
er
 at
 of
 to
en
to
bius

tions
loit
n
mic
ler
lly

use,
he
om
d
ing

ial

ing
 the
ed
a

is,

d
w,
lk

nd
es
de

rden
can
f

ner
the
ck-

ive,
hat

yses
er,

An Evaluation of Staged Run-Time Optimizations in DyC
Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering

University of Washington

Box 352350, Seattle WA 98195-2350

{grant,matthai,mock,chambers,eggers}@cs.washington.edu
Abstract
Previous selective dynamic compilation systems have demonstrated
that dynamic compilation can achieve performance improvements
at low cost on small kernels, but they have had difficulty scaling to
larger programs. To overcome this limitation, we developed DyC, a
selective dynamic compilation system that includes more sophisti-
cated and flexible analyses and transformations. DyC is able to
achieve good performance improvements on programs that are
much larger and more complex than the kernels. We analyze the
individual optimizations of DyC and assess their impact on perfor-
mance collectively and individually.

1. Introduction
Selective dynamic compilation transforms selected parts of
programs at run time, using information available only at run time,
to optimize them more fully than strictly statically compiled code.
(Selective dynamic compilation is in contrast to complete dynamic
compilation where all compilation of a program is delayed until
run-time; recent “just in time” compilers for Java are examples of
complete dynamic compilers.) Value-specific selective dynamic
compilers derive their benefits by optimizing parts of programs for
particular run-time-computed values of invariant variables and data
structures (called run-time constants), in effect performing a kind of
dynamic constant propagation and folding. Proposed applications
for selective, value-specific dynamic compilation include
specializing architectural simulators for the configuration being
simulated, language interpreters for the program being interpreted,
rendering engines for scene-specific state variables, numeric
programs for dimensions and values of frequently used arrays, and
critical paths in operating systems for the type of data being
processed and the current state of the system. Trends in software
engineering toward dynamic reconfigurability, such as
parameterization for reuse and portability across different hardware
architectures, also imply a promising role for dynamic compilation.

Recent research efforts have made considerable progress towards
proving the viability of selective dynamic compilation. In
particular, researchers have demonstrated that dynamic compilation
overhead can be quickly amortized by the increased efficiency of
the dynamically optimized code. Most experiments, however, were
confined to simple kernels, and did not demonstrate that the
dynamic compilation systems could cope reasonably with the
increased size and complexity of applications like the interpreters
and simulators mentioned above.

The reasons current systems have not made better progress on
larger, more complex applications vary, depending on the approach

taken. In imperative systems, such as `C [12, 27, 28], a programm
explicitly constructs, composes, and compiles code fragments
run time. Imperative approaches can express a wide range
optimizations, but impose a large burden on the programmer
manually program the optimizations; the programming burd
makes it difficult to apply imperative approaches effectively
larger applications. Other systems, such as Tempo [6, 26], Fa
[21], and our previous system [1], follow a declarative approach,
where sparse user annotations trigger analyses and transforma
of the program (using partial evaluation-style techniques) to exp
value-specific dynamic compilation. To keep dynamic compilatio
costs low, these systems preplan the possible effects of dyna
optimizations statically, producing a specialized dynamic compi
tuned to the particular part of the program being dynamica
optimized; this sort of preplanning we call staging the optimization.
Declarative approaches are relatively easy for programmers to
but are only as powerful as the optimizations they apply. T
limitations of previous declarative systems prevented them fr
coping effectively with the more involved patterns of control an
data flow found in some small and most large applications, caus
them to miss optimization opportunities or forcing substant
rewriting to fit the limitations of the system.

DyC (pronounced dicey) [13, 14] is a selective, value-specific
dynamic compilation system that has good potential for produc
speedups on larger, more complex C programs. To reduce
programming burden, DyC is a declarative, annotation-bas
system. To support effective optimization, DyC contains
sophisticated form of partial-evaluation binding-time analys
including program-point-specific polyvariant division and
specialization,1 and dynamic versions of traditional global an
peephole optimizations. To keep dynamic compilation costs lo
nearly all of DyC’s dynamic optimizations are staged, with the bu
of the work of the optimization occurring at static compile time a
with no run-time program representation or iterative analys
required. DyC automatically caches the dynamically compiled co
and reuses it where possible, relieving another programmer bu
and reducing dynamic compilation overhead. Programmers
declaratively specify policies that govern the aggressiveness o
specialization and caching, enabling programmers to get fi
control over the dynamic compilation process while preserving
declarative model. (In the future, we hope to treat DyC as a ba
end for a tool that automatically decides where to apply select
value-specific dynamic optimizations, generating annotations t
DyC then carries out.)

This paper assesses the benefits and applicability of DyC’s anal
and transformations, both individually and when applied togeth

1 Polyvariant division allows the same piece of code to be analyzed with
different combinations of variables being treated as run-time constants;
each combination is called a division. Polyvariant specialization allows
multiple compiled versions of a division to be produced, each specialized
for different values of the run-time-constant variables. Program-point-
specific polyvariance enables polyvariance to arise at arbitrary points in
programs, not just at function entries.

time

se
A
nt

ate
tic

g

l
d

me
ries
ch
 so
es
ore

ed
e
ed a
e

and analyzes why these optimizations achieved the performance
improvements they did.1 The optimizations are evaluated on a
selection of medium-sized, widely used applications that are
representative of the application classes mentioned earlier. The
results show that:

• Dynamic compilation produces speedups on real applications,
not simply kernels. Although there was a subset of
optimizations that benefited all programs (both kernels and
applications), each of DyC’s optimizations was important to
obtaining good speedup on some application.

• Several optimizations were important to all our benchmarks.
Complete loop unrolling was the single most important
optimization, not only because it eliminated all loop overhead
but also because it created many opportunities for other
dynamic optimizations. Optimizing loads from invariant parts
of data structures was similarly critical for most programs.

• Some optimizations unique to DyC, such as dynamic dead-
assignment elimination, were responsible for significant
speedups (3x-5x) in some applications.

• DyC’s dynamic compilation overhead is low enough that the
break-even point at which dynamic compilation becomes
profitable is well within the normal usage of our applications.

The next section describes the DyC dynamic compilation system
and its optimizations. Section 3 details our experimental
methodology and workload. Section 4 contains our performance
results, including a comparison of whole programs versus their
dynamic regions and an analysis of the contribution to
performance of individual optimizations. Section 5 compares DyC
to related research and section 6 concludes.

2. DyC

2.1 System Overview
DyC compiles and optimizes programs dynamically, during their
execution. To trigger run-time compilation, programmers annotate
their source code to identify static variables (variables that have a
single value, or relatively few values, during program execution)
on which many calculations depend; static variables are run-time
constants. DyC then automatically determines which parts of the
program downstream of the annotations can be optimized based on
the static variables’ values (we call these dynamically compiled or
just dynamic regions), and arranges for each dynamic region to be
compiled at run time, once the values of the static variables are
known. To minimize dynamic compilation overhead, DyC stages
its dynamic optimizations, performing much of the analysis and
planning for dynamic compilation and optimization during static
compile time.

DyC extends a traditional (static) optimizing compiler with two
major components, as illustrated in Figure 1:

• As in off-line partial-evaluation systems [20], a binding-time
analysis (BTA) identifies those variables (called derived static
variables) whose values are computed solely from annotated
or other derived static variables; the lifetime of these static
variables determines the extent of the dynamic region. The
BTA divides operations within a dynamic region into those that
depend solely on static variables and therefore can be executed
only once (the static computations), and those that depend at

least in part on run-time data and must be reexecuted each
the flow of execution reaches them (the dynamic
computations). The static computations correspond to tho
computations that will be constant-folded at run time; the BT
is the static component of staged dynamic consta
propagation and folding.

