. The
computed set of static variables will be used to determine which
computations and operands are static vs. which are dynamic. In
addition, the set of static variables is used to index into the run-
time specializer caches, and consequently the analysis also
computes the appropriate caching policy for each static
variable. (For internal purposes, the analysis tracks the set of
root annotated run-time constants from which each static
variable was computed, directly or indirectly, as described in
subsection 5.3.6.)

The analysis computes those points requiring dynamic-to-static
promotions of variables. Non-empty promotion sets correspond
to promotion points for the listed variables. Promotions get
inserted aftermake_static ~ annotations for non-constant
variables and after (potential) assignments of dynamic values to
variables annotated with the auto-promotion policy.

« The analysis identifies which merge points require polyvariant
specialization (callediscordant merggsbecause at least one
variable annotated with the polyvariant specialization policy
has potentially different definitions on different merge
predecessors. The set of sdii$cordant variabless computed
at these merge points, and is empty at all other points.

In the remainder of this section we describe the procedure

(unsafe) assertion by the programmer than the annotated procedutrepresentation we assume and the set of dataflow analyses used to
acts like a pure function, returning the same result given the sameconstruct this output.

arguments without looping forever, making externally observable

side-effects, or generating any exceptions or faults. Our systemb.1 Procedure Representation

exploits this information by calling a constant function from call \ve assume procedures being analyzed are represented in a standard
sites with all static arguments at specialization time and treating itSqgtrol-flow graph, where nodes in the graph can be of one of the
result as a run-time constant, i.e., reducing the call rather tha”following forms: '

specializing or residualizing the call. This behavior is different than
simply providing a specialization division where all formals are
static, since that would leave a zero-argument call in the specializec
code whose result was a dynamic value.

The callee procedure and any call sites can be compiled separatel:
All that they need to agree on is thpecialize annotation,
which typically is put next to the procedurestern declaration

in a header file.

5 Analysis of the Annotations

Given the programmer annotations described in the previous
section, our system performs dataflow analysis akin to binding time
analysis over each procedure’s control-flow graph representation tc
compute where and how run-time specialization should be
performed. The output of this analysis is information associated
with each program point (each edge between instructions in the
control flow graph); the domain of the informati&T,A along with
some constraints on its form, is specified in Figu*reTﬁis output

To
definitions of a variable merge, we assume that merge nodes are
annotated with a list of variables that have different reaching
definitions along different predecessors, yielding one variable in the
list for eachg-function that would be inserted if we converted the
procedure to static single assignment (SSA) form [Cyatah. 89].

e an operator node such as a move, add, or call, with one
predecessor and successor,

a merge node with multiple predecessors and one successor,

« a conditional branch node with one predecessor and multiple
successors, with a single operand that selects the appropriate
successor edge,

an entry node with no predecessors and a single successor,
which acts to bind the procedure’s formals upon entry, or

a return node with one predecessor and no successors, with a
single operand that is the procedure’s result.

enable our analyses to detect when potentially different

is used to produce the generating extension which invokes the run”

time specializer, as described in section 6.

The analysis computes a set of divisions for each program point.
Each division maps variables annotated as static by
make_static  or specialize to their associated policies at
that program point. Two divisions are distinct iff there is some
variable in one division annotated with the polyvariant division
policy that is either not found (i.e., dynamic) or annotated

In our notation,— constructs the domain of partial finite maps (sets of
ordered pairs) from one domain to anotltEmn andrange project the

first and second elements, respectively, of the ordered pairs in the map,
and applying a mapto an element idom(f) returns the corresponding
range element. We use to construct cross-product domains. We write
D(p) to project from the producp the element corresponding to
component domail, and we writgp[D - v] to compute a new produgt
whose D element has valug. Pow denotes the powerset domain
constructor. Note that - B [J Pow(AxB).



Domains:
BTA = Division - DivisionInfo
DivisionInfo = StaticVarlnfo x Promotions x DiscordantVars
Division = Var - Policies
Var = finite set of all variables in scope of procedure being compiled
Policies = DivisionPolicy x SpecializationPolicy x
PromotionPolicy x

MergeCachingPolicy x PromotionCachingPolicy x
LazinessPolicy

DivisionPolicy = {PolyDivision, MonoDivision}
SpecializtionPolicy = {PolySpecialization, MonoSpecialization}
PromotionPolicy = {AutoPromote, ManualPromote}
MergeCachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}
PromotionCachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}
LazinessPolicy =
{Lazy, SpecializeLazy, LoopSpecializeLazy, Eager}
StaticVarlnfo = Var . CachingPolicy x SourceRoots
CachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}
SourceRoots = Pow(Var)
Promotions = Pow(Var)
DiscordantVars = Pow(Var)
LiveVars = Pow(Var)
UsedVars = Pow(Var)
MayDefVars = Pow(Var)
Specializations = Proc - Specializationinfo
Proc = finite set of all procedures in scope of function being compiled
SpecializationInfo = IsConstant x Divisions
IsConstant = {Constant, NotConstant}
Divisions = Pow(Division)
Constraints:
BTALegal(bta:BTA) =
LegalDivisions(dom(bta)) O
0(d,i)Obta.
StaticVars(i)Jdom(d) O
OvOStaticVars(i).
(SourceRoots(v, i)Odom(d) O
vOdom(d) O
CachingPolicy(StaticVarlnfo(i)(v)) =
CacheOneUnchecked) O
Promotions(i)dJdom(d) O
DiscordantVars(i)JPolySpecializationVars(d)
LegalDivisions(ds:Pow(Division)) =
0d,,d,0ds. dy=d, O SeparateDivisions(dy,d,)
SeparateDivisions(d:Division, d,:Division) =
PolyDivisionVars(d4)#PolyDivisionVars(d,) O
OvOPolyDivisionVars(d,). d1(v)#d,(v)
PolyDivisionVars(d:Division) =
{ vldom(d) | DivisionPolicy(d(v)) = PolyDivision }
PolySpecializationVars(d:Division) =
{ vOdom(d) | SpecializationPolicy(d(v)) = PolySpecialization }
StaticVars(i:DivisionInfo) = dom(StaticVarlnfo(i))
SourceRoots(v:Var, i:DivisionInfo) =
if vOStaticVars(i) then SourceRoots(StaticVarlnfo(i)(v)) else O

Figure 5: Domains

Flow graph nodes are generated from the following grammar:

Node ::= OpNode | MergeNode | BranchNode |
EntryNode | ReturnNode

OpNode ::= MakeStaticNode | MakeDynamicNode |
ConstNode | MoveNode | UnaryNode | BinaryNode |
LoadNode | StaticLoadNode | StoreNode | CallNode

MakeStaticNode ::= make_static(  Var: Policies)
MakeDynamicNode ::= make_dynamic( Var)
CostNode ::= Var := Const

MoveNode ::= Var := Var

UnaryNode ::= Var := UnaryOp Var

BinaryNode ::= Var := Var BinaryOp Var
LoadNode ::= Var:=* Var

StaticLoadNode ::= Var := static* Var
StoreNode ::=* Var := Var

CallNode ::= Var := Proc( Var, ..., Var)

MergeNode ::= merge( Var, ..., Var)
BranchNode ::=test Var
EntryNode ::= enter Proc
ReturnNode ::=return Var

whereVar, Const, UnaryOp, BinaryOp, andProc are terminals
andPolicies is as defined in Figure 5.

5.2 Prepasses

Our analyses will need to identify those program points where a
variable in the scope of analysis may be assigned. Direct
assignments as part of @pNode are clear, but assignments
through pointers and as side-effects of calls are more difficult to
track. We abstract this may side-effect analysis problem into a
prepass whose output MayDefVars, a set of variables at each
program point that may be modified during execution of the
previous node, other than the left-hand-side variable of the node.

Our analyses will work better if they can identify when annotated
and derived run-time constant variables are dead. We abstract the
result of a live variables analysis into a prepass that computes
LiveVars, the set of live variables at each program point. We also
compute and abstract a similar analysisedVars, which are the

set of variables that have an earlier definition and a later use (but
may temporarily be dead at this point).

Finally, we assume that the interprocedural specialization directives
have been processed and represented inStecializations
domain that maps each annotated procedure to a set of divisions
given in thespecialize annotation and specifies whether the
procedure was annotated aenstant . This information is
assumed to be replicated at all program points, for convenience in
writing the analysis functions.

5.3 The Main Analysis

Figures 6, 7, and 8 define the annotation analysisBTidamily

of dataflow equations defines the information on the program
point(s) after a node in terms of the information computed for the
point(s) before the nodéta), the helper information described in
subsection 5.2 for the program point(s) after the nivdel(vs, and
mds), and the ever-present specialized function informaspi.

A solution to the (recursive) dataflow equations is the greatest
fixpoint of the set of equations for each node in the procedure,
which we solve by simple iterative dataflow analysis; the top
element of the lattice, used to initialize back-edges during the initial
iteration of analysis of loops, is the empty set (no divisif)ns).

In general, each flow function computes a new updated set of
divisions from the inflowing set(s) of divisions. We remove any

(permanently) dead variables from the set of annotated variables
and any (at least temporarily) dead variables from the set of run-
time constants, to avoid unnecessary polyvariant division or
specialization. Once a new set of divisions and associated



BTAgntry: EntryNode - LiveVars - UsedVars — Specializations — BTA

BTAenyy [enter P ]l lvs uvs sp =
let ds = (if POdom(sp) then Divisions(sp(P)) else 0) O {0} in
Merge(lvs, { (d, (s, O, 0)) |
d’ds O
d = ForgetDeadVars(uvs, d’) O
s = { InitialBinding(v, d) | v&dom(d) } })

BTAgranch:
BranchNode - LiveVarsxLiveVars - UsedVarsxUsedVars

- MayDefVarsxMayDefVars - Specializations - BTA - BTAXBTA
BTAgranch [test x ] (lvsy,lvs,) (uvsy,uvs,) (mdsy,mds,) sp bta =
(Merge(lvsy, { (doutioud) |
(d,i) Obta O (doytsiour) = ProcessStmt(0, uvs,, mdsy, d, i) }),

Merge(lvsy, { (doutiou) |
(d,i) Obta O (dgytiout) = ProcessStmt(0, uvs,, mds,, d, i) }))

BTAvierge: MergeNode - LiveVars - UsedVars — MayDefVars
- Specializations - Pow(BTA) - BTA

BTAvierge [merge(x 1,...x )1 Ivs uvs mds sp btas =
let bta = O btas in

if this is a static mergthen Merge(lvs, bta)

else Merge(lvs, { (doutiout) |
(d,i) Obta O
pvs = {X1,....Xn} N PolySpecializationVars(d) n lvs O
mvs = ({X1,...Xp} = PVS) n lvs O
dgyt = ForgetDeadVars(uvs, d - { (x,p")0d | xOmvs }) O

lout =
if pvs = O then i[DiscordantVars - 1]
else
({ (v, (mp, {v})) | (v,p)0dgy O
mp = if vpvs then MergeCachingPolicy(p)
else CachingPolicy(StaticVarinfo(i)(v)) },

0, pvs)})

Figure 6: Flow Functions, Part |

information is computed, divisions that no longer differ in the

BTAppNode: OpNode - LiveVars - UsedVars - MayDefVars
- Specializations - BTA-BTA
BTAppNode [Make_static(x:p) 1 Ivs uvs mds sp bta =
Merge(lvs, { (doutiou) |
(d,i) O bta O
doyt = ForgetDeadVars(uvs, d - { (x',p")0d | x'=x } O {(x,p)}) O
iout = MakeStatic(x, dq, i[DiscordantVars - 0]) })
BTAopNode [Make_dynamic(x) ] Ivs uvs mds sp bta =
Merge(lvs, { (dout-iout) |
(d,ij) Obta O
doyt = ForgetDeadVars(uvs, d - { (x,p)0d | X' =x }) O
iout = i[DiscordantVars - O] })
BTAopNode [X :=K ] Ivs uvs mds sp bta =
Merge(lvs, { (dout-iout) |
(d,ij) Obta O
(doutslout) = ProcessAssignment(x, true, O, uvs, mds, d, i) })
BTAopNode X :=y 1 Ivs uvs mds sp bta =
Merge(lvs, { (dout-iout) |
(d,ij) Obta O
(doutrlout) = ProcessAssignment(
X, yOStaticVars(i), SourceRoots(y,i), uvs, mds, d, i) })
BTAopNode [X :=0py ] Ivs uvs mds sp bta =
Merge(lvs, { (doutrioud) |
(d,i) O bta O
(doutrlout) = ProcessAssignment(
x, yOStaticVars(i) O Pure(op), SourceRoots(y i),
uvs, mds, d, i) })

BTAopNoge [ =y op z
Merge(vs, { (doytiour) |
(d,iy Obta O
(doutslout) = ProcessAssignment(
X, {y,z}OStaticVars(i) O Pure(op),
SourceRoots(y,i) O SourceRoots(z,i), uvs, mds, d, i) })
BTAopNode [X :=*p T Ivs uvs mds sp bta =
Merge(lvs, { (doutiout) |
(d,iy Obta O
(dout-lout) = ProcessAssignment(x, false, O, uvs, mds, d, i) })
BTAopNode [[X = static* p ] Ivs uvs mds sp bta =

Merge(lvs, { (doytioud) |
(d,i) Obta O

1 Ivs uvs mds sp bta =

policies of any variables annotated as leading to polyvariant
division are merged together into a single division. Thus the degree
of polyvariant division can vary from program point to program

(dout-lout) = ProcessAssignment(

X, pOStaticVars(i), SourceRoots(p,i), uvs, mds, d, i) })

point.

BTAopnode [P :=y T Ivs uvs mds sp bta =
Merge(lvs, { (dout-iout) |

5.3.1 Entry Nodes

The analysis of the procedure entry node creates the initialBTAopNode IX =Ty 1.y

(d,j) Obta O
(doutsiout) = ProcessStmt(0d, uvs, mds, d, i) })
n) I Ivs uvs mds sp bta =

division(s), including at least the empty unspecialized division with ~ M€"98(vs, { (douvioud |

no run-time constant variables. For a specialized procedure, each c
the divisions listed in thepecialize annotation introduces an
additional specialized division in the analysis. For each division,
the set of run-time constants is initialized to the set of annotated
variables, with each variable’s initial caching policy taken from its
specifiedPromotionCachingPolicy.

* We follow the conventions of dataflow analysis in solving dogatest
fixpoints and initializing information along edges to tbp of the lattice.
In this paper we do not bother to more formally define the lattice ordering
and meet operations, since we have given an explicit flow function for
merge nodes and defined the top lattice element, and simple iterative ol
worklist-based analyses need nothing more. A soundness proof for our
analysis would of course require a more formal treatment. Since the
domain of analysis is finite and each analysis function is monotonic,
termination of analysis is assured.

(d,iy Obta O
(doutrlout) = ProcessAssignment(
X,
{y1.,...ynt0OStaticvars(i) O
f Odom(sp) O IsConstant(sp(f)) = Constant,

.....

uvs, mds, d, i) })

Figure 7: Flow Functions, Part Il



Merge(lvs:LiveVars, bta:BTA):BTA =
MergePartitions(lvs, Partition(bta))
Partition(bta:BTA):Pow(BTA) =
{{(d,i)Obta | DivisionSelector(d) = ds } |
ds ODivisionSelectors(bta) }
DivisionSelectors(bta:BTA):Divisions =
{ DivisionSelector(d) | (d,i)Ubta }
DivisionSelector(d:Division):Division =
{ (v,p)td | vOPolyDivisionVars(d) }
MergePartitions(lvs:LiveVars, btas:Pow(BTA)):BTA =
{(d,i) | bta O btas O
d = N pjyision dom(bta) O
i = FilterStaticVars(lvs, d, N pivisioninfo fange(bta)) }
FilterStaticVars(lvs:LiveVars, d:Division, i:Divisioninfo
):DivisioniInfo =
let si = { (v, (p,rvs))dStaticVarinfo(i) | vOlvs } in
i[StaticVarInfo -
{ (v, (p,rvs))0si | rvsOdom(d) } O
{ InitialBinding(v, d) |
(v, (p,rvs))Usi OvOdom(d) O = (rvsOdom(d)) }]
InitialBinding(v:Var, d:Division
):Var x (CachingPolicy x SourceRoots) =
(v, (PromotionCachingPolicy(d(v)), {v}))
MakeStatic(v:Var, d:Division, i:DivisionInfo):DivisionInfo =
if vOStaticVars(i) then i
else (StaticVarinfo(i) O {InitialBinding(v, d)}, {v}, O0)
ProcessAssignment(v:Var, rhs_is_static:bool, rvs:SourceRoots,
uvs:UsedVars, mds:MayDefVars,
d:Division, i:DivisionInfo
):Division x DivisionInfo =
if rhs_is_static
then ProcessStmt({(v,(CacheOneUnchecked,rvs))}, mds, uvs, d, i)
else ProcessStmt(0J, mds O {v}, uvs, d, i)
ProcessStmt(static_assigns:StaticVarlnfo, dyn_assigns:Pow(Var),
uvs:UsedVars, d:Division, i:Divisioninfo
):Division x DivisionInfo =
(doutiour) Where
ps = MayPromotedVars(d, dyn_assigns)
dgyt = ForgetDeadVars(uvs,
ForgetDynVars(dyn_assigns - ps, d))
PSout = Ps N dom(dgyy)
si = StaticVarlInfo(i)
si' = si = { (v,vi)Osi | vOldom(static_assigns) } [ static_assigns
Sigut = ProcessDynAssigns(
si’, dom(static_assigns), dyn_assigns, dg)
iout = (Siout: PSout: J)
MayPromotedVars(d:Division, vs:Pow(Var)):Promotions =
{vOvs | vldom(d) O PromotionPolicy(d(v)) = AutoPromote }
ProcessDynAssigns(si:StaticVarlnfo, svs:Pow(Var), dvs:Pow(Var),
d:Division):StaticVarinfo =
si —{ (v, (p,rvs))0si | vOdvs O (vOdom(d) Orvsn(svsOdvs)z0) }
O { InitialBinding(v, d) | vldom(d) O vOdvs }
ForgetDeadVars(uvs:UsedVars, d:Division):Division =
{(v,p)Cd | vOuvs }
ForgetDynVars(vs:Pow(Var), d:Division):Division =
{(v,p)Cd | vOvs }
Pure(op:Op):bool =
returns true iffop is idempotent and cannot raise an exception or fault;
most operators are purejv andmalloc are canonical impure operators

Figure 8: Helper Functions
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5.3.2 Make_Static and Make_Dynamic Nodes

The analysis of anake_static ~ pseudo-instruction adds a new
static variable to each of the existing divisions, replacing the
policies associated with the variable in some division if already
present. If the variable was not already a run-time constant in some
division, then the make_static instruction introduces a
dynamic-to-static promotion. Thenake_dynamic instruction
simply removes the annotated variable from each of the inflowing
divisions; as described above, this may cause divisions to merge
and run-time static variables derived from the newly dynamic
variable to be dropped.

5.3.3 Assignment and Store Nodes

The various forms of assignment nodes all have similar analysis,
dependent only on whether or not the right-hand-side expression is
a run-time constant expression. Compile-time constants are
trivially run-time constants; a unary or binary expression yields a
run-time constant if its operands are run-time constants and if the
operator is a pure function (e.g., it cannot trap and always returns
the same result given the same arguments). A load instruction
yields a run-time constant iff its address operand is a run-time
constant (which includes fixed values such as the address of a
global or local variable) and it is annotatedstgtic by the
programmer. A call to a procedure annotated by the programmer as
constant vyields a run-time constant if all its arguments are. A
store instruction has no definitely assigned result variable, only
potential side-effects as described byMeyDefVars set.

These properties are summarized into a (singleton or empty) set of
variables definitely assigned run-time constant values and a set of
variables possibly assigned dynamic expressions (comprised of the
assigned variable if the right-hand-side expression is dynamic, as
well as any variables in thdayDefVars set). The definitely static
variables are added to the set of run-time constant variables. The
possibly dynamic variables are divided into those annotated with
the auto-promote policy (which instructs the system to insert a
dynamic-to-static promotion automatically if they ever get assigned
a dynamic value), and those that aren’t auto-promoted, which are
dropped from the set of annotated variables and the set of run-time
constants, if present in either. (As with the analysis of any node,
dropping variables from the set of annotated variables can cause
divisions to merge.)

5.3.4 Merge Nodes

Ignoring the definition and analysis of static merges for the
moment, the analysis of a merge node must deal disttordant
variablesthat have potentially different definitions along different
predecessors (these variables were identified by a prepass and
stored with the merge node, as described in section 5.2). For those
discordant variables that the programmer annotated as run-time
constants with a polyvariant specialization policy, the analysis will
mark this merge as a discordant merge in those variables, triggering
specialization of the merge and downstream code. Any other
discordant variables are dropped from the set of annotated variables
and run-time constants, if present. (As usual, this dropping of
variables from the annotated set may cause divisions to merge.)
Derived run-time constants are implicitty monovariantly
specialized, since they were not explicitly annotated as
polyvariantly specialized by the programmer. The caching policy
for all discordant variables at the merge is set to those variables’
merge caching policy.

Static merges are merges where at most one of the merge’s
predecessors can appear at specialization time, because the
predecessors are reached only on mutually exclusive static
conditions. Since only one predecessor will be specialized, the
merge node won't actually merge any branches in the specialized



code; hence each of the input divisions is passed throughThe lattice meet operatom pjisioninfio ©Over elements of
unchanged without introducing any cache check points. SubsectiorDivisionInfo is defined as the pointwise meet over its component
5.4 explains how static merges are identified. domains, which are defined as follows:

5.3.5 Other Nodes

The analysis of a branch node simply replicates its incoming
information along both successors (as always, after filtering the set
of variables to exclude those that are no longer live along that
successor). Return nodes need no analysis function, since there a
no program points after return nodes, and we do not currently do
interprocedural flow analysis of annotations.

Si1 Nstaticvarinfo Siz =
{ (v, (p,rvs)) | vBdom(siy)Odom(si,) O
P = P1 NcachingPolicy P2 U
rvs = rvs, O rvs,
where p, = if vildom(si,) then CachingPolicy(siy(V))
else CacheOneUnchecked
p, = if vddom(siy) then CachingPolicy(siq(v))
else CacheOneUnchecked
rvs, = if vildom(si;) then SourceRoots(si,(v)) else O

5.3.6 Caching Policies and Derivations of rvs, = if vildom(si,) then SourceRoots(si,(v)) else [ }

Static Variables _
VS1 Npromotions VS2 = Vs100vs;

At each program point, the analysis computes a caching policy for VS1 N piscordantvars VS2 = VS10vs,
each variable. This policy is used to control indexing into the run-

time specializer’s caches of previously specialized code. Annotated5.4 Reachability Analysis
variables at promotion points (and at the start of analysis of a
division of a specialized function) are given the user-specified
PromotionCachingPolicy value. At discordant merges, a
discordant variable is changed to use the variable’s

We identify static merges by computing static reachability
condition at each program point for each division. A static
reachability condition is a boolean expression (in conjunctive
: : normal form) over static branch outcomes that are required in order
Mer.geCachln_gPollcy value. ) to reach tha% program point. A static branch is a brar?ch whose test
Derived run-time constants are given BacheOneUnchecked variable is identified as a run-time constant byBfi& analysis. A
policy. This ensures that unannotated run-time constants are nevestatic merge is one whose predecessors have mutually exclusive
used in cache lookups and consequently do not lead to additionastatic reachability conditions. Reachability conditions are
specialization beyond that explicitly requested by the user. This computed at the same time asB¥information, since it depends
unchecked caching policy is safe as long as each derived run-timeop, theBTAs division and static variable analysis and influences the
constant is a pure function of some set of annotated variablesgTa analysis's treatment of merge nodes. Further details on

which are checked during cache lookups (unless the user specifiereachability analysis can be found in an earlier paper [Auslatder
explicitly that no checking is required). An annotated variable can |, 96].

be assigned a static expression, in which case it is treated (mor
efficiently) as a derived run-time constant with a
CacheOneUnchecked policy, instead of whatever caching policy
with which the variable was annotated. Given the output of th8TA analysis, our compiler statically
Assignments to root annotated variables can break the assumptionconStrUCtS the code and static data structures that, when executed at

that some derived run-time expression is a function of some set offUn time, will call the run-time specializer with the appropriate run-
root annotated variables. In such a case, the derived run-timeliMe constant arguments to produce and cache the run-time

6 Generating the Run-Time Specializer

constants need to be dropped from the set of static variables, anSPecialized code (i.e., the generating extensions). The following
annotated derived run-time constants need to be restored to thei
regular explicit PromotionCachingPolicy value. The analysis
tracks the set of root annotated variables on which a derived run-
time constant depends, and whenever a root variable is (possibly
assigned to or is removed from the division, all dependent run-time
constants are dropped (or restored to their regular caching policy, if
roots themselves).

5.3.7 Additional Lattice Meet Operations

The Merge helper function uses the lattice meet operators for the
Division and DivisionInfo domains. The lattice meet operator
Npivision Over elements oDivision indicates how to combine
different annotations for a set of variables in the same division, and
is defined as follows:

d1 N Division 92 =

{ (v,p) | v@dom(d;)ndom(dy) O p =d1(v) Npgiicies d2(V) }

Elements ofPolicies are met pointwise. Elements of individual
policy domains are totally ordered, with elements listed earlier in
the set of alternatives for a domain in Figure 5 ordered less thar
elements listed later; for example:

AutoPromote <pomationPolicy ManualPromote

Thus, the lattice meet operator for a particular policy domain
returns its minimum argument, e.g.:
AutoPromote N premationpolicy ManualPromote = AutoPromote

This rule has the effect of picking the strongest policy of any of the
merging divisions.
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steps are performed:

» The compiler statically replicates control-flow paths so that
each division receives its own code. After replication each
program point corresponds to a single division. Paints can
begin to be replicated at entry to specialized functions
(producing several distinct functions), and at merge points
where different divisions combine. Replicated paths can
remerge at points where divisions cease to differ and are joined
by theMerge function.

The compiler identifies which branch successor edges need to
be lazy specialization edges. Subsection 6.1 discusses this in
more detail.

The compiler identifies the boundaries of the units manipulated
by the run-time specializer (described in section 3). Unit
boundaries primarily correspond to dynamic-to-static
promotion points, demotion points (where variables are
removed from the set of annotated variables), discordant
merges, and lazy branch successor edges. The first three cases
are cache lookup points, and the last case avoids speculative
specialization. This process is described in more detail in
subsection 6.2 below. A clustering algorithm then attempts to
merge boundaries together to minimize their cost, as described
in subsection 6.3. Thenit andUnitEdge specializer data
structures are generated at the end of this process.

The compiler separates the static operati@E\Nodes whose

right-hand-side expressions were computed to be static by the
BTA analysis) and the dynamic operations into two separate,



parallel control flow subgraphs; in earlier work we called these entry 1: interp_n, bytecodes._pe(..) entry 2; interp_fn(...
subgraphs “set-up code” and “template code,” respectively ( L )

[Auslanderet al. 96]. Subsection 6.4 discusses some issues o] =) e o= )
with this separation in more detail. We apply standard compiler

optimizations, including instruction scheduling and register unit 1 P:M

allocation, to each subgraph separately. (We perform higher- ( — ) e
stack[sp++] =

. . . K| = arg;
level target-independent optimizations such as common- oo - e
subexpression elimination and loop optimizations before our

or(;;
switch (bytec...) {
case ADD: ...

BTAanalysis.) Performing these regular compiler optimizations unit 2 ) case RETURN: .
over both statically compiled and dynamically compiled code is discordant merge: j creeCOoSuB
crucial for generating high-quality code [Auslandearl. 96]. e !
 Finally, each unit'sReduceAndResidualize function is

produced. First, the control-flow and the reduce operations of switch(bytecodes[pc++]) unit 3
theReduceAndResidualize function are derived from the
static control-flow subgraph, after removing all dynamic _ y —— i

. . . . . case ADD: case COMPUTED GOTO] [ case IF_GOTO:
branches from the static subgraph; this process is described ir stacksp-1] = ... pC = stack[sp-J; i?fsxfgfkfsﬁ.y_f“

more detail in subsection 6.5. Then the residualize operations
are introduced by translating the operations and dynamic
branches of the dynamic subgraph into code to emit the
dynamic instructions (perhaps with run-time constant
operands) in the static subgraph. This process is described ir
more detail in subsection 6.6 below. The resulting subgraph
forms theReduceAndResidualize function for the unit,

and the dynamic subgraph is thrown away.

Some optimizations of the calls to the run-time specializer are

[

lazy Ia'zy

unit 4

P: pc

Figure 9: Specialization Units for Figure 2

discussed in subsection 6.7. » Otherwise, the cache context is the pair of the set of variables
] annotated with th&€acheAll policy and the set of variables
6.1 Computing Lazy Branch Successors annotated with the&€CacheOne policy. (The set of variables

Laziness policies on variables indicate the extent of speculative ar]nnotatﬁd withCacheOneUnchecked do not contribute to
specialization after dynamic branches that should be performed. A e cache context.) _ 3
branch successor is a lazy edge iff its test variable is dynamic ancGiven the cache context and the other program-point-specific

at least one of the following conditions holds: information, unit boundaries are identified as follows:
« At least one of the run-time constants at the branch is annotatec ¢ Any point where the cache context differs from the cache
with theLazy policy. context at predecessor point(s) is a unit boundary, since
« The branch successor eddetermines executiofes defined different degrees of polyvariant specialization or of cache

below) of a predecessor edge of a later discordant merge nod¢ ~ "étention can occur. _ _
where at least one of the discordant variables is annotated witt ¢ A non-emptyPromotions set at a program point corresponds
the SpecializeLazy policy. to a dynamic-to-static promotion point, and introduces a unit

. The branch successor edge determines execution of g boundary.
predecessor edge of a later discordant loop head merge nod * A non-empty DiscordantVars list corresponds to a
where at least one of the discordant variables is annotated witt  Specializable merge point, and induces a unit boundary
the LoopSpecializeLazy policy. « Each edge labelled as a lazy edge introduces a unit boundary.
The branch successor edge determines execution of a later caln addition, units are constrained to be single-entry regions, so if
to a specialized division of a procedure, and some run-time any units would otherwise have multiple entry points, additional
constant live at the call is not annotated withEager policy. unit boundaries are inserted at control-flow merges of paths with
We say that a branch successor edge determines execution of different unit entries. It is possible for a program point to be a
program point iff the edge is postdominated by the program point, boundary in more ways than one; only a single boundary results.
but the branch node itself is not, i.e., the branch successor is (onThe UnitEdge data structure records whether each unit edge
of) the earliest points where it is determined that the downstreamshould be specialized eagerly or lazily. A unit boundary is eager
program point will eventually be executed. unless it is a promotion point (which must be suspended until the
Once the dominator information relating program points is computed run-time value is available) or a lazy edge.
computed, a linear scan over the dynamic branches, discordanFigure 9 illustrates the units (shown in gray) that are identified for
merges, and specialized calls serves to compute the lazy edgthe interpreter example in Figure 2. The two entry points
information. correspond to the specialized and unspecialized divisions of the
. . interp_fn  function. The unspecialized entry point and the false
6.2 Unit Identification branches of both the specialized and unspecialized versions of the
Each interaction with the run-time specializer, including cache conditional-specialization tests lead to unspecialized, statically
lookup points and demand-driven specialization points, introducescompiled code. Demotions (indicated by of bytecodes and
a unit boundary. To identify the boundaries based on cache lookugpc are required on the edge from the specialized test.
points, we first compute theache contexat each program point  The specialized entry point begins unit 1, and the true branches of
from the set of static variables at that point, as follows: the tests merge at the code to be specialized forming unit 2, which
e If any static variable is annotated with the is created due to the dynamic-to-static promotion (indicated) by
CacheAllUnchecked policy, then the cache context is the of bytecodes andpc on the edge from the unspecialized test.
special markereplicate. Unit 3, which contains the loop body to be specialized, is created
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becausgc andsp, which have definitions both inside and outside separately in the clustering algorithm, running the clustering
the loop, are discordant at its head. A promotiopofs required algorithm three times, one for each class of boundary. A more
on the back edge from tHeOMPUTED_GOTease afteipc is sophisticated strategy would allow eager caching to be combined
assigned a dynamic stack location. The successors of the dynamiwith lazy caching, and lazy edges to be combined with lazy
branch in thelF_GOTO case are madkizy as required by the caching, only avoiding merging eager caching with lazy edges.
(default)loop_specialize_lazy policy because the branch . . . .

determines execution of different paths to the discordant loop head6-4 Separating Static and Dynamic Operations

The false branch extends to the loop head so no new unit isgqr most straight-line operations, it is clear whether the operation is
required, but the true branch creates the fourth unit. static or dynamic. However, call instructions are trickier.
The discordant loop head will include a specialization-time cache , o call to a regular unspecialized function (or to the

lookup, the edges carrying promotions will correspond to run-time  nspecialized version of a specialized function) is treated as a
cache lookups, and the lazy edges will become one-time call-back: dynamic operation and appears only in the dynamic subgraph.

to the specializer. A call to aconstant  function with static arguments is treated
as a regular static computation, appearing only in the static
subgraph.

A call to a particular specialized division of a function has both
static and dynamic components. To implement this, the call
operation is split into two separate calls, one static and one
dynamic. The static version of the call invokes the statically
compiled generating extension for the selected division of the
callee, taking as arguments the static arguments (as determined
by the division of the callee), and returning a static procedure
address. This is followed by a dynamic call invoking the static
procedure address and passing the remaining arguments to
produce a dynamic resulfThe static call will be moved to the

6.3 Clustering Unit Boundaries

A unit boundary introduces run-time specialization overhead, to
package up the run-time constant context from the exiting unit’s
ReduceAndResidualize function, to execute the run-time
specializer and any cache lookups, and to invoke the target unit’s
ReduceAndResidualize  function (unpacking the target’s run-
time context). In some circumstances, series of unit boundaries catr
be created with little if any work in between, for instance when a
series of annotated static variables become dead, leading to a seri
of demotion points and corresponding unit boundaries.

To avoid excessive unit boundaries, we attempt to combine 0 _ ) .
multiple boundaries whenever possible. We have developed a Static subgraph, and the dynamic call will appear in the
boundary clustering algorithm that works as follows: dynamic subgraph.

« First, for each boundary, we construct the range over the Control-flow nodes including branches and merges initially are
procedure where that boundary can be moved legally. replicated in both the static and the dynamic subgraphs. Later
Discordant-merge and lazy-edge boundaries cannot be movedtransformations will address them.

so their range is a single program point. Promotion and . o . .
demotion bo%ndaries cagn nf)ovfeJ to a?ny control-equivalent 6.5 Linearization within Units

[Ferranteet al. 87] program point bounded by earlier and later Once each unit has been identified and split into separate static and
uses of any promoted or demoted variable, except thatdynamic control-flow subgraphs, the control-flow structure of the
promotion points cannot move above earlier definitions. We ynit's ReduceAndResidualize  is computed from the static
delay inserting the single-entry-producing unit boundaries until subgraph. Static and dynamic branches in the unit receive different
after all the other boundaries have been clustered, so they d¢reatment. A static branch is taken at specialization time, and does
not participate in the clustering algorithm. not appear in the dynamically generated (residual) code; similarly,
Second, we sort the boundary ranges in increasing order of theilonly one of its successors produces dynamically generated code.
ends, and then we make a linear scan through this sorted listConsequently a static branch appears as a regular branch in the final
We remove the range that ends first in the list, remove all otherReduceAndResidualize function, selecting some single
ranges that overlap with the first range, and find the intersectionsuccessor to pursue and residualize. A dynamic branch, on the other
of these ranges. This resulting intersection is the programhand, is emitted as a regular branch into the dynamically generated
region where all of these boundaries can be placed. We prefeicode, and both its successors must be residualized. Consequently,
earliest possible points for demotions and later points for no branch appears in tRReduceAndResidualize function at
promotions, as these will reduce the amount of specializeda dynamic branch, and the successors of the dynamic branch are
code. We choose either the start or end of the intersection rangelinearized instead. The following diagram illustrates how the
based on the relative mix of promotions and demotions, and dynamic branches are linearized:

insert a single boundary for all the merged ranges at that point.
Then we continue processing the sorted list of boundary ranges
until the list is exhausted.

We have proved that this algorithm for coalescing boundary ranges
is optimal, given the restricted kinds of ranges produced in the first
step (the restriction to control-equivalent program points is key).

Different kinds of boundaries incur different kinds of costs. Eager
boundaries incur cost only at specialization time. Lazy-edge
boundaries incur cost at run-time, but only once the first time that
boundary is executed, since the edge is patched to branch directl
to the specialized successor code when first invoked. Promotion
boundaries require run-time cost each time they are executed. We

Some other systems, such as Tempo, perform interprocedural binding

do not wish to cluster boundaries with different kinds of cost

together if that would increase overall expense; for example, we do
not wish to cluster an eager cache lookup boundary with a lazy edge
to form a lazy cache lookup that would incur run-time cost at each
execution. A simple strategy is to treat each kind of boundary
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time analysis and so can deduce that the result of the a specialized function
is static. If we were to extend our system to support interprocedural
analysis of annotations, then the static half of the call would return both a
procedure address and the static result value, and the dynamic half would
return no result and be invoked only for its side-effects.



In the presence of arbitrary unstructured control flow of mixed additional division or specialization possible within the
static and dynamic branches, this linearization process may require ~ function, except for some limited support for loop unrolling.
data structures and overhead. Details of our linearization algorithm  ynstructured control-flow graphs. Tempo converts all instances
are available in an expanded version of this paper [@taait97]. of unstructured code to structured form [Erosa & Hendren 94,
Conselet al. 96], which introduces a number of additional tests
and may also introduce loops.

To produce the final code for a uniReduceAndResidualize Our system allows dynamic-to-static promotions to occur

function, we take the linearized static control-flow graph which within dynamically compiled code. Tempo requires such

computes all the static expressions and blend in code to generatetr  promaotions to occur only at the entry point.

dynamic calculations with the appropriate run-time constants . our system allows the programmer to specify policies to

embedded in them. To accomplish this, our system maintains &  control division, specialization, caching, and speculative

mapping from each basic block in the dynamic subgraph to aset o' gpecialization. Tempo does not provide user controls; the client
corresponding basic blocks in the static subgraph. When spliting  program must perform its own caching of specialized code if
apart static and dynamic operations, the mapping is created witr  ggsired.

each dynamic block mapping to its single static counterpart. The
mapping is updated as the static subgraph is linearized and som
blocks are replicated, and as the subgraphs are optimized throug
instruction scheduling. To integrate the two subgraphs, for each
dynamic block, code is appended to each corresponding static blocl
to emit the instructions of the dynamic block, after the static code
has computed any run-time constants used in the dynamic
instructions.

6.6 Integrating Dynamic Code into Static Code

Our system relies on the programmer to annotate memory
references as static. Tempo performs an automatic alias and
side-effect analysis to identify (partially) static data structures.

Tempo's approach is more convenient for programmers and
less error-prone, but it still is not completely safe, relies on the

programmer to correctly describe aliasing relationships and

side-effects of parts of the program outside of the module being
specialized, and may benefit from explicit user annotations

The code to emit a dynamic instruction embeds the values of any  wherever the analysis is overly conservative.

run-time constant operands into the generated instruction (either a: « oyr system supports separate compilation while still being able
a short integer immediate field or as a load from a global table to & tg specialize call sites and callee functions. Tempo requires the

scratch register for large integers, floating-point numbers, and  \hole module being specialized to be analyzed and compiled as
pointers). The emitting code also performs any peephole a unit.

optimizations of the generated instruction based on the run-time
constant value, such as replacing multiplications by constants with
sequences of shifts and adds.

Our system is currently under construction; Tempo is
implemented and usable.

Fabius [Leone & Lee 95] is another dynamic compilation system
6.7 Optimizing Specializer Interactions based on partial evaluation. Fabius is more limited than our system
or Tempo, working in the context of a first-order, purely functional
subset of ML and exploiting a syntactic form of currying to drive
dynamic compilation. Only polyvariant specialization at the
granularity of functions is supported. Given the hints of curried
function invocation, Fabius performs all dynamic compilation
optimizations automatically with no additional annotations; by the
same token, the trade-offs involved in the dynamic compilation

Each initial promotion point entering a dynamic region is

implemented by generating a static call to the run-time specializer,
passing the run-time values of the cache context at that progran
point. Section 3 described the run-time specializer as if a single
general-purpose specializer took control at this and all other unit
boundaries. Our system optimizes this pedagogical model as

follows: process are not user-controllable. Fabius does little cross-dynamic-
e The Specialize function is specialized for eacdnit statement optimization other than register allocation, since, unlike
argument. All the run-time manipulations of thimit and our system, it does not explicitly construct an explicit dynamic
UnitEdge data structures are eliminated, the unit's subgraph that can then be optimized.
ReduceAndResidualize function is inlined, and the

Compared to our previous system [Auslareteal. 96], our current
system has a more flexible and expressive annotation language,
support for polyvariant division and better support for polyvariant
specialization, support for nested and overlapping dynamic regions,
support for demand-driven (lazy) specialization, support for
Calls to theSpecialize function corresponding to lazy interprocedural specialization, a much more efficient strategy for
edges with no change in cache context or promotions areand optimizations of run-time specialization, and a more well-
dynamically overwritten to be direct jumps (or fall-throughs) to developed approach to caching of specialized code.

the dynamically generated code for the target unit. Outside the realm of dynamic compilation, other partial evaluation
Demotions corresponding to the ends of dynamic regions aresystems share characteristics with our system. In particular, C-mix

processing of outgoing lazy unit edges is inlined. If the cache
policy for any of the unit's context variables is
CacheAllUnchecked, then the cache lookup and store calls
are omitted.

compiled into direct jumps to statically compiled code. is a partial-evaluation system for C that provides program-point
polyvariant specialization [Andersen 92], but not polyvariant
7 Comparison To Related Work division. C-mix copes directly with unstructured code, but it

appears to lack reachability analysis to identify static merges
Tempo [Consel & Noél 96], a compile-time and run-time [Andersen 94]. C-mix also includes support for automatic
specialization system for C, is most similar to our system. The two interprocedural call graph, alias, and side-effect analysis, although
differ chiefly in the following ways: partially static data structures are not supported.

¢ Our system may produce multiple divisions and specializations Schism’s filters permit choices about whether to unfold or
of program points, with the degree of division and residualize a function and which arguments to generalize, given
specialization varying from point to point. Tempo supports only binding times for the function's parameters [Consel 93]. Because
function-level polyvariant division and specialization, with no filters are executed by the binding-time analysis, only binding-time
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information can be used to make decisions. Our system’scapabilities of run-time specialization in the forms of arbitrary and
conditional specialization can use the results of arbitrary static ornestable dynamic-to-static promotion and demand-driven
dynamic expressions to control all aspects of run-time specialization.

specialization. Filters can be used, for example, to prevent\ye are currently in the process of implementing this design, in the
unbounded unfolding and unbounded specialization. Both off-line -gntext of the Multiflow compiler [Lowneet al. 93]. Once

partial evaluators, such as Schism, and on-line specializers, such €complete, we plan to focus on gaining experience applying
Fuse [Weiset aI.91],.Iookfor dynan.\lc.cor]dltlonals as a signal that dynamic compilation to sizeable, real application programs and
unbounded unfolding or specialization could occur and exiending our system to provide some form of automatic alias and

specialization should be stopped. Run-time specializers have argjye effect analysis, interprocedural binding-time analysis, and
additional option, which is to temporarily suspend specialization gqgitional run-time optimizations.

when dynamic conditionals are found in potential cycles and insert
lazy callbacks to the specializer, as our system does. Acknowledgments
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statement:
... [*same as in regular C */
make_static ( static-var-list) ;
make_dynamic ( var-list) ;
make_static ( static-var-list)

static-var-list:
static-var
static-var, static-var-list
static-var:
identifier
identifier policieg

policies:
policy-list

policy-list:
policy
policy,

policy:
division-policy
specialization-policy
promotion-policy
merge-caching-policy
promotion-caching-policy
laziness-policy

policy-list

division-policy:
poly_divide
mono_divide

specialization-policy:
poly_specialize
mono_specialize

promotion-policy:
auto_promote
manual_promote

merge-caching-policy:
cache_all_unchecked
cache_all
cache_one
cache_one_unchecked

promotion-caching-policy:
promote_all_unchecked
promote_all
promote_one
promote_one_unchecked

laziness-policy:
lazy
specialize_lazy
loop_specialize_lazy
eager

var-list:
identifier
identifier, var-list
external-definition:
/* same as in regular C */
specialize-definition

specialize-definition:
constant o specialize
on specialize-list

identifier (

specialize-list:
( static-var-list)
( static-var-list) , specialize-list
expression:
... I*same as in regular C */
static * expression

primary:
... I*same as in regular C */
static identifier
primary static [
Ivalue static .
primary static ->

expressior]
identifier
identifier

Appendix A Grammar of Annotations

compound-statement

var-list)



