An Evaluation of Staged Run-Time Optimizations in DyC
Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle WA 98195-2350
{grant,matthai,mock,chambers,eggers}@cs.washington.edu

Abstract

Previous sel ective dynamic compilation systems have demonstrated
that dynamic compilation can achieve performance improvements
at low cost on small kernels, but they have had difficulty scaling to
larger programs. To overcome this limitation, we developed DyC, a
selective dynamic compilation system that includes more sophisti-
cated and flexible analyses and transformations. DyC is able to
achieve good performance improvements on programs that are
much larger and more complex than the kernels. We analyze the
individual optimizations of DyC and assess their impact on perfor-
mance collectively and individually.

1. Introduction

Sdective dynamic compilation transforms selected parts of
programs at run time, using information available only at run time,
to optimize them more fully than strictly statically compiled code.
(Selective dynamic compilation is in contrast to complete dynamic
compilation where al compilation of a program is delayed until

taken. Inimperative systems, such as "C [12, 27, 28], a programmer
explicitly constructs, composes, and compiles code fragments at
run time. Imperative approaches can express a wide range of
optimizations, but impose a large burden on the programmer to
manually program the optimizations; the programming burden
makes it difficult to apply imperative approaches effectively to
larger applications. Other systems, such as Tempo [6, 26], Fabius
[21], and our previous system [1], followdaclarative approach,
where sparse user annotations trigger analyses and transformations
of the program (using partial evaluation-style techniques) to exploit
value-specific dynamic compilation. To keep dynamic compilation
costs low, these systems preplan the possible effects of dynamic
optimizations statically, producing a specialized dynamic compiler
tuned to the particular part of the program being dynamically
optimized,; this sort of preplanning we cstging the optimization.
Declarative approaches are relatively easy for programmers to use,
but are only as powerful as the optimizations they apply. The
limitations of previous declarative systems prevented them from

run-time; recent “just in time” compilers for Java are examples ofoping effectively with the more involved patterns of control and

complete dynamic compilersYalue-specific selective dynamic

data flow found in some small and most large applications, causing

compilers derive their benefits by optimizing parts of programs fothem to miss optimization opportunities or forcing substantial
particular run-time-computed values of invariant variables and dategWwriting to fit the limitations of the system.

structures (calledun-time constants), in effect performing a kind of

dynamic constant propagation and folding. Proposed applicatio
include
specializing architectural simulators for the configuration bein
simulated, language interpreters for the program being interpret
rendering engines for scene-specific state variables, numer
programs for dimensions and values of frequently used arrays, a
critical paths in operating systems for the type of data being
processed and the current state of the system. Trends in softw
as
parameterization for reuse and portability across different hardwar,

for selective, value-specific dynamic compilation

engineering toward dynamic reconfigurability, such

e’%stem. To support effective optimization,
i

DyC (pronounceddicey) [13, 14] is a selective, value-specific

rH‘ynamic compilation system that has good potential for producing

speedups on larger, more complex C programs. To reduce the
rogramming burden, DyC is a declarative, annotation-based
DyC contains a
phisticated form of partial-evaluation binding-time analysis,
luding program-point-specific  polyvariant division and
ecializatior, and dynamic versions of traditional global and
gephole optimizations. To keep dynamic compilation costs low,
nearly all of DyC’s dynamic optimizations are staged, with the bulk
the work of the optimization occurring at static compile time and

architectures, also imply a promising role for dynamic compilationith no run-time program representation or iterative analyses
Recent research efforts have made considerable progress towardgquired. DyC automatically caches the dynamically compiled code
proving the viability of selective dynamic compilation. In and reuses it where possible, relieving another programmer burden
particular, researchers have demonstrated that dynamic compilatiamd reducing dynamic compilation overhead. Programmers can
overhead can be quickly amortized by the increased efficiency afeclaratively specifypolicies that govern the aggressiveness of
the dynamically optimized code. Most experiments, however, wergpecialization and caching, enabling programmers to get finer
confined to simple kernels, and did not demonstrate that theontrol over the dynamic compilation process while preserving the
dynamic compilation systems could cope reasonably with theleclarative model. (In the future, we hope to treat DyC as a back-
increased size and complexity of applications like the interpretersnd for a tool that automatically decides where to apply selective,
and simulators mentioned above. value-specific dynamic optimizations, generating annotations that

The reasons current systems have not made better progress BYC then carries out.)

larger, more complex applications vary, depending on the approacfhis paper assesses the benefits and applicability of DyC's analyses
and transformations, both individually and when applied together,

1 polyvariant division allows the same piece of code to be analyzed with
different combinations of variables being treated as run-time constants;
each combination is called a division. Polyvariant specialization allows
multiple compiled versions of a division to be produced, each specialized
for different values of the run-time-constant variables. Program-point-
specific polyvariance enables polyvariance to arise at arbitrary points in
programs, not just at function entries.



and analyzes why these optimizations achieved the performance
improvements they did.l The optimizations are evaluated on a
selection of medium-sized, widely used applications that are
representative of the application classes mentioned earlier. The
results show that:

« Dynamic compilation produces speedups on real applications,
not simply kernels. Although there was a subset of
optimizations that benefited all programs (both kernels and
applications), each of DyC's optimizations was important to
obtaining good speedup on some application.

e Several optimizations were important to all our benchmarks.
Complete loop unrolling was the single most important
optimization, not only because it eliminated all loop overhead
but also because it created many opportunities for other
dynamic optimizations. Optimizing loads from invariant parts
of data structures was similarly critical for most programs.

*« Some optimizations unique to DyC, such as dynamic dead-
assignment elimination, were responsible for significant
speedups (3x-5x) in some applications.

¢ DyC's dynamic compilation overhead is low enough that the
break-even point at which dynamic compilation becomes
profitable is well within the normal usage of our applications.

The next section describes the DyC dynamic compilation system
and its optimizations. Section 3 details our experimental
methodology and workload. Section 4 contains our performance
results, including a comparison of whole programs versus their
dynamic regions and an analysis of the contribution to
performance of individual optimizations. Section 5 compares DyC
to related research and section 6 concludes.

2. byC
2.1 System Overview

DyC compiles and optimizes programs dynamically, during their
execution. To trigger run-time compilation, programmers annotate
their source code to identiffatic variables (variables that have a
single value, or relatively few values, during program execution)
on which many calculations depend; static variables are run-time
constants. DyC then automatically determines which parts of the,
program downstream of the annotations can be optimized based on
the static variables’ values (we call thelyeamically compiled or
justdynamic regions), and arranges for each dynamic region to be
compiled at run time, once the values of the static variables are
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Figure 1. DyC'’s Static and Dynamic Components

least in part on run-time data and must be reexecuted each time
the flow of execution reaches them (thdynamic
computations). The static computations correspond to those
computations that will be constant-folded at run time; the BTA
is the static component of staged dynamic constant
propagation and folding.

For each dynamic region, dynamic-compiler generator
produces a specialized dynamic compiler that will generate
code at run time for that region, given the values of the static
variables on entry to the region.

known. To minimize dynamic compilation overhead, DyC stages In more detail, DyC performs the following steps when compiling
its dynamic optimizations, performing much of the analysis and each procedure at static compile time:

planning for dynamic compilation and optimization during static ,
compile time.

DyC extends a traditional (static) optimizing compiler with two
major components, as illustrated in Figlire .

¢ As in off-line partial-evaluation systems [20] banding-time
analysis (BTA) identifies those variables (calleldrived static
variables) whose values are computed solely from annotated
or other derived static variables; the lifetime of these static
variables determines the extent of the dynamic region. The
BTA divides operations within a dynamic region into those that
depend solely on static variables and therefore can be executed
only once (thestatic computations), and those that depend at

1 our previous paper and journal articleon DyC [13, 14] describeitsdesign,
but include no empirical assessment. Dynamic, staged zero and copy
propagation and dead-assignment elimination are new with this paper as
well.

First, DyC applies many traditional intraprocedural
optimizations, stopping just prior to register allocation and
scheduling.

Then, for procedures that contain annotations, the binding-time
analysis identifies derived static variables and the boundaries
of dynamic regions. This analysis also determines which
conditional branches and switches test static variables and so
can be folded at dynamic compile time. It also determines
which loops have static induction variables and can therefore
be completely unrolled at dynamic compile time.

Each dynamic region is replaced with two control-flow
subgraphs, one containing the static computations (csdted

up code) and one containing the dynamic computations (called
template code). Where a dynamic instruction in the template
code refers to a static operand, a place-holder operand (called a
hole) is used. The hole will be filled in at dynamic compile
time, once its value is known.



¢ Register allocation and code scheduling are then applied to thecalled polyvariant specialization. A compiled-code-cache lookup
procedure’s modified control-flow graph. By separating the implements the promotion.
set-up and template subgraphs, register allocation and .
scheduling can be applied to each separately, without one2.2.2 Internal Promotions
interfering with the other. By keeping these two subgraphs in
the context of the rest of the procedure’s control-flow graph,
any variables live both inside and outside the dynamic region
can be allocated registers seamlessly across dynamic-regio
boundaries.

In DyC, promotions also can occur at arbitrary program points in
the middle of a dynamic region, callegdernal promotion points,
enabling a kind ofnulti-stage specialization [22]. For example, an
fhternal promotion can occur at the point a static variable is
assigned a dynamic value, to allow specialization on the value of
« Finally, a custom dynamic compiler for each dynamic region the static variable to resume (at the cost of a cache check for the

(also called agenerating extension [20]) is built simply by promoted variable). Internal promotions also allow code to be

insertingemit code sequences into the set-up code for eachincreasingly specialized on a growing set of static variables as

instruction in the template code; the template subgraph is thenexecution proceeds through a dynamic region.

thrown away. This dynamic compiler is fast, in large part, . .

because it neither consults an intermediate representation no?.2.3 Unchecked Dispatching

performs any general analysis when run. Instead, these\yhen a promotion point is executed, the points cache of
functions are in effect “hard-wired” into the custom compller dynamically compiled code is checked for code that has been
for that region, represented by the set-up code and itSgpeciglized to the current values of the static variables. If found,
embedded emit code. that code is executed; if not, a version is specialized to these
At run time, a dynamic region’s custom dynamic compiler is values. Thiglispatch to dynamically generated code, comprised of
invoked to generate the region’s code. The dynamic compiler firstthe cache lookup and indirect jump, should be fast because its
checks an internal cache of previously dynamically generated codeédverhead is incurred on every execution of the dynamic region.
for a version that was compiled for the values of the annotatedCurrently, DyC uses a policy annotation to control the cost of the
variables. If one is found, it is reused. Otherwise, the dynamic dynamic-code cache lookups found in the template code at
compiler continues executing, evaluating the static computationspromotion points. DyC's default policy, calledche-all, maintains
and emitting machine code for the dynamic computations (anda cache at each of these points, implemented using double hashing
saving the newly generated machine code in the dynamic-code[7]- The cache maps the values of the static variables at that point
cache when it is done). Invoking the dynamic compiler and to code specialized for those values. The cache is checked each
dispatching to dynamically generated code are the principal time the point is reached in order to reuse specialization should the

sources of run-time overhead. values of the static variables recur. If the programmer knows that a
static variable will have the same value for all executions of the
2.2 DyC’s Run-Time Optimizations promotion point, then the cache lookup can be simplified to a

o ) _single load; this policy we cathche-one-unchecked.
DyC’s binding-time analysis (and those of other declarative

dynamic compilers) identifies which variables are static over 2.2.4 Complete L oop Unrolling
which paths of the procedure’s control-flow graph, starting with

the annotations that identify static variables and ending after the
last use of any static value (a dynamic region may have multiple
exits). This analysis distinguishes static computations from
dynamic computations, enabling run-time constant propagation
without incurring any run-time cost from analyzing an

intermediate representation. This analysis is program-point-; : ; . . o
specific and rowF-)sensitive: a dynamic reg)i/on can s?artgand sﬁop atteration may lead to several different loop iteratioes.( if it

any program point, and a variable may be static at some prograrrg(.)f_rm"’"n?I branch pathts th?t update_ th? loop |rt1d(;J(|:t|on .;’a“f.lbles
points and not at others. ifferently), or even return to a previously executed loop iteration,

producing in general a directed graph of unrolled loop bodies
DyC's ability to produce efficient dynamic code depends on (which we callmulti-way loop unrolling).
several extensions to this basic approach. Some, such a
pol)t{vellrlantl sgemafghzgﬂgnt agd td'&"s'og’ atre dd%rl\t/e(ihfrom éhe ]static compilers in that the unrolled loop is eliminated rather than
gar 1a '.ev"ﬁ uation .'I‘? g adapte anOtﬁx ended to ane? S genlarged. The main benefit of complete unrolling is derived from
ynamically compiling programs. ers aré special stageédy,q aqditional constant- and branch-folding opportunities exposed
versions of traditional g!obal and peepholle optimizations, such asby making the loop induction variables static, rather than from
zero and copy propagation and dead-assignment elimination. increased instruction-level parallelism. DyC and similar systems
(such as Tempo) currently do no run-time instruction scheduling.

Polyvariant specialization can also result in complete loop

unrolling by creating a specialized copy of a loop body for each set
of values of the loop induction variables. For simple loops, such as
those that merely increment a counter until an exit condition is

reached, a linear chain of unrolled loop bodies results (we call this
single-way loop unrolling). For more complex loops, however, one

%:omplete loop unrolling is unlike unrolling done by traditional

2.2.1 Dynamic-to-Static Promotions and
Polyvariant Specialization 2.2.5Polyvariant Division

Dynamic compilation generates code that is specialized to Polyvariant division allows the same program point to be analyzed
particular values of static variables. Where dynamic specialization multiple times, each time with a different set of variables assumed
on the run-time computed values of some variables should beginstatic. After binding-time analysis, each division gives rise to a
such as at the entry to a dynamic region, the variables are said to bgeparate version of the code, since each has its own partitioning
promoted from dynamic to static. If these promoted variables take into static and dynamic computations. Without polyvariant
on different values at different entry times, DyC allows multiple division, programmers would have to duplicate code by hand for
versions of the code after the promotion to be generated, eachhe different divisions, or adopt some least-common-denominator
specialized for a different combination of promoted values; this is set of annotations with fewer optimization opportunities.



Although we did not use the capability for this study, polyvariant
divison also supports conditional specialization: rather than
unconditionally executing an annotation, the programmer guards
the annotation with an arbitrary test of whether specialization is
desirable. Polyvariant division will then automatically duplicate
the code following the test statement, one copy being specialized
and the other not. Conditional specialization can be used, for
example, to limit specidization to those vaues of the static
variables that are particularly amenable to optimization (e.g.,
values that enabl e strength reduction or copy propagation), to those
values that occur frequently enough to merit the effort of dynamic
compilation, or to those loops that, when completely unrolled, will
fit in the L1 instruction cache.

2.2.6 Static Loadsand Calls

By default, the contents of memory, even if referenced through a
run-time- or compile-time-constant address, is assumed to be
dynamic. In many programs, however, at least some of the contents
of these data structures are invariant. In such programs, we wish to
treat loads of invariant parts of static structures as static
computations, done once as part of dynamic compilation. DyC
alows programmers to annotate such loads as static, enabling them
to be optimized in thisway. (An alternative scheme would annotate
declarations of array, structure, or pointer values or types as
having static components, implying that all loads of those
components were static.)

Similarly, users can annotate pure functions as static. Invocations
of static functions with all static arguments are treated as static
computations and hence executed once as part of dynamic
compilation. Calls to unannotated functions, even with all static
arguments, are conservatively treated as dynamic computations,
since they may have side-effects.!

These annotations are potentially unsafe programmer assertions. In
contrast, Tempo performs an automatic alias and side-effect
analysis within a compilation unit to identify static portions of data
structures and pure functions within that unit. However, Tempo
till relies on potentially unsafe user annotations to discover the
dias and side-effect properties of external data structures and
procedures [6].

2.2.7 Strength Reduction, Zero and Copy Propaga-
tion, and Dead-Assignment Elimination

Some of DyC’s optimizations exploit particular values of static
variables. The emit code sequences perform strength reduction o

takes the same time as a floating-point multiply, so strength
reduction of the multiply into a move alone yields no benefit; copy
propagation and dead-assignment elimination are necessary to see
performance improvements. Similarly, if the static operand to the
multiply is 0, then the multiply can be replaced with a clear
instruction, theéd can be propagated to eligible downstream uses of
the result of the clear instruction, and if all uses are replaced, the
clear can be eliminated. Moreover, replacing a multiply with a
clear causes the use of the dynamic operand to be eliminated,
potentially causing its computation to become dead as well. But
copy propagation and dead-assignment elimination cannot be
performed entirely statically (unlike the constant propagation
embodied by binding-time analysis), since if the operand of the
multiply is other than0 or 1, no copy propagation or dead-
assignment elimination can be performed.

To perform data-dependent zero and copy propagation and dead-
assignment elimination with low run-time overhead, DyC divides
the analyses into a planning stage done at static compile time and a
completion stage done during dynamic compilation. The static
planning stage computes whether an opergiaentially may be
replaced with a move or clear instruction. For each such
instruction, all potential downstream uses of the result are
identified statically. The emit code sequences for potentially
optimizable instructions check for the special run-time-constant
operand values that enable optimization; if one occurs, the
instruction is deleted, and a note is made in a table maintained
during dynamic compilation. Emit code sequences for uses of the
potentially optimized instruction check the table to see how they
should generate code for their operand. Dynamic compilation time
for run-time zero and copy propagation and dead-assignment
elimination is kept low by forgoing any run-time intermediate
representation or analysis, other than the table to record the results
of optimizations.

2.3 Example

The example in Figure 2 illustrates some of DyC'’s capabilities and
shows how the annotation interface is used. It is a simplified
version of the image-convolution routipmntonvol from our
benchmark suite. Thelo_convol routine takes an nage
matrix as input, convolves it by the convolution matrirat r i x,

and writes the convolved output to tbet buf matrix. Since
cmat ri x is unchanged within the (outer) loops over image
pixels, we would like to specialize the inner loops over the
?onvolution matrix to the values containectimat r i x.

multiplies, divides, and modulus operations with a single static The three DyC annotations inserted to accomplish this dynamic
operand and attempt to fit integer static operands into instructionspecialization are highlighted in boldface. ®ake_stati c

immediate fields. (We currently emulate dynamic strength annotation on a variable specifies to DyC that the code that follows
reduction by inserting special-case code in the program source.) should be specialized (polyvariantly) for all distinct values of that

DyC also includes a novetaged version of dynamic zero and variable. Thearake_st at i ¢ annotation in our example indicates
copy propagation and dead-assignment elimination that dependhat the pointecmat ri x and its dimensioner ows andccol s
on the values of static variables. For example, if the single staticShou!d be specialized upon in downstream code. Additionally, the

operand to a multiply turns out to teat dynamic compile time, ~ M@Ké_static on the loop index variablesr ow and ccol

then the multiply can be replaced by a simple move. Moreover, €Sults in the complete unrolling of the innermost two loops@n
eligible downstream references to the target of the move can besign On an array, pointer, or structure dereference identifies a static
replaced with the operand of the move (performing copy '0@d- In our example, th& sign ensures that the result of
propagation), and if all references are so replaced, the movedereferencing the static pointematrix at the static offset
instruction can be eliminated (performing dead-assignment (cr ow, ccol) is also static. Derived static computations and uses,

elimination). On some architectures, such as the DEC Alpha 21164dentified by the BTA, are italicized. The dynamic region extends
on which we performed our experiments, a floating-point move to the end of the loop over the convolution matrix, since no static
’ variables are used beyond this point.

Figure 3 shows a source-code represent%mirﬁrthe dynamically
compiled code produced for the dynamic region when
do_convol is invoked with a 83 crmatri x that contains

1 Tempo includes an additional feature where a function can be classified
as being dynamic (i.e., having side-effects) but still return astatic value if
all its arguments are static values [19].



/* Convolve image with cmatrix into outbut */ /*Apply cmatrix to each pixel of the image*/

voi d do__convol( . ] ] ] for (irow=0; irow < irows; ++irow ){
float image [][], int irows, int icols, rowbase = row 1;
float cmatrix[][], int crows, int ccols, for (icol=0; icol < icols; ++icol){

) float outbuf [][] col base = icol-1;

{ . ) /*Loop over convol ution matrix*/
float x, sum weighted_x, weight; /*Iteration 0: crow=0, ccol =0*/
int crow, ccol, irow, icol, rowbase, col base; x = i mage[ r owbase] [ col base] ;
int crowso2, ccolso2; wei ghted_x = x * 0.0;

. . sum = sum + wei ghted_x;
make_static(cmatrix, crows, ccols, crow, ccol);

/*1teration 1: crow=0, ccol =1*/

crowso2=crows/2;, ccol so2=ccol s/ 2; X = i mage[ rowbase] [ col base+1] ;
. . . wei ghted x = x * 1.0;
/*Apply cmatrix to each pixel of the image*/ sum = sum + wei ght ed_x;
for (irow=0;_ irow < irows; ++irow{ -
rowbase = irow crousoz . /*lteration 2: crow=0, ccol=1*/
for (icol=0; icol < icols; ++icol){ X = i mage[ r owbase] [ col base+2] ;
col base = icol-ccolso2;, sum = 0.0; wei ghted x = x * 0.0;

. . sum = sum + wei ght ed_x;
/*Loop over convol ution matrix*/
for (crow=0; crow<crows; ++crow){ /*Iterations 3-8 follow ..*/
for (ccol =0; ccol <ccols; ++ccol ){
wei ght = cmatrix @crow] @ccol];

x = i mage[ rowbase+crow [ col base+ccol]; outbuf[irow [icol] = sum

wei ghted_x = x * weight; 1}
1 sum = sum + wei ght ed_x; /*End | oop over image*/
/*End | oop over convolution matrix*/ Figure 3. Partially Dynamically Optimized Region
outbuf[irow][icol] = sum

}}
* i *
/*End Toop over inmage*/ /*Apply cmatrix to each pixel of the inmge*/
for (irow=0; irow < irows; ++irow ){
rowbase = row1;

for (icol=0; icol < icols; ++icol){

col base = icol-1;

Figure 2. Image Convolution Example

/*Loop over convol ution matrix*/

dternating zeroes and ones (zeroes in the corners). (For the /*Iteration 0: crows=0, ccol =0*/

moment weignore the effect of the DyC-specific dynamic zero and /*All code elininated*/

copy propagation and dead-assignment elimination optimizations

described in section 2.2.7.) All the static computations in Figure 2 [*Iteration 1: crow=0, ccol=1*/
have been folded away by specialization, static uses in dynamic x = image[rowbase] [col base+l1];
computations (e.g., that of ccol and cr owtoindex i nage) have sum =X

been instantiated with their run-time constant values, and the loop /*lteration 2: crow=0, ccol =1*/
over the convolution matrix has been completely unrolled. /*Al'l code elimn nated*/

Completely unrolling the loop has eliminated the direct cost of

branching and induction variable updating, but by making the loop /*Iteration 3: crowsl, ccol=0*/

. . . T L =i wb 1 I'b ;
induction variables cr ow and ccol static, it also indirectly has )s(um L”‘:gﬁ} :OX. ase+l][col base];
enabled the address calculations and load from cmat ri x to be

eliminated. /*1terations 4-8*/

DyC's dynamic zero and copy propagation and dead-assignment
elimination make further improvements to the code for the 1}
dynamic region, as shown in Figure 4. The static compiler plans *
for the possibility of the multiplications and additions being
dynamically optimizable by zero or copy propagation. In addition, Figure 4. Fully Dynamically Optimized Region
zero and copy propagation creates opportunities for dead-

assignment elimination, once again anticipated and planned for

statically. In this example, in each even iteration the multiplication

by 0.0 is folded away, the following incrementsafmremoved by

zero propagation, and the previous load from ithege array

deleted as dead. In each odd iteration, the multiplication by 1.0 is

folded away with thei mage value x copy-propagated to the

following increment of sum.

outbuf[irowj[icol] = sum

End | oop over image*/

2 The optimized code produced by DyC is actually in machine-code format.
We use source code here for readability.



Table 1. Application Characteristics

_ _ Number & Sizeof Dynamically
Program Description Annotated Static Variables val U%.Of Static TO@ Size Compiled Functions
Variables (Lines)
# ‘ Lines ‘ Instructions
Applications
di nero cache simulator cache configuration 8kB I/D, direct- 3,317 8 389 1624
parameters mapped, 32B blocks
nB88ksi m Motorola 88000 an array of breakpoints no breakpoints 12,581 1 L4 145
simulator
m psi MIPS R3000 its input program bubble sort 3,417 1 400 2884
simulator
pnrconvol image convolution convolution matrix 11x11 with 9% ones, 1,054 1 76 1226
83% zeroes
vi ewper f renderer 3D projection matrix, | perspective matrix, 15,006 2 168 1155
lighting vars one light source
Kernels
bi nary binary search over apthe input array and its | 16 integers 147 1 19 134
array contents
chebyshev ||polynomial function |the degree of the polyng-10 145 1 19 146
approximation mial
dot pr oduct ||dot-product of two | the contents of one of thea 100-integer array 134 1 11 84
vectors vectors with 90% zeroes
query tests database entry|a query 7 comparisons 149 1 24 272
for match
r onber g function integration |the iteration bound 6 158 1 24 301
by iteration
3 M ethodo|ogy the two routines we dynamically compile ixi ewper f

(project _and_clip_test, a matrix transformer, and
This paper assesses the benefits and applicability of DyC'sgl _col or _shade_vertices, a shader) are from Mesa
analyses and transformations, both individually and when applied(version 2.5), a freely available implementation of the OpenGL
together, and analyzes why these optimizations achieved therun-time library [24]. The original Mesa program included
performance improvements they did. In this section, we describeadditional versions of its general-purpose shader routine that were
the workload we used for our experiments, explain how we hand-specialized for particular combinations of argument values.
annotated the programs, and describe our experimentalWe deleted these extra hand-specialized versions, letting dynamic

methodology. compilation automatically generate any needed specialized
versions from the general-purpose version.
3.1 Workload We have also included in our workload a set of kernel applications

that have comprised the benchmark suites for other dynamic
compilation systems for C b{nary, chebyshev,

ot product, query, ronber g). The kernels are one or two
orders of magnitude smaller than the applications in our workload
and contain dynamic regions that are, excludi§ksi m two to

Our workload, shown in Table 1, consists of applications that are
representative in function, size, and complexity of the different
types of programs that researchers are targeting for dynami
compilation. All are used in practice in research or production
environmentsdi ner o (version lll) is a cache simulator that can <. X . . _—
simulate caches of widely varying configurations and has been thefight times smaller. We include them to provide continuity to
linchpin of numerous memory subsystem studies since it wasPrévious studies [26, 28] and to contrast their characteristics with
developed in 1984 [1588ksi msimulates the Motorola 88000  (he larger programs.

and was taken from the SPEC95 integer suite [80psi [29] is Our workload is currently limited to these programs for a number
a simulation framework that has been used for evaluating of reasons. First, our manual annotation process (described below)
processor designs that range in complexity from simultaneouswas time-consuming. Second, to be profitable, some programs
multithreaded [11] to embedded processg@msitonvol is an need techniques or optimizations we have not yet implemented.
application from thenet ppbmimage processing toolkit (release 7- For example, a decompression program and a versi@r ep
Dec-93) that performs convolutions on images of various formats could become profitable to compile dynamically if DyC supported
[25]. vi ewper f is the driver for the SPEC Viewperf benchmarks; fast cache lookups over a small range of valess, (integers



between 0 and 255). For such cases, the lookup could be programs were executed 51 times, with the first run discarded (to
implemented as a simple array indexing, in place of DyC'’s currentreduce systems effects) and the rest averaged. When timing
general-purpose hash-table lookup. Finally, we found severaldynamic regions, most benchmarks invoked their specialized
programs that were not conducive to dynamic optimization: one functions many times (tens of thousands of times for the kernels)
type contained dynamic regions that were executed tooto overcome the coarseness of thetrusage timer and to

infrequently or were too small to recoup the dynamic compilation minimize cache effects. We obtained the time for one invocation
overhead; another type contained loops that were too large to béy dividing the average of the measurements by the number of
completely unrolled (a number of dense-matrix operations we invocations timed. The hardware cycle counters were used to

examined suffered from this problem). gather CPU (user + system) times for dynamic-compilation and
. - . dispatching overheads, because the granularitgetfr usage
3.2 Selection of Optimization Targets was also too coarse for these measurements.

Our annotation methodology depended on the type of program. We . .
annotated the kernels to enable optimizations that are comparablé]f- Results and Discussion

to what other dynamic-compilation systems provide. To annotate . - .. .
the applications, we first profiled them witspr of . We then 4.1 Applicability of the Optimizations

examined the functions that comprised the most execution time,rapje 2 indicates which dynamic optimizations could be used by
searching for invariant function parameters. In cases whengach of the programs. All optimizations were needed by at least
invariance was too difficult to infer by inspection, we logged the one of the applications, and several were used by all. Lacking the
values of the functions’ parameters and searched the 10g.complexity of the applications, the kernels could take advantage of
Optimization opportunities were determined by trial and error. For fewer optimizations. Usually they could apply only the
example, to determine whether complete loop unrolling was gptimizations that are used to all applications (unchecked
beneficial, we generally first performed the unrolling, but then gispatching, complete loop unrolling, static loads); rarely could
disabled it (by removing an annotation) if it did not improve hey take advantage of the optimizations that are unique to DyC
performance. (multi-way loop unrolling, dynamic zero and copy propagation,
By using this unsophisticated methodology, we have undoubtedlydynamic dead-assignment elimination, dynamic strength
missed opportunities to apply dynamic compilation. In particular, a reduction, internal dynamic-to-static promotion, and polyvariant
number of additional procedures iT88ksi m or vi ewper f division). This difference suggests that studies of dynamic
could potentially benefit from dynamic compilation. One of our compilation opportunities should focus on larger, more realistic
future research goals is to automate program annotation usingprograms.

techniques such as value profiling [2] to identify static variable . .

candidates, and a cost-benefit model to select appropriate4.2 Dynamic Region Performance

optimizations. Basic performance results for the dynamic regions of both the

3.3 Experimental Methodology applicatio_ns and the kernels appears in Table 3. We report
asymptotic speedups, break-even points, and dynamic compilation
The binding-time analysis and the dynamic-compiler generator aregverhead. Asymptotic speedup represents the optimal
implemented in the Multiflow compiler [23], which is roughly improvement of dynamically compiled code over statically
comparable to today's standard optimizing compilers. (As a point compiled code (excluding dynamic compilation overhead), and is
of reference, dynamic regions in the applications executed oncalculated as/d, the ratio of statically compiled execution cycles
average 8% more slowly when compiled with Multiflow than with  (s) over dynamically compiled execution cycled.(The break-
gcc - Q2; kernels were 7% faster) Because our version of even point is the number of executions of the dynamic region at
Multifiow had an incomplete implementation of the DEC Alpha which statically and dynamically compiled code (including
calling convention, most of the non-dynamically compiled dynamic compilation overhead) have the same execution times; it
procedures of the applications were compiled with DEC's C js calculated a®/(s-d), whereo represents cycles of dynamic
compiler orgcc. compilation overhead. Dynamic compilation overhead is measured
Each application in our workload has a statically compiled and as cycles per dynamically generated instruction; we also include
several dynamically compiled versions, depending on whatthe number of instructions generated to place the instruction-
optimizations are turned on. The statically compiled version is specific overhead in context.

compiled by ignoring the annotations in the application source. We aAsymptotic dynamic-region speedups for the applications ranged
used the same options to Multiflow for both the statically and wjdely, from 1.2 to 5.0. The higher speedups fémpsi and
dynamically compiled versions. This means, for example, that 1g88ksi m(5.0 and 3.7, respectively) occurred because most of the
loops unrolled (by some constant factor) in the statically compiled code in their dynamic regions could be optimized away as static
version are also statically unrolled in the dynamically compiled computations. The gain ipnnconvol was primarily due to the
versions, in addition to any run-time complete loop unrolling. benefits of applying a single optimization, dynamic dead-
All programs were executed on a lightly loaded DEC Alpha assignment elimilnation, which was enabled by complete loop
21164-based workstation with 1.5GB of physical memory. A unrolling and static loads.

single input was used for each program (described in Table 1).greak-even points for the applications are well within normal
Mid-sized inputs for the kemels were chosen from the sets of ypjication usage, showing that the greater efficiency of the
inputs used in the studies in which the benchmarks originally gynamically generated code can more than compensate for the
appeared. Application inputs that exercised our optimizations gynamic compilation cost. For example, dynamically compiling
usually were chosen from among those provided with their gi her o pays off after simulating only 3524 memory references —
packages. today’s cache simulation results are obtained by simulating
Execution times for both the whole programs and their dynamic millions or billions of referencesmi psi’s break-even point
regions were measured usiggt r usage (for user time). Whole depends on the number oéinterpreted instructionsi.€., the



Table2: Optimizations Used by Each Program

Optimization
) ) Dynamic . . Internal
Dynamic Region || Complete | gratic | Unchecked Dead- Dynamic | o | Dynamic Dynamic-to- Poly-
Loop Loads | Dispatching | Assignment zero& Copy | o | Strength Static variant
Unrolling? Elimination Propagation Reduction Promotions Divison
di nero: O ad O
mai nl oop
mB8ksi m SW O ad
ckbrkpts
m psi: MW O ad O O
run
pnnconvol : SW O d O O
do_convol
vi ewper f : O d O O
project&clip
vi ewperf: SW O ad O O O ad
shader
bi nary MW O ad
chebyshev SW ad O
dot product SW O ad O O
query SW O a
ronberg SW ad
a. SW = single-way, MW = multi-way
Table 3: Dynamic Region Performance with All Optimizations
Asvmptotic DC Overhead Number of
Dynamic Region gpee%u Break-Even Point (cycles/instruction Instructions
P generated) Generated

di nero: mai nl oop 1.7 1 invocation (3524 memory references) 334 634
nB88ksi m ckbrkpts 3.7 28 breakpoint checks 365 6
m psi:run 5.0 1 invocation (484634 instructions) 207 36614
pnntonvol : doconvol 3.1 1 invocation (59 pixels) 110 2394
vi ewperf: projecté&clip 1.3 16 invocations 823 122
vi ewper f : shade 1.2 16 invocations 524 618
bi nary 1.8 836 searches 12 304
chebyshev 6.3 2 interpolations 31 8Q7
dot pr oduct 5.7 6 dot products 856 50
query 1.4 259 database entry comparisons 53 71
ronber g 13 16 integrations 18 1206

number and size of the loops in m psi 's input program) relative emission, branch patching, hole patching, and the static
to the total size of the input program. For many inputs, conditional computations. Although DyC is quite fast, each of these costs
specialization as described in section 2.2.5 could be used to limitcould be further reducedli(ner o, in particular, suffers from our
dynamic compilation to those partsmifpsi 's input program that inefficient handling of dynamic branches). For example, we have
are heavily executed. not yet implemented the optimization we previously described as
linearization [14], which would reduce the cost of saving and
The main contributors to dynamic-compilation overhead are cacherestoring values of static variables at dynamic branches by
lookups, memory allocation, handling of dynamic branches, performing a renaming similar to SSA form [8].
checks for dynamic zero and copy propagation, dead-assignment
elimination, and strength reduction, operations to ensure Complete loop unrolling generates more instructions than the other
instruction-cache coherence, instruction construction and optimizations and accounts for most of the instructions generated.



Table 4: Whole-Program Performance with All Optimizations

Execution Time (sec.)
Execution Timein the Dynamic Average
Application Statically Dynamically Regions _ Pvrvog?lfm
Compiled Compiled (% of total static execution) Speedup
di nero 1.3 0.9 49.9 15
nmB8ksi m 81.0 76.8 9.8 1.05
m psi 20.8 4.5 ~ 100 4.6
pnntonvol 10.8 3.6 83.8 3.0
vi ewper f 1.7 1.6 41.4 1.02

These numbers were particularly highinmi psi , becauseit unrolls
the interpretation of its entire input program, and in pnntonvol ,
because each iteration is large. The number of instructions
generated is small in nB8ksi m because its dynamic region is a
routine that checks breakpoints and the SPEC input contains none.
With other inputs, the number of generated instructions should rise
and the dynamic overhead per instruction fall. For example, our
experiments with 5 breakpoints yielded 98 generated instructions
at acost of only 66 cycles per instruction.

In contrast to the applications, dynamic regions in the kernels are
small, with simple code idioms. Consequently, optimizations they
use can usually be applied to the entire region, but, on the other
hand, not many optimizations can be applied. The high kernel
speedups can be attributed to a key optimization or a particular
input. For example, chebyshev is dominated by static calls to
the cosine function, most of which are memoized through dynamic

compilation. dot pr oduct ’s static input vector was 90% zeroes

speedup from Table 3 with all optimizations turned on, and later
columns show the reduced speedup with a selected optimization
disabled. Only those entries corresponding to applicable
optimizations (those with a check mark in Table 2) are shown.

4.4.1 Complete Loop Unrolling

Despite its expansionary effect on code size and the consequence
for instruction bandwidth requirements and cache footptints,
complete loop unrolling (single-way and multi-way) was the single
most important optimization (column 3). Complete loop unrolling
was responsible for much of the speedup in the applications, and
without it, most programs experienced slowdowns relative to their
statically compiled counterparts. Some of complete loop
unrolling’s benefits stem from the elimination of all loop overhead,
but additional benefit is realized because it enables other dynamic
optimizations. For example, static loads and dynamic strength
reduction indot pr oduct only apply when its loop induction

and therefore most of the calculations were eliminated; ourvariable is a static variable; this only occurs when the loop is
experiments on more dense vectors produced speedups similar toompletely unrolled. A similar dependence exists between multi-
those of the other kernels, and with no zeroes the dynamicallyway loop unrolling and static calls, static loads, and internal
compiled version experiences a slowdown due to poor instructiondynamic-to-static promotions imi psi, and single-way loop
scheduling. unrolling and static loads inB8ksi m nB8ksi munrolls over a

DyC achieves speedups and break-even points on the kernels th&f@tic table of breakpoints which eliminates loads of the table
are comparable to other dynamic compilation systems [26, 28], entries.m psi multi-way unrolls over a static instruction array,
That being said, however, quantitative comparisons of these€liminating loads of instructions and the instruction decoding logic
systems are not particularly meaningful, because all execute orfollowing the loads, and dynamically memoizing calls to the
different underlying architectures. Our preliminary studies indicate 2ddress translation routine. Sometimes an inter-dependence exists
that several microarchitectural features, in particular, instruction P&tween complete loop unrolling and another optimization: for

issue width, dynamic-scheduling support, and Li-instruction- €x@mple, in pnntonvol —complete loop —unrolling opens
cache size, are major determinants of dynamic-compilation OPPOrtunities to apply dynamic dead-assignment elimination;
performance. eliminating the dead assignments then enables us to unroll larger

loops.
4.3 Whole-Program Performance .
J . _ 4.4.2 Static L oads
Whole-program speedup due to dynamic compilation depends on

the proportion of total run time that is spent executing the dynamic Static loads (column 4) played a similar role to that of complete
region. In our applications, the percentage of execution time spenf0OP unrolling. The optimization was very important in all
in the dynamic region ranged from 9.8% ft88ksi mto almost applications and most kernels, both for its direct benefits from
the entire execution fari psi (see Table 4). Overall application ~eliminating loads and as an enabling optimization.

speedup, including the cost of dynamic compilation, was not quite . .

proportional to this fraction of asymptotic speedup (due to ca(:he4'4'3 Unchecked Dispatching

and other system effects) and ranged from 1.02 to 4.6. All of our benchmarks contain some static variables whose values

. L. - . remain invariant throughout program execution. To avoid costl
4.4 Analysisof Individual Optimizations execution-time cache Icg)okupsr? Wge annotated the variables with tr)lle
To study the effectiveness of individual optimizations, we cache-one-unchecked policy. Under this policy, the dispatch is
compared our normal configuration with all optimizations enabled

against configurations each of which disabled one optimization; 1 Asmentioned in section 2.2.5, conditional specialization could be used to

the results appear in Table 5. The second column gives the original prevent unreasonable code expansion due to complete loop unrolling.




Table 5: Dynamic Region Asymptotic Speedupswithout a Particular Feature

Without:
i i With All Complete Dynamic Dynamic Dynamic Internal Poly-
Dynamic Region Opts Loop Static | Unchecked | Static Zer0& Copy Dead- Strength Dynamic-to- | | 2o
. Loads | Dispatching | Calls . Assignment . Static o
Unrolling Propagation s Reduction ) Division
Elimination Promotions

di nero: 1.7 0.9 1.6 1.03

mai nl oop

nmB8ksi m 3.7 0.4 0.6 1.6

ckbrkpts

m psi: 5.0 0.9 0.9 5.0 0.9 0.9

run

pnntonvol : 3.1 0.8 0.8 3.1 2.1 0.9
do_convol
vi ewper f : 1.3 1.1 1.3 1.1 1.3

project&clip
vi ewper f: 1.2 1.0 1.1 1.2 1.02 11 1.2 1.1
shader

bi nary 1.8 0.6 1.3 0.6
chebyshev 6.3 0.9 6.0 1.2
dot product 5.7 0.3 0.9 3.4 0.7 0.7
query 1.4 0.5 0.5 0.6

ronberg 13 0.8 1.2

implemented using a load and an indirect jump. An unchecked
dispatch requires about 10 cycles, according to our measurements.
In contrast, a genera-purpose hash-table-based dispatch
(supporting the default cache-all policy) requires on average 90
cycles. Inm psi , this figure rises to 150 cycles per dispatch, due
to collisionsin its hash table.

Although cache-one-unchecked has better performance, it is
potentially unsafe, because an annotator may mistakenly use it for
static variables whose values do change. Our results indicate that
for many rea applications, the safe cache-all policy can be used
without sacrificing much performance (column 5). With one
exception, speedups with cache-all were identical or very close to
speedups with cache-one-unchecked, because few of the cache
lookups were actually executed. The cache-one-unchecked policy
is important to mB8ksi m however, because it enters its dynamic
region for each simulated instruction; conseguently, with cache-all
nmB8ksi mwould incur a cache lookup for each instruction. The

particularly where only one or a few possible combinations of
values occur.

4.4.4 nfrequently Used but Pivotal Optimizations

Some optimizations were used infrequently, but, when used, were
extremely profitable (static calls, zero and copy propagation, dead-
assignment elimination, strength reduction, internal dynamic-to-
static promotions, and polyvariant division (columns 6-11)). For
example, treating calls to cosine as staticliebyshev turned a
marginal 20% advantage over the statically compiled version into a
6-fold speedup.m psi required all three of complete loop
unrolling, static loads, and static calls to achieve its 5-fold speed-
up; without any one of these psi slowed down.

The dynamically compiled region @ginntonvol executed 3.1
times faster than its statically compiled counterpart, mainly from

kerels were more sensitive to cache-all's overhead (in fact, the contribution of dynamic dead-assignment elimination. Without

bi nary and query suffered slowdowns relative to their c ! !
statically compiled ~versions), because there were too few by @ factor of 2.7, causing slowdowns relative to the static code.
instructions executed in their small dynamic regions to amortize

the cache-lookup cost.

it, the amount of generated code exceeded the size of the L1 cache

Strength reduction appears to be a similarly pivotal optimization,
but until DyC does strength reduction automatically, we withhold

These results demonstrate that the performance of some programsdgement. Our manual source-code implementation may result in

could benefit from careful engineering of the dispatel.,( to

optimistic results, because it incurs dynamic compilation overhead

avoid collisions). Our implementation of cache-all is not highly only where strength reduction is known to be profitable.
optimized. It stores the static variables that comprise the cache'sConversely, our manual method may miss opportunities for
hash key into a structure, performs a function call that computes astrength reduction.

hash function based on these values, and then does the lookup. A

faster version would inline the hash function, only hash on the vi ewper f ’s shader required intraprocedural polyvariant division
subset of live static variables being promoted at that point, and usdn order to specialize for the values of variables that were derived
cheaper hash functions when possible. Other techniques, such a&s static only on some paths through the procedure. Without
inline caching [9, 16] and efficient dispatching algorithms for polyvariant division, many of the other optimizations could not
multimethods [10, 3], could further reduce the cost of the lookups, have been performed.



5. Related Work

As mentioned in the introduction, several previous systems
performed selective dynamic compilation, including Tempo [6,
26], Fabius [21], ‘C [12, 27, 28], and our previous system [1].

techniques are not universally applicable, but they still make a
major impact on particular subsets of benchmarks; such
optimizations include dynamic strength reduction, dynamic zero
and copy propagation, dynamic dead-assignment elimination,
static calls, and internal dynamic-to-static promotions. Other

Previous publications have compared DyC's features to these othefechniques are not proven in our current benchmark suite, but
systems in detail [13, 14], but in general, DyC supports more could be very important for variations on these benchmarks. For
flexible treatments of polyvariant specialization and division than example, interpreters and instruction simulators suchi @i |

the earlier declarative systems, including the important idioms of could benefit from conditional specialization via polyvariant
multi-way loop unrolling and conditional specialization. DyC is division in order to avoid specializing paths that are never or only
unique in supporting automatic caching of dynamically compiled infrequently executed.

code, internal dynamic-to-static promotions, policy annotations As with other current dynamic compilation systems, DyC relies on
controlling cache policies, and staged versions of dynamic zero Y P Y DY

and copy propagation and dea-assgnment cminato. Tempc SATEr Anelalons o chocse good dynamic fegons and
supports an automatic side-effect and alias analysis within a : y 9

compilation unit to eliminate some of the need for static loads andgggg :g’r']gga:reef;ﬂﬁo Orfan?%near;m((:)u?onrggil?:g%;r ;Peep?;j% build
calls, and it also supports interprocedural dynamic regions. Fabiuson this understandinp bg develo i.n a svstem tJhat woF:ks towards
addresses only purely functional ML programs, and because of its 9oy ping a sy

limited context of applicability, can perform all dynamic ?hu;?:l?ttcl)rr]ga:ik(l:;lp 0|I((:e)r/fc()jr(re‘r?ssgn:érr?igrclcc));g-ilt:trirc])qngaC)saL:f?eao?r{r?;?\m
compilation automatically and safely, given only hints through a ; A1y performs dy . P ) y
function currying syntax. "C's imperative approach offers possible compiler optimizations, guided by static analyses and

programers direct control over dynamic compilation and profile-driven feedback.

optimization, but its high cost in programming complexity may

hinder the use of sophisticated optimizations. Register allocation isACknOWIedgmentS

the only automatic run-time optimization performed by "C. Our We owe thanks to David Grove and the anonymous PLDI
previous system included only a limited form of polyvariant reviewers for improving the quality of our discussion, and to
specialization that was tailored for single-way loop unrolling, Tryggve Fossum and John O’Donnell for the source for the Alpha
lacked polyvariant division, dynamic zero and copy propagation, version of the Multiflow compiler. This work was supported by

and dead-assignment elimination, and did not specialize theONR contract NO0014-96-1-0402, ARPA contract N00014-94-1-
dynamic compilers for particular dynamic regions (which led to 1136, NSF Young Investigator Award CCR-9457767, and an Intel

much greater dynamic compilation overhead). Most importantly Graduate Fellowship.

for this paper, however, is that previous systems were only

evaluated on kernel-sized benchmarks; our emphasis in this papeReferences

has been to develop and assess techniques targeting the needs[ﬂ
much larger programs.
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