Towards Automatic Construction of Staged Compilers

Matthai Philipose, Craig Chambers and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle, WA 98195-2350 USA

{matthai, chambers, eggers}@cs.washington.edu

Abstract

Some compilation systems, such as offline partial evaluators and
sdective dynamic compilation systems, support staged
optimizations. A staged optimizationisonewherealogicaly single
optimization is broken up into stages, with the early stage(s)
performing preplanning set-up work, given any available partia
knowledge about the program to be compiled, and the fina stage
completing the optimization. The final stage can be much faster
than the origina optimization by having much of its work
performed by the early stages. A key limitation of current staged
optimizersisthat they are written by hand, sometimesin an ad hoc
manner. We have developed a framework called the Saged
Compilation Framework (SCF) for systematicaly and
automatically converting single-stage optimizations into staged
versions. The framework is based on a combination of aggressive
partial evaluation and dead-assignment eimination. We have
implemented SCF in Standard ML. A preliminary evaluation shows
that SCF can speed up classical optimization of some commonly
used C functions by up to 12x (and typically between 4.5x and
5.5x).

1 Introduction

Information relevant to program optimization becomes known at
different stages during program compilation and execution. These
stages include:

1. traditional separate compile time, when each single-file piece
of aprogram becomes available,

2. library assembly time, which offers new interprocedura
analysis opportunities,

3. program link time, which offers more interprocedural analysis
opportunities and possibly closed-world analysis opportunities
aswell,

4. initial program load time, when details of the execution
platform become known,

5. dynamic load time, when knowledge of run-time extensions or
changes to the program can be exploited, and

6. run time, which offers opportunities to customize the compiled
code to the application’s actual run-time behavior.

time compilers can perform interprocedural and whole-program
analysis [16, 9, 6, 10, 11, 31, 12], and run-time compilers can
optimize based on dynamic program behavior [19] or target
platform characteristics [5], all with substantial performance gains.

Optimizing on the basis of late-stage information comes with a
challenge. The later the stage, the faster (in terms of time per
instruction analyzed) the optimizer run at that stage needs to be.
One reason for this requirement is that information relevant to
optimization typically changes more frequently at later stages.
Consider the dynamic loading and the run time stages, for instance.
Typically, each time a module is dynamically re-loaded, it is run a
large number of times. Correspondingly, for each instance of load-
time optimization, we expect many instances of run-time
optimization. Since the cost of each instance of load-time
optimization is amortized over a larger period than that of run time
optimization, we are typically willing to incur a higher overhead at
load time.

A commonly used technique to achieve fast late-stage optimization
is to explicitly design versions of optimizers for the late stage that
are “leaner”. These optimizers have a carefully chosen subset of the
functionality of their early-stage counterparts. For instance, just-in-
time compilers have a smaller set of optimizations than typical
static optimizing compilers, and the optimizations themselves are
often non-iterative and local. Also, link-time optimizers are often
flow insensitive, whereas separate compile time optimizations are
flow sensitive. This technique of sacrificing functionality to speed
up optimization has proven to be effective in many cases.

We are investigating a complementary approach to speeding up late
stages, callestaged optimization, in which early-stage cycles are
used for pre-planning and partially executing late-stage
optimization. The intention is that by thus increasingdffiective
amount of time available to the late-stage optimization (while
hopefully not overly burdening the early stage), our late-stage
optimizations don’t have to be as lean as, and can therefore be more
effective than, optimizations that run wholly in the late stage.

Staged optimization exploits the fact that for many programs,
although precise input values to an optimization may not be
available until a late stage, soragproximate knowledge of these

inputs is available at an early stage. For example, it may be known,

Exploiting the information available in later stages can lead to muchat separate compilation time, which variables and data structures
better optimization, in practice as well as theory. For example, link- are likely to have invariant values, which methods are the likely

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercia advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, tc
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

POPL '02, Jan. 16-18, 2002 Portland, OR USA

© 2002 ACM ISBN 1-58113-450-9/02/01...$5.00

targets of particular dynamic dispatches, and which branches are
likely to be biased, but the actual values, methods, or branch paths
may be unknown until link time, load time, or run time. It is
possible to exploit this early knowledge by designing the
optimization so that it executes over many stages. The part that
executes at an earlier stage could exploit early knowledge by pre-
computing the possible calculations and outcomes of the later-stage
parts, and generating a customized version of later-stage parts that
performs only the analysis needed to resolve what was unknown in
the earlier stage. Since the customized late-stage part needs only to
complete the optimization, late-stage optimization costs are

lowered. Further, since a given piece of early-stage information
may approximate many later-stage instances, the overhead of
building a customized optimizer at an early stage can be recouped
over many later-stage uses.

Staged optimization has been shown to be both fast and effectivefor
run-time compilation of non-trivial programs [15, 21, 8, 25].
However, although these systemshave validated theidea of staging,
the complexity of engineering them to stage arbitrary optimizations
isabarrier to their widespread adoption. In fact, al but one of these
systems only stage a single optimization i.e. partial evaluation. In
spite of the fact that a vast literature exists on staging partia
evaluation, building these systems was quite challenging.

Our previous system, DyC [15], usefully staged optimizations
beyond partial evaluation i.e. copy propagation and dead-
assignment elimination. Our experience convinced us that hand-
writing staged versions of optimizations is substantially more
difficult and error-prone than writing their unstaged counterparts.
The principal difficulty is that where traditional optimizations
reason about the behavior of the program to be optimized, a staged
optimization has to reason about the behavior of the optimization
itself when applied to that program. In effect, the early stage hasto
perform a kind of case analysis of al the ways that optimizations
might proceed at run time, and then pre-compute for each case as
much of the final result as possible. Reasoning at this “meta” level
is a significant burden on the compiler writer.

To address this difficulty, we present in this paper an initial proof-
of-concept system called SCF (for “Staged Compilation
Framework”) that can automatically and mechanically construct a
staged compiler from the implementation of a single-stage
optimizer. The compiler writesimply writes normal program
optimizations that (typically) input a program and output a
transformed version of the program. The optimizations are written
in a first-order side-effect free subset of ML called SCF-ML.

Beyond using this language, the compiler writer need not be aware

that the optimization is to be staged. At any stage, given
approximate information about the inputs to the optimization, a
compileruser (who may be distinct from theriter) may feed the
optimization and the information to a program called dfager,

*Many optimizations may be naturally written in a functional
language. This allows us to require that optimizations are written
in a purely functional, first-order subset of ML, thus skirting
issues related to side effects and control-flow analysis.

* Optimizations tend to use certain data structures extensively,
e.g., maps and sets. This enables us to provide pre-defined
variants of these data structures. Our specializer understands
their semantics, allowing it to model accurately this large class
of complex computations.

A common class of recursive calls in optimizations, fixpoint
loops to process recursive commands, is known to often [1]
terminate within a (typically very small) fixed number of
iterations independent of the program being optimized. This
provides a natural and effective bound on the degree of context
sensitivity used by the specializer.

* Optimizations are typically not very large (hundreds to
thousands of lines, say), so that it is not impractical to use
extensive specialization and highly context-sensitive algorithms.

Exploiting these advantages has enabled us to design and build an
effective automated staged compilation system.

This paper makes three main contributions:

1. It motivates and formulates the design of a staged compiler in
terms of systematic specialization of an unstaged compiler.

2. It describes a set of techniques for specializing compiler
optimizations so as to get a substantial speedup.
Novel aspects of these techniques include a very expressive
domain for our online partial evaluator, a simple but effective
finiteness analysis over this domain to determine arguments
for specialization, a context sensitivity strategy tailored to the
concrete behavior of the input program, and a dead assignment
elimination algorithm that co-operates with the partial
evaluator to enable effective dead assignment elimination
through commonly used data structures.

3. It evaluates an implementation of the design, targeted at staged
compilation of C programs. The evaluation shows our
techniques can produce staged compilers that are several times
faster than their unstaged versions.

which will automatically produce a version of the optimization The rest of the paper is structured as follows. Section 2 presents a

specialized for the approximate information, and an approximatebrief overview of the design of $CF followed by a Qetailed example
representation of the possible results of the optimization on the®f how our system works. Sections 3 and 4 describe the framework

approximate input. in some detail, with particular attention to novel aspects necessary
for effective specialization. Section 5 presents an evaluation of our

The design of the system is based on two insights. First, theihe framework. Section 6 discusses related work, and section 7
approximate information, describing both inputs to and results of apresents a summary and future work.

staged optimization, may be viewed uniformly assthief possible .

concrete values assumed by the formal parameters and the return 2 Overview and example

values respectively of the optimization function, at later stages. In Section 2.1 presents a high-level schematic of SCF. Section 2.2 then
SCF, we represent these sets of values using an augmented form pfesents a detailed example to illustrate inputs and outputs of
regular tree expressions [3]. Second, the effect of a hand-written various parts of the framework.

staged optimization on its approximate input is similaystematic i~ it
specialization of an ordinary, unstaged version of the optimization 21 H Igh level descri ption of SCF
Figure 1(a) illustrates the compiler writers’ view of SCF. They write

with respect to the approximate input. In our current design, the

specializer (which we call thetager) consists of an aggressive a set of optimization®; some subset of which may be sequenced
online partial-evaluation forward pass composed with a deadto form a conventional optimizing compiler pipelify..Oy, that
assignment elimination reverse pass. takesin aprogram P to produce an optimized program P

Each optimization O; is a program transformer that takesin

an arbitrary ML data structure P; (typically a tree
representation of the procedure to be optimized and possibly

additional context information about the properties of the

procedure’s formal parameters, the target machine

characteristics, or the program’s class hierarchy) and

produces a transformed ML data structigq. Writing

« Optimizations tend to be compositional over their input these optimizations should be the same amount of work as
programs. This allows our finiteness analysis, which determineswriting an optimization pipeline in a regular unstaged
which arguments to specialize, to be very effective. compiler.

The devil is in the details. For general inputs, it is notoriously

difficult [29] to design effective online partial evaluators or dead

assignment eliminators (which, as Reps pointed out [27], are very
similar to program slicers) that have reasonable termination
behavior. Focusing on specializing compiler optimizations has
some key advantages over specializing arbitrary programs:

P= Pl O]_ PZ 02 AAAP%n On PI’]+:_! = Popt
@
O O |----. O,
I:Il |2 \l/ |
early stage
T --------------.--------.l.;t;;tgg;
P:AP_l_é O’l A__Pgé 0'2 _____ F;n O‘n _Enf]; POpt
(b)

Figure 1: High-level views of SCF

Figure 1(b) illustrates the compiler users’ view of staging an initial

pipeline of optimizationsO;..0, with respect to a partial

description of any of its eventual inpuf to produce a specialized

pipeline O’;..0",.. The partial description | defines the set of
possible inputs (i.e., programs and context information) on which
the specialized pipeline might be invoked. The specialized pipeline
can then berun on any input P that isamember of the set described
by 1, to produce a corresponding optimized program Pgy.

Each speciaized optimization O’ is what is left of the original
optimization O; after all the parts of its work that can be
precomputed based solely on information in I; have been; the work
that remains will finish the optimization when it isfinaly given the
complete program and context information P;. When staging a
whole pipeline, apipeline of specialized optimizationsis produced.
The specidized pipeline O’;..0’\, can be run just like the original
pipeline O1..0p, with exactly the same result Py, as long as its
input P is amember of the set of expected inputs described by I.

The stager does not run its input optimization, but rather takes as
input the source codeof the optimization O; and the partial

description I; of the optimization's possible inputs to produce the

source code of the specialized optimizeO’; and a partia

description ;. 1 of the optimization’s possible outputs. In the second

stage, the specialized optimization pipelidg..O’,, can be run on
an input program P to produce an optimized program Pgy.

2.2 Anexample

We show in this section how SCF may be used to stage a compiler
containing n = 3 optimization phases, with constant propagation,
copy propagation and dead-assignment elimination as
optimizations O4, O,, and O3. We will apply this compiler to
staged compilation of the function mul _add infigure 2. Say this
function is in file rul _add. c. Also, for concreteness, say the
early stage is separate compile time and the late stage is run time.

int rmul _add(int x,
int u=x=m* a;
int w=u+y;
return w, }

int y, int a) {

Figure 2: Function to be optimized

2.2.1 Inputsto SCF

SCF has two kinds of inputs: the concrete optimizations O;
provided by the compiler writer(s), and the input information I,
about the function to be optimized, provided by the compiler user.

The compiler writer must write the three optimizations in the
pipeline in the SCF-ML language. Figure 3 shows how dead-
assignment elimination may bewritten in SCF-ML. We assume that
this module is defined in a file dae. scf - m . The optimization is
implemented as an analysispass (function anal yze_f un), followed
by atransformation pass (function t r ansf or m f un). The analysis
function computes, using a threaded set (I Set) of live variables, a
map (aMap) which indicates whether each assignment in the
incoming AST islive or dead. The transformation consults the map
to prune out the dead assignments.

As the figure shows, the optimization may be specified quite
naturally using SCF-ML. This has been our experience with thetwo
other intraprocedural dataflow-based optimizations we
implemented as well. SCF-ML provides built-in support for map
and set datastructures. The Set and Map functor applications in the
figure serve merely as syntactic sugar to facilitate introduction of
the corresponding pre-defined data structures while ensuring that
the optimization remainsavalid ML program.

For purposes of this example, we assume that the constant
propagation optimization (implemented, say, in module CoP and
file const_prop.scf-m) has a dightly non-traditional
interface. Say the optimization uses the traditional constant-
propagation lattice with elements that belong to the sum type
lattice_val = non_const | const of int |
unknown. Say, however, that in addition to the body of the
function f to be optimized, the entry function CoP. opt i m ze of
the constant propagator takes as argument a bindings list providing
the constant-propagation lattice values to which the formals of f
should be bound at the beginning of constant propagation onf, i.e.,
CoP. opti m ze: AST.Fun * (CoP.lattice_val
list) -> AST. Fun.

Finally, we assume the copy propagation pass is implemented as a
conventional function-to-function transformer in module CyP, in
filecopy_prop. scf-m i.e,CyP. opti ni ze: AST. Fun->
AST. Fun.

We now turn to how the compiler userstages a pipeline containing
the above three optimizations. The user is interested in compiling
and running a C program, of which the nul _add function of
figure 2 is a part. Typically, at static compile time, the user would
have determined via profiling that the function is heavily used by
their C program, and is therefore worth dynamically optimizing.
Further, value-profiling may have revealed that the variable a
changes infrequently and is therefore a good candidate to be
designated as arun-time constant. At this point, the user might want
to use the SCF framework to stage the optimization pipeline
0;..0,, and thereby produce a version of this pipeline specialized
to optimize the nul _add function under the assumption that its
third argument a is someinteger constant, whose vaue will be
revealed at run time.

Figure 4 shows the ML expression the user would have to evaluate
(at static compile time) to achieve this end. The expression
essentialy constructs arepresentation | 1 of the early-stage partial
description of the value of the argument to the first optimization in
the pipeline i.e. constant propagation, parses in the SCF-ML
programs corresponding to the three optimizations, and uses the
stager on the optimizations O in a sequential manner to produced
specialized optimizations Oi' . Note that the values 12 and 13,
which represent the possible results of executing optimizations O1
and O2 are used as inputs to stage the next optimization in the
pipeline. Finally, the optimization programs output by the stager are
written back to disk.

structure DAE = struct
open AST import declarations of input program representation
datatype Liveness = dead | live

(* LiveSet s hold the set of live variables at each point *)
structure LiveSet Md = Set(type val ue=Var)
type LiveSet = LiveSet Md. set
(* Assi gnMaps record whether each assignment islive or dead *)
structure Assi gnMapMd = Map(type key=Label
type val ue=Li veness)
type AssignMap = Assi gnMapMd. map
fun optim ze(f:Fun):Fun =
transform fun(f, analyze_fun(f))
and anal yze_fun(func(_, _,c,_):Fun):AssignMap =
let val (_, aMap) =
anal yze_cmd(c, LiveSetMd. enpty, AssignMapMod. enpty)
in avap end
and anal yze_cmd(c: Cnd, | Set:LiveSet, aMap: Assi gnMap)
:(LiveSet * AssignMap) =
case ¢ of
assign(v, e, Ibl) =>
let val Iv = if LiveSetMd. menber(lSet, v)
then live el se dead
in (anal yze_expr(e, LiveSethbd.delete(lSet, v)),
Assi gnMapMod. i nsert (info, Ibl, lv)) end
I'seq(c.c’,) =>
let val (ISet,aMap) = analyze_cmd(c’,|Set,aMap)
in analyze_cmd(c,ISet,aMap) end
| return (e,_) => (analyze_expr(e, ISet), aMap)
| while_do(e, ¢,) =>
let val (ISet’, aMap’) = fix(ISet, aMap, e, ¢)
in (analyze_expr(e, ISet'), aMap’) end
| ... other Ot caseshere...
and anal yze_expr (e:Expr, ISet:LiveSet):LiveSet =

case e of
var_ref(v,) => LiveSetMod.add(ISet, v)
| primop(op,es) => analyze_exprs(es, ISet)

| ... other Expr caseshere...

and anal yze_expr s(es:Exprs, ISet:liveSet):LiveSet=

case es of
exprs(e,es) =>analyze_exprs(es,analyze_expr(e))
| exprs_none =>Set

and fi x(live_fix:LiveSet, live_entry:LiveSet,
assigns:AssignMap, test:Expr, body:Cmd)
‘(LiveSet * AssignMap) =
let val live_head = analyze_expr(test, live_fix)
val (live_back, assigns1) =
analyze_cmd(body, live_head, assigns)
val new_live_fix = meet(live_entry, live_back)
in
if LiveSetMod.equal(live_fix, new_live_fix)
then (live_head, assigns1)
else fix(new_live_fix, live_entry,
assigns, test, body)
end
and neet (livel:LiveSet, live2:LiveSet):LiveSet =
LiveSetMod.union(livel, live2)
and transformfun(func(fname, formals, c, Ibl):Fun,
aMap:AssignMap):Fun =
func(fname, formals, transform_cmd(c, aMap), Ibl)
and transform cnd(c:Cmd, assigns:AssignMap):Cmd =
case c of
assign(v, e, Ibl) =>
case AssignMapMod.find(assigns, c) of

SOME dead => skip(lbl)(* replace with empty cmd *)
|SOME _=>¢ (* leave unoptimized *)
end
| seq(c,c’,bl) =>

seq(transform_cmd(c,aMap),transform_cmd(c’,aMap),Ibl)
| while_do(e, c, Ibl) =>
while_do(e, transform_cmd(c), Ibl)
| retun _=>¢
| ... other Ond caseshere...
end (* DAE structure *)

Figure 3: Implementation of dead-assignment elimination in SCF-ML

One part of figure 4 requires further explanation. The call to
t oAbsVal ue convertsaconcrete ML value containing the special
construct Sonel nt into an abstract valuel 1 which represents a
set of concrete values. Sonel nt should be considered a specia O-
ary variant of type i nt. In this case, the set of concrete values
represented by 1, written 1] is {(P1,

[CoP. non_const, CoP. non_const, CoP. const (i)]) |iO
Integers}, where P1, as defined in figure 4, is smply an ML data

the specialized optimizers (written to the files suffixed

“. staged. scf-m "in figure 4) by calling the ML-function of

figure 5 with the value @ as argument, and then jumps to the array

of machine code returned by this function call.

A few points are worth noting about the function of figure 5. First,
note that it is a function specifically generated (at static compile

time) to allow its caller to optimize functionul _add with respect

to the late-stage value afand the pipeline discussed above. This
“stub-function” is typically generated as part of the expression in
figure 4 (but not shown there for clarity). Second, although for
clarity we show the run-time optimizer as parsing ¢ _add
function from disk, sincerul _add was known at static compile
time, it could have been parsed at that stage, and its resulting AST
stored in the text segment of the C program so that run-time parsing
could be avoided. Third, note that the last action of the parser is to
generate machine code for the optimized _add function via the
codegen function. This illustrates a useful level of flexibility
provided by our framework: a staged pipeline may be preceded or
succeeded by unstaged optimizations. Finally, we should clarify

structure representing the function of figure 2.

At run time, when the C program containing mul _add isabout to
invoke it with some concrete value of argument a, it first invokes

| et val P1: AST.func = AST.parse “mul_add.c”
val I11: AbsValue = toAbsValue
(P1, [CoP.non_const,
CoP.non_const,
CoP.const(Somelnt)])

val O1: SCF_ML.Program =

SCF_ML.parse “const_prop.scf-ml”
val O2 = SCF_ML.parse “copy_prop.scf-ml”
val O3 = SCF_ML.parse “dae.scf-ml”

val (O1’, 12) = stager (01, 11)
val (02, 13) = stager (02, 12)
val (03", _) = stager (03, 13)

in (SCF_ML.print(O1’, “const_prop.staged.scf-ml");
SCF_ML.print(O2’, “copy_prop.staged.scf-ml”);
SCF_ML.print(03’, “dae.staged.scf-ml"))

end

Figure 4: Invoking the stager at static compiletime

fun optim ze_nul _add_on_arg_a(a:int):
let val P1 =AST.parse “mul_add.c”

val P2 = CoP.optimize

(P1,[CoP.non_const,CoP.non_const,
CoP.const a))

val P3 = CyP.optimize P2

val Popt= DAE.optimize P3
in CGen.codegen Popt end

code array =

Figure5: Run-timeinterface to staged optimizers

(* 12: After staged constant propagation on |1 *)
int mul _add(int x, int y, int a) {
intu=x|(x*Int); @
intw=u+y;
return w; }
(* 13: After staged copy propagation on 12 *)
int mul_add(int x, inty, int a) {

intu=x|(x*‘Int); (*cmd1%*) (b)
intw=(u|x)+y; (*cmd 2 %)
return w; } (*cmd 3 %)

Figure 6: Structure of abstract result values

that the language inter-operability support required for this
exchange of values between aC program and itsML compiler isnot
yet integrated into SCF.

2.2.2 Sructures produced by SCF

To get abetter feel of how SCF-ML works, we now examine values
produced by SCF when it isused. Figure 6 presents the structure of
values| 2 and | 3 of figure 4. In practice, these values are ML
values of the AbsVal ue typedefined in the next section: figure 6
is a human-readable representation of these values. | 2 is an
abstract value that, intuitively, represents the set of ASTsthat result
from concretely executing the constant propagati on optimization on
each input value in |l 1] above. | 3 isrelated similarly to 1 2. In
what follows, we assume that the constant propagation phase folds
all expressionsintheinput program that evaluate to constant values
as usual, and that it also performs the extra simplification step of
replacing all expressions 1* e (or e* 1) withe.

Now consider the input value (P1, [CoP. non_const,

CoP. non_const, CoP.const(1)]) O |I1], i.e, the
possihility that at the late stage, argument & has constant value 1.
The result of constant propagation on this input would be the same
AST as P1, except that the expression X* a of figure 4 would be
folded to X. On the other hand, any other input (P1,

[CoP. non_const, CoP.non_const, CoP.const(i)])

st. i O Integers-{ 1} would result in an output program where X* a
isfoldedto {x*i |i O Integers{1}}, which iscontained in the set
{X*i |i OIntegers}. This latter set iswritten x*'Int . Finally,
the expression that results from combining thetwo cases(i.e.a =
landa <> 1)iswrittenasX|(X*Int) in figure 6(a).

Figure 6(b) represents, in turn, the effect of performing copy
propagation onthe ASTsin |l 2|. In the case that theincoming AST
has assignment int u = X, the copy will propagated to the later
use of U. Otherwise, no copy will be propagated. The two
alternatives are captured by the transformation of expression u+y
infigure 6(a) to (U|X)+y infigure 6(b).

We now turn our attention to the specialized optimizers produced
by SCF. Figure 7 shows the specialized optimizer O3’ that results
from specializing the dead-assignment elimination pass O3 (which
was specified in figure 3) with respect to the abstract value 13
(specified in figure 6(b))”.

Intuitively, the specialized optimization is the result of making a
specialized version of the appropriate analysis and transformation
function from figure 3 for each AST nodeintheinput in figure 6(b),
and running a dead-assignment eimination pass on the resulting
SCF-ML program. In figure 7, we use commentsin bold to indicate
the correspondence between specialized code fragments and
commands from figure 6(b). We precede each sequence of code
with a comment with the number (see figure 6(b)) of the command
the code is supposed to analyze or transform. Sincethe analysis part
of dead-assignment elimination is a reverse analysis, the code

* Aside from variable renaming and removal of some extraneous copies
between temporaries, thisis the code produced by SCF.

fun optimze f =
let (* Specialized version of analyze fun *)
val func(_, ,c,) =f
val (lSet, aMap) =
(LiveSet Mod. enpty, Assi gnMapMod. enpty)
val seq(cl 2,c3,) =¢
(* cnd 3 anal ysis(body fol ded away) *)
(* Elimnated dead code in italics bel ow *)
val return(e0) = c3
val var_ref(v0,_) = e0
val |Set = LiveSetMd. add(| Set, v0)
val seq(cl,c2,) =cl2
(* cmd 2 analysis *)
val assign(_,el,) = c2
val primop(_,es0,_) = el
val exprs(e3,_,) = es0
val var_ref(vl,) = e3
val |Set = LiveSetMd. add(! Set, v1)
(* cnmd 1 analysis *)
val assign(v2, ,Ibl) =cl
val v =if LiveSetMd. nember (| Set, v2)
then live el se dead
val aMap = Assi gnMaphMbd. insert(aMap, |bl, [v)
(* Specialized version of transformfun *)
val func(fnane, formals, c, Ibl) =f
val seq(cl_2,c3,1bl1_23) =¢
val seq(cl,c2,lbl12) =cl12
val assign(_,_,lbl1) =cl
(* cmd 1 transform*)
val tenmp_cl =
case Assi gnMbdMap. find(aMap, | bl 1) of
live => cl | dead => skip(lbl1)
(* cmd 2 transform (body fol ded away)*)
val tenp_c2 = c2
val tenp_cl 2 = seq(tenp_cl,tenp_c2,l1bl_1 2)
(* cnd 3 transform (body fol ded away) *)
val tenp_c3 = c3
val tenp_cl 2 3 = seq(tenp_cl 2,temp_c2,lbl_1 2 3)
in func(fnane,formals,tenp_cl_2 3,1bl) end

Figure 7: Dead-assignment elimination after specialization

analyzing commands is produced in the reverse order to which the
commands appear in the input program.

The specialization enables two important classes of optimizer
instructions to be eliminated:

1. Since a separate specialized fragment of code is produced for
each node, the case test on node type may often be folded
away. For instance, the code for analyzing each command
(function analyze_cmd) in figure 3 begins with a case
statement selecting among the different command variants.
However, command 2 of figure 6(b) is known to be an
assignment command. Consequently the code for analyzing
command 2 begins with the unconditional binding val
assign(v,e,) = c2,the case statement having been folded
away. Such folding is a standard effect of partial evaluation.

2. Instances of operations on data structures (variables ISet and
aMap in our case) representing the abstract store may be
eiiminated if the results of the operation are not used
downstream. In figure 7, one sequence of instructions thus
eliminated isin bold italics. To see why this sequence is dead,
note that since this fragment of code is specialized to the
command return w; , the operation LiveSetMethod.
add(ISet,v0) onlSet addsthevariablewtoISet . Even
though the set ISet is accessed twice later (via add and
member operations, marked in bold in the figure), none of
these operations depends on the presence of variable w in
ISet . Theadd and member operations are on variables u| x
and u respectively, and so do not depend on the presence of w

fun stager (p: Program v: AbsVal ue) :

(Program AbsVal ue) =
| et (cs: (SCFLabel , AbsValue) map, p’,v') = PE pv
in (DAE p’ cs,v’) end

Figure 8: High-level structure of the stager

inl Set . The add operation can therefore be eliminated. The
first two operations in the sequence are clearly dead if the third
is.

The italicized code is only an example of the dead assignment
eimination required to obtain figure 7. For instance, the
analysis of figure 3 performs an update of the live-variables set
a every use of a variable in the incoming function. Even
though commands 2 and 3 contain five uses of the variables u,
x and y (see figure 6(b)), the specialized analysis code for
these commands contain just one update of the live-variables
set (all other updates are found to be dead).

This form of pruning cannot be effected by standard partial
evaluators, and requires a novel flavor of dead assignment
elimination.

3 Thepartial evaluator

As described in the previous section, the stager performs partia
evaluation followed by dead-assignment elimination. Figure 8
specifies its high-level structure. PE is the partia evaluator and
DAE is the dead assignment eliminator. Types Program
(optimization programs written in Core SCF-ML) and AbsValue
(abstract values), which have so far been described intuitively, will
be defined precisely below. The role of the extramap cs will also
be explained. The rest of this section describes the key aspects of
PE and section 4 describes DAE.

3.1 Overall structure

The partial evaluator in SCF is an online partial evaluator. Given a
program and an abstract value (representing a possible set of
concrete values of the arguments of the program), online partial
evaluation (PE) abstractly interprets (with a collecting semantics;
we call this abstract interpretation abstract execution below) the
program on the abstract value. For each subexpression e abstractly
executed in some abstract environment E, in addition to the abstract
value v that would be produced by abstract execution, PE also
produces aresidual subexpression e’ that produces the same result
as e, under any concrete environment that is an instance of E.
Typically, this is achieved by “folding away into the constant

P O Program ::=d1l,...,gn

gOFunDef :=fx=e

e DEXpr o= x| c(el,...en) | c’e| cKelifele2 €3]
letx=eline2|fe|pe

pOPrimop ::= map_insert, map_find, map_equal, + , -, ...

f O FunName,

¢ 0 Constructor = FunName [Int [] Bool,

x O Variable

Figure 9: Core SCF-ML

guaranteeing termination on all inputs,
termination quickly in the common case.

In what follows, we discuss in detail how our design addresses these
issues. In section 3.2, we introduce a simple core language to which
SCF-ML may be de-sugared. In section 3.3, we present the
augmented regular tree expression domain used as the abstract
domain in SCF. In section 3.4, we present SCF’s context-sensitivity
strategy.

3.2 Core SCF-ML: Theinput language for PE

SCF-ML programs are desugared into Finegram datatype of the
core language of figure 9. It is a fairly standard untyped, first order,
call-by-value, purely functional language(el,....en) generates-

ary tuples with tag. ¢’ echecks whether the valuehate evaluates

to is tagged witle, andcke projects the&'th field of v if eevaluates

to a tuple tagged with (and is undefined otherwise). The language
provides built-in primitives for map operations. All expressions are
labelled with labels of typ8CFLabel = Int (not shown in figure 9).
Given Core SCF-ML expressia@y|abel Of e returnse's label.

The concrete execution domain for this language is the Herbrand
UniverseH, given by the smallest set satisfying the equation:

H = Co LI {c{ty, . tarity())| € OConstructor LIt OH}
C, L] Constructor is the set of 0-ary constructors, which includes
integer and boolean constants.

For concreteness, assume that built-in maps have an association list
based implementation

“a“b map = (“a*"“b) list
Sets may be implemented by maps representing their membership
function, and will not be discussed explicitly below:

“a set = (“a, boolean) map

Built-in maps and sets therefore have a concrete representation in

and achieving

expressionvg| in the case that represents the singleton set of H.

concrete valuesy). 3.3 Augmented regular tree expressions: The

Traditionally, the result of the online partial evaluator is a . .
residualized program and an abstract value representing the result domain of the partlal evaluator

of abstract execution. SCF extends this by recording the value ofSince the partial evaluator performs a collecting-semantics abstract
each residual subexpression it generates. The resulting map froninterpretation of Core SCF-ML programs, its domain AbsValue is
expression labels to abstract values is one of the outputs of the SCEmply 21, the powerset of the above concrete domain. Much prior
partial evaluator. This map is named in the definition of the work in abstract interpretation and set-based program analysis [28,
stager function above. The map is useful for precise dead- 20, 2, 17] has gone into formalisms for representing this domain.
assignment elimination, as will be explained in section 4. We choose as our representation a version of the Regular Tree

Aside from the residualization strategy which decides what code toEXPression (RTE) representation of Aiken and Murphy [3]. The
fold and how, the challenge of partial evaluation is essentially thatyntax and semantics of our version of RTEs, simply called
of accurate abstract execution. The two issues key to effective

online partial evaluation in SCF are the same as those for accurat€YNtax of abstract valuesThese may include variables On the
abstract execution: right is the set, writtet!(v,0), of concrete values representedvby

“abstract values” below, is in table 1. On the left of the figure is the

.under a substitutioa from variables to abstract values. We say that

+ designing a domain that is expressive enough to represent certai conformsto v under o iff t O W(v,0). If abstract value has no free

sets of concrete values accurately, but on which operations arg,ccyrrences of variables we say thav is closed. For closed;, we
fast in the common case, and

« achieving a degree of context sensitivity in the abstract execution* gyictly speaking, untagged tuples are disallowed in core SCF-ML, but
of function calls sufficient to maintain accuracy while thesecan be simulated using tagged tuples.

v AbsValue ::= V' #id
id O Int
V' o= Set represented by RT®(v',0) O 2H
0 {}
1 H
C(Vq,ee V) {c(ty,....ty) | t; O W(v;,0)}
\ZI A W(v4,0) 0.0 Y(v,,0)
fixa.v least fixpoint of T= W(v, o[a - T])
a o[a]
map ({[tte, 1) .. (tn, t)] O map |
mus (U, Uy)... (U UL | (O (§ = W(U;.0), §'= (U, 0).
may[(v,vy)...(V2,Vim)]) O {t=s 0t Os)
0
(O .5) s.t. § OW(Uyl...|u,,0).
O(s = W(v;,0), si'= W(vi',0)).
t0s 0 Os')}

Table 1: Augmented regular tree expressions (abstract values):
Syntax and semantics

say that t conforms to v iff t O W(v,[]), where [] is the empty
substitution.

Our abstract values do not provide for some of the conventional
variants of RTEs such as intersection and negation RTEs. On the
other hand, they have two unconventional features.

3.3.1 Identity tags

First, each abstract value istagged with an integer identity tag. The
intention isthat the partial evaluator maintain the following identity
tag invariant: if, during abstract execution, the abstract values
corresponding to two expressions have the same tag at some
program point, then on any concrete execution of that program
point along the paths abstractly executed thusfar , the two variables
are guaranteed to have the same concrete value. To understand this
better, consider the function:

funfoox= (x=x)
Itis clear by inspection of this function that it can only ever return
the value true. However, if foo is abstractly executed with x bound
to abstract value 1 (i.e., al possible concrete values) in the absence
of identity tags, the equality test will evaluate to the abstract test 1
=1. Thistest will beinterpreted as{t = t'| tO 1 Ot O 1}, which
evaluates to {true, falsé. In the presence of identity tags, the
abstract test will have theform 1#i = 1#i for sometagi. Theidentity
tag invariant then allows the abstract equality operation to evaluate
tothesingleton {true} (i.etheabstract valuetrue#jwherej isafresh
tag).
Accurate abstract execution of equality is particularly important for
PE of optimization programs, because fixpoint loops guarded by
equality tests are common in these programs. Inaccurate equality
tests cause the partial evaluator to loop excessively on the fixpoint
loops, and to use widening strategies that finally terminate the
looping, but lose information.

3.3.2 Abstract maps

The second distinctive feature of our abstract values is the special
representation for sets of maps. This representation consists of two
association lists. Both map abstract values to abstract values. The
first list, tagged mustin thefigure, isused for keysthat are required

to be in any conforming concrete map and that are known exactly,
i.e., that are singleton abstract values. If an abstract value pair (v,Vv')
isin the must list of abstract map m, then every concrete map that
conforms to m under some substitution o must map the single
member of W(v,0) to amember of W(v',0). The second list, tagged
may, records more approximate key/value bindings. For every entry
(t,t") in aconforming concrete map such that t is not in the domain
of the mustlist, there must exist apair (v,v') inthemaylist such tis
inWY(vo)and t' isin W(v',0). Thus, any key in a conforming map
that isnot in the mustlist isrequired to be in the maylist, but not all
keysin the maylist need be in a conforming map.

As an example, consider abstractly executing the following
function:

foo m = let m’ = map_insertm,1,7 in map_findm’,1) end

Suppose, during abstract execution, the incoming map m may be
one of the concrete mapst=[(1,2)] or t'=[(3,2)]. A possible abstract
value for m is magmust [], may [(1|3,3]). The map_insert
operation could result in the abstract value magmust[(1,7)], may
[(1]3,2]). The conforming maps now are [(1,7)] and [(1,7),(3,2]
which are as expected given t and t' above (the occurrence of the
key 1in the mustlist shadows that in the maylist). The shadowing
semantics allows SCF to return the singleton abstract value
SOMH?7) as the result of the final map_findprimitive operations.

Without special support for maps, we would have to partially
evaluate user-defined function definitions for map accessors with
respect to the RTE(s) representing the incoming map(s). Faced with
this task, all partial evaluators and abstract interpreters [2, 29, 20,
28] of which we are aware produce inaccurate results (at best
NONE|SOMI7)) on the above example. In partially evauating
optimization programs, it is particularly important to perform
abstract operations on maps and sets as accurately as possible, since
these data structures are often used to represent the abstract store
and are therefore threaded throughout the optimization.
Inaccuracies are therefore propagated globaly, and tend to
compound catastrophically.

The details we have presented in this section on our special
representation for abstract maps are meant not so much to specify

“the right way to do abstract maps” as to present a design that seems
sufficient (where the more conventional approach was not) for the
task of partially evaluating optimization programs.

3.3.3 Internal representation and implementation

We have discussed the semantics desired of our abstract value
representation, but not described how to implement operations such
as (widening) meets, equality tests and abstract versions of the
operations of figure 9. Aiken and Murphy report exponential-time
lower bounds for many of these operations over RTEs [4]. They
recommend an internal representation of RTEs callesf dinear
system, and discuss heuristics that are fairly effective in keeping
overheads low in practice for their application.

In SCF, we do not use an internal representation of abstract values
different from that implied by the definition of table 1. We are
willing to sacrifice some missed optimization opportunities in order
to have a tractable implementation. We adopt simple canonical
forms where easy, such as constructing an arbitrary total ordering
over abstract values and using this ordering to represent the
elements of a set of abstract values and the bindings in a map in a
fixed order. We then use linear structural traversals to implement
equality, ordering, and greatest lower bound over abstract values.
We use structural traversals even for recursive abstract values, and
accept the possible (conservative) loss of accuracy since in our
domain we do not expect to encounter different recursive
descriptions of the same abstract value. For widening meets, we use
heuristics similar to those suggested by Aiken and Murphy [3].

(Canalyze_cnd_1

)

(analyze_expr_2

)

(analyze_exprs_3)

@nal yze_expr_4_5
oo o

exprs_nong
6

_ (a) o)
Figure 10: Level of specialization desired in SCF

3.4 Context-senditivity strategy

To enable precise abstract execution during PE, the stager
specializes aggressively the functions of the Core SCF-ML
optimization program. The primary goal of this specialization is to
replicate and then specialize the logical “flow functions” (and
“transformation functions”) in the program for each node in the
input program, in effect unrolling the optimization program over
the input program. Figure 10 shows how the specialization works.
On the left (figure 10(a)) is the abstract value

assign(x, primop(-, exprs(var(y,4)|var(z,5), exprs_none(6), 3),2),1)

This abstract value represents the set of concrete commands
{assign(x, primop(-, exprs(var(z,5), exprs_none(6), 3),2),1),

assign(x, primop(-, exprs(var(y,4), exprs_none(6), 3),2),1)} .

be in V. The corresponding finiteness argument is easy in the case
of offline partial evaluation, since the projections in that case are
performed on concretevalues, and a simple montonicity argument
about the size of concrete values resulting from projections is
sufficient to establish finiteness.

The level of context sensitivity provided by specidizing on finite
arguments is not quite enough for accurate PE of optimization
programs. For iterative analysis of some input program nodes, we
often wish to specialize each call of the recursive function
separately, even though each recursive cal has the same input
program node argument and hence has the same specialization key.
For example, thef i x function in the dead-assignment elimination
example of figure 3 iteratively analyzes whi | e_do nodes,
returning the final fixpoint solution to its dataflow equation. If we
merged each of these recursive calls, then our analysis would meet
each of the intermediate stages of the iteration into a combined
summary of the whole loop, causing aloss of precision.

Our solution isto maintain call chains of specialization keyather

than individual specialization keys as the specialization context.
Every time abstract execution encounters an abstract call with
specidization key (f,v), it appends the caller's chain of
specialization keys to the key to obtain the callee’s complete
specialization context. We ensure termination by requiring that at
mostk instances (wherkis fixed for each program being partially
evaluated) of a specialization key occur in a specialization context:
when we find ourselves building a chain wkik1 instances of
some key, we use the shortest suffix of the chain kiitistances of

the key instead as the specialization context. Since we expect
iterative analyses to reach fixed-point in only a few recursive calls

The integers 1 through 6 in the abstract value (highlighted in bold he(jevel of loop nesting, we typically use a small valuer(3) for
in figure 10(a)) constitute the label field of the commands and their

subexpressions. On the right (figure 10(b)) is the corresponding . .
specialized function call graph we expect SCF to generate WhenThe addition of call chains makes the worst-

partially evaluating the dead-assignment analysis from figure 3
with respect to this abstract command.

Whenever we partially evaluate a call to analysis fundtishere
one of the formafs(called diniteargument) is bound to an abstract
sub-treev of the original abstract function that was input to the
analysiswe produce and analyze a specializafigw of f (Jv] is a
unique textual representation forin figure 10, as a mnemonic aid,
we have choselv| to be the label of the phrase tiwvaepresents).
The pair {,v) is called aspecialization key. If a functionf’ called
from a specialization f_|v| does not have its own finite argument
(e.g., the helper function neet infigure5), itispartially evaluated
with key (f',v), i.e., helper functions are replicated for every node.

To ensure termination, we need to ensure that the number of
abstract sub-trees generated as val ues of finite arguments during PE
isfinite. In SCF, specializable arguments are discovered by asimple
finiteness analysigo begin the analysis, the argument of the entry
function of the optimization isassumed to befinite (in the sensethat
abstract execution will see only afinite number, in this case one, of
abstract values bound to this formal). The finiteness analysis
proceeds by deducing that any value that is the result of a sequence

of projection operations on afinite valueisitself finite.

The rules used by this finiteness analysis are a simple variant of
those proposed previously in the context of offline partial
evaluation [18]. The main complication in adapting the analysis to
the online caseis in showing that the rules are sound in the case of
online partial evaluation. In particular, we need to show that for any
abstractvalue v, there exists a finite set V={vy,...,\,} of abstract
values such that if we perform any sequence pq, p,,....J, Of abstract
projection operations on v, the result v’, if defined, is guaranteed to

“In general, more than one formal may be specidizable, and the
specialization key used in that case is the tuple of corresponding abstract
values.

case running time (and
size) of the analysis exponential in the size of the result of
performing finite-argument-based specialization on an
optimization program (or equivalently, in the size of the incoming
abstract function). However, in the common case, after
specialization on finite arguments, the resulting optimization
program tends to have a tree-shaped callgraph with relatively few
merges. With a tree-shaped callgraph, call-chain-based
specialization costs drop from exponential to linear. Also, the size
of both (intraprocedural) optimizations and their inputs tend not to
be very large. Our experimental results so far indicate that the
exponential blow up does not affect us in most cases.

4 Dead-assignment elimination

As discussed in section 2.2.2, the residualized code after PE
contains many dead assignments, and SCF contains an optimization
designed to delete these assignments. Figure 11 specifies key
details of dead-assignment elimination (abbreviated as DAE below)
in SCF. The main interesting features of the optimization are the
machinery it provides to track liveness across data structures (maps
in particular) and its use of the collecting semantics of a program
(see figure 8) to identify dead operations in it.

The analysis is structured as a backward abstract interpretation over
the domain ofiveness patterns (writtenLP’s below), defined at the

top of figure 11. Intuitively, a liveness pattern is a generalization of
the lattice valuesive anddead associated with scalar variables in
traditional dead-assignment elimination. In the traditional setting, if

a variable idive at a program point, we conclude that the variable
may be read downstream of the program point. However, if the
variable is not a scalar (i.e., it has more than one field), we are often
interested inwhich fields of the possible values contained in the
variable are read downstream, so that stores to these fields may be
eliminated if possible. Liveness patterns allow us to express the
liveness of sub-fields of values produced by expressions as follows.
A LP of 1for some expression at some program point indicates that

| O LivenessPattern (LP) = meet: LPMap - LPMap - LPMap
1] 0| c(l2,...1n) | {12]...]In} | [12,12] meet Im Im’ =
cs 0O CollectingSemanticsMap= (Label , AbsVal ue) map (* Take the union of maps Im and Im’ . If &
Im O LPMap = (Variable, LivenessPattern) map variable x maps to LP’s I and I'in Im and Im
] . respectively, bind x to meetLP | I' (see below)
DAE; : Expr - LivenessPattern - in the resulting map *)
Col | ecti ngSemanti csMap - Expr * LPMap
_ . . . meetLP: LP - LP - LP
DAE; e 0 ¢s = (| Cgead |, []1) (* dead expression *) meetLP | I' =
DAEg | x| | cs = (|x], [x =1]) (* Let V and V'’ be the sets of all concrete
DAE, |c- k el | cs = values matching | and I respectivelﬂ I'\”e*turn a
(*1is K'th place of arity(c)-sized tuple *) LP that matches all of V V')
let I'=¢(0, 0,...l,... 0, 0) mustBeDisjoint: LP - AbsValue - Boolean
_ (e, I&n) = DAE e elcs mustBeDisjoint | V =
in(lc ~° e’],Im)end (*false if a concrete value v 0V may match I*)
DAE |life jej,egs|lcs= toLivenessPattern: AbsValue option - LP
let (e 1,Im q) =DAE e lcs toLivenessPattern (SOME V) =

((e 2,Im L)(e 3,Im 3))=

(DAEg e ,1cs,DAE e gzlcs)
in (ife 1eo,e3l,meetim ; (meetim ,Im 3))end
DAE, |letx = e pine ,|lcs=
let (¢ 5, Im ,)=DAE ge,lcsin
ife 5 =[c geadlthen(lc geadl) else
let v =find Im xin
if v = NONE orelse v = SOME 0 then(e 5, Im)
else
let(e ,,Im ;)=DAE e csin
(letx=e 1 ine 5,
meet Im , (delete Im 2 X))
end end end
DAE |map_finde qey|lcs=
letl = toLivenessPattern
(find cs (labelOf e)
emim)=DAE el .llcs
(ex,Im) =DAE eyl \ cs
in (jImap_find e me k|, meetlm Im) end

DAE |map_inserte eye|[llITcs=
let v i = find cs (labelOf e
(emIm)=DAE ce [l ,INlcs

K)

in
if mustBeDisjoint | v k then(e ., Im)else
let (¢ k,Im) =DAE gey lcs
(ey,Im [)=DAE e, lI'cs
in (j/map_insert e me€ k € vl
meetIm ,(meetim Im))
end end
DAE, ...
(* Handle other kinds of expressions & LPs*)

Figure 11: Dead-assignment elimination (DAE)

any field of avaue it evaluates to may be read downstream. A LP
of 0 indicates that no field of a value it evaluates to is read
downstream. A LP of c(I1,...In) requires the value to have the form
c(v1,...,vn), where each value vi satisfies LP li. A LP {l1]...|]In}
requires the value satisfies at least one of LP'Binally, [11,12]

(* return a LP that matches every concrete value
v OV?¥

Figure 12: Helper functionsfor DAE

parts of the values produced by the subexpression may be used
downstream. To start things off, the LP of the function body
expression is set to the return LP of the function. For each
subexpression, the backward pass returns a pair containing:

1. the expression resulting from pruning out dead subexpressions
of e, and

2. a map from variables mto LPs.

Figure 13 is an example of how DAE works. Consider (figure
13(a)) an invocation dPAE, on the body of functiofoo (in which

g indicates that subexpressieis labelled with integei, with LP

| =1 and collecting-semantics mag Saytr is a 3-ary constructor.

The valuel of | indicates that any part of any concrete value
produced by the body dbo may be required downstream. We
process the let-bindings foo from the inside out. Since the result
of foois the result of thenap_find operation on map’, we deduce
that al concrete values produced by map_findmay be required
downstream as well. We conclude therefore that the map_find
operation is not dead and cannot be pruned away, and also that map

m’ may haveany concrete valuein itsrange (since downstream uses

do not constrain the range). Further, since we are performing a
lookup on m’ with key yi5, and map cs indicates that at this
program point ys; may only have values 44 or 46 on any concrete
execution, we conclude that the domain of m’ need only contain 44

or 46. Putting requirements on the domain and range together, we
get aLPof [{44 |46}, 1] for m’. We conservatively set the LP of y
toitsvalue {44 | 46} in cs, since in a correct program, y cannot be
required to produce values other than those it can evaluate to in any
concrete execution.

requires the value to be a map such that every key of the mapgn foo a =

satisfied1 and every range value satisfl@s

The interprocedural part of DAE (not shown) associates every
function being analyzed with one LP representing its return value,
and one representing its argument. The return LP of a function
captures the requirements placed on the return value by callers of
the function. The argument LP captures requirements placed by the
function body on the argument values passed to the function. The

analysis begins by assuming that the optimization program as a -

whole has return LR, i.e., that every field of any return value of
the program may be used. LP’s are propagated from callees to

callers in a fixpoint loop. Termination is guaranteed by widening to €S

1 the LP’s associated with a function after it is processed a fixed
number of times.

The intraprocedural part of DAE (figure 11) associates a LP with
each subexpression of the function body. The LP specifies which

letm=trlain
letx=tr?ain
lety =tr3ain

let m' = map_insert mpg; 10 in
map_find m’ y5;

end end end end fun foo a =
letm=trlain
1 lety =tr3ain
letm' =min
=[2 - {22|33, map_find m'y
5 {4448, .] end end end
(€Y (b)

Figure 13: DAE example

Config. Input Function Description of Input Function Abstract Val ues to Which Staged
No. Arguments of f are Bound
1 mul _add mul _add from figure 2: stagel: a = ‘Int
computesa* x+ vy, stage2a=1
aisfixed at runtime
2 mul _add stagela=0]|1
stage2a=1
3 mul _add stagela=3|1
stage2a=1
4 dot pr oduct finds the dotproduct of two vectové andv2 of sizes; stagelv2 =some 1-D array, s = ‘Int
v2 andsare fixed at run time stage2v2=(0,1,7)s=3
5 dot pr oduct stagelv2 =some 1-D array, s = 3
stage2v2 =10, 1, 7],s=3
6 doconvol convolves 2-D image matrixwith a 2-D convolution stagelr = some 2-D array
matrix c; cis fixed at run time stage2c =[[1, O, 1], [0, 1, 0], [1, O, 1]]
(from thepnnconvol program of thenet pbmlibrary)
7 doconvol _1d 1-D version of above staged = some 2-D array
stage2c = [0, 1, 0]
8 mai n_| oop main loop of the Dineroache simulator; invokes stagel:
routines for finding, fetching and updating cache entriesCache configuration parameters:
cache configuration parameters fixed at run time i-cache size in kilobytes,= ‘Int
d-cache size in kilobyted,= ‘Int
9 mai n_| oop_f As in 8, with routine for fetching cache entries inlined| i/d cache associativitg = ‘Int
10 mai n_| oop_f_u | Asin9, with routine for updating cache entries inlined .s.t.agez:
i=8
11 mai n_| oop_f _u_f As in 10, with routine for finding cache entries inlined| =g
b=1
Table 2: Description of benchmark inputs
We next process the innermost let binding, let m’ = Given that we treat map and set accessors as user-defined functions, the

m’ is only required to contain keys 44 or 46, and that (looking up
the value corresponding to label 2 in cs) the insert operation only
ever inserts (via key X)) keys 22 or 32, we conclude that the
inserted binding isdead and so theinsert isunnecessary. Wereplace
the whole insert expression |map_insert m pg| with its
subexpression |m| (which just computes the map the Lei ng inserted
into). This simplification resultsin thelet bindinglet m’=min ..,
which simply copies minto m’, and we correspondingly set the LP
of mtothat of m’, i.e, to [{44 | 46}, 1].

We now process the binding let y = tr3 a. Since we have found
abovethat y hasLP {44 | 46} we concludethat tr3amust havethe
same pattern, i.e., it is only required to have concrete values 44 or
46, and that consequently thethird field of aisalso only required to
have these values, i.e, it has LP {44 | 46}. Similarly, from the
bindingm = trlaof m, we conclude that thefirst field of ahasLP
[{44 46}, 1]. Findlly, given that x did not have aL P associated with
it above (because its use in the map_insertwas pruned away), the
second field of a remains unconstrained (i.e., has liveness value 0)
and the dead binding let x = tr2ain...is eliminated. The resulti ng
liveness patternfor aistr([{44 |46}, 1], 0, { 44 | 46}). Theresulting
pruned body of fooisin figure 13(b).

The interaction between collecting semantics and the dead-
assignment elimination to accurately model partial deadness of
maps (and thereby set) data structures is critical to effective
removal of dead code. Even with very aggressive specialization, if

resulting analysis would not be accurate enough for our purposes.

5 Evaluation

We have implemented a prototype of SCF in Standard ML [24]. We
provide an SCF-ML front-end to alow specification of
optimization programs. We aso provide a C front-end (which
parses C programs into abstract values) to specify functions, called
input functionsbelow, whose optimization is to be staged.

As discussed in the introduction, the main goal of SCF isto enable
the easycongtruction of effectivestaged compiler pipelines. We
have so far staged pipelines containing three traditional dataflow
optimizations: constant propagation, copy propagation and dead-
assignment elimination. Compared to our experience hand-writing
staged versions of these optimizations for DyC [15], using SCF to
stage automatically unstaged versions of these optimizations has
been far easierin design, implementation and debugging. The
remaining issue, which can be evauated by measurement, is
whether automatic staging as in SCF is effective how do
automatically staged optimization pipelines compare with unstaged
pipelines and with hand-staged ones? In this section, we examine
thisissue.

In al experiments below, we stage an optimization pipeline
consisting of the constant propagation, copy propagation and dead-
assignment elimination passes, i.e., the pipeline of figure 4. This
pipeline is used to optimize the various input functions over two
stages, as specified in table 2. In the second stage, we provide fully

' . Reduction in Increase in Compiler Size Compiled Code
Config. Compiler - . .) L Speedup
Instructions Input function size (final stage pipeline/
No. Speedup L (speedup due to hand
Executed unstaged pipeline) :
staging)

1 1.9x 2.1x 4loc 148 nodes 1.4x 1.2x
2 29 22 4 148 14 12
3 55 79 4 148 13 12
4 29 26 8 198 16 2.7
5 25 29 8 198 36 2.7(5.7)
6 11 1.2 102 2880 47.7 1.7 (3.1)
7 4.7 4.2 50 1097 79 19
8 12.2 9.8 39 1084 6.7 1.0
9 4.7 6.0 150 3960 19.2 11
10 4.8 85 292 7656 36.3 11
1 47 9.0 322 8396 385 1.3(1.7)

Table 3: Benchmark results

concrete values of pipeline inputs, and concretely execute the the unstaged optimizer to that executed by the staged version. A few

pipeline on these inputs to produce a concrete output, i.e., the key points are worth noting:

_optlmlz_ed versgn of the |an|1t Lunctlon Zpecmed & the plpellne *The staged pipelines are significantly (up to an order of
Input. Since we do not currently have a code-generation passin our magnitude) faster than their unstaged versions in most cases.
compiler pipeline, we pretty-print the optimized input function asa Thus, automatic staging via SCF is capable of producing fast

C function, and use a conventional C compiler (gcc) to compilethe

function and link it into its calling C program to produce an))))
optimized C program. e Large reductions in number of instructions executed do not

always translate to correspondingly large gains in execution
time. For instance, comparing configurations 10 and 11 to

staged compilers.

Given this framework, we focus on answering the following two

questions: . . configuration 8, we would expect to get speedups of roughdy 10
1. How fast are the staged optimizers? In particular, how much in the former cases, as in the latter case. However, the actual
faster are the staged optimizers p_ro_duced_by SCF, when speedup is half of that expected. Column 5, which presents the
concretely executed, than the origind (i.e, completely ratio of the size of the staged pipelinghefinal stage to that of
unsteged) pipeline? the unstaged version, provides a possible reason for this
2. How effective are the staged optimizers? In particular, how anomaly: The staged pipelines for configurations 10 and 11
much faster is the code optimized with the staged optimizers occupy roughly six times as much space as that of configuration
than without the optimization? 8. It is very likely that these pipelines perform poorly in the
5.1 Speedup of run-time stage of compiler (small) hardware cache on our machine.
To answer question 1 above, we measured the overhead of concrete *The speedup due to staging may be quite sensitive to the
execution of the two versions of the pipeline. We compiled both particular abstract values provided at each stage. Comparing
versions of the pipeline into machine code and executed them configurations 2 and 3, for instance, even though the two
directly on the hardware, and measured overhead in microseconds configurations differ only in that the former binds argunzent
(el times are minimum user times on a lightly loaded 350MHz functionnul _add to0| 1 and the latter td| 3, the speedup in
Pentium-based machine with 256MB RAM and 8kB L 1 instruction the latter case is more than thrice that in the former. The reason
and data caches and a 512kB L2 cache). In order to get a less is that since the product of any value wihis 0, constant
machine-dependent picture, we also executed the pipeline on an propagating a potenti@lvalue results in a chain of computations
instrumented Core SCF-ML interpreter, and measured the number that potentially need to be folded away@oA staged constant
of instructions executed’. Column 2 of table 3 showsthe ratio of the propagator that handles these extra potential cases needs to
time taken to execute unstaged pipelines to that to execute staged perform more checks than one that does not, resulting in extra
ones. Column 3 showstheratio of abstract instructions executed by compile-time overhead.
« The size of the staged compiler usually grows linearly in the size
" Ideally, we would also like to compare the overhead with that of a hand- of the input program, rather than exponentially, as is the
staged pipeline. Unfortunately, since the latter overheads are reported in theoretical worst case described in section 3.4). This is evident
terms of late-stage compile cycles per machine instruction generated, and from comparing columns 4 and 5 of table 3. Each entry in
\rqltfm%%rnm yet stage a code generation phase, we cannot provide this column 4 of the table represents the total size of stager input
* Weonly show the decrease in map-mani pul ati on instructions here because programs in the penultimate stage. The one anomaly is

they account for most (over 90%) of the compiler execution time configuration 6. The convolution routine in configuration 6

contains afour-way nested loop. Specializing the recursive calls
that process thisloop results in code bloat.

5.2 Speedup of compiled program

To answer the question 2 above, we executed the optimized and
unoptimized versions of the C program containing the input
function and compared the times spent in the input function in the
two cases. In the case of the nul _add and dot pr oduct input
programs, because time spent in the input functions was below the
resolution of the timer, we invoked the input function a large
number of times and averaged over the invocations to get the
overhead for a single call. Column 6 of table 3 presents, for each
configuration, the ratio of time spent in the unoptimized version of
the input function for that configuration to that spent in the
optimized version. Where available, the corresponding ratio for
hand-staged systemsisincluded in bold parentheses. Two pointsare

program information. Our staging framework can potentially be
extended to support all these techniques. Sperber and Thiemann
have shown how to compose a code generator with a specializer in
a staged way, by viewing them both as catamorphisms [30]. Though
the generic optimizations we seek to compose and stage are not
catamorphisms, it is possible to automatically create “pessimistic”
versions of many optimizations that are catamorphisms. Mairlet

al. discuss using multi-level staging to speed up late-stage partial
evaluation [23], but they assume that the incremental information
available at each stage is the concrete value of some argument of the
function being partially evaluated, rather than possibly just a more
refined set of possible values of the argument, as our system
supports.

Accurate online partial evaluation is key to our system. A vast
literature exists on this topic. Ruf provides a good overview [29].
Handling recursive functions accurately but finitely is widely

especially worth noting: identified as the key problem, one with provably no general
» The staged optimizations do provide noticeable speedups. In asolution. Common solutions are the use of finiteness annotations
sense, this is not surprising since prior work on hand-staged[33] to guarantee that arguments have a finite number of abstract
systems [15, 8] has already shown that the optimizations in ourvalues, and finiteness analyses (similar to ours) [18, 33] to
pipeline are effective in speeding up input functions. However, automatically detect such arguments. Our predefined map and set
most optimizations have versions with different levels of datatypes may be viewed as a variation on the former technique
aggressiveness, e.g., a constant propagator may or may nofthe optimization writer uses a predefined library of functions
reduce multiplies by powers of two to shifts, or fold multiplies whose properties are known to the partial evaluator).

by zero to the constant zero. Our measurements demonstrate thane issue that Ruf does not address is the definition of accurate
the particular SCF-ML specification of the three optimizations in domains for PE. This issue is discussed extensively in the program
our pipeline is aggressive enough to achieve good speedups. analysis literature, however [28, 20, 2, 17]. Formalisms such as tree
» The speedup due to the hand-staged pipeline is significantlygrammars, graph grammars, set constraints and tree expressions
greater than that achieved by the SCF pipelines. One possibldhave been studied in this context, and in many cases the domains
reason for this gap is that the optimizations as specified in theused by the analyses have been more expressive than ours.
SCF pipeline may not be as aggressive as that in the hand-stageldowever, none of these analyses have been context sensitive, an
pipelines. Another is that the two sets of speedup numbers wereaspect we have found crucial to our application.
obtained on different hardware systems, and the utility of a given pead-assignment elimination through partially-dead data structures
optimization can vary widely across systems. We do not know has been studied by Liu and Stoller and by Reps [22, 27]. Both these
the precise reason yet. works support recursive liveness patterns, a capability missing in
6 Rdated work SCF. We have deferred adding recursive patterns until we find a
.)))) need for them in our application. We have found so far that for our
This work is motivated by our previous work on DyC [15], which 5 ;rposes, custom description of particular datatypes (e.g., maps) is
mcludet_:l a hand-staged optimization pipeline consisting of partial much more effective than providing more expressive generic
evaluation, zero/copy propagation, and dead-assignmentjieness patterns. Neither of the other techniques allows the dead-
elimination. The system demonstrated that staging the latterassignment analysis to consult the results of partial evaluation, a

optimizations can yield substantial speed up at low late-stageiechnique we found critical to obtaining good pruning of dead code.
overhead in realistic programs. However, the technique used for

staging was impractical for staging pipelines with many 7 Summary and future work

optimizations. The stager for each optimization communicated thewe have presented a framework for constructing staged
effects of the optimization to downstream stagers using the standardptimizations that allows the optimizations to be written
technique of annotating the outgoing program with “action independently as unstaged dataflow-based optimizations,
annotations” [7], which are specific to each optimization. Each composed into pipelines of arbitrary length in arbitrary order, and
staged optimization must therefore know the semantics of thespecialized automatically over compilation stages. The key to
action annotations used by all predecessor optimization stages, anthodular composability of optimizations in the face of staging is the
how they may interact. By replacing optimization-specific action use of a uniform, but expressive, regular-tree-expression-based
annotations with a uniform regular-tree-expression-based representation to communicate information between optimizations
description of sets of programs, our current work enables staging ofwithin a stage. We achieve automatic staging by applying an
arbitrary optimizations to be implemented mechanically in a extended form of online partial evaluation followed by post-
generic way, and enables whole pipelines of arbitrary optimizations specialization dead-assignment elimination. We have implemented
to be staged mechanically. and evaluated a prototype of the framework, which demonstrated

Work on staged dynamic partial evaluation [14, 21, 8, 25] has that our tec.hniques are capable of producing fast, effective late-
focused on adapting offline partial evaluation to support a run-time Stage compilers.

stage. These systems have developed a suite of techniques tBhis work establishes a baseline staged compilation system that
increase late-stage performance while reducing late-stageproduces exactly the same optimized code as one where the
overhead. In particular, the optimized program produced by the lateoptimizations were run solely during the final stage, with the
stage is in executable machine code format (instead of the usuaspecialized compilers targeted for high speed while maintaining the
source format), the late stage is restricted to a single non-iterativebehavior of the original unspecialized optimizations. However,
pass (trading optimization quality for speed), late optimization of these quality and speed constraints can lead to overly large and
parts of the input program may be performed on demand orexpensive late-stage optimizers. In addition to investigating staging
conditionally, and the stager may be parameterized by policy andof additional optimizations and developing front-ends for new input

languages, our future work will study alternative trade-offs among (18]
optimized code quality, late-stage compiler size, and late-stage
compiler speed. For example, we plan to study principled ways to
sacrifice some optimization opportunitiesin order to make the late-

stage compilers require only linear passes. We aso plan to
investigate having the stager produce specialized program
representations instead of specialized compilers; the former can be
much more compact than the | atter. Finally, we wish to study having

the late-stage optimizations accept and return only the parts of the
program being optimized that weren’t known to the earlier stages,
to minimize their data traversal and construction costs, and to allow;,,;
fusion of adjacent optimizations to eliminate intermediate data
structures [32].

Acknowledgments

This work has been supported by ONR contract N00014-96-1-[24]
0402, ARPA contract N00014-94-1-1136, NSF Grant CCR-
9975057, and NSF Young Investigator Award CCR-9457767. We 129
thank Brian Grant and Markus Mock for joint work and discussions
about dynamic compilation and staging, and Josh Redstone for helf,g
with formatting the paper. We thank the anonymous referees for
useful feedback, especially that on improving the presentation.

References
[

[19]

[20]

[21]

[23]

[27]

A. Aho, R.Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

A.Aiken and B. R. Murphy: Static type inference in a dynamically typed
language. In Symposium on Principles of Programming Languages, pages 279—
290, Jan. 1991.

A.Aiken and B.Murphy. Implementing Regular Tree Expressions. In
J. Hughes, editobth ACM Conference on Functional Programming Languages

and Computer Architecture, number 523, Cambridge, MA, USA, August 26-30,
1991. Springer.

A.Aiken and B.R. Murphy. Implementing regular tree expressions. In
Proceedings of the Fifth Conference on Functional Programming Languages
and Computer Architecture, pages 427-447, Berlin, West Germany, Sept. 1991.

V.Bala and E. Duesterwald. Dynamo: A transparent runtime optimization
system. InConference on Programming Language Design and Implementation,
pages 1-12, June 2000.

C. Chambers, J. Dean, and D. Grove. Whole-program optimization of object-
oriented languages. Technical Report TR-96-06-02, Department of Computer
Science and Engineering. University of Washington, June 1996.

C. Consel and O. Danvy. From interpreting to compiling binding time3tdn
European Symposium on Programming, LNCS 432, pages 88-105. Springer-
Verlag, May 1990.

C. Consel and F. Noél. A general approach for run-time specialization and its

application to C. InSymposium on Principles of Programming Languages,
pages 145-156, Jan. 1996.

[9] J.Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An
optimizing compiler for object-oriented languagesO@PSLA’96 Conference
Proceedingspages 83-100, Oct. 1996.

A. Diwan, E.Moss, and K. McKinley. Simple and effective analysis of
statically-typed object-oriented programs. IOOPSLA'96 Conference
ProceedingsOct. 1996.

M. Fernandez. Simple and effective link-time optimization of modula-3
programs. In Conference on Programming Language Design and
Implementationpages 103-115, June 1995.

R. Fitzgerald, T. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi. Marmot: An
optimizing compiler for JavaSoftware: Practice and Experience, 30(3):199—

232, Mar. 2000.

R. Gluck and J. Jorgensen. An automatic program generator for multi-level
specializationLisp and Symbolic Computation, 10(2):113-158, 1997.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Annotation-
directed run-time specialization in C. $ymposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 163-178, June 1997.

B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers. An evaluation of
staged, run-time optimizations in DyC. I@onference on Programming
Language Design and Implementation, pages 293-304, May 1999.

M. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. Fiat: A framework
for interprocedural analysis and transformationTte Sxth Annual Workshop

on Parallel Languages and Compilers, Aug. 1993.

N. Heintze. Set-based analysis of ML programsAGM Conference on Lisp

and Functional Programming, pages 306-317, 1994.

2

[3]

[4]

2 [32]

6] [33]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Holst. Finiteness analysis. IRunctional Programming Languages and
Computer Architecture, LNCS 523, pages 473-495. Springer-Verlag, Aug.
1991.

U. Holzle and D. Ungar. Optimizing dynamically-dispatched calls with run-time
type feedback. InConference on Programming Language Design and
Implementation, pages 326-336, June 1994.

N.Jones and S. Muchnick. Flow analysis and optimization of lisp-like
structures. I'Bymposium on Principles of Programming Languages, pages 244—
256, Jan. 1979.

M. Leone and P. Lee. Optimizing ML with run-time code generation. Technical
report CMU-CS-95-205, School of Computer Science, Carnegie Mellon
University, December 1995.

Y. A. Liu and S. D. Stoller. Eliminating dead code on recursive dat&atic
Analysis Symposium, pages 211-231, 1999.

R. Marlet, C.Consel, and P.Boinot. Efficient incremental run-time
specialization for free. I€onference on Programming Language Design and
Implementation, pages 281-292, May 1999.

R. Milner, M. Tofte, R. Harper, and D. MacQuedine Definition of Sandard

ML (Revised). MIT Press, Cambridge, MA, 1997.

F. Noél, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based run-
time specialization: Implementation and experimental studynternational
Conference on Computer Languages, pages 132-142, May 1998.

T. Proebsting. Optimizing an ANSI C interpreter with superoperators. In
Symposium on Principles of Programming Languages, pages 322-332, Jan.
1995.

T.Reps and T.Turnidge. Program specialization via program slicing. In
O. Danvy, R. Gluck, and P. Thiemann, editaPspceedings of the Dagstuhl
Seminar on Partial Evaluation, pages 409-429, Schloss Dagstuhl, Wadern,
Germany, 12-16 1996. Springer-Verlag, New York, NY.

J. C. Reynolds. Automatic computation of data set definitions. In A.J. H.
Morrell, editor, Information Processing 68, volume 1, pages 456-461,
Amsterdam, 1969. North-Holland.

E. Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University,
February 1993. Technical report CSL-TR-93-563.

M. Sperber and P. Thiemann. Two for the price of one: Composing partial
evaluation and compilation. i@onference on Programming Language Design

and Implementation, pages 215-225, June 1997.

F. Tip, C. Laffra, P. Sweeney, and D. Streeter. Practical experience with an
application extractor for Java. MOPSLA'99 Conference Proceedingsges
292-305, Oct. 1999.

P. Wadler. Deforestation: transforming programs to eliminate tfleesretical
Computer Science, 73:231-248, 1990.

D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Automatic online partial
evaluation. In Conference on Functional Programming Languages and
Computer Architecture, LNCS 523, pages 165-191. Springer-Verlag, 1991.

	Towards Automatic Construction of Staged Compilers
	1 Introduction
	2 Overview and example
	2.1 High-level description of SCF
	2.2 An example
	2.2.1 Inputs to SCF
	2.2.2 Structures produced by SCF

	3 The partial evaluator
	3.1 Overall structure
	3.2 Core SCF-ML: The input language for PE
	Table 1: Augmented regular tree expressions (abstract values): Syntax and semantics

	3.3 Augmented regular tree expressions: The domain of the partial evaluator
	3.3.1 Identity tags
	3.3.2 Abstract maps
	3.3.3 Internal representation and implementation

	3.4 Context-sensitivity strategy

	4 Dead-assignment elimination
	Table 2: Description of benchmark inputs

	5 Evaluation
	Table 3: Benchmark results
	5.1 Speedup of run-time stage of compiler
	5.2 Speedup of compiled program

	6 Related work
	7 Summary and future work