• For each dynamic region, a dynamic-compiler generator
produces a specialized dynamic compiler that will gener
code at run time for that region, given the values of the sta
variables on entry to the region.

In more detail, DyC performs the following steps when compilin
each procedure at static compile time:

• First, DyC applies many traditional intraprocedura
optimizations, stopping just prior to register allocation an
scheduling.

• Then, for procedures that contain annotations, the binding-ti
analysis identifies derived static variables and the bounda
of dynamic regions. This analysis also determines whi
conditional branches and switches test static variables and
can be folded at dynamic compile time. It also determin
which loops have static induction variables and can theref
be completely unrolled at dynamic compile time.

• Each dynamic region is replaced with two control-flow
subgraphs, one containing the static computations (called set-
up code) and one containing the dynamic computations (call
template code). Where a dynamic instruction in the templat
code refers to a static operand, a place-holder operand (call
hole) is used. The hole will be filled in at dynamic compil
time, once its value is known.

1 Our previous paper and journal article on DyC [13, 14] describe its design,
but include no empirical assessment. Dynamic, staged zero and copy
propagation and dead-assignment elimination are new with this paper as
well.

Static

Annotated
Program

Run Time

Figure 1. DyC’s Static and Dynamic Components

Output

Input

Execution

Source

Path

Program

Traditional
Optimizations

Binding-Time
Analysis

Dynamic-

Generator
Compiler

Statically

Code
Generated

Dynamic
Compiler

Input

Dynamically
Generated

Code

 Compile
Time

 in

 is
 of
 the
be
 as

of
een
nd,
ese
of
 its
on.
the
 at

hing
oint
each
 the
at a
the
 a

op
set
 as
 is
this
e

les
n,

ies

l
an
m

sed
m

ms
.

ed
ed

 a
ning
nt
for
tor
• Register allocation and code scheduling are then applied to the
procedure’s modified control-flow graph. By separating the
set-up and template subgraphs, register allocation and
scheduling can be applied to each separately, without one
interfering with the other. By keeping these two subgraphs in
the context of the rest of the procedure’s control-flow graph,
any variables live both inside and outside the dynamic region
can be allocated registers seamlessly across dynamic-region
boundaries.

• Finally, a custom dynamic compiler for each dynamic region
(also called a generating extension [20]) is built simply by
inserting emit code sequences into the set-up code for each
instruction in the template code; the template subgraph is then
thrown away. This dynamic compiler is fast, in large part,
because it neither consults an intermediate representation nor
performs any general analysis when run. Instead, these
functions are in effect “hard-wired” into the custom compiler
for that region, represented by the set-up code and its
embedded emit code.

At run time, a dynamic region’s custom dynamic compiler is
invoked to generate the region’s code. The dynamic compiler first
checks an internal cache of previously dynamically generated code
for a version that was compiled for the values of the annotated
variables. If one is found, it is reused. Otherwise, the dynamic
compiler continues executing, evaluating the static computations
and emitting machine code for the dynamic computations (and
saving the newly generated machine code in the dynamic-code
cache when it is done). Invoking the dynamic compiler and
dispatching to dynamically generated code are the principal
sources of run-time overhead.

2.2 DyC’s Run-Time Optimizations
DyC’s binding-time analysis (and those of other declarative
dynamic compilers) identifies which variables are static over
which paths of the procedure’s control-flow graph, starting with
the annotations that identify static variables and ending after the
last use of any static value (a dynamic region may have multiple
exits). This analysis distinguishes static computations from
dynamic computations, enabling run-time constant propagation
without incurring any run-time cost from analyzing an
intermediate representation. This analysis is program-point-
specific and flow-sensitive: a dynamic region can start and stop at
any program point, and a variable may be static at some program
points and not at others.

DyC’s ability to produce efficient dynamic code depends on
several extensions to this basic approach. Some, such as
polyvariant specialization and division, are derived from the
partial-evaluation field but adapted and extended to the needs of
dynamically compiling C programs. Others are special staged
versions of traditional global and peephole optimizations, such as
zero and copy propagation and dead-assignment elimination.

2.2.1 Dynamic-to-Static Promotions and
Polyvariant Specialization

Dynamic compilation generates code that is specialized to
particular values of static variables. Where dynamic specialization
on the run-time computed values of some variables should begin,
such as at the entry to a dynamic region, the variables are said to be
promoted from dynamic to static. If these promoted variables take
on different values at different entry times, DyC allows multiple
versions of the code after the promotion to be generated, each
specialized for a different combination of promoted values; this is

called polyvariant specialization. A compiled-code-cache lookup
implements the promotion.

2.2.2 Internal Promotions
In DyC, promotions also can occur at arbitrary program points
the middle of a dynamic region, called internal promotion points,
enabling a kind of multi-stage specialization [22]. For example, an
internal promotion can occur at the point a static variable
assigned a dynamic value, to allow specialization on the value
the static variable to resume (at the cost of a cache check for
promoted variable). Internal promotions also allow code to
increasingly specialized on a growing set of static variables
execution proceeds through a dynamic region.

2.2.3 Unchecked Dispatching
When a promotion point is executed, the point’s cache
dynamically compiled code is checked for code that has b
specialized to the current values of the static variables. If fou
that code is executed; if not, a version is specialized to th
values. This dispatch to dynamically generated code, comprised
the cache lookup and indirect jump, should be fast because
overhead is incurred on every execution of the dynamic regi
Currently, DyC uses a policy annotation to control the cost of
dynamic-code cache lookups found in the template code
promotion points. DyC’s default policy, called cache-all, maintains
a cache at each of these points, implemented using double has
[7]. The cache maps the values of the static variables at that p
to code specialized for those values. The cache is checked
time the point is reached in order to reuse specialization should
values of the static variables recur. If the programmer knows th
static variable will have the same value for all executions of
promotion point, then the cache lookup can be simplified to
single load; this policy we call cache-one-unchecked.

2.2.4 Complete Loop Unrolling
Polyvariant specialization can also result in complete lo
unrolling by creating a specialized copy of a loop body for each
of values of the loop induction variables. For simple loops, such
those that merely increment a counter until an exit condition
reached, a linear chain of unrolled loop bodies results (we call
single-way loop unrolling). For more complex loops, however, on
iteration may lead to several different loop iterations (e.g., if it
contains branch paths that update the loop induction variab
differently), or even return to a previously executed loop iteratio
producing in general a directed graph of unrolled loop bod
(which we call multi-way loop unrolling).

Complete loop unrolling is unlike unrolling done by traditiona
static compilers in that the unrolled loop is eliminated rather th
enlarged. The main benefit of complete unrolling is derived fro
the additional constant- and branch-folding opportunities expo
by making the loop induction variables static, rather than fro
increased instruction-level parallelism. DyC and similar syste
(such as Tempo) currently do no run-time instruction scheduling

2.2.5 Polyvariant Division
Polyvariant division allows the same program point to be analyz
multiple times, each time with a different set of variables assum
static. After binding-time analysis, each division gives rise to
separate version of the code, since each has its own partitio
into static and dynamic computations. Without polyvaria
division, programmers would have to duplicate code by hand
the different divisions, or adopt some least-common-denomina
set of annotations with fewer optimization opportunities.

gth
py
 see

the
r
 of
 the
 a
ted,

But
 be
on
the
-

ead-
es
nd a
tic

ch
re
lly
nt

the
ned
the
ey
me
ent
e
sults

nd
ied

e
he

mic

ws
at

s

the

tatic
f

es,
ds
tic

n

Although we did not use the capability for this study, polyvariant
division also supports conditional specialization: rather than
unconditionally executing an annotation, the programmer guards
the annotation with an arbitrary test of whether specialization is
desirable. Polyvariant division will then automatically duplicate
the code following the test statement, one copy being specialized
and the other not. Conditional specialization can be used, for
example, to limit specialization to those values of the static
variables that are particularly amenable to optimization (e.g.,
values that enable strength reduction or copy propagation), to those
values that occur frequently enough to merit the effort of dynamic
compilation, or to those loops that, when completely unrolled, will
fit in the L1 instruction cache.

2.2.6 Static Loads and Calls
By default, the contents of memory, even if referenced through a
run-time- or compile-time-constant address, is assumed to be
dynamic. In many programs, however, at least some of the contents
of these data structures are invariant. In such programs, we wish to
treat loads of invariant parts of static structures as static
computations, done once as part of dynamic compilation. DyC
allows programmers to annotate such loads as static, enabling them
to be optimized in this way. (An alternative scheme would annotate
declarations of array, structure, or pointer values or types as
having static components, implying that all loads of those
components were static.)

Similarly, users can annotate pure functions as static. Invocations
of static functions with all static arguments are treated as static
computations and hence executed once as part of dynamic
compilation. Calls to unannotated functions, even with all static
arguments, are conservatively treated as dynamic computations,
since they may have side-effects.1

These annotations are potentially unsafe programmer assertions. In
contrast, Tempo performs an automatic alias and side-effect
analysis within a compilation unit to identify static portions of data
structures and pure functions within that unit. However, Tempo
still relies on potentially unsafe user annotations to discover the
alias and side-effect properties of external data structures and
procedures [6].

2.2.7 Strength Reduction, Zero and Copy Propaga-
tion, and Dead-Assignment Elimination

Some of DyC’s optimizations exploit particular values of static
variables. The emit code sequences perform strength reduction of
multiplies, divides, and modulus operations with a single static
operand and attempt to fit integer static operands into instruction
immediate fields. (We currently emulate dynamic strength
reduction by inserting special-case code in the program source.)

DyC also includes a novel staged version of dynamic zero and
copy propagation and dead-assignment elimination that depends
on the values of static variables. For example, if the single static
operand to a multiply turns out to be 1 at dynamic compile time,
then the multiply can be replaced by a simple move. Moreover,
eligible downstream references to the target of the move can be
replaced with the operand of the move (performing copy
propagation), and if all references are so replaced, the move
instruction can be eliminated (performing dead-assignment
elimination). On some architectures, such as the DEC Alpha 21164
on which we performed our experiments, a floating-point move

takes the same time as a floating-point multiply, so stren
reduction of the multiply into a move alone yields no benefit; co
propagation and dead-assignment elimination are necessary to
performance improvements. Similarly, if the static operand to
multiply is 0, then the multiply can be replaced with a clea
instruction, the 0 can be propagated to eligible downstream uses
the result of the clear instruction, and if all uses are replaced,
clear can be eliminated. Moreover, replacing a multiply with
clear causes the use of the dynamic operand to be elimina
potentially causing its computation to become dead as well.
copy propagation and dead-assignment elimination cannot
performed entirely statically (unlike the constant propagati
embodied by binding-time analysis), since if the operand of
multiply is other than 0 or 1, no copy propagation or dead
assignment elimination can be performed.

To perform data-dependent zero and copy propagation and d
assignment elimination with low run-time overhead, DyC divid
the analyses into a planning stage done at static compile time a
completion stage done during dynamic compilation. The sta
planning stage computes whether an operation potentially may be
replaced with a move or clear instruction. For each su
instruction, all potential downstream uses of the result a
identified statically. The emit code sequences for potentia
optimizable instructions check for the special run-time-consta
operand values that enable optimization; if one occurs,
instruction is deleted, and a note is made in a table maintai
during dynamic compilation. Emit code sequences for uses of
potentially optimized instruction check the table to see how th
should generate code for their operand. Dynamic compilation ti
for run-time zero and copy propagation and dead-assignm
elimination is kept low by forgoing any run-time intermediat
representation or analysis, other than the table to record the re
of optimizations.

2.3 Example
The example in Figure 2 illustrates some of DyC’s capabilities a
shows how the annotation interface is used. It is a simplif
version of the image-convolution routine pnmconvol from our
benchmark suite. The do_convol routine takes an image
matrix as input, convolves it by the convolution matrix cmatrix,
and writes the convolved output to the outbuf matrix. Since
cmatrix is unchanged within the (outer) loops over imag
pixels, we would like to specialize the inner loops over t
convolution matrix to the values contained in cmatrix.

The three DyC annotations inserted to accomplish this dyna
specialization are highlighted in boldface. A make_static
annotation on a variable specifies to DyC that the code that follo
should be specialized (polyvariantly) for all distinct values of th
variable. The make_static annotation in our example indicate
that the pointer cmatrix and its dimensions crows and ccols
should be specialized upon in downstream code. Additionally,
make_static on the loop index variables crow and ccol
results in the complete unrolling of the innermost two loops. An@
sign on an array, pointer, or structure dereference identifies a s
load. In our example, the @ sign ensures that the result o
dereferencing the static pointer cmatrix at the static offset
(crow, ccol) is also static. Derived static computations and us
identified by the BTA, are italicized. The dynamic region exten
to the end of the loop over the convolution matrix, since no sta
variables are used beyond this point.

Figure 3 shows a source-code representation2 of the dynamically
compiled code produced for the dynamic region whe
do_convol is invoked with a 3×3 cmatrix that contains

1 Tempo includes an additional feature where a function can be classified
as being dynamic (i.e., having side-effects) but still return a static value if
all its arguments are static values [19].

alternating zeroes and ones (zeroes in the corners). (For the
moment we ignore the effect of the DyC-specific dynamic zero and
copy propagation and dead-assignment elimination optimizations
described in section 2.2.7.) All the static computations in Figure 2
have been folded away by specialization, static uses in dynamic
computations (e.g., that of ccol and crow to index image) have
been instantiated with their run-time constant values, and the loop
over the convolution matrix has been completely unrolled.
Completely unrolling the loop has eliminated the direct cost of
branching and induction variable updating, but by making the loop
induction variables crow and ccol static, it also indirectly has
enabled the address calculations and load from cmatrix to be
eliminated.

DyC’s dynamic zero and copy propagation and dead-assignment
elimination make further improvements to the code for the
dynamic region, as shown in Figure 4. The static compiler plans
for the possibility of the multiplications and additions being
dynamically optimizable by zero or copy propagation. In addition,
zero and copy propagation creates opportunities for dead-
assignment elimination, once again anticipated and planned for
statically. In this example, in each even iteration the multiplication
by 0.0 is folded away, the following increment of sum removed by
zero propagation, and the previous load from the image array
deleted as dead. In each odd iteration, the multiplication by 1.0 is
folded away with the image value x copy-propagated to the
following increment of sum.

