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Abstract

We present the design of a dynamic compilation system for C.
Directed by a few declarative user annotations specifying where
and on what dynamic compilation is to take place, a binding time
analysis computes the set of run-time constants at each program
point in each annotated procedure’s control flow graph; the analysis
supports program-point-specific polyvariant division and
specialization. The analysis results guide the construction of a
specialized run-time specializer for each dynamically compiled
region; the specializer supports various caching strategies for
managing dynamically generated code and supports mixes of
speculative and demand-driven specialization of dynamic branch
successors. Most of the key cost/benefit trade-offs in the binding
time analysis and the run-time specializer are open to user control
through declarative policy annotations. Our design is being
implemented in the context of an existing optimizing compiler.

1 Introduction
Dynamic compilation offers the potential for increased program
performance by delaying some parts of program compilation until
run time and then exploiting run-time state to generate code
specialized to actual run-time behavior. The principal challenge and
trade-off in dynamic compilation is achieving high-quality
dynamically generated code at low run-time cost, since the time to
perform run-time compilation and optimization must be recovered
before any benefit from dynamic compilation can be obtained.
Consequently, a key design issue in developing an effective
dynamic compilation system is the method for determining where,
when, and on what run-time state to apply dynamic compilation.
Ideally, the compiler would make these decisions automatically, as
in other compiler optimizations; however, this ideal is beyond the
current state-of-the-art for general-purpose programs.

Instead, current dynamic compilation systems rely on some form of
programmer direction to indicate where dynamic compilation
would most profitably be applied. Some previous dynamic
compilation systems, such as `C [Engleret al. 96, Polettoet al. 97]
and its predecessordcg  [Engler & Proebsting 94], take a
procedural approach to user direction, requiring the user to write
programs that explicitly manipulate, compose, and compile
program fragments at run time. This kind of system offers great
flexibility and control to the programmer, at the cost of significant
programmer effort and debugging difficulty.

Alternatively, several dynamic compilation systems, including
Fabius [Leone & Lee 96], Tempo [Consel & Noël 96], and our own
previous system [Auslanderet al. 96], take a declarative approach,
with user annotations guiding the dynamic compilation process.
Fabius uses function currying to drive dynamic compilation, in a

purely functional subset of ML; Tempo uses function-level
annotations, annotations on global variables and structure types,
and alias analysis to drive dynamic compilation in C; and our
previous system uses intraprocedural annotations to drive dynamic
compilation in C. Each of these declarative approaches adapts ideas
from partial evaluation, expressing dynamic compilation as off-line
run-time specialization, where static values correspond to run-time
state on which programs are specialized. Declarative approaches
offer the advantages of an easier interface to dynamic compilation
for the programmer (since dynamic optimizations are derived from
the annotations automatically, rather than being programmed by
hand by the programmer) and easier program understanding and
debugging (since declarative annotations can be designed to not
affect the meaning of the underlying programs). However,
declarative systems usually offer less expressiveness and control
over the dynamic compilation process than do imperative systems.

We have developed a new declarative annotation language and
underlying run-time specialization primitives that are more
expressive, flexible, and controllable than previous annotation-
based systems, while still being easy to use. Our system supports
the following features:

• program-point-specific rather than function-level special-
ization,

• support for both polyvariant specialization and polyvariant
division* (both of which have practical utility), with the degree
of specialization for different variables under programmer
control,

• intra- and interprocedural specialization, with caller and callee
separately compilable,

• arbitrary nested and overlapping regions of dynamically
generated code,

• automatic caching, reuse, and reclamation of dynamically
generated code, with cache policies under control of the
programmer,

• automatic interleaving of specialization and dynamic execution
to avoid unbounded static specialization for terminating
programs, with the exact trade-off between speculative
specialization and demand-driven specialization under
programmer control,

• automatic interleaving of specialization and dynamic execution
to delay specialization of some code until the appropriate run-
time values have been computed,

• run-time optimizations, including constant propagation,
constant folding, strength reduction, conditional branch folding
and dead code elimination, loop unrolling and merge splitting,
and procedure call specialization.

The next section illustrates many of the capabilities of our system
using an annotated bytecode interpreter example. Section 3
describes our run-time specializer and its capabilities, and then

* Polyvariant division allows the same program point to be analyzed for
different combinations of variables being treated as static, and polyvariant
specialization allows multiple compiled versions of a division to be
produced, each specialized for different values of the static variables.
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sections 4 through 6 present our annotation language, our analysis
to compute program-point-specific information, and our approach
to producing an (optimized) run-time specializer from the program-
point-specific information, respectively. Section 7 compares our
system to related work, and section 8 concludes with our plans for
future work.

2 Example
Figure 1 presents a simple interpreter of a bytecode program like
those in the Smalltalk and Java virtual machines [Goldberg &

void interp_program(int bytecodes[], int arg) {
printf(“%d\n”, interp_fn(bytecodes, 0, arg));

}

int interp_fn(int bytecodes[], int pc, int arg) {
int stack[N], sp = 0;
make_static(bytecodes, pc, sp);
stack[sp++] = arg;
for(;;) {

switch (bytecodes static [pc++]) {
case CONST:

stack[sp++] = bytecodes static [pc++];
break;

case ADD:
stack[sp-1] = stack[sp-1] + stack[sp]; sp--;
break;

...
case LT:

stack[sp-1] = stack[sp-1] < stack[sp]; sp--;
break;

...
case IF_GOTO:

int nextpc = bytecodes static [pc++];
if (stack[sp--]) {

pc = nextpc;
}
break;

case GOTO:
pc = bytecodes static [pc++];
break;

case COMPUTED_GOTO:
pc = stack[sp--];
break;

...
case RETURN:

return stack[sp];
}

}
}

Figure 1: Simple Interpreter Example

int count[N];
#define threshold ...
specialize interp_fn(bytecodes, pc, arg)

on (bytecodes, pc);
int interp_fn(int bytecodes[], int pc, int arg) {

int stack[N], sp = 0, callee;
if (++count[pc] >= threshold) {

make_static(bytecodes, pc, sp);
} else {

make_dynamic(bytecodes, pc, sp);
}
stack[sp++] = arg;
for(;;) {

switch (bytecodes static [pc++]) {
... /* same as above */
case GOSUB:

callee = bytecodes static [pc++];
stack[sp] =

interp_fn(bytecodes, callee, stack[sp]);
break;

}
}

}

Figure 2: Interprocedural and Conditional Specialization

Robson 83, Lindholm & Yellin 97]. In boldface are the annotations
we added to turn the interpreter into a program that produces at run
time an interpreter specialized for the particular array of bytecodes,
i.e., a run-time compiler.

The main control annotation ismake_static , whose argument
list of variables the system is to treat asrun-time constants when
run-time execution reaches that point. By default, the system will
apply polyvariant division and specialization as needed on all
control-flow paths downstream of themake_static  annotation,
until the variables go out of scope, in order to preserve the run-time
constant bindings of each annotated variable. For example, thepc
variable is annotated as static. The system will specialize code so
that, at each program point in the specialized code, thepc  variable
will have a known run-time constant value. The increments ofpc
in theswitch  body do not cause problems, since the value ofpc
after the increment is a run-time constant, if the value ofpc  before
the increment is. The loop head at the top of thefor  loop requires
additional work: our system will automatically produce a separate
specialized version of the loop body for each distinct value ofpc  at
the loop head, in effect unrolling the loop fully.

The references to the contents of the bytecode array are annotated
as static references, implying that the contents of the referenced
memory location is a run-time constant if its address is.* This
enables the system to constant-fold the switch branch within each
iteration (sincebytecodes  andpc  are run-time constants and the
loaded bytecode is a run-time constant), selecting just one case arm
in each iteration and eliminating the others as dead code. All the
code manipulating thebytecodes  array and thepc  value itself
are also eliminated as dead, once all the interpretation overhead on
these data values is constant-folded away. Similarly, at each
program point in the unrolled loop thesp  variable will have a
specific run-time constant value, and so all the references and
updates tosp  will be eliminated as dead code, once the index
expressions into thestack  array are replaced with particular run-
time constant values. The contents of thestack  array are not run-
time constants, as they depend on the initialarg  value and
subsequent input program execution.

The IF_GOTO bytecode rebinds the value ofpc  conditionally
based on the run-time variable outcome of a previous test. At the
merge after theif , pc  may hold one of two possible run-time
constant values, depending on whichif  arm was selected. By
default, becausepc  is annotated asmake_static , our system
will apply polyvariant specialization to the merge and all
downstream code, making potentially two copies of the merge and
successors, one copy for each run-time constant value ofpc . For an
input program containing a tree ofIF_GOTO bytecodes, this
specialization will produce a tree of unrolled interpreter loop
iterations, reflecting the expected structure of a compiled version of
the input program. We call the ability to perform more than simple
linear unrollings of loopsmulti-way loop unrolling. (Our system
allows the programmer to specify less aggressive specialization
policies for static variables, to provide programmers finer control
over the trade-offs between run-time specialization overhead and
run-time specialization benefit.)

At each of thesespecializable merge points, by default our system
will maintain a cache of all the previously specialized versions,
indexed by the values of the static variables at that merge point.
When encountering a specializable merge point during run-time
specialization, the cache will be examined to see whether a version
of that code has already been produced, and, if so, that previous
version will be reused. In the interpreter example, the cache checks

* Our system currently does no automatic alias or side-effect analysis,
unlike some other systems, so these annotations are necessary to achieve
the desired effect.
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at the loop head merge have the effect of connecting backward
branch bytecodes directly to previously generated iterations,
forming loops in the specialized code as desired, and similarly to
introduce sharing of iterations if there exist other control flow
merge points in the input interpreted program. (Our system allows
the programmer to specify alternative caching policies or even that
no caching should be used, to provide finer control to the
programmer over this potentially expensive primitive.)

The COMPUTED_GOTO bytecode assigns thepc  variable to a
dynamic expression. By default, our system will suspend program
specialization until run-time execution reaches that program point,
at which point the system will resume specialization using the
actual value assigned topc  at that point. As with specializable
merge points, each suchdynamic-to-static promotion point has an
associated cache of specialized versions indexed by the values of
the promoted variables, and the specializer consults this cache of
previously specialized versions to see whether a previous version
can be reused or a new version must be produced. The initial
make_static  entry is also a dynamic-to-static promotion point
with an associated cache of versions specialized for different run-
time values of the initial static variables. (Again, programmer-
supplied policies support finer control over the aggressiveness of
dynamic-to-static promotion and the caching scheme to be used at
promotion points.)

A standard issue in specialization is how aggressively to specialize
control-flow paths ahead of actually reaching those branches during
normal program execution. Aggressivespeculative specialization
has the lowest cost, assuming that all specialized paths will
eventually be taken at run time, but it incurs the cost of specializing
any path not actually executed at run time, and it can lead to non-
termination in the presence of loops or recursion. Alternatively,
demand-driven specialization only specializes code when it can be
proven to be executed at run time, typically by suspending
specialization at each successor of a dynamic (non-constant) branch
in the program being specialized, resuming specialization only
when that successor is actually taken. This strategy avoids non-
termination problems and unneeded specialization, but incurs the
cost of suspension and resumption of specialization. Our system
allows the programmer to specify policies with variables to control
speculative specialization based on those variables, with the default
policy introducing suspension points at each specializable loop
head.

Figure 2 extends the simple single-procedure interpreter to support
interpreting programs made up of multiple procedures. It also
illustrates several other of our system’s capabilities, in particular
how polyvariant division can be exploited to support conditional
specialization, and annotations that support interprocedural
specialization.

In the modifiedinterp_fn  routine, acount  array associates
with eachpc  corresponding to a function entry point the number of
times that function has been invoked. In order to apply dynamic
compilation only to heavily used functions, the programmer has
made the originalmake_static  call from Figure 1 conditional,
occurring only when the invocation count of some interpreted
procedure reaches a threshold. At the merge after theif ,
bytecodes , pc , and sp  are static along one predecessor but
dynamic along the other. By default, our system applies polyvariant
division to produce two separate versions of the remainder of the
body of interp_fn , one where the three variables are static and
lead to run-time specialization as in Figure 1, and one where they
are dynamic and no run-time specialization takes place, leading to
regular interpretation of the input at no run-time cost.

The specialize  annotation directs the compiler to produce an
alternate entry point to theinterp_fn  procedure to be used when
its first two parameters are run-time constants. At call sites of the

interp_fn  procedure where the corresponding actual arguments
are static, a specialized version ofinterp_fn  is produced (and
cached for later reuse) for the run-time constant values of the actual
arguments. The body of the specializedinterp_fn  is compiled
as if its formal parameters were annotated asmake_static  at
entry. (The callee procedure and each of its call sites can be
compiled separately, given thespecialize  annotation in the
shared header file.) This specialization has the effect of
streamlining the calling sequence for specializedGOSUB bytecodes
to specialized callees: neither thebytecodes  array nor the pc
variable will be passed in the specialized call, and the specialized
interpreter for the target function (i.e., the compiled code for the
target function) will be invoked directly. If the callee function is not
yet heavily executed, then after entry themake_dynamic
annotation will turn off specialization for that input procedure; all
bodies of infrequently executed procedures will branch to the same
precompiled version of the unspecialized interpreter.

3 Run-Time Specializer
In this section we describe our run-time specializer. Later sections
present our annotation language and describe how annotated
programs get translated down into static precompiled code and run-
time specializers. Figures 3 and 4 sketch our specializer.

Our run-time specializer is an adaptation of the strategy for
polyvariant program-point specialization of a flow chart language
described by Jones, Gomard, and Sestoft [Joneset al. 93]. The main
process is to produce specialized code for aunit (a generalization of
a basic block that has a single entry but multiple possible exits)
given thecontext, i.e., the run-time values of the static variables, on
entry to the unit. The static compiler is responsible for breaking up
dynamically compiled regions of the input program into units of
specialization, producing the static data structures and code
describing units and their connectivity, and generating the initial
call to theSpecialize  function with the initial unit and context
at the entries to dynamically compiled code.

TheSpecialize  function first consults a cache to see if code for
the unit and entry context being specialized has already been
produced (using the unit’s caching policy to customize the cache
lookup process), and reuses the existing specialization if so. If not,
the unit’s ReduceAndResidualize  function is invoked to
produce code for the unit, specialized to the input context. The
updated values of the context at each of the program points
corresponding to unit exits is returned. The specialized code is
added to the cache (again customized by the unit’s caching policy).

Finally, the specializer determines how to process each of the exits
of the specialized unit. Each exit edge can either beeager, in which
case the successor unit is specialized right away, orlazy, indicating
that specialization should be suspended until run-time execution
reaches that edge; lazy edges are implemented by generating stub
code at that edge that will call back into the specializer when
executed. Points of dynamic-to-static promotion always correspond
to lazy edges between units; code is generated at these lazy edges
that will inject the promoted run-time values into the context before
invoking the specializer.

The caching structure for units is one of the chief points of
flexibility in our system. Each of the variables in the context has an
associated policy (CacheAllUnchecked , CacheAll ,
CacheOne, and CacheOneUnchecked , listed in decreasing
order of specialization aggressiveness), derived from user
annotations and static analysis.CacheAllUnchecked  variables
are considered to be so rapidly changing that there is no value in
checking and maintaining a cache of specializations; each time the
unit is specialized, a new version of code is produced, used, and
thrown away. ForCacheAll  variables, the system caches each
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Specialize(unit:Unit,
context:Context,
backpatch_addr:Addr):Addr {

/* see if we’ve already specialized this unit for
this particular context */

(found:bool, start_addr:Addr) :=
CacheLookup(unit, context);

if not found then
/* need to produce & cache the specialization */
(start_addr,

edge_contexts:List<Context>,
edge_addrs:List<Addr>) :=

unit.ReduceAndResidualize(context);
CacheStore(unit, context, start_addr);
/* see how to handle each successor of the

specialized unit */
foreach edge:UnitEdge,

edge_context:Context,
edge_addr:Addr

in unit.edges, edge_contexts, edge_addrs do
if edge.eager_specialize then

/* eagerly specialize the successor now */
Specialize(edge.target_unit,

edge_context,
edge_addr);

else
/* lazily specialize the successor by

emitting code to compute the values of
promoted variables and then call the
specializer with the revised context */

addr:Addr :=
edge.ResolvePromotions(edge_context);

Backpatch(edge_addr, addr);
Emit(“pc := Specialize(`edge.target_unit`,

promoted_context,
NULL)”);

Emit(“jump pc”);
endif

endfor
endif
/* make the predecessor unit branch to this code */
Backpatch(backpatch_addr, start_addr);
return start_addr;

}
type Context = Tuple<Value>;
class Unit {

id:int,
cache_policies:Tuple<CachePolicy>;
edges:List<UnitEdge>;
ReduceAndResidualize(context:Context)

:(start_addr:Addr,
out_contexts:List<Context>,
edge_addrs:List<Addr>);

/* Take the the values of the static vars and
produce specialized code for the unit.
Return the address of the start of the unit’s
specialized code and, for each successor unit,
the new values of the static variables at that
edge and the address of the exit point in the
specialized code for the unit */

}
class UnitEdge {

target_unit:Unit;
eager_specialize:bool;
ResolvePromotions(context:Context):Addr;

/* Generate code to extract the current run-time
values of any static variables being promoted
at this edge, updating the input
context and leaving the result in the
“promoted_context” run-time variable.
Return the address of the start of the
generated code. */

}
enum CachePolicy {

CacheAll, CacheAllUnchecked,
CacheOne, CacheOneUnchecked

}

Figure 3: Run-Time Specializer, Part I

combination of those variables for potential future reuse, assuming
that previous combinations are likely to recur. ForCacheOne
variables, only one specialized version is maintained, for the
current values of those variables. If the values of any of the
variables change, the previously specialized code is dropped from
the cache, assuming that combination of values is not likely to
recur. The values ofCacheOneUnchecked  variables are
invariants or are pure functions of other non-
CacheOneUnchecked  variables, so the redundant cache checks
for those variables are suppressed. Our run-time caching system
supports mixes of these cache policies, by skipping cache lookups
and stores if any variable in the context is
CacheAllUnchecked , and otherwise by first performing a
lookup in an unbounded-sized cache based on theCacheAll
variables (if any), and then (if successful) performing a lookup in
the resulting single-entry cache based on theCacheOne variables,
in turn resulting if successful in the address for the appropriate
specialized code.CacheOneUnchecked  variables are ignored
during cache lookup.

CacheLookup(unit:Unit, context:Context)
:(found:bool, start_addr:Addr) {

if CacheAllUnchecked ∈ unit.cache_policies then
/* always produce a new specialization */
return (false, NULL);

else
/* first index on CacheAll values */
let cache_alls :=

elements of context  with CacheAll  policy;
(found, sub_cache) :=

cache.lookup(unit.id, cache_alls);
if not found then return (false, NULL);
/* then index on CacheOne values

in nested cache */
let cache_ones :=

elements of context  with CacheOne policy;
(found, start_addr) :=

sub_cache.lookup(cache_ones);
/* no need to index on CacheOneUnchecked */
return (found, start_addr);

endif
}
CacheStore(unit:Unit, context:Context,

start_addr:Addr):void {
if CacheAllUnchecked ∈ unit.cache_policies then

/* don’t store it, since we won’t reuse it */
else

/* first index on CacheAll values */
let cache_alls :=

elements of context  with CacheAll  policy;
(found, sub_cache) :=

cache.lookup(unit.id, cache_alls);
if not found then

sub_cache := new SubCache;
cache.add(unit.id, cache_alls, sub_cache);

endif
/* then index on CacheOne values

in nested cache */
let cache_ones :=

elements of context  with CacheOne policy;
/* store the new specialization in the cache,

replacing any there previously */
sub_cache.replace(cache_ones, start_addr);

endif
}
Backpatch(source:Addr, target:Addr):void {

/* if source != NULL, then backpatch the branch
instruction at source to jump to target */

}
Emit(instruction:Code) {

/* append a single instruction to the current
code-generation point */

}

Figure 4: Run-Time Specializer, Part II
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Since invoking the specializer is a source of overhead for run-time
specialization, our system performs a number of optimizations of
this general structure, principally by producing a specialized
version of theSpecialize  function for each unit. Section 6
describes these optimizations in more detail.

4 Annotations
Given the target run-time specializer described in the previous
section, we now present the programmer-visible annotation
language (in this section) and then the analyses to construct the run-
time specializer based on the annotations (in sections 5 and 6).
Appendix A specifies the syntax of our annotations, expressed as
extensions to the standard C grammar rules [Kernighan & Ritchie
88].

4.1 make_static  and make_dynamic

The basic annotations that drive run-time specialization are
make_static  and make_dynamic . make_static  takes a
list of variables, indicating that each of them is to be treated as a
run-time constant at all subsequent program points until reaching
either amake_dynamic  annotation that lists the variable or the
end of the variable’s scope (which acts as an implicit
make_dynamic  annotation). We call the region of code between
amake_static  for a variable and the corresponding (explicit or
implicit) make_dynamic  a dynamic specialization region, or
dynamic region for short. Because the placement of
make_static  andmake_dynamic  annotations is arbitrary, the
dynamic region for a variable can have multiple entry points (if
separatemake_static  annotations for a variable merge together
downstream) and multiple exit points. A dynamic region can be
nested inside or overlap with dynamic regions for other variables,
as in the following graph fragment (static variables shown in
boldface):

This flexibility in form for dynamic regions is one major difference
between our system and other dynamic-compilation systems.

A convenient syntactic sugar for a nested dynamic region is
make_static  followed by a compound statement enclosed in
braces, for instance

make_static(x, y) {
...

}

This placesmake_dynamic  annotations for the listed variables at
each of the exits of the compound statement.

4.2 Policies

Each variable listed in amake_static  annotation can have an
associated list of policies. These policies control the aggressiveness
of specialization, division, and dynamic-to-static promotion, the
caching policies, and the laziness policies. The semantics of these
policies is described in Table 1, with the default policy in each
category in bold. Annotations in italics are unsafe; their use can
lead to changes in observable program behavior or non-termination
of specialization, if their stated assumptions about program
behavior are violated. All of our default policies are safe, so the
novice programmer need not worry about simple uses of run-time

make_static(x);
... x ,y...

make_static(x);
... x ,y...

make_dynamic(x);
...x, y ...
make_dynamic(y);
...x,y...

make_dynamic(y);
... x ,y...
make_dynamic(x);
...x,y...

make_static(y);
... x , y ...

specialization. Unsafe policies are included for sophisticated users
who wish to get finer control over dynamic compilation for better
performance.

Our policies currently support either caches of size one or caches of
unbounded size. It is reasonable to wish for caching policies that
take an argument indicating the desired cache size. However,
bounded multiple-entry caches necessitate a non-trivial cache
replacement policy, over which we would want to offer
programmer control. More generally, we might wish to provide
programmers with direct access to the various caches that the run-
time specializer maintains. We leave the design of such interfaces
to future work.

The polyvariant vs. monovariant specialization policy controls
whether merge points should be specialized for different values of

Table 1: Policies

Policy Description

poly_divide perform polyvariant division

mono_divide perform monovariant division

poly_specialize perform polyvariant specialization at merges
within dynamic regions (specialization is always
polyvariant at promotion points)

mono_specialize perform monovariant specialization at merges

auto_promote automatically insert a dynamic-to-static promo-
tion when the annotated static variable is possi-
bly assigned a dynamic value

manual_promote introduce promotions only at explicit
make_static  annotations

cache_all
_unchecked

specialize at merges, assuming that the context is
different than any previous or subsequent spe-
cialization

cache_all cache each specialized version at merges

cache_one cache only latest version at merges, throwing
away previous version if context changes

cache_one
_unchecked

cache one version, and assume the context is the
same for all future executions of this merge

promote_all
_unchecked

specialize at promotion points, assuming that the
promoted value is different than any previous or
subsequent specialization

promote_all cache all specialized versions at promotion
points

promote_one cache only latest version at promotion points

promote_one
_unchecked

cache one version, and assume promoted value
is the same for all future executions of this pro-
motion

lazy suspend specialization at all dynamic branches,
avoiding all speculative code generation

specialize_lazy suspend specialization at all dynamic branch
successors dominating specializable merge
points and specializable call sites, avoiding spec-
ulative specialization of multiple versions of
code after merges

loop_specialize
_lazy

suspend specialization at all dynamic branch
successors dominating specializable loop head
merge points and specializable call sites, allow-
ing speculative specialization except where it
might be unbounded

eager eagerly specialize successors of branches,
assuming that no unbounded specialization will
result, allowing full speculative specialization
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a variable flowing in along different merge predecessors. In
contrast, promotion points such asmake_static  always perform
polyvariant specialization of the promoted value beginning at the
promotion point.

4.3 Common Idioms

We designed the annotations to effect particular optimizations, such
as specializing for true run-time constants (variables whose values
remain invariant after initialization at run time) or multi-way loop
unrolling (specializing a loop along multiple dynamic paths as in
Figure 1). Hence, these common optimizations can easily be
obtained by the use of concise idioms. For example, a region of
code may be specialized for the value of a true run-time constantx
by using thepromote_one_unchecked  policy:

make_static(x:promote_one_unchecked);

Alternatively, to conditionally unroll loops shorter than some
threshold, the following idiom is used:

if (n < threshold) make_static(n,i:eager);
for (i=0; i<n; i++) {

...
}

We achieve a substantial effect with little annotation because the
default policies of the annotations induce the most aggressive (safe)
level of specialization (polyvariant specialization and division, and
automatic dynamic-to-static promotion). We have also placed a
significant burden on our analyses in that they must clean up
“sloppy” annotations. In this example, the programmer most likely
does not require automatic promotion forn or i , or polyvariant
specialization forn at control-flow merges. Furthermore, the
programmer annotatesi  when it is dead, and probably also does not
wish to specialize code following the loop fori . However, the
programmer is not penalized for specifying more powerful policies
than are required, and our system uses live-variables analysis and
performs other optimizations (e.g., unit-boundary clustering,
described in section 6.3) to minimize the cost of the specified run-
time specialization.

Finally, note thati  is a derived static variable after it is assigned
zero, and no dynamic-to-static promotion ofi  is required.
However, the loop would not be unrolled ifi  were not annotated
because we treat unannotated derived static variables as if they
were set to the weakest level of specialization (monovariant
specialization and division and manual promotion), to avoid
incurring run-time specialization expense without explicit user
direction.

4.4 Partially Static Data Structures

Another common idiom is to perform a memory reference
operation (reading a variable, dereferencing a pointer, or indexing
an array) whose result is intended to be a run-time constant. This
occurs, for example, when manipulating a (partially) static data
structure. By default, the result of a load operation is not a run-time
constant, even if its address is a run-time constant. To inform our
system that the loaded result should be treated as a run-time
constant, the following code can be written:

make_static(t);
t = *p;
... /* later uses of t  are specialized for t ’s value */ ...

This will introduce an automatic promotion and associated cache
check at each execution of the load. If the programmer knows that
the result of the dereference will always be the same for a particular
run-time constant address, the programmer can use the
promote_one_unchecked  annotation:

make_static(t:promote_one_unchecked);
t = *p;
... /* later uses of t  are specialized for t ’s first value */ ...

However, the semantics of this annotation still delays specialization
until program execution reaches the dereference point the first time.
To avoid any run-time overhead in the specialized code for this
dereference, the programmer must state that the load instruction
itself is a static computation, returning a run-time constant result if
its argument address is a run-time constant. In our annotation
language, a memory-reference operation (a variable access, a
pointer dereference, or an array index expression) can be prefixed
with thestatic  keyword, indicating that the associated memory
load should be done at specialization time, assuming the pointer or
array is static at that point. The programmer can use a static
dereference in this example as follows:

make_static(p);
...
t = static* p;
... /* later uses of t  are specialized for t ’s value

at specialization time */ ...

Thestatic  prefix is a potentially unsafe programmer assertion.
Alternatively, we could attempt to perform alias and side-effect
analysis to determine automatically which parts of data structures
are run-time constants. Unfortunately, it is extremely challenging to
produce a safe yet effective alias and side-effect analysis for this
task, because the analysis would have to reason about aliasing
relationships over the whole program (not just within dynamic
regions) and also about the temporal order of execution of different
parts of the program (e.g., side-effects that occur to construct the
run-time data structures before the dynamic region is first entered
should be ignored). Sound, effective interprocedural alias analysis
for lower-level languages like C is an open problem and the subject
of ongoing research [Wilson & Lam 95, Steensgaard 96], and so we
do not attempt to solve the full problem as part of our dynamic
compilation system; our current system includes only simple, local
information, such as that local variables that have not had their
addresses taken are not aliases of any other expression. When
effective alias analyses are developed, we can include them as a
component of our system; even so, there may still be need for
explicit programmer annotations to provide information that the
automatic analysis was unable to deduce. Other dynamic
compilation systems either include an analysis that operates only
within a dynamic region and is unsafe in the face of some legal C
programs (Tempo), disallow side-effects entirely (Fabius), or rely
on the programmer to perform only legal optimizations (`C).

Instead of, or in addition to, providing annotations at individual
dereference operations, we could provide higher-level annotations
of static vs. dynamic components along with variable or type
declarations. For example, the p variable could be declared with a
type such asconstant*  rather than* , to indicate that all
dereferences would result in run-time constant values; the
bytecodes  array in the initial example in Figure 1 could be
declared asconstant int bytecodes[]  to indicate that its
contents were run-time constants, thereby eliminating the need for
the four static  prefix annotations on thebytecodes  array
index expressions in the example. Tempo follows this sort of
approach, at least for fields ofstruct  types. This syntactic sugar
may be a worthwhile addition to our system.

4.5 Interprocedural Annotations

Run-time specialization normally applies within the body of a
single procedure: calls to a procedureP from within a specialized
region all branch to the same unspecialized version ofP. P itself
may have another specialized region in its body, but this break in
the specialized code will cause all the different specialized calls of
P to merge together, only to be split back apart again by the cache
checks at themake_static  annotation atP’s entry. To avoid this
overhead, calls can themselves be specialized, branching to
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correspondingly specialized versions of the callee procedure,
thereby extending dynamic regions across procedure boundaries.

The specialize  annotation names a procedure with a given
number of arguments and provides a list of divisions for the
procedure. Each division lists a non-empty subset of the formal
parameters of the procedure to be treated as run-time constants; a
division can specify any of the same policies for listed variables that
a make_static  annotation can specify. As described in section
6, for each division, our system’s static compiler produces a code-
generation procedure (i.e., a generating extension) for that division
that takes the static formals as arguments and, when invoked on
their run-time values, produces a specialized residual procedure
that takes the remaining arguments of the original procedure (if
any), in classical partial-evaluation style.

At each call site in a specialized region to a procedureP with an
associatedspecialize  annotation, our system will search for
the division specified forP that most closely matches the division
of actual arguments at the call site (favoring divisions listed earlier
in P’s specialize  annotation in case of ties). If one is found, the
static compiler produces code that, when specializing the call site at
run time, (1) invokes the generating extension for the selected
division of P, passing the necessary run-time constant arguments,
and (2) generates code that will invoke the resulting specialized
version forP, passing any remaining arguments. Thus, when the
specialized call is eventually executed, the call will branch directly
to the specialized callee and pass only the run-time variable
arguments. If no division specified forP matches the call, then the
general unspecialized version ofP is called. Calls toP outside of
any dynamic region continue to invoke the unspecialized version of
P.

The constant  prefix to thespecialize  annotation is an
(unsafe) assertion by the programmer than the annotated procedure
acts like a pure function, returning the same result given the same
arguments without looping forever, making externally observable
side-effects, or generating any exceptions or faults. Our system
exploits this information by calling a constant function from call
sites with all static arguments at specialization time and treating its
result as a run-time constant, i.e., reducing the call rather than
specializing or residualizing the call. This behavior is different than
simply providing a specialization division where all formals are
static, since that would leave a zero-argument call in the specialized
code whose result was a dynamic value.

The callee procedure and any call sites can be compiled separately.
All that they need to agree on is thespecialize  annotation,
which typically is put next to the procedure’sextern  declaration
in a header file.

5 Analysis of the Annotations
Given the programmer annotations described in the previous
section, our system performs dataflow analysis akin to binding time
analysis over each procedure’s control-flow graph representation to
compute where and how run-time specialization should be
performed. The output of this analysis is information associated
with each program point (each edge between instructions in the
control flow graph); the domain of the information,BTA, along with
some constraints on its form, is specified in Figure 5.* This output
is used to produce the generating extension which invokes the run-
time specializer, as described in section 6.

The analysis computes a set of divisions for each program point.
Each division maps variables annotated as static by
make_static  or specialize  to their associated policies at
that program point. Two divisions are distinct iff there is some
variable in one division annotated with the polyvariant division
policy that is either not found (i.e., dynamic) or annotated

differently in the other division; divisions that do not differ in the
policies of any variables annotated with the polyvariant division
policy will be merged together by the analysis.

For each division the analysis computes the following pieces of
information:

• The analysis computes the set of static variables (run-time
constants) at that program point, including both user-annotated
static variables and any derived static variables computed
(directly or indirectly) from an annotated variable. The
computed set of static variables will be used to determine which
computations and operands are static vs. which are dynamic. In
addition, the set of static variables is used to index into the run-
time specializer caches, and consequently the analysis also
computes the appropriate caching policy for each static
variable. (For internal purposes, the analysis tracks the set of
root annotated run-time constants from which each static
variable was computed, directly or indirectly, as described in
subsection 5.3.6.)

• The analysis computes those points requiring dynamic-to-static
promotions of variables. Non-empty promotion sets correspond
to promotion points for the listed variables. Promotions get
inserted aftermake_static  annotations for non-constant
variables and after (potential) assignments of dynamic values to
variables annotated with the auto-promotion policy.

• The analysis identifies which merge points require polyvariant
specialization (calleddiscordant merges), because at least one
variable annotated with the polyvariant specialization policy
has potentially different definitions on different merge
predecessors. The set of suchdiscordant variables is computed
at these merge points, and is empty at all other points.

In the remainder of this section we describe the procedure
representation we assume and the set of dataflow analyses used to
construct this output.

5.1 Procedure Representation

We assume procedures being analyzed are represented in a standard
control-flow graph, where nodes in the graph can be of one of the
following forms:

• an operator node such as a move, add, or call, with one
predecessor and successor,

• a merge node with multiple predecessors and one successor,
• a conditional branch node with one predecessor and multiple

successors, with a single operand that selects the appropriate
successor edge,

• an entry node with no predecessors and a single successor,
which acts to bind the procedure’s formals upon entry, or

• a return node with one predecessor and no successors, with a
single operand that is the procedure’s result.

To enable our analyses to detect when potentially different
definitions of a variable merge, we assume that merge nodes are
annotated with a list of variables that have different reaching
definitions along different predecessors, yielding one variable in the
list for eachφ-function that would be inserted if we converted the
procedure to static single assignment (SSA) form [Cytronet al. 89].

* In our notation,→ constructs the domain of partial finite maps (sets of
ordered pairs) from one domain to another,dom andrange project the
first and second elements, respectively, of the ordered pairs in the map,
and applying a mapf to an element indom(f) returns the corresponding
range element. We use�× to construct cross-product domains. We write
D(p) to project from the productp the element corresponding to
component domainD, and we writep[D→v] to compute a new productp
whose D element has valuev. Pow denotes the powerset domain
constructor. Note thatA→B ⊆ Pow(A×B).
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Domains:
BTA ≡ Division → DivisionInfo

DivisionInfo ≡ StaticVarInfo × Promotions × DiscordantVars

Division ≡ Var → Policies

Var ≡ finite set of all variables in scope of procedure being compiled

Policies ≡ DivisionPolicy × SpecializationPolicy ×
PromotionPolicy ×
MergeCachingPolicy × PromotionCachingPolicy ×
LazinessPolicy

DivisionPolicy ≡ {PolyDivision, MonoDivision}

SpecializtionPolicy ≡ {PolySpecialization, MonoSpecialization}

PromotionPolicy ≡ {AutoPromote, ManualPromote}

MergeCachingPolicy ≡ {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

PromotionCachingPolicy ≡ {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

LazinessPolicy ≡
{Lazy, SpecializeLazy, LoopSpecializeLazy, Eager}

StaticVarInfo ≡ Var → CachingPolicy × SourceRoots

CachingPolicy ≡ {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

SourceRoots ≡ Pow(Var)

Promotions ≡ Pow(Var)

DiscordantVars ≡ Pow(Var)

LiveVars ≡ Pow(Var)

UsedVars ≡ Pow(Var)

MayDefVars ≡ Pow(Var)

Specializations ≡ Proc → SpecializationInfo

Proc ≡ finite set of all procedures in scope of function being compiled

SpecializationInfo ≡ IsConstant × Divisions

IsConstant ≡ {Constant, NotConstant}

Divisions ≡ Pow(Division)

Constraints:
BTALegal(bta:BTA) ≡

LegalDivisions(dom(bta)) ∧
∀(d,i)∈bta.

StaticVars(i)⊇dom(d) ∧
∀v∈StaticVars(i).

(SourceRoots(v, i)⊆dom(d) ∧
v∉dom(d) ⇒

CachingPolicy(StaticVarInfo(i)(v)) =
CacheOneUnchecked) ∧

Promotions(i)⊆dom(d) ∧
DiscordantVars(i)⊆PolySpecializationVars(d)

LegalDivisions(ds:Pow(Division)) ≡
∀d1,d2∈ds. d1=d2 ∨ SeparateDivisions(d1,d2)

SeparateDivisions(d1:Division, d2:Division) ≡
PolyDivisionVars(d1)≠PolyDivisionVars(d2) ∨
∀v∈PolyDivisionVars(d1). d1(v)≠d2(v)

PolyDivisionVars(d:Division) ≡
{ v∈dom(d) | DivisionPolicy(d(v)) = PolyDivision }

PolySpecializationVars(d:Division) ≡
{ v∈dom(d) | SpecializationPolicy(d(v)) = PolySpecialization }

StaticVars(i:DivisionInfo) ≡ dom(StaticVarInfo(i))
SourceRoots(v:Var, i:DivisionInfo) ≡

if v∈StaticVars(i) then SourceRoots(StaticVarInfo(i)(v)) else ∅

Figure 5: Domains

Flow graph nodes are generated from the following grammar:
Node ::= OpNode | MergeNode | BranchNode |

EntryNode | ReturnNode

OpNode ::= MakeStaticNode | MakeDynamicNode |
ConstNode | MoveNode | UnaryNode | BinaryNode |
LoadNode | StaticLoadNode | StoreNode | CallNode

MakeStaticNode ::= make_static( Var: Policies)
MakeDynamicNode ::= make_dynamic( Var)
CostNode ::= Var :=  Const
MoveNode ::= Var :=  Var
UnaryNode ::= Var :=  UnaryOp Var
BinaryNode ::= Var :=  Var BinaryOp Var
LoadNode ::= Var := *  Var
StaticLoadNode ::= Var := static*  Var
StoreNode ::= *  Var :=  Var
CallNode ::= Var :=  Proc( Var,  ...,  Var)

MergeNode ::= merge( Var,  ...,  Var)

BranchNode ::= test  Var

EntryNode ::= enter  Proc

ReturnNode ::= return  Var

whereVar, Const, UnaryOp, BinaryOp, andProc are terminals
andPolicies is as defined in Figure 5.

5.2 Prepasses

Our analyses will need to identify those program points where a
variable in the scope of analysis may be assigned. Direct
assignments as part of anOpNode are clear, but assignments
through pointers and as side-effects of calls are more difficult to
track. We abstract this may side-effect analysis problem into a
prepass whose output isMayDefVars, a set of variables at each
program point that may be modified during execution of the
previous node, other than the left-hand-side variable of the node.

Our analyses will work better if they can identify when annotated
and derived run-time constant variables are dead. We abstract the
result of a live variables analysis into a prepass that computes
LiveVars, the set of live variables at each program point. We also
compute and abstract a similar analysis,UsedVars, which are the
set of variables that have an earlier definition and a later use (but
may temporarily be dead at this point).

Finally, we assume that the interprocedural specialization directives
have been processed and represented in theSpecializations
domain that maps each annotated procedure to a set of divisions
given in thespecialize  annotation and specifies whether the
procedure was annotated asconstant . This information is
assumed to be replicated at all program points, for convenience in
writing the analysis functions.

5.3 The Main Analysis

Figures 6, 7, and 8 define the annotation analysis. TheBTA family
of dataflow equations defines the information on the program
point(s) after a node in terms of the information computed for the
point(s) before the node (bta), the helper information described in
subsection 5.2 for the program point(s) after the node (lvs, uvs, and
mds), and the ever-present specialized function information (sp).
A solution to the (recursive) dataflow equations is the greatest
fixpoint of the set of equations for each node in the procedure,
which we solve by simple iterative dataflow analysis; the top
element of the lattice, used to initialize back-edges during the initial
iteration of analysis of loops, is the empty set (no divisions).*

In general, each flow function computes a new updated set of
divisions from the inflowing set(s) of divisions. We remove any
(permanently) dead variables from the set of annotated variables
and any (at least temporarily) dead variables from the set of run-
time constants, to avoid unnecessary polyvariant division or
specialization. Once a new set of divisions and associated



9

information is computed, divisions that no longer differ in the
policies of any variables annotated as leading to polyvariant
division are merged together into a single division. Thus the degree
of polyvariant division can vary from program point to program
point.

5.3.1 Entry Nodes

The analysis of the procedure entry node creates the initial
division(s), including at least the empty unspecialized division with
no run-time constant variables. For a specialized procedure, each of
the divisions listed in thespecialize  annotation introduces an
additional specialized division in the analysis. For each division,
the set of run-time constants is initialized to the set of annotated
variables, with each variable’s initial caching policy taken from its
specifiedPromotionCachingPolicy.

* We follow the conventions of dataflow analysis in solving forgreatest
fixpoints and initializing information along edges to thetop of the lattice.
In this paper we do not bother to more formally define the lattice ordering
and meet operations, since we have given an explicit flow function for
merge nodes and defined the top lattice element, and simple iterative or
worklist-based analyses need nothing more. A soundness proof for our
analysis would of course require a more formal treatment. Since the
domain of analysis is finite and each analysis function is monotonic,
termination of analysis is assured.

BTAEntry: EntryNode→LiveVars→UsedVars→Specializations→BTA

BTAEntry [[enter P ]] lvs uvs sp ≡
let ds = (if P∈dom(sp) then Divisions(sp(P)) else ∅) ∪ {∅} in

Merge(lvs, { (d, (s, ∅, ∅)) |
d’∈ds ∧
d = ForgetDeadVars(uvs, d’) ∧
s = { InitialBinding(v, d) | v∈dom(d) } })

BTABranch:
BranchNode→LiveVars×LiveVars→UsedVars×UsedVars
→MayDefVars×MayDefVars→Specializations→BTA→BTA×BTA

BTABranch [[test x ]] (lvs1,lvs2) (uvs1,uvs2) (mds1,mds2) sp bta ≡
(Merge(lvs1, { (dout,iout) |

(d,i) ∈ bta ∧ (dout,iout) = ProcessStmt(∅, uvs1, mds1, d, i) }),
 Merge(lvs2, { (dout,iout) |

(d,i) ∈ bta ∧ (dout,iout) = ProcessStmt(∅, uvs2, mds2, d, i) }))

BTAMerge: MergeNode→LiveVars→UsedVars→MayDefVars
→Specializations→Pow(BTA)→BTA

BTAMerge [[merge(x 1,...,x n) ]] lvs uvs mds sp btas ≡
let bta = ∪ btas in

if this is a static merge then Merge(lvs, bta)
else Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
pvs = {x1,...,xn} ∩ PolySpecializationVars(d) ∩ lvs ∧
mvs = ({x1,...,xn} − pvs) ∩ lvs ∧
dout = ForgetDeadVars(uvs, d − { (x,p’)∈d | x∈mvs }) ∧
iout =

if pvs = ∅ then i[DiscordantVars→∅]
else

({ (v, (mp, {v})) | (v,p)∈dout ∧
mp = if v∈pvs then MergeCachingPolicy(p)

else CachingPolicy(StaticVarInfo(i)(v)) },
∅, pvs) })

Figure 6: Flow Functions, Part I

BTAOpNode: OpNode→LiveVars→UsedVars→MayDefVars
→Specializations→BTA→BTA

BTAOpNode [[make_static(x:p) ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
dout = ForgetDeadVars(uvs, d − { (x’,p’)∈d | x’ = x  } ∪ {(x ,p)}) ∧
iout = MakeStatic(x , dout, i[DiscordantVars→∅]) })

BTAOpNode [[make_dynamic(x) ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
dout = ForgetDeadVars(uvs, d − { (x’,p’)∈d | x’ = x  }) ∧
iout = i[DiscordantVars→∅] })

BTAOpNode [[x := k ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(x , true, ∅, uvs, mds, d, i) })

BTAOpNode [[x := y ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(

x , y∈StaticVars(i), SourceRoots(y ,i), uvs, mds, d, i) })

BTAOpNode [[x := op y ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(

x , y∈StaticVars(i) ∧ Pure(op), SourceRoots(y ,i),
uvs, mds, d, i) })

BTAOpNode [[x := y op z ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(

x , {y ,z}⊆StaticVars(i) ∧ Pure(op),
SourceRoots(y ,i) ∪ SourceRoots(z ,i), uvs, mds, d, i) })

BTAOpNode [[x := *p ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(x , false, ∅, uvs, mds, d, i) })

BTAOpNode [[x := static* p ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(

x , p∈StaticVars(i), SourceRoots(p,i), uvs, mds, d, i) })

BTAOpNode [[*p := y ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessStmt(∅, uvs, mds, d, i) })

BTAOpNode [[x := f(y 1,...,y n) ]] lvs uvs mds sp bta ≡
Merge(lvs, { (dout,iout) |

(d,i) ∈ bta ∧
(dout,iout) = ProcessAssignment(

x ,
{y1,...,yn}⊆StaticVars(i) ∧

f ∈dom(sp) ∧ IsConstant(sp(f)) = Constant,
∪yi ∈ {y1,...,yn} SourceRoots(y i,i),
uvs, mds, d, i) })

Figure 7: Flow Functions, Part II
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Merge(lvs:LiveVars, bta:BTA):BTA ≡
MergePartitions(lvs, Partition(bta))

Partition(bta:BTA):Pow(BTA) ≡
{ { (d,i)∈bta | DivisionSelector(d) = ds } |

ds ∈DivisionSelectors(bta) }

DivisionSelectors(bta:BTA):Divisions ≡
{ DivisionSelector(d) | (d,i)∈bta }

DivisionSelector(d:Division):Division ≡
{ (v,p)∈d | v∈PolyDivisionVars(d) }

MergePartitions(lvs:LiveVars, btas:Pow(BTA)):BTA ≡
{ (d,i) | bta ∈ btas ∧

d = ∩Division dom(bta) ∧
i = FilterStaticVars(lvs, d, ∩DivisionInfo range(bta)) }

FilterStaticVars(lvs:LiveVars, d:Division, i:DivisionInfo
):DivisionInfo ≡

let si = { (v, (p,rvs))∈StaticVarInfo(i) | v∈lvs } in
i[StaticVarInfo→

{ (v, (p,rvs))∈si | rvs⊆dom(d) } ∪
{ InitialBinding(v, d) |

(v, (p,rvs))∈si ∧ v∈dom(d) ∧ �¬(rvs⊆dom(d)) }]

InitialBinding(v:Var, d:Division
):Var × (CachingPolicy × SourceRoots) ≡

(v, (PromotionCachingPolicy(d(v)), {v}))

MakeStatic(v:Var, d:Division, i:DivisionInfo):DivisionInfo ≡
if v∈StaticVars(i) then i
else (StaticVarInfo(i) ∪ {InitialBinding(v, d)}, {v}, ∅)

ProcessAssignment(v:Var, rhs_is_static:bool, rvs:SourceRoots,
uvs:UsedVars, mds:MayDefVars,
d:Division, i:DivisionInfo
):Division × DivisionInfo ≡

if rhs_is_static
then ProcessStmt({(v,(CacheOneUnchecked,rvs))}, mds, uvs, d, i)
else ProcessStmt(∅, mds ∪ {v}, uvs, d, i)

ProcessStmt(static_assigns:StaticVarInfo, dyn_assigns:Pow(Var),
uvs:UsedVars, d:Division, i:DivisionInfo
):Division × DivisionInfo ≡

(dout,iout) where
ps = MayPromotedVars(d, dyn_assigns)
dout = ForgetDeadVars(uvs,

ForgetDynVars(dyn_assigns − ps, d))
psout = ps ∩ dom(dout)
si = StaticVarInfo(i)
si’ = si − { (v,vi)∈si | v∈dom(static_assigns) } ∪ static_assigns
siout = ProcessDynAssigns(

si’, dom(static_assigns), dyn_assigns, dout)
iout = (siout, psout, ∅)

MayPromotedVars(d:Division, vs:Pow(Var)):Promotions ≡
{ v∈vs | v∈dom(d) ∧ PromotionPolicy(d(v)) = AutoPromote }

ProcessDynAssigns(si:StaticVarInfo, svs:Pow(Var), dvs:Pow(Var),
d:Division):StaticVarInfo ≡

si − { (v, (p,rvs))∈si | v∈dvs ∨ (v∉dom(d) ∧ rvs∩(svs∪dvs)≠∅) }
∪ { InitialBinding(v, d) | v∈dom(d) ∧ v∈dvs }

ForgetDeadVars(uvs:UsedVars, d:Division):Division ≡
{ (v,p)∈d | v∈uvs }

ForgetDynVars(vs:Pow(Var), d:Division):Division ≡
{ (v,p)∈d | v∉vs }

Pure(op:Op):bool ≡
returns true iffop is idempotent and cannot raise an exception or fault;
most operators are pure;div andmalloc are canonical impure operators

Figure 8: Helper Functions

5.3.2 Make_Static  and Make_Dynamic  Nodes

The analysis of amake_static  pseudo-instruction adds a new
static variable to each of the existing divisions, replacing the
policies associated with the variable in some division if already
present. If the variable was not already a run-time constant in some
division, then the make_static  instruction introduces a
dynamic-to-static promotion. Themake_dynamic  instruction
simply removes the annotated variable from each of the inflowing
divisions; as described above, this may cause divisions to merge
and run-time static variables derived from the newly dynamic
variable to be dropped.

5.3.3 Assignment and Store Nodes

The various forms of assignment nodes all have similar analysis,
dependent only on whether or not the right-hand-side expression is
a run-time constant expression. Compile-time constants are
trivially run-time constants; a unary or binary expression yields a
run-time constant if its operands are run-time constants and if the
operator is a pure function (e.g., it cannot trap and always returns
the same result given the same arguments). A load instruction
yields a run-time constant iff its address operand is a run-time
constant (which includes fixed values such as the address of a
global or local variable) and it is annotated asstatic  by the
programmer. A call to a procedure annotated by the programmer as
constant  yields a run-time constant if all its arguments are. A
store instruction has no definitely assigned result variable, only
potential side-effects as described by theMayDefVars set.

These properties are summarized into a (singleton or empty) set of
variables definitely assigned run-time constant values and a set of
variables possibly assigned dynamic expressions (comprised of the
assigned variable if the right-hand-side expression is dynamic, as
well as any variables in theMayDefVars set). The definitely static
variables are added to the set of run-time constant variables. The
possibly dynamic variables are divided into those annotated with
the auto-promote policy (which instructs the system to insert a
dynamic-to-static promotion automatically if they ever get assigned
a dynamic value), and those that aren’t auto-promoted, which are
dropped from the set of annotated variables and the set of run-time
constants, if present in either. (As with the analysis of any node,
dropping variables from the set of annotated variables can cause
divisions to merge.)

5.3.4 Merge Nodes

Ignoring the definition and analysis of static merges for the
moment, the analysis of a merge node must deal withdiscordant
variables that have potentially different definitions along different
predecessors (these variables were identified by a prepass and
stored with the merge node, as described in section 5.2). For those
discordant variables that the programmer annotated as run-time
constants with a polyvariant specialization policy, the analysis will
mark this merge as a discordant merge in those variables, triggering
specialization of the merge and downstream code. Any other
discordant variables are dropped from the set of annotated variables
and run-time constants, if present. (As usual, this dropping of
variables from the annotated set may cause divisions to merge.)
Derived run-time constants are implicitly monovariantly
specialized, since they were not explicitly annotated as
polyvariantly specialized by the programmer. The caching policy
for all discordant variables at the merge is set to those variables’
merge caching policy.

Static merges are merges where at most one of the merge’s
predecessors can appear at specialization time, because the
predecessors are reached only on mutually exclusive static
conditions. Since only one predecessor will be specialized, the
merge node won’t actually merge any branches in the specialized
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code; hence each of the input divisions is passed through
unchanged without introducing any cache check points. Subsection
5.4 explains how static merges are identified.

5.3.5 Other Nodes
The analysis of a branch node simply replicates its incoming
information along both successors (as always, after filtering the set
of variables to exclude those that are no longer live along that
successor). Return nodes need no analysis function, since there are
no program points after return nodes, and we do not currently do
interprocedural flow analysis of annotations.

5.3.6 Caching Policies and Derivations of
Static Variables

At each program point, the analysis computes a caching policy for
each variable. This policy is used to control indexing into the run-
time specializer’s caches of previously specialized code. Annotated
variables at promotion points (and at the start of analysis of a
division of a specialized function) are given the user-specified
PromotionCachingPolicy value. At discordant merges, a
discordant variable is changed to use the variable’s
MergeCachingPolicy value.

Derived run-time constants are given theCacheOneUnchecked
policy. This ensures that unannotated run-time constants are never
used in cache lookups and consequently do not lead to additional
specialization beyond that explicitly requested by the user. This
unchecked caching policy is safe as long as each derived run-time
constant is a pure function of some set of annotated variables,
which are checked during cache lookups (unless the user specifies
explicitly that no checking is required). An annotated variable can
be assigned a static expression, in which case it is treated (more
efficiently) as a derived run-time constant with a
CacheOneUnchecked policy, instead of whatever caching policy
with which the variable was annotated.

Assignments to root annotated variables can break the assumptions
that some derived run-time expression is a function of some set of
root annotated variables. In such a case, the derived run-time
constants need to be dropped from the set of static variables, and
annotated derived run-time constants need to be restored to their
regular explicit PromotionCachingPolicy value. The analysis
tracks the set of root annotated variables on which a derived run-
time constant depends, and whenever a root variable is (possibly)
assigned to or is removed from the division, all dependent run-time
constants are dropped (or restored to their regular caching policy, if
roots themselves).

5.3.7 Additional Lattice Meet Operations
TheMerge helper function uses the lattice meet operators for the
Division and DivisionInfo domains. The lattice meet operator
∩Division over elements ofDivision indicates how to combine
different annotations for a set of variables in the same division, and
is defined as follows:

d1 ∩Division d2 ≡
{ (v,p) | v∈dom(d1)∩dom(d2) ∧ p = d1(v) ∩Policies d2(v) }

Elements ofPolicies are met pointwise. Elements of individual
policy domains are totally ordered, with elements listed earlier in
the set of alternatives for a domain in Figure 5 ordered less than
elements listed later; for example:

AutoPromote ≤PromotionPolicy ManualPromote

Thus, the lattice meet operator for a particular policy domain
returns its minimum argument, e.g.:

AutoPromote ∩PromotionPolicy ManualPromote = AutoPromote

This rule has the effect of picking the strongest policy of any of the
merging divisions.

The lattice meet operator∩DivisionInfo over elements of
DivisionInfo is defined as the pointwise meet over its component
domains, which are defined as follows:

si1 ∩StaticVarInfo si2 ≡
{ (v, (p,rvs)) | v∈dom(si1)∪dom(si2) ∧

p = p1 ∩CachingPolicy p2 ∧
rvs = rvs1 ∪ rvs2

where p2 = if v∈dom(si2) then CachingPolicy(si2(v))
else CacheOneUnchecked

p1 = if v∈dom(si1) then CachingPolicy(si1(v))
else CacheOneUnchecked

rvs1 = if v∈dom(si1) then SourceRoots(si1(v)) else ∅
rvs2 = if v∈dom(si2) then SourceRoots(si2(v)) else ∅ }

vs1 ∩Promotions vs2 ≡ vs1∪vs2

vs1 ∩DiscordantVars vs2 ≡ vs1∪vs2

5.4 Reachability Analysis

We identify static merges by computing astatic reachability
condition at each program point for each division. A static
reachability condition is a boolean expression (in conjunctive
normal form) over static branch outcomes that are required in order
to reach that program point. A static branch is a branch whose test
variable is identified as a run-time constant by theBTA analysis. A
static merge is one whose predecessors have mutually exclusive
static reachability conditions. Reachability conditions are
computed at the same time as theBTA information, since it depends
on theBTA’s division and static variable analysis and influences the
BTA analysis’s treatment of merge nodes. Further details on
reachability analysis can be found in an earlier paper [Auslanderet
al. 96].

6 Generating the Run-Time Specializer
Given the output of theBTA analysis, our compiler statically
constructs the code and static data structures that, when executed at
run time, will call the run-time specializer with the appropriate run-
time constant arguments to produce and cache the run-time
specialized code (i.e., the generating extensions). The following
steps are performed:

• The compiler statically replicates control-flow paths so that
each division receives its own code. After replication each
program point corresponds to a single division. Points can
begin to be replicated at entry to specialized functions
(producing several distinct functions), and at merge points
where different divisions combine. Replicated paths can
remerge at points where divisions cease to differ and are joined
by theMerge function.

• The compiler identifies which branch successor edges need to
be lazy specialization edges. Subsection 6.1 discusses this in
more detail.

• The compiler identifies the boundaries of the units manipulated
by the run-time specializer (described in section 3). Unit
boundaries primarily correspond to dynamic-to-static
promotion points, demotion points (where variables are
removed from the set of annotated variables), discordant
merges, and lazy branch successor edges. The first three cases
are cache lookup points, and the last case avoids speculative
specialization. This process is described in more detail in
subsection 6.2 below. A clustering algorithm then attempts to
merge boundaries together to minimize their cost, as described
in subsection 6.3. TheUnit  andUnitEdge  specializer data
structures are generated at the end of this process.

• The compiler separates the static operations (OpNodes whose
right-hand-side expressions were computed to be static by the
BTA analysis) and the dynamic operations into two separate,
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parallel control flow subgraphs; in earlier work we called these
subgraphs “set-up code” and “template code,” respectively
[Auslanderet al. 96]. Subsection 6.4 discusses some issues
with this separation in more detail. We apply standard compiler
optimizations, including instruction scheduling and register
allocation, to each subgraph separately. (We perform higher-
level target-independent optimizations such as common-
subexpression elimination and loop optimizations before our
BTA analysis.) Performing these regular compiler optimizations
over both statically compiled and dynamically compiled code is
crucial for generating high-quality code [Auslanderet al. 96].

• Finally, each unit’sReduceAndResidualize  function is
produced. First, the control-flow and the reduce operations of
theReduceAndResidualize  function are derived from the
static control-flow subgraph, after removing all dynamic
branches from the static subgraph; this process is described in
more detail in subsection 6.5. Then the residualize operations
are introduced by translating the operations and dynamic
branches of the dynamic subgraph into code to emit the
dynamic instructions (perhaps with run-time constant
operands) in the static subgraph. This process is described in
more detail in subsection 6.6 below. The resulting subgraph
forms theReduceAndResidualize  function for the unit,
and the dynamic subgraph is thrown away.

Some optimizations of the calls to the run-time specializer are
discussed in subsection 6.7.

6.1 Computing Lazy Branch Successors

Laziness policies on variables indicate the extent of speculative
specialization after dynamic branches that should be performed. A
branch successor is a lazy edge iff its test variable is dynamic and
at least one of the following conditions holds:

• At least one of the run-time constants at the branch is annotated
with theLazy policy.

• The branch successor edgedetermines execution (as defined
below) of a predecessor edge of a later discordant merge node
where at least one of the discordant variables is annotated with
theSpecializeLazy policy.

• The branch successor edge determines execution of a
predecessor edge of a later discordant loop head merge node
where at least one of the discordant variables is annotated with
theLoopSpecializeLazy policy.

• The branch successor edge determines execution of a later call
to a specialized division of a procedure, and some run-time
constant live at the call is not annotated with theEager policy.

We say that a branch successor edge determines execution of a
program point iff the edge is postdominated by the program point,
but the branch node itself is not, i.e., the branch successor is (one
of) the earliest points where it is determined that the downstream
program point will eventually be executed.

Once the dominator information relating program points is
computed, a linear scan over the dynamic branches, discordant
merges, and specialized calls serves to compute the lazy edge
information.

6.2 Unit Identification

Each interaction with the run-time specializer, including cache
lookup points and demand-driven specialization points, introduces
a unit boundary. To identify the boundaries based on cache lookup
points, we first compute thecache context at each program point
from the set of static variables at that point, as follows:

• If any static variable is annotated with the
CacheAllUnchecked policy, then the cache context is the
special markerreplicate.

• Otherwise, the cache context is the pair of the set of variables
annotated with theCacheAll policy and the set of variables
annotated with theCacheOne policy. (The set of variables
annotated withCacheOneUnchecked do not contribute to
the cache context.)

Given the cache context and the other program-point-specific
information, unit boundaries are identified as follows:

• Any point where the cache context differs from the cache
context at predecessor point(s) is a unit boundary, since
different degrees of polyvariant specialization or of cache
retention can occur.

• A non-emptyPromotions set at a program point corresponds
to a dynamic-to-static promotion point, and introduces a unit
boundary.

• A non-empty DiscordantVars list corresponds to a
specializable merge point, and induces a unit boundary.

• Each edge labelled as a lazy edge introduces a unit boundary.

In addition, units are constrained to be single-entry regions, so if
any units would otherwise have multiple entry points, additional
unit boundaries are inserted at control-flow merges of paths with
different unit entries. It is possible for a program point to be a
boundary in more ways than one; only a single boundary results.

The UnitEdge  data structure records whether each unit edge
should be specialized eagerly or lazily. A unit boundary is eager
unless it is a promotion point (which must be suspended until the
computed run-time value is available) or a lazy edge.

Figure 9 illustrates the units (shown in gray) that are identified for
the interpreter example in Figure 2. The two entry points
correspond to the specialized and unspecialized divisions of the
interp_fn  function. The unspecialized entry point and the false
branches of both the specialized and unspecialized versions of the
conditional-specialization tests lead to unspecialized, statically
compiled code. Demotions (indicated byD) of bytecodes  and
pc  are required on the edge from the specialized test.

The specialized entry point begins unit 1, and the true branches of
the tests merge at the code to be specialized forming unit 2, which
is created due to the dynamic-to-static promotion (indicated by P)
of bytecodes  andpc  on the edge from the unspecialized test.
Unit 3, which contains the loop body to be specialized, is created

Figure 9: Specialization Units for Figure 2

entry 1: interp_fn_bytecodes_pc(...) entry 2: interp_fn(...)

switch(bytecodes[pc++])

case ADD: case IF_GOTO:case COMPUTED_GOTO:

if (stack[sp--])
nextpc = bytec...

pc = nextpc;

unit 1

unit 2

unit 3

unit 4

...

pc = stack[sp--];

P: pc

D:bytecodes,pc

lazy lazy

discordant merge:
pc,sp

sp = 0;
if (++count[pc] >= ...)

sp = 0;
if (++count[pc] >= ...)

P: bytecodes,pc

stack[sp++] = arg; stack[sp++] = arg;
for(;;) {

switch (bytec...) {
case ADD: ...
...
case RETURN: ...
case GOSUB: ...

}
}

stack[sp-1] = ...
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becausepc  andsp , which have definitions both inside and outside
the loop, are discordant at its head. A promotion ofpc  is required
on the back edge from theCOMPUTED_GOTO case afterpc  is
assigned a dynamic stack location. The successors of the dynamic
branch in theIF_GOTO case are madelazy as required by the
(default) loop_specialize_lazy  policy because the branch
determines execution of different paths to the discordant loop head.
The false branch extends to the loop head so no new unit is
required, but the true branch creates the fourth unit.

The discordant loop head will include a specialization-time cache
lookup, the edges carrying promotions will correspond to run-time
cache lookups, and the lazy edges will become one-time call-backs
to the specializer.

6.3 Clustering Unit Boundaries
A unit boundary introduces run-time specialization overhead, to
package up the run-time constant context from the exiting unit’s
ReduceAndResidualize  function, to execute the run-time
specializer and any cache lookups, and to invoke the target unit’s
ReduceAndResidualize  function (unpacking the target’s run-
time context). In some circumstances, series of unit boundaries can
be created with little if any work in between, for instance when a
series of annotated static variables become dead, leading to a series
of demotion points and corresponding unit boundaries.

To avoid excessive unit boundaries, we attempt to combine
multiple boundaries whenever possible. We have developed a
boundary clustering algorithm that works as follows:

• First, for each boundary, we construct the range over the
procedure where that boundary can be moved legally.
Discordant-merge and lazy-edge boundaries cannot be moved,
so their range is a single program point. Promotion and
demotion boundaries can move to any control-equivalent
[Ferranteet al. 87] program point bounded by earlier and later
uses of any promoted or demoted variable, except that
promotion points cannot move above earlier definitions. We
delay inserting the single-entry-producing unit boundaries until
after all the other boundaries have been clustered, so they do
not participate in the clustering algorithm.

• Second, we sort the boundary ranges in increasing order of their
ends, and then we make a linear scan through this sorted list.
We remove the range that ends first in the list, remove all other
ranges that overlap with the first range, and find the intersection
of these ranges. This resulting intersection is the program
region where all of these boundaries can be placed. We prefer
earliest possible points for demotions and later points for
promotions, as these will reduce the amount of specialized
code. We choose either the start or end of the intersection range,
based on the relative mix of promotions and demotions, and
insert a single boundary for all the merged ranges at that point.
Then we continue processing the sorted list of boundary ranges,
until the list is exhausted.

We have proved that this algorithm for coalescing boundary ranges
is optimal, given the restricted kinds of ranges produced in the first
step (the restriction to control-equivalent program points is key).

Different kinds of boundaries incur different kinds of costs. Eager
boundaries incur cost only at specialization time. Lazy-edge
boundaries incur cost at run-time, but only once the first time that
boundary is executed, since the edge is patched to branch directly
to the specialized successor code when first invoked. Promotion
boundaries require run-time cost each time they are executed. We
do not wish to cluster boundaries with different kinds of cost
together if that would increase overall expense; for example, we do
not wish to cluster an eager cache lookup boundary with a lazy edge
to form a lazy cache lookup that would incur run-time cost at each
execution. A simple strategy is to treat each kind of boundary

separately in the clustering algorithm, running the clustering
algorithm three times, one for each class of boundary. A more
sophisticated strategy would allow eager caching to be combined
with lazy caching, and lazy edges to be combined with lazy
caching, only avoiding merging eager caching with lazy edges.

6.4 Separating Static and Dynamic Operations

For most straight-line operations, it is clear whether the operation is
static or dynamic. However, call instructions are trickier.

• A call to a regular unspecialized function (or to the
unspecialized version of a specialized function) is treated as a
dynamic operation and appears only in the dynamic subgraph.

• A call to aconstant  function with static arguments is treated
as a regular static computation, appearing only in the static
subgraph.

• A call to a particular specialized division of a function has both
static and dynamic components. To implement this, the call
operation is split into two separate calls, one static and one
dynamic. The static version of the call invokes the statically
compiled generating extension for the selected division of the
callee, taking as arguments the static arguments (as determined
by the division of the callee), and returning a static procedure
address. This is followed by a dynamic call invoking the static
procedure address and passing the remaining arguments to
produce a dynamic result.*  The static call will be moved to the
static subgraph, and the dynamic call will appear in the
dynamic subgraph.

Control-flow nodes including branches and merges initially are
replicated in both the static and the dynamic subgraphs. Later
transformations will address them.

6.5 Linearization within Units

Once each unit has been identified and split into separate static and
dynamic control-flow subgraphs, the control-flow structure of the
unit’s ReduceAndResidualize  is computed from the static
subgraph. Static and dynamic branches in the unit receive different
treatment. A static branch is taken at specialization time, and does
not appear in the dynamically generated (residual) code; similarly,
only one of its successors produces dynamically generated code.
Consequently a static branch appears as a regular branch in the final
ReduceAndResidualize  function, selecting some single
successor to pursue and residualize. A dynamic branch, on the other
hand, is emitted as a regular branch into the dynamically generated
code, and both its successors must be residualized. Consequently,
no branch appears in theReduceAndResidualize  function at
a dynamic branch, and the successors of the dynamic branch are
linearized instead. The following diagram illustrates how the
dynamic branches are linearized:

* Some other systems, such as Tempo, perform interprocedural binding
time analysis and so can deduce that the result of the a specialized function
is static. If we were to extend our system to support interprocedural
analysis of annotations, then the static half of the call would return both a
procedure address and the static result value, and the dynamic half would
return no result and be invoked only for its side-effects.
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In the presence of arbitrary unstructured control flow of mixed
static and dynamic branches, this linearization process may require
some code duplication to avoid maintaining specialization-time
data structures and overhead. Details of our linearization algorithm
are available in an expanded version of this paper [Grantet al. 97].

6.6 Integrating Dynamic Code into Static Code

To produce the final code for a unit’sReduceAndResidualize
function, we take the linearized static control-flow graph which
computes all the static expressions and blend in code to generate the
dynamic calculations with the appropriate run-time constants
embedded in them. To accomplish this, our system maintains a
mapping from each basic block in the dynamic subgraph to a set of
corresponding basic blocks in the static subgraph. When splitting
apart static and dynamic operations, the mapping is created with
each dynamic block mapping to its single static counterpart. The
mapping is updated as the static subgraph is linearized and some
blocks are replicated, and as the subgraphs are optimized through
instruction scheduling. To integrate the two subgraphs, for each
dynamic block, code is appended to each corresponding static block
to emit the instructions of the dynamic block, after the static code
has computed any run-time constants used in the dynamic
instructions.

The code to emit a dynamic instruction embeds the values of any
run-time constant operands into the generated instruction (either as
a short integer immediate field or as a load from a global table to a
scratch register for large integers, floating-point numbers, and
pointers). The emitting code also performs any peephole
optimizations of the generated instruction based on the run-time
constant value, such as replacing multiplications by constants with
sequences of shifts and adds.

6.7 Optimizing Specializer Interactions

Each initial promotion point entering a dynamic region is
implemented by generating a static call to the run-time specializer,
passing the run-time values of the cache context at that program
point. Section 3 described the run-time specializer as if a single
general-purpose specializer took control at this and all other unit
boundaries. Our system optimizes this pedagogical model as
follows:

• The Specialize  function is specialized for eachUnit
argument. All the run-time manipulations of theUnit  and
UnitEdge  data structures are eliminated, the unit’s
ReduceAndResidualize  function is inlined, and the
processing of outgoing lazy unit edges is inlined. If the cache
policy for any of the unit’s context variables is
CacheAllUnchecked, then the cache lookup and store calls
are omitted.

• Calls to theSpecialize  function corresponding to lazy
edges with no change in cache context or promotions are
dynamically overwritten to be direct jumps (or fall-throughs) to
the dynamically generated code for the target unit.

• Demotions corresponding to the ends of dynamic regions are
compiled into direct jumps to statically compiled code.

7 Comparison To Related Work
Tempo [Consel & Noël 96], a compile-time and run-time
specialization system for C, is most similar to our system. The two
differ chiefly in the following ways:

• Our system may produce multiple divisions and specializations
of program points, with the degree of division and
specialization varying from point to point. Tempo supports only
function-level polyvariant division and specialization, with no

additional division or specialization possible within the
function, except for some limited support for loop unrolling.

• Our system performs analysis over arbitrary, potentially
unstructured control-flow graphs. Tempo converts all instances
of unstructured code to structured form [Erosa & Hendren 94,
Conselet al. 96], which introduces a number of additional tests
and may also introduce loops.

• Our system allows dynamic-to-static promotions to occur
within dynamically compiled code. Tempo requires such
promotions to occur only at the entry point.

• Our system allows the programmer to specify policies to
control division, specialization, caching, and speculative
specialization. Tempo does not provide user controls; the client
program must perform its own caching of specialized code if
desired.

• Our system relies on the programmer to annotate memory
references as static. Tempo performs an automatic alias and
side-effect analysis to identify (partially) static data structures.
Tempo’s approach is more convenient for programmers and
less error-prone, but it still is not completely safe, relies on the
programmer to correctly describe aliasing relationships and
side-effects of parts of the program outside of the module being
specialized, and may benefit from explicit user annotations
wherever the analysis is overly conservative.

• Our system supports separate compilation while still being able
to specialize call sites and callee functions. Tempo requires the
whole module being specialized to be analyzed and compiled as
a unit.

• Our system is currently under construction; Tempo is
implemented and usable.

Fabius [Leone & Lee 95] is another dynamic compilation system
based on partial evaluation. Fabius is more limited than our system
or Tempo, working in the context of a first-order, purely functional
subset of ML and exploiting a syntactic form of currying to drive
dynamic compilation. Only polyvariant specialization at the
granularity of functions is supported. Given the hints of curried
function invocation, Fabius performs all dynamic compilation
optimizations automatically with no additional annotations; by the
same token, the trade-offs involved in the dynamic compilation
process are not user-controllable. Fabius does little cross-dynamic-
statement optimization other than register allocation, since, unlike
our system, it does not explicitly construct an explicit dynamic
subgraph that can then be optimized.

Compared to our previous system [Auslanderet al. 96], our current
system has a more flexible and expressive annotation language,
support for polyvariant division and better support for polyvariant
specialization, support for nested and overlapping dynamic regions,
support for demand-driven (lazy) specialization, support for
interprocedural specialization, a much more efficient strategy for
and optimizations of run-time specialization, and a more well-
developed approach to caching of specialized code.

Outside the realm of dynamic compilation, other partial evaluation
systems share characteristics with our system. In particular, C-mix
is a partial-evaluation system for C that provides program-point
polyvariant specialization [Andersen 92], but not polyvariant
division. C-mix copes directly with unstructured code, but it
appears to lack reachability analysis to identify static merges
[Andersen 94]. C-mix also includes support for automatic
interprocedural call graph, alias, and side-effect analysis, although
partially static data structures are not supported.

Schism’s filters permit choices about whether to unfold or
residualize a function and which arguments to generalize, given
binding times for the function’s parameters [Consel 93]. Because
filters are executed by the binding-time analysis, only binding-time
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information can be used to make decisions. Our system’s
conditional specialization can use the results of arbitrary static or
dynamic expressions to control all aspects of run-time
specialization. Filters can be used, for example, to prevent
unbounded unfolding and unbounded specialization. Both off-line
partial evaluators, such as Schism, and on-line specializers, such as
Fuse [Weiseet al. 91], look for dynamic conditionals as a signal that
unbounded unfolding or specialization could occur and
specialization should be stopped. Run-time specializers have an
additional option, which is to temporarily suspend specialization
when dynamic conditionals are found in potential cycles and insert
lazy callbacks to the specializer, as our system does.

`C extends the ANSI C language to support dynamic code
generation in an imperative rather than annotation-based style
[Engler et al. 96]. The programmer must specify code to be
generated at run time, substitute run-time values and combine code
fragments (called tick expressions), perform optimizations, invoke
the run-time compiler, manage code reuse and code-space
reclamation, and ensure correctness. In return for this programming
burden, `C would seem to offer greater expressiveness than a
declarative, annotation-based system. However, our system’s
ability to perform arbitrary and conditional polyvariant division and
specialization enables it perform a wide range of optimizations with
very little user intervention, and our system offers capabilities not
available in `C. For instance, `C cannot (multi-way) unroll loops
with dynamic exit tests because jumps to labels in other tick
expressions are not permitted. (`C recently added limited support
for automatic single-way loop unrolling within a tick expression
[Polettoet al. 97].) Also, tick expressions cannot contain other tick
expressions, so nested (not to mention overlapping) dynamic
regions cannot be supported. Both of these weaknesses would
appear to prevent `C from handling the simple interpreter example
in Figure 1. `C can support run-time compiled functions with a
dynamically determined number of arguments, but it may be
feasible to achieve at least some of this behavior in our system by
specializing a procedure based on the length and values in its
varargs  pseudo-argument.

A declarative system such as ours allows better static optimization
of dynamic code than an imperative system such as `C, because the
control flow within a dynamic region is more easily determined and
conveyed to the rest of the optimizing compiler. Optimization
across tick expressions is as hard as interprocedural optimization
across calls through unknown function pointers [Polettoet al. 97].
Finally, programs written in declarative systems can be easier to
debug: since (most of) the annotations are semantics-preserving,
programs can simply be compiled ignoring them. Debugging the
use of unsafe annotations is still challenging, however.

8 Conclusions
We have designed an annotation-based system for performing
dynamic compilation that couples a flexible and systematic partial-
evaluation-based model of program transformation with user
control of key policy decisions. Our annotations’ design resulted
from a search for a small set of flexible primitive directives to
govern dynamic compilation, suitable for use by both human
programmers and tools (such as a semi-automatic dynamic-
compilation front end). With the exception of support for static data
structures, we believe that ourmake_static  annotation provides
the flexibility we require in a concise, elegant manner. By adding
policy annotations, users can gain fine control over the partial
evaluation process when needed. Our support for arbitrary
program-point-specific polyvariant division and specialization is a
key component of our system’s flexibility, enabling, for instance,
multi-way loop unrolling and conditional specialization as
illustrated in the interpreter example. We exploit the unusual

capabilities of run-time specialization in the forms of arbitrary and
nestable dynamic-to-static promotion and demand-driven
specialization.

We are currently in the process of implementing this design, in the
context of the Multiflow compiler [Lowneyet al. 93]. Once
complete, we plan to focus on gaining experience applying
dynamic compilation to sizeable, real application programs and
extending our system to provide some form of automatic alias and
side-effect analysis, interprocedural binding-time analysis, and
additional run-time optimizations.

Acknowledgments

We are grateful to the anonymous PEPM’97 referees for their
suggestions for refocusing this paper, and Charles Consel for his
help in understanding Tempo and some of the related issues in
partial evaluation. We also thank David Grove for feedback on
earlier drafts of this paper, Charles Garrett for his implementation
work on our dynamic compiler, John O’Donnell and Tryggve
Fossum for the source for the Alpha AXP version of the Multiflow
compiler, and Ben Cutler, Michael Adler, and Geoff Lowney for
technical advice in altering it. This work is supported by ONR
contract N00014-96-1-0402, ARPA contract N00014-94-1-1136,
NSF Young Investigator Award CCR-9457767, and an NSF
Graduate Research Fellowship.

References
[Andersen 92] L.O. Andersen. Self-Applicable C Program Specialization.

pages 54–61, June 1992.
[Andersen 94] L.O. Andersen.Program Analysis and Specialization for the

C Programming Language. PhD thesis, 1994. DIKU Research Report
94/19.

[Auslanderet al. 96] J. Auslander, M. Philipose, C. Chambers, S. Eggers,
and B. Bershad. Fast, Effective Dynamic Compilation.SIGPLAN No-
tices, pages 149–159, May 1996. In Proceedings of the ACM SIG-
PLAN ’96 Conference on Programming Language Design and
Implementation.

[Consel & Noël 96] C. Consel and F. Noël. A General Approach for Run-
Time Specialization and its Application to C. InConference Record of
POPL ’96: 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 145–156, St. Petersburg, Florida,
January 1996.

[Consel 93] C. Consel. A Tour of Schism: A Partial Evaluation System for
Higher-Order Applicative Languages. pages 145–154, 1993.

[Conselet al. 96] C. Consel, L. Hornof, F. Noël, J. Noyé, and N. Volanschi.
A Uniform Approach for Compile-Time and Run-Time Specializa-
tion. volume 1110 ofLecture Notes in Computer Science, pages 54–
72, 1996.

[Cytron et al. 89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. An Efficient Method of Computing Static Single As-
signment Form. InConference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, pages 25–35,
Austin, Texas, January 1989.

[Engler & Proebsting 94] D. R. Engler and T. A. Proebsting. DCG: An Ef-
ficient, Retargetable Dynamic Code Generator. InSixth International
Conference on Architectural Support for Programming Languages a
nd Operating Systems (ASPLOS-VI), pages 263–273, October 1994.

[Engler et al. 96] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. `C: A
Language for High-Level, Efficient, and Machine-Independent Dy-
namic Code Generation. InConference Record of POPL ’96: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 131–144, St. Petersburg, Florida, January 1996.

[Erosa & Hendren 94] A.M. Erosa and L.J. Hendren. Taming Control Flow:
A Structured Approach to Eliminating goto Statements. InProceed-
ings of 1994 IEEE International Conference on Computer Languages,
pages 229–240, May 1994.

[Ferranteet al. 87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Pro-
gram Dependence Graph and its Use in Optimization.ACM Transac-
tions on Programming Languages and Systems, 9(3):319–349, July
1987.

[Goldberg & Robson 83] A. Goldberg and D. Robson.Smalltalk-80: The



16

Lanaguge and its Implementation. Addision-Wesley, Reading, MA,
1983.

[Grant et al. 97] B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. Eggers. Annotation-Directed Run-Time Specialization in C. Tech-
nical Report UW-CSE-97-03-03, University of Washington, April
1997.

[Joneset al. 93] N. D. Jones, C. K. Gomarde, and P. Sestoft.Partial Evalu-
ation and Automatic Program Generation. Prentice Hall, New York,
NY, 1993.

[Kernighan & Ritchie 88] B. W. Kernighan and D. M. Ritchie.The C Pro-
gramming Language (second edition). Prentice Hall, Englewood
Cliffs, NJ, 1988.

[Leone & Lee 95] M. Leone and P. Lee. Optimizing ML with Run-Time
Code Generation. Technical report CMU-CS-95-205, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
December 1995.

[Leone & Lee 96] M. Leone and P. Lee. Optimizing ML with Run-Time
Code Generation.SIGPLAN Notices, pages 137–148, May 1996. In
Proceedings of the ACM SIGPLAN ’96 Conference on Programming
Language Design and Implementation.

[Lindholm & Yellin 97] T. Lindholm and F. Yellin. Inside the Java Virtual
Machine.Unix Review, 15(1):31–32, January 1997.

[Lowneyet al. 93] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D.
Lichtenstein, R. P. Nix, J. S. ODonnell, and J. C. Ruttenberg. The
Multiflow Trace Scheduling Compiler.Journal of Supercomputing,
7(1), May 1993.

[Polettoet al. 97] M. Poletto, D. R. Engler, and M. F. Kaashoek.tcc : A
System for Fast, Flexible, and High-level Dynamic Code Generation.
SIGPLAN Notices, page To Appear, June 1997. In Proceedings of the
ACM SIGPLAN ’97 Conference on Programming Language Design
and Implementation.

[Steensgaard 96] B. Steensgaard. Points-to Analysis in Almost Linear
Time. InConference Record of POPL ’96: 23rd ACM SIGPLAN-SI-
GACT Symposium on Principles of Programming Languages, pages
32–41, St. Petersburg, Florida, January 1996.

[Weiseet al. 91] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Auto-
matic online partial evaluation. InFunctional Programming & Com-
puter Architecture, June 1991.

[Wilson & Lam 95] R. P. Wilson and M. S. Lam. Efficient Context-Sensi-
tive Pointer Analysis for C Programs.SIGPLAN Notices, pages 1–12,
June 1995. In Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation.

Appendix A Grammar of Annotations
statement:

... /* same as in regular C */
make_static ( static-var-list ) ;
make_dynamic ( var-list ) ;
make_static ( static-var-list ) compound-statement

static-var-list:
static-var
static-var , static-var-list

static-var:
identifier
identifier policiesopt

policies:
: policy-list

policy-list:
policy
policy , policy-list

policy:
division-policy
specialization-policy
promotion-policy
merge-caching-policy
promotion-caching-policy
laziness-policy

division-policy:
poly_divide
mono_divide

specialization-policy:
poly_specialize
mono_specialize

promotion-policy:
auto_promote
manual_promote

merge-caching-policy:
cache_all_unchecked
cache_all
cache_one
cache_one_unchecked

promotion-caching-policy:
promote_all_unchecked
promote_all
promote_one
promote_one_unchecked

laziness-policy:
lazy
specialize_lazy
loop_specialize_lazy
eager

var-list:
identifier
identifier , var-list

external-definition:
... /* same as in regular C */
specialize-definition

specialize-definition:
constant opt specialize identifier ( var-list )

on specialize-list ;

specialize-list:
( static-var-list )
( static-var-list ) , specialize-list

expression:
... /* same as in regular C */
static * expression

primary:
... /* same as in regular C */
static identifier
primary static [ expression ]
lvalue static . identifier
primary static -> identifier


