
m
an
et

ns.

 a
per
 be.
 to
es.
nce.
 a
ad-
e
e
e

at

tion
at

f the
in-
cal
are
n
are
d

 late

ge

ile
ge
ore

s,
be

wn,
res
ly

 are
aths
s
e

that
pre-
tage
 that
n in
ly to

re
Abstract
Some compilation systems, such as offline partial evaluators and
selective dynamic compilation systems, support staged
optimizations. A staged optimization is one where a logically single
optimization is broken up into stages, with the early stage(s)
performing preplanning set-up work, given any available partial
knowledge about the program to be compiled, and the final stage
completing the optimization. The final stage can be much faster
than the original optimization by having much of its work
performed by the early stages. A key limitation of current staged
optimizers is that they are written by hand, sometimes in an ad hoc
manner. We have developed a framework called the Staged
Compilation Framework (SCF) for systematically and
automatically converting single-stage optimizations into staged
versions. The framework is based on a combination of aggressive
partial evaluation and dead-assignment elimination. We have
implemented SCF in Standard ML. A preliminary evaluation shows
that SCF can speed up classical optimization of some commonly
used C functions by up to 12× (and typically between 4.5× and
5.5×).

1 Introduction
Information relevant to program optimization becomes known at
different stages during program compilation and execution. These
stages include:

1. traditional separate compile time, when each single-file piece
of a program becomes available,

2. library assembly time, which offers new interprocedural
analysis opportunities,

3. program link time, which offers more interprocedural analysis
opportunities and possibly closed-world analysis opportunities
as well,

4. initial program load time, when details of the execution
platform become known,

5. dynamic load time, when knowledge of run-time extensions or
changes to the program can be exploited, and

6. run time, which offers opportunities to customize the compiled
code to the application’s actual run-time behavior.

Exploiting the information available in later stages can lead to much
better optimization, in practice as well as theory. For example, link-

time compilers can perform interprocedural and whole-progra
analysis [16, 9, 6, 10, 11, 31, 12], and run-time compilers c
optimize based on dynamic program behavior [19] or targ
platform characteristics [5], all with substantial performance gai

Optimizing on the basis of late-stage information comes with
challenge. The later the stage, the faster (in terms of time
instruction analyzed) the optimizer run at that stage needs to
One reason for this requirement is that information relevant
optimization typically changes more frequently at later stag
Consider the dynamic loading and the run time stages, for insta
Typically, each time a module is dynamically re-loaded, it is run
large number of times. Correspondingly, for each instance of lo
time optimization, we expect many instances of run-tim
optimization. Since the cost of each instance of load-tim
optimization is amortized over a larger period than that of run tim
optimization, we are typically willing to incur a higher overhead
load time.

A commonly used technique to achieve fast late-stage optimiza
is to explicitly design versions of optimizers for the late stage th
are “leaner”. These optimizers have a carefully chosen subset o
functionality of their early-stage counterparts. For instance, just-
time compilers have a smaller set of optimizations than typi
static optimizing compilers, and the optimizations themselves
often non-iterative and local. Also, link-time optimizers are ofte
flow insensitive, whereas separate compile time optimizations
flow sensitive. This technique of sacrificing functionality to spee
up optimization has proven to be effective in many cases.

We are investigating a complementary approach to speeding up
stages, called staged optimization, in which early-stage cycles are
used for pre-planning and partially executing late-sta
optimization. The intention is that by thus increasing the effective
amount of time available to the late-stage optimization (wh
hopefully not overly burdening the early stage), our late-sta
optimizations don’t have to be as lean as, and can therefore be m
effective than, optimizations that run wholly in the late stage.

Staged optimization exploits the fact that for many program
although precise input values to an optimization may not
available until a late stage, some approximate knowledge of these
inputs is available at an early stage. For example, it may be kno
at separate compilation time, which variables and data structu
are likely to have invariant values, which methods are the like
targets of particular dynamic dispatches, and which branches
likely to be biased, but the actual values, methods, or branch p
may be unknown until link time, load time, or run time. It i
possible to exploit this early knowledge by designing th
optimization so that it executes over many stages. The part
executes at an earlier stage could exploit early knowledge by
computing the possible calculations and outcomes of the later-s
parts, and generating a customized version of later-stage parts
performs only the analysis needed to resolve what was unknow
the earlier stage. Since the customized late-stage part needs on
complete the optimization, late-stage optimization costs a