2 The optimized code produced by DyC is actually in machine-code format.
We use source code here for readability.

/* Convolve image with cmatrix into outbuf */
void do_convol(
float image [][], int irows, int icols,
float cmatrix[][], int crows, int ccols,
float outbuf [][]

)
{
float x, sum, weighted_x, weight;
int crow, ccol, irow, icol, rowbase, colbase;
int crowso2, ccolso2;

make_static(cmatrix, crows, ccols, crow, ccol);

crowso2=crows/2; ccolso2=ccols/2;

/*Apply cmatrix to each pixel of the image*/
for (irow=0; irow < irows; ++irow){
rowbase = irow-crowso2;
for (icol=0; icol < icols; ++icol){

 colbase = icol-ccolso2; sum = 0.0;

/*Loop over convolution matrix*/
for (crow=0; crow<crows; ++crow){
for (ccol=0; ccol<ccols; ++ccol){
weight = cmatrix @[crow] @[ccol];
x = image[rowbase+crow][colbase+ccol];
weighted_x = x * weight;
sum = sum + weighted_x;

}}
/*End loop over convolution matrix*/

 outbuf[irow][icol] = sum;
}}
/*End loop over image*/

}
Figure 2. Image Convolution Example

/*Apply cmatrix to each pixel of the image*/
for (irow=0; irow < irows; ++irow){
rowbase = row-1;
for (icol=0; icol < icols; ++icol){

 colbase = icol-1;

/*Loop over convolution matrix*/
/*Iteration 0: crow=0, ccol=0*/

x = image[rowbase][colbase];
weighted_x = x * 0.0;
sum = sum + weighted_x;

/*Iteration 1: crow=0, ccol=1*/
x = image[rowbase][colbase+1];
weighted_x = x * 1.0;
sum = sum + weighted_x;

/*Iteration 2: crow=0, ccol=1*/
x = image[rowbase][colbase+2];
weighted_x = x * 0.0;
sum = sum + weighted_x;

/*Iterations 3-8 follow...*/
...

outbuf[irow][icol] = sum;
}}
/*End loop over image*/

Figure 3. Partially Dynamically Optimized Region

/*Apply cmatrix to each pixel of the image*/
for (irow=0; irow < irows; ++irow){
rowbase = row-1;
for (icol=0; icol < icols; ++icol){

 colbase = icol-1;

/*Loop over convolution matrix*/
/*Iteration 0: crow=0, ccol=0*/

/*All code eliminated*/

/*Iteration 1: crow=0, ccol=1*/
x = image[rowbase][colbase+1];
sum = x;

/*Iteration 2: crow=0, ccol=1*/
/*All code eliminated*/

/*Iteration 3: crow=1, ccol=0*/

x = image[rowbase+1][colbase];
sum = sum + x;

/*Iterations 4-8*/
...

outbuf[irow][icol] = sum;
}}
/*End loop over image*/

Figure 4. Fully Dynamically Optimized Region

L
d
ere
es.
mic
ed

ns
mic

ad

to
ith

er
low)
ms

ted.

d

3. Methodology

This paper assesses the benefits and applicability of DyC’s
analyses and transformations, both individually and when applied
together, and analyzes why these optimizations achieved the
performance improvements they did. In this section, we describe
the workload we used for our experiments, explain how we
annotated the programs, and describe our experimental
methodology.

3.1 Workload
Our workload, shown in Table 1, consists of applications that are
representative in function, size, and complexity of the different
types of programs that researchers are targeting for dynamic
compilation. All are used in practice in research or production
environments. dinero (version III) is a cache simulator that can
simulate caches of widely varying configurations and has been the
linchpin of numerous memory subsystem studies since it was
developed in 1984 [15]. m88ksim simulates the Motorola 88000
and was taken from the SPEC95 integer suite [30]. mipsi [29] is
a simulation framework that has been used for evaluating
processor designs that range in complexity from simultaneous
multithreaded [11] to embedded processors. pnmconvol is an
application from the netpbm image processing toolkit (release 7-
Dec-93) that performs convolutions on images of various formats
[25]. viewperf is the driver for the SPEC Viewperf benchmarks;

the two routines we dynamically compile in viewperf
(project_and_clip_test, a matrix transformer, and
gl_color_shade_vertices, a shader) are from Mesa
(version 2.5), a freely available implementation of the OpenG
run-time library [24]. The original Mesa program include
additional versions of its general-purpose shader routine that w
hand-specialized for particular combinations of argument valu
We deleted these extra hand-specialized versions, letting dyna
compilation automatically generate any needed specializ
versions from the general-purpose version.

We have also included in our workload a set of kernel applicatio
that have comprised the benchmark suites for other dyna
compilation systems for C (binary, chebyshev,
dotproduct, query, romberg). The kernels are one or two
orders of magnitude smaller than the applications in our worklo
and contain dynamic regions that are, excluding m88ksim, two to
eight times smaller. We include them to provide continuity
previous studies [26, 28] and to contrast their characteristics w
the larger programs.

Our workload is currently limited to these programs for a numb
of reasons. First, our manual annotation process (described be
was time-consuming. Second, to be profitable, some progra
need techniques or optimizations we have not yet implemen
For example, a decompression program and a version of grep
could become profitable to compile dynamically if DyC supporte
fast cache lookups over a small range of values (e.g., integers

Table 1: Application Characteristics

Program Description Annotated Static Variables
Values of Static

Variables
Total Size

(Lines)

Number & Size of Dynamically
Compiled Functions

Lines Instructions

Applications

dinero cache simulator cache configuration
parameters

8kB I/D, direct-
mapped, 32B blocks

3,317 8 389 1624

m88ksim Motorola 88000
simulator

an array of breakpoints no breakpoints 12,531 1 14 145

mipsi MIPS R3000
simulator

its input program bubble sort 3,417 1 400 2884

pnmconvol image convolution convolution matrix 11x11 with 9% ones,
83% zeroes

1,054 1 76 1226

viewperf renderer 3D projection matrix,
lighting vars

perspective matrix,
one light source

15,006 2 168 1155

Kernels

binary binary search over an
array

the input array and its
contents

16 integers 147 1 19 134

chebyshev polynomial function
approximation

the degree of the polyno-
mial

10 145 1 19 146

dotproduct dot-product of two
vectors

the contents of one of the
vectors

a 100-integer array
with 90% zeroes

134 1 11 84

query tests database entry
for match

a query 7 comparisons 149 1 24 272

romberg function integration
by iteration

the iteration bound 6 158 1 24 301

 (to
ing
ed

els)

ion
r of
 to
nd

 by
ast

 the
e of
e
ed
ld
yC
n,
th
nt
ic
tic

the
ort
tion
al

ly
 is
s

 at
g
s; it

red
de

on-

ed

the
tic

d-
op

al
the
 the
g
 –
ing
between 0 and 255). For such cases, the lookup could be
implemented as a simple array indexing, in place of DyC’s current
general-purpose hash-table lookup. Finally, we found several
programs that were not conducive to dynamic optimization: one
type contained dynamic regions that were executed too
infrequently or were too small to recoup the dynamic compilation
overhead; another type contained loops that were too large to be
completely unrolled (a number of dense-matrix operations we
examined suffered from this problem).

3.2 Selection of Optimization Targets
Our annotation methodology depended on the type of program. We
annotated the kernels to enable optimizations that are comparable
to what other dynamic-compilation systems provide. To annotate
the applications, we first profiled them with gprof. We then
examined the functions that comprised the most execution time,
searching for invariant function parameters. In cases when
invariance was too difficult to infer by inspection, we logged the
values of the functions’ parameters and searched the log.
Optimization opportunities were determined by trial and error. For
example, to determine whether complete loop unrolling was
beneficial, we generally first performed the unrolling, but then
disabled it (by removing an annotation) if it did not improve
performance.

By using this unsophisticated methodology, we have undoubtedly
missed opportunities to apply dynamic compilation. In particular, a
number of additional procedures in m88ksim or viewperf
could potentially benefit from dynamic compilation. One of our
future research goals is to automate program annotation using
techniques such as value profiling [2] to identify static variable
candidates, and a cost-benefit model to select appropriate
optimizations.

3.3 Experimental Methodology
The binding-time analysis and the dynamic-compiler generator are
implemented in the Multiflow compiler [23], which is roughly
comparable to today’s standard optimizing compilers. (As a point
of reference, dynamic regions in the applications executed on
average 8% more slowly when compiled with Multiflow than with
gcc -O2; kernels were 7% faster.) Because our version of
Multiflow had an incomplete implementation of the DEC Alpha
calling convention, most of the non-dynamically compiled
procedures of the applications were compiled with DEC’s C
compiler or gcc.

Each application in our workload has a statically compiled and
several dynamically compiled versions, depending on what
optimizations are turned on. The statically compiled version is
compiled by ignoring the annotations in the application source. We
used the same options to Multiflow for both the statically and
dynamically compiled versions. This means, for example, that
loops unrolled (by some constant factor) in the statically compiled
version are also statically unrolled in the dynamically compiled
versions, in addition to any run-time complete loop unrolling.

All programs were executed on a lightly loaded DEC Alpha
21164-based workstation with 1.5GB of physical memory. A
single input was used for each program (described in Table 1).
Mid-sized inputs for the kernels were chosen from the sets of
inputs used in the studies in which the benchmarks originally
appeared. Application inputs that exercised our optimizations
usually were chosen from among those provided with their
packages.

Execution times for both the whole programs and their dynamic
regions were measured using getrusage (for user time). Whole

programs were executed 51 times, with the first run discarded
reduce systems effects) and the rest averaged. When tim
dynamic regions, most benchmarks invoked their specializ
functions many times (tens of thousands of times for the kern
to overcome the coarseness of the getrusage timer and to
minimize cache effects. We obtained the time for one invocat
by dividing the average of the measurements by the numbe
invocations timed. The hardware cycle counters were used
gather CPU (user + system) times for dynamic-compilation a
dispatching overheads, because the granularity of getrusage
was also too coarse for these measurements.

4. Results and Discussion

4.1 Applicability of the Optimizations
Table 2 indicates which dynamic optimizations could be used
each of the programs. All optimizations were needed by at le
one of the applications, and several were used by all. Lacking
complexity of the applications, the kernels could take advantag
fewer optimizations. Usually they could apply only th
optimizations that are used to all applications (uncheck
dispatching, complete loop unrolling, static loads); rarely cou
they take advantage of the optimizations that are unique to D
(multi-way loop unrolling, dynamic zero and copy propagatio
dynamic dead-assignment elimination, dynamic streng
reduction, internal dynamic-to-static promotion, and polyvaria
division). This difference suggests that studies of dynam
compilation opportunities should focus on larger, more realis
programs.

4.2 Dynamic Region Performance
Basic performance results for the dynamic regions of both
applications and the kernels appears in Table 3. We rep
asymptotic speedups, break-even points, and dynamic compila
overhead. Asymptotic speedup represents the optim
improvement of dynamically compiled code over statical
compiled code (excluding dynamic compilation overhead), and
calculated as s/d, the ratio of statically compiled execution cycle
(s) over dynamically compiled execution cycles (d). The break-
even point is the number of executions of the dynamic region
which statically and dynamically compiled code (includin
dynamic compilation overhead) have the same execution time
is calculated as o/(s-d), where o represents cycles of dynamic
compilation overhead. Dynamic compilation overhead is measu
as cycles per dynamically generated instruction; we also inclu
the number of instructions generated to place the instructi
specific overhead in context.

Asymptotic dynamic-region speedups for the applications rang
widely, from 1.2 to 5.0. The higher speedups for mipsi and
m88ksim (5.0 and 3.7, respectively) occurred because most of
code in their dynamic regions could be optimized away as sta
computations. The gain in pnmconvol was primarily due to the
benefits of applying a single optimization, dynamic dea
assignment elimination, which was enabled by complete lo
unrolling and static loads.

Break-even points for the applications are well within norm
application usage, showing that the greater efficiency of
dynamically generated code can more than compensate for
dynamic compilation cost. For example, dynamically compilin
dinero pays off after simulating only 3524 memory references
today’s cache simulation results are obtained by simulat
millions or billions of references. mipsi’s break-even point
depends on the number of reinterpreted instructions (i.e., the

tic
sts

ve
 as
d
by

ther
ted.
number and size of the loops in mipsi’s input program) relative
to the total size of the input program. For many inputs, conditional
specialization as described in section 2.2.5 could be used to limit
dynamic compilation to those parts of mipsi’s input program that
are heavily executed.

The main contributors to dynamic-compilation overhead are cache
lookups, memory allocation, handling of dynamic branches,
checks for dynamic zero and copy propagation, dead-assignment
elimination, and strength reduction, operations to ensure
instruction-cache coherence, instruction construction and

emission, branch patching, hole patching, and the sta
computations. Although DyC is quite fast, each of these co
could be further reduced (dinero, in particular, suffers from our
inefficient handling of dynamic branches). For example, we ha
not yet implemented the optimization we previously described
linearization [14], which would reduce the cost of saving an
restoring values of static variables at dynamic branches
performing a renaming similar to SSA form [8].

Complete loop unrolling generates more instructions than the o
optimizations and accounts for most of the instructions genera

Table 2: Optimizations Used by Each Program

Dynamic Region

Optimization

Complete
Loop

Unrollinga

a. SW = single-way, MW = multi-way

Static
Loads

Unchecked
Dispatching

Dynamic
Dead-

Assignment
Elimination

Dynamic
Zero&Copy
Propagation

Static
Calls

Dynamic
Strength

Reduction

Internal
Dynamic-to-

Static
Promotions

Poly-
variant
Division

dinero:
mainloop

✓ ✓ ✓

m88ksim:
ckbrkpts

SW ✓ ✓

mipsi:
run

MW ✓ ✓ ✓ ✓

pnmconvol:
do_convol

SW ✓ ✓ ✓ ✓

viewperf:
project&clip

✓ ✓ ✓ ✓

viewperf:
shader

SW ✓ ✓ ✓ ✓ ✓ ✓

binary MW ✓ ✓

chebyshev SW ✓ ✓

dotproduct SW ✓ ✓ ✓ ✓

query SW ✓ ✓

romberg SW ✓

Table 3: Dynamic Region Performance with All Optimizations

Dynamic Region
Asymptotic

Speedup
Break-Even Point

DC Overhead
(cycles/instruction

generated)

Number of
Instructions
Generated

dinero: mainloop 1.7 1 invocation (3524 memory references) 334 634

m88ksim: ckbrkpts 3.7 28 breakpoint checks 365 6

mipsi: run 5.0 1 invocation (484634 instructions) 207 36614

pnmconvol: doconvol 3.1 1 invocation (59 pixels) 110 2394

viewperf: project&clip 1.3 16 invocations 823 122

viewperf: shade 1.2 16 invocations 524 618

binary 1.8 836 searches 72 304

chebyshev 6.3 2 interpolations 31 807

dotproduct 5.7 6 dot products 85 50

query 1.4 259 database entry comparisons 53 71

romberg 1.3 16 integrations 13 1206

ter
tion
ble

ence
s,
le
g
and
eir
op
d,
mic
gth

 is
lti-
al

ble
,
ic
e
xists

for

n;
rger

te
ll
m

ues
tly
 the
 is
These numbers were particularly high in mipsi, because it unrolls
the interpretation of its entire input program, and in pnmconvol,
because each iteration is large. The number of instructions
generated is small in m88ksim, because its dynamic region is a
routine that checks breakpoints and the SPEC input contains none.
With other inputs, the number of generated instructions should rise
and the dynamic overhead per instruction fall. For example, our
experiments with 5 breakpoints yielded 98 generated instructions
at a cost of only 66 cycles per instruction.

In contrast to the applications, dynamic regions in the kernels are
small, with simple code idioms. Consequently, optimizations they
use can usually be applied to the entire region, but, on the other
hand, not many optimizations can be applied. The high kernel
speedups can be attributed to a key optimization or a particular
input. For example, chebyshev is dominated by static calls to
the cosine function, most of which are memoized through dynamic
compilation. dotproduct’s static input vector was 90% zeroes
and therefore most of the calculations were eliminated; our
experiments on more dense vectors produced speedups similar to
those of the other kernels, and with no zeroes the dynamically
compiled version experiences a slowdown due to poor instruction
scheduling.

DyC achieves speedups and break-even points on the kernels that
are comparable to other dynamic compilation systems [26, 28].
That being said, however, quantitative comparisons of these
systems are not particularly meaningful, because all execute on
different underlying architectures. Our preliminary studies indicate
that several microarchitectural features, in particular, instruction
issue width, dynamic-scheduling support, and L1-instruction-
cache size, are major determinants of dynamic-compilation
performance.

4.3 Whole-Program Performance
Whole-program speedup due to dynamic compilation depends on
the proportion of total run time that is spent executing the dynamic
region. In our applications, the percentage of execution time spent
in the dynamic region ranged from 9.8% for m88ksim to almost
the entire execution for mipsi (see Table 4). Overall application
speedup, including the cost of dynamic compilation, was not quite
proportional to this fraction of asymptotic speedup (due to cache
and other system effects) and ranged from 1.02 to 4.6.

4.4 Analysis of Individual Optimizations
To study the effectiveness of individual optimizations, we
compared our normal configuration with all optimizations enabled
against configurations each of which disabled one optimization;
the results appear in Table 5. The second column gives the original

speedup from Table 3 with all optimizations turned on, and la
columns show the reduced speedup with a selected optimiza
disabled. Only those entries corresponding to applica
optimizations (those with a check mark in Table 2) are shown.

4.4.1 Complete Loop Unrolling
Despite its expansionary effect on code size and the consequ
for instruction bandwidth requirements and cache footprint1

complete loop unrolling (single-way and multi-way) was the sing
most important optimization (column 3). Complete loop unrollin
was responsible for much of the speedup in the applications,
without it, most programs experienced slowdowns relative to th
statically compiled counterparts. Some of complete lo
unrolling’s benefits stem from the elimination of all loop overhea
but additional benefit is realized because it enables other dyna
optimizations. For example, static loads and dynamic stren
reduction in dotproduct only apply when its loop induction
variable is a static variable; this only occurs when the loop
completely unrolled. A similar dependence exists between mu
way loop unrolling and static calls, static loads, and intern
dynamic-to-static promotions in mipsi, and single-way loop
unrolling and static loads in m88ksim. m88ksim unrolls over a
static table of breakpoints which eliminates loads of the ta
entries. mipsi multi-way unrolls over a static instruction array
eliminating loads of instructions and the instruction decoding log
following the loads, and dynamically memoizing calls to th
address translation routine. Sometimes an inter-dependence e
between complete loop unrolling and another optimization:
example, in pnmconvol complete loop unrolling opens
opportunities to apply dynamic dead-assignment eliminatio
eliminating the dead assignments then enables us to unroll la
loops.

4.4.2 Static Loads
Static loads (column 4) played a similar role to that of comple
loop unrolling. The optimization was very important in a
applications and most kernels, both for its direct benefits fro
eliminating loads and as an enabling optimization.

4.4.3 Unchecked Dispatching
All of our benchmarks contain some static variables whose val
remain invariant throughout program execution. To avoid cos
execution-time cache lookups, we annotated the variables with
cache-one-unchecked policy. Under this policy, the dispatch

Table 4: Whole-Program Performance with All Optimizations

Application

Execution Time (sec.)

Execution Time in the Dynamic
Regions

(% of total static execution)

Average
Whole-

Program
Speedup

Statically
Compiled

Dynamically
Compiled

dinero 1.3 0.9 49.9 1.5

m88ksim 81.0 76.8 9.8 1.05

mipsi 20.8 4.5 ~ 100 4.6

pnmconvol 10.8 3.6 83.8 3.0

viewperf 1.7 1.6 41.4 1.02

1 As mentioned in section 2.2.5, conditional specialization could be used to
prevent unreasonable code expansion due to complete loop unrolling.

of

ere
ad-
to-
or

o a

ed-

m
ut

ache
.

n,
ld
lt in
ad

e.
for

n
ved
out
ot
implemented using a load and an indirect jump. An unchecked
dispatch requires about 10 cycles, according to our measurements.
In contrast, a general-purpose hash-table-based dispatch
(supporting the default cache-all policy) requires on average 90
cycles. In mipsi, this figure rises to 150 cycles per dispatch, due
to collisions in its hash table.

Although cache-one-unchecked has better performance, it is
potentially unsafe, because an annotator may mistakenly use it for
static variables whose values do change. Our results indicate that
for many real applications, the safe cache-all policy can be used
without sacrificing much performance (column 5). With one
exception, speedups with cache-all were identical or very close to
speedups with cache-one-unchecked, because few of the cache
lookups were actually executed. The cache-one-unchecked policy
is important to m88ksim, however, because it enters its dynamic
region for each simulated instruction; consequently, with cache-all
m88ksim would incur a cache lookup for each instruction. The
kernels were more sensitive to cache-all’s overhead (in fact,
binary and query suffered slowdowns relative to their
statically compiled versions), because there were too few
instructions executed in their small dynamic regions to amortize
the cache-lookup cost.

These results demonstrate that the performance of some programs
could benefit from careful engineering of the dispatch (e.g., to
avoid collisions). Our implementation of cache-all is not highly
optimized. It stores the static variables that comprise the cache’s
hash key into a structure, performs a function call that computes a
hash function based on these values, and then does the lookup. A
faster version would inline the hash function, only hash on the
subset of live static variables being promoted at that point, and use
cheaper hash functions when possible. Other techniques, such as
inline caching [9, 16] and efficient dispatching algorithms for
multimethods [10, 3], could further reduce the cost of the lookups,

particularly where only one or a few possible combinations
values occur.

4.4.4 Infrequently Used but Pivotal Optimizations

Some optimizations were used infrequently, but, when used, w
extremely profitable (static calls, zero and copy propagation, de
assignment elimination, strength reduction, internal dynamic-
static promotions, and polyvariant division (columns 6-11)). F
example, treating calls to cosine as static in chebyshev turned a
marginal 20% advantage over the statically compiled version int
6-fold speedup. mipsi required all three of complete loop
unrolling, static loads, and static calls to achieve its 5-fold spe
up; without any one of these mipsi slowed down.

The dynamically compiled region of pnmconvol executed 3.1
times faster than its statically compiled counterpart, mainly fro
the contribution of dynamic dead-assignment elimination. Witho
it, the amount of generated code exceeded the size of the L1 c
by a factor of 2.7, causing slowdowns relative to the static code

Strength reduction appears to be a similarly pivotal optimizatio
but until DyC does strength reduction automatically, we withho
judgement. Our manual source-code implementation may resu
optimistic results, because it incurs dynamic compilation overhe
only where strength reduction is known to be profitabl
Conversely, our manual method may miss opportunities
strength reduction.

viewperf’s shader required intraprocedural polyvariant divisio
in order to specialize for the values of variables that were deri
as static only on some paths through the procedure. With
polyvariant division, many of the other optimizations could n
have been performed.

Table 5: Dynamic Region Asymptotic Speedups without a Particular Feature

Dynamic Region
With All

Opts

Without:

Complete
Loop

Unrolling

Static
Loads

Unchecked
Dispatching

Static
Calls

Dynamic
Zero&Copy
Propagation

Dynamic
Dead-

Assignment
Elimination

Dynamic
Strength

Reduction

Internal
Dynamic-to-

Static
Promotions

Poly-
variant
Division

dinero:
mainloop

1.7 0.9 1.6 1.03

m88ksim:
ckbrkpts

3.7 0.4 0.6 1.6

mipsi:
run

5.0 0.9 0.9 5.0 0.9 0.9

pnmconvol:
do_convol

3.1 0.8 0.8 3.1 2.1 0.9

viewperf:
project&clip

1.3 1.1 1.3 1.1 1.3

viewperf:
shader

1.2 1.0 1.1 1.2 1.02 1.1 1.2 1.1

binary 1.8 0.6 1.3 0.6

chebyshev 6.3 0.9 6.0 1.2

dotproduct 5.7 0.3 0.9 3.4 0.7 0.7

query 1.4 0.5 0.5 0.6

romberg 1.3 0.8 1.2

 a
ch
ro

on,
er
but
For

t
nly

on
and
the

uild
rds
em
ny
nd

DI
to
ha
y
1-
tel

n

e

ng.
er
98.
g
d

on

ed

ion

ng

st.

K.
nt

n

e

5. Related Work
As mentioned in the introduction, several previous systems
performed selective dynamic compilation, including Tempo [6,
26], Fabius [21], ‘C [12, 27, 28], and our previous system [1].
Previous publications have compared DyC’s features to these other
systems in detail [13, 14], but in general, DyC supports more
flexible treatments of polyvariant specialization and division than
the earlier declarative systems, including the important idioms of
multi-way loop unrolling and conditional specialization. DyC is
unique in supporting automatic caching of dynamically compiled
code, internal dynamic-to-static promotions, policy annotations
controlling cache policies, and staged versions of dynamic zero
and copy propagation and dead-assignment elimination. Tempo
supports an automatic side-effect and alias analysis within a
compilation unit to eliminate some of the need for static loads and
calls, and it also supports interprocedural dynamic regions. Fabius
addresses only purely functional ML programs, and because of its
limited context of applicability, can perform all dynamic
compilation automatically and safely, given only hints through a
function currying syntax. `C’s imperative approach offers
programers direct control over dynamic compilation and
optimization, but its high cost in programming complexity may
hinder the use of sophisticated optimizations. Register allocation is
the only automatic run-time optimization performed by `C. Our
previous system included only a limited form of polyvariant
specialization that was tailored for single-way loop unrolling,
lacked polyvariant division, dynamic zero and copy propagation,
and dead-assignment elimination, and did not specialize the
dynamic compilers for particular dynamic regions (which led to
much greater dynamic compilation overhead). Most importantly
for this paper, however, is that previous systems were only
evaluated on kernel-sized benchmarks; our emphasis in this paper
has been to develop and assess techniques targeting the needs of
much larger programs.

An alternative to DyC’s selective dynamic compilation is complete
dynamic compilation, where the whole program is compiled
dynamically, perhaps from some intermediate bytecode
representation. Current so-called just-in-time compilers for Java
follow this approach, as did earlier systems such as the dynamic
optimizing compilers for Self [4, 5, 17, 18] and a dynamic
compiler for Smalltalk [9]. These systems use dynamic
compilation to provide better performance for their portable
intermediate representation than simple interpretation, or to exploit
knowledge of the program available at run-time that would be
difficult to determine statically. The key difference between these
systems and staged dynamic compilation in DyC is that DyC
reduces the cost of aggressive dynamic optimizations through
static preplanning and selectivity, while complete dynamic
compilers tend to curtail their optimization aggressiveness because
of the limited amount of time available for analysis.

6. Conclusion
DyC builds on the successes previous dynamic compilation
systems have had on small kernels, extending their repertoire of
techniques in order to be effective on larger programs. Overall,
DyC enabled speedups on dynamically compiled code of 1.2 to
5.0, which translated to speedups of 1.02 to 4.6 for applications as
a whole, including the overhead of dynamic compilation. A few
basic techniques are critical to achieving good speedups across all
benchmarks, including single- and multi-way loop unrolling
(conferred by DyC’s general technique of program-point-specific
polyvariant specialization), user-controlled caching policies, and
static load annotations. As with classical optimizations, other

techniques are not universally applicable, but they still make
major impact on particular subsets of benchmarks; su
optimizations include dynamic strength reduction, dynamic ze
and copy propagation, dynamic dead-assignment eliminati
static calls, and internal dynamic-to-static promotions. Oth
techniques are not proven in our current benchmark suite,
could be very important for variations on these benchmarks.
example, interpreters and instruction simulators such as mipsi,
could benefit from conditional specialization via polyvarian
division in order to avoid specializing paths that are never or o
infrequently executed.

As with other current dynamic compilation systems, DyC relies
programmer annotations to choose good dynamic regions
static variables. We view this work as a study evaluating
underlying mechanisms of dynamic compilation; the policy
decisions are left to programmers. Our next major step is to b
on this understanding by developing a system that works towa
automating the policy decisions. Our long-term goal is a syst
that automatically performs dynamic compilation as one of ma
possible compiler optimizations, guided by static analyses a
profile-driven feedback.

Acknowledgments
We owe thanks to David Grove and the anonymous PL
reviewers for improving the quality of our discussion, and
Tryggve Fossum and John O’Donnell for the source for the Alp
version of the Multiflow compiler. This work was supported b
ONR contract N00014-96-1-0402, ARPA contract N00014-94-
1136, NSF Young Investigator Award CCR-9457767, and an In
Graduate Fellowship.

References
[1] J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B. Bershad.

Fast, effective dynamic compilation. SIGPLAN Notices, pages 149–
159, May 1996. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and Implementatio.

[2] B. Calder, P. Feller, and A. Eustace. Value profiling. In Proceedings
of the 30th Annual International Symposium on Microarchitectur,
pages 259–269, December 1997.

[3] Craig Chambers and Weimin Chen. Efficient predicate dispatchi
Technical Report UW-CSE-98-12-02, Department of Comput
Science and Engineering. University of Washington, December 19

[4] Craig Chambers and David Ungar. Customization: Optimizin
compiler technology for Self, a dynamically-typed object-oriente
programming language. In Proceedings of the SIGPLAN ’89
Conference on Programming Language Design and Implementati,
pages 146–160, June 1989.

[5] Craig Chambers and David Ungar. Making pure object-orient
languages practical. In Proceedings OOPSLA ’91, pages 1–15,
November 1991. Published as ACM SIGPLAN Notices, volume 26,
number 11.

[6] C. Consel and F. Noël. A general approach for run-time specializat
and its application to C. In Conference Record of POPL ’96: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programmi
Languages, pages 145–156, January 1996.

[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rive
Introduction to Algorithms. MIT Press/McGraw-Hill, 1990.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.
Zadeck. An efficient method of computing static single assignme
form. In Conference Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages, pages 25–35, January
1989.

[9] L. Peter Deutsch and Allan M. Schiffman. Efficient implementatio
of the Smalltalk-80 system. In Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages,
pages 297–302, January 1984.

[10] Patrick H. Dussud. TICLOS: An implementation of CLOS for th
Explorer family. In Proceedings OOPSLA ’89, pages 215–220,

October 1989. Published as ACM SIGPLAN Notices, volume 24,
number 10.

[11] S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, R.L. Stamm, and D.M.
Tullsen. Simultaneous multithreading: A foundation for next-
generation processors. IEEE Micro, 17(5):12–19, August 1997.

[12] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A language for
high-level, efficient, and machine-independent dynamic code
generation. In Conference Record of POPL ’96: 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 131–144, January 1996.

[13] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers.
Annotation-directed run-time specialization in C. In Proceedings of
the ACM SIGPLAN Symposium on Partial Evaluation and Seman-
tics-Based Program Manipulation, pages 163–178, Amsterdam, The
Netherlands, June 1997. New York: ACM.

[14] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers.
DyC: An expressive annotation-directed dynamic compiler for C.
Theoretical Computer Science. To appear.

[15] M.D. Hill and A.Jay Smith. Experimental evaluation of on-chip
microprocessor cache memories. In ISCA ’84, June 1984.

[16] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
dynamically-typed object-oriented languages with polymorphic
inline caches. In P. America, editor, Proceedings ECOOP ’91, LNCS
512, pages 21–38, Geneva, Switzerland, July 15-19 1991. Springer-
Verlag.

[17] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. In Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language Design and
Implementation, pages 326–336, June 1994.

[18] Urs Hölzle and David Ungar. Reconciling responsiveness with
performance in pure object-oriented languages. ACM Transactions on
Programming Languages and Systems, 18(4):355–400, July 1996.

[19] L. Hornof and J. Noyé. Accurate binding-time analysis for imperative
languages: Flow, context, and return sensitivity. In Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Seman-tics-
Based Program Manipulation, pages 63–73, Amsterdam, The
Netherlands, June 1997. New York: ACM.

[20] Neil D. Jones, Carstein K. Gomarde, and Peter Sestoft. Partial
Evaluation and Automatic Program Generation. Prentice Hall, New
York, NY, 1993.

[21] M. Leone and P. Lee. Optimizing ML with run-time code generation.
Technical report CMU-CS-95-205, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, December
1995.

[22] Mark Leone and Peter Lee. Dynamic specialization in the Fabius
system. ACM Computing Surveys, 30(3es):23–es, September 1998.

[23] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein,
R. P. Nix, J. S. O’Donnell, and J. C. Ruttenberg. The Multiflow trace
scheduling compiler. Journal of Supercomputing, 7(1-2):51–142,
May 1993.

[24] Mesa web page. http://www.ssec.wisc.edu/ brianp/Mesa.html.

[25] Netpbm web page. ftp://wuarchive.wustl.edu/graphics/graphics/
packages/NetPBM/.

[26] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-
based run-time specialization: Implementation and experimental
study. In International Conference on Computer Languages, May
1998.

[27] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A system for fast,
flexible, and high-level dynamic code generation. SIGPLAN Notices,
pages 109–121, June 1997. In Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and Implementation.

[28] M. Poletto, D. R. Engler W.C. Hsieh, and M. F. Kaashoek. ’C and tcc:
A language and compiler for dynamic code generation. To appear in
Transactions on Programming Languages and Systems.

[29] Emin Gun Sirer. Measuring Limits of Fine-Grain Parallelism.
Princeton University Senior Project, June 1993.

[30] SPEC CPU, August 1995. http://www.specbench.org/.

	Abstract
	Previous selective dynamic compilation systems have demonstrated that dynamic compilation can ach...

	1. Introduction
	2. DyC
	2.1 System Overview
	Figure 1. DyC’s Static and Dynamic Components

	2.2 DyC’s Run-Time Optimizations
	2.2.1 Dynamic-to-Static Promotions and Polyvariant Specialization
	2.2.2 Internal Promotions
	2.2.3 Unchecked Dispatching
	2.2.4 Complete Loop Unrolling
	2.2.5 Polyvariant Division
	2.2.6 Static Loads and Calls
	2.2.7 Strength Reduction, Zero and Copy Propagation, and Dead-Assignment Elimination

	2.3 Example
	Figure 2. Image Convolution Example
	Figure 3. Partially Dynamically Optimized Region
	Figure 4. Fully Dynamically Optimized Region

	3. Methodology
	3.1 Workload
	Table 1: Application Characteristics

	dinero
	cache simulator
	cache configuration parameters
	8kB I/D, direct- mapped, 32B blocks
	m88ksim
	Motorola 88000
	simulator
	an array of breakpoints
	no breakpoints
	mipsi
	MIPS R3000
	simulator
	its input program
	bubble sort
	pnmconvol
	image convolution
	convolution matrix
	11x11 with 9% ones, 83% zeroes
	viewperf
	renderer
	3D projection matrix, lighting vars
	perspective matrix, one light source
	Kernels
	binary
	binary search over an array
	the input array and its contents
	16 integers
	chebyshev
	polynomial function approximation
	the degree of the polynomial
	10
	dotproduct
	dot-product of two vectors
	the contents of one of the vectors
	a 100-integer array with 90% zeroes
	query
	tests database entry
	for match
	a query
	7 comparisons
	romberg
	function integration
	by iteration
	the iteration bound
	6
	3.2 Selection of Optimization Targets
	3.3 Experimental Methodology
	4. Results and Discussion
	4.1 Applicability of the Optimizations
	Table 2: Optimizations Used by Each Program

	dinero: mainloop
	3
	3
	3
	m88ksim: ckbrkpts
	SW
	3
	3
	mipsi: run
	MW
	3
	3
	3
	3
	pnmconvol: do_convol
	SW
	3
	3
	3
	3
	viewperf: project&clip
	3
	3
	3
	3
	viewperf: shader
	SW
	3
	3
	3
	3
	3
	3
	binary
	MW
	3
	3
	chebyshev
	SW
	3
	3
	dotproduct
	SW
	3
	3
	3
	3
	query
	SW
	3
	3
	romberg
	SW
	3
	4.2 Dynamic Region Performance
	Table 3: Dynamic Region Performance with All Optimizations

	dinero: mainloop
	1.7
	1 invocation (3524 memory references)
	334
	634
	m88ksim: ckbrkpts
	3.7
	28 breakpoint checks
	365
	6
	mipsi: run
	5.0
	1 invocation (484634 instructions)
	207
	36614
	pnmconvol: doconvol
	3.1
	1 invocation (59 pixels)
	110
	2394
	viewperf: project&clip
	1.3
	16 invocations
	823
	122
	viewperf: shade
	1.2
	16 invocations
	524
	618
	binary
	1.8
	836 searches
	72
	304
	chebyshev
	6.3
	2 interpolations
	31
	807
	dotproduct
	5.7
	6 dot products
	85
	50
	query
	1.4
	259 database entry comparisons
	53
	71
	romberg
	1.3
	16 integrations
	13
	1206
	4.3 Whole-Program Performance
	Table 4: Whole-Program Performance with All Optimizations

	dinero
	1.3
	0.9
	49.9
	1.5
	m88ksim
	81.0
	76.8
	9.8
	1.05
	mipsi
	20.8
	4.5
	~ 100
	4.6
	pnmconvol
	10.8
	3.6
	83.8
	3.0
	viewperf
	1.7
	1.6
	41.4
	1.02
	4.4 Analysis of Individual Optimizations
	Table 5: Dynamic Region Asymptotic Speedups without a Particular Feature

	dinero: mainloop
	1.7
	0.9
	1.6
	1.03
	m88ksim: ckbrkpts
	3.7
	0.4
	0.6
	1.6
	mipsi: run
	5.0
	0.9
	0.9
	5.0
	0.9
	0.9
	pnmconvol: do_convol
	3.1
	0.8
	0.8
	3.1
	2.1
	0.9
	viewperf: project&clip
	1.3
	1.1
	1.3
	1.1
	1.3
	viewperf: shader
	1.2
	1.0
	1.1
	1.2
	1.02
	1.1
	1.2
	1.1
	binary
	1.8
	0.6
	1.3
	0.6
	chebyshev
	6.3
	0.9
	6.0
	1.2
	dotproduct
	5.7
	0.3
	0.9
	3.4
	0.7
	0.7
	query
	1.4
	0.5
	0.5
	0.6
	romberg
	1.3
	0.8
	1.2
	4.4.1 Complete Loop Unrolling
	4.4.2 Static Loads
	4.4.3 Unchecked Dispatching
	4.4.4 Infrequently Used but Pivotal Optimizations
	5. Related Work
	6. Conclusion
	Acknowledgments
	References

	An Evaluation of Staged Run-Time Optimizations in DyC
	Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers
	Department of Computer Science and Engineering University of Washington Box 352350, Seattle WA 98...