Towards Automatic Construction of Staged Compilers

Matthai Philipose, Craig Chambers and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, WA 98195-2350 USA

{matthai, chambers, eggers}@cs.washington.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL ’02, Jan. 16-18, 2002 Portland, OR USA
© 2002 ACM ISBN 1-58113-450-9/02/01...$5.00

l
ten
g

ely,
ined
nds
ss

nt
[1]
f
is

text

to
se
s.

ld an

r in

iler

sive
ve
nts
he
ent

al
ion

ged
ur
imes

ts a
le
ork
ary
our
n 7

then
 of

te
ed

ine
nd

 as
d

lowered. Further, since a given piece of early-stage information
may approximate many later-stage instances, the overhead of
building a customized optimizer at an early stage can be recouped
over many later-stage uses.

Staged optimization has been shown to be both fast and effective for
run-time compilation of non-trivial programs [15, 21, 8, 25].
However, although these systems have validated the idea of staging,
the complexity of engineering them to stage arbitrary optimizations
is a barrier to their widespread adoption. In fact, all but one of these
systems only stage a single optimization i.e. partial evaluation. In
spite of the fact that a vast literature exists on staging partial
evaluation, building these systems was quite challenging.

Our previous system, DyC [15], usefully staged optimizations
beyond partial evaluation i.e. copy propagation and dead-
assignment elimination. Our experience convinced us that hand-
writing staged versions of optimizations is substantially more
difficult and error-prone than writing their unstaged counterparts.
The principal difficulty is that where traditional optimizations
reason about the behavior of the program to be optimized, a staged
optimization has to reason about the behavior of the optimization
itself when applied to that program. In effect, the early stage has to
perform a kind of case analysis of all the ways that optimizations
might proceed at run time, and then pre-compute for each case as
much of the final result as possible. Reasoning at this “meta” level
is a significant burden on the compiler writer.

To address this difficulty, we present in this paper an initial proof-
of-concept system called SCF (for “Staged Compilation
Framework”) that can automatically and mechanically construct a
staged compiler from the implementation of a single-stage
optimizer. The compiler writer simply writes normal program
optimizations that (typically) input a program and output a
transformed version of the program. The optimizations are written
in a first-order side-effect free subset of ML called SCF-ML.
Beyond using this language, the compiler writer need not be aware
that the optimization is to be staged. At any stage, given
approximate information about the inputs to the optimization, a
compiler user (who may be distinct from the writer) may feed the
optimization and the information to a program called the stager,
which will automatically produce a version of the optimization
specialized for the approximate information, and an approximate
representation of the possible results of the optimization on the
approximate input.

The design of the system is based on two insights. First, the
approximate information, describing both inputs to and results of a
staged optimization, may be viewed uniformly as the set of possible
concrete values assumed by the formal parameters and the return
values respectively of the optimization function, at later stages. In
SCF, we represent these sets of values using an augmented form of
regular tree expressions [3]. Second, the effect of a hand-written
staged optimization on its approximate input is similar to systematic
specialization of an ordinary, unstaged version of the optimization
with respect to the approximate input. In our current design, the
specializer (which we call the stager) consists of an aggressive
online partial-evaluation forward pass composed with a dead
assignment elimination reverse pass.

The devil is in the details. For general inputs, it is notoriously
difficult [29] to design effective online partial evaluators or dead
assignment eliminators (which, as Reps pointed out [27], are very
similar to program slicers) that have reasonable termination
behavior. Focusing on specializing compiler optimizations has
some key advantages over specializing arbitrary programs:

• Optimizations tend to be compositional over their input
programs. This allows our finiteness analysis, which determines
which arguments to specialize, to be very effective.

• Many optimizations may be naturally written in a functiona
language. This allows us to require that optimizations are writ
in a purely functional, first-order subset of ML, thus skirtin
issues related to side effects and control-flow analysis.

• Optimizations tend to use certain data structures extensiv
e.g., maps and sets. This enables us to provide pre-def
variants of these data structures. Our specializer understa
their semantics, allowing it to model accurately this large cla
of complex computations.

• A common class of recursive calls in optimizations, fixpoi
loops to process recursive commands, is known to often
terminate within a (typically very small) fixed number o
iterations independent of the program being optimized. Th
provides a natural and effective bound on the degree of con
sensitivity used by the specializer.

• Optimizations are typically not very large (hundreds
thousands of lines, say), so that it is not impractical to u
extensive specialization and highly context-sensitive algorithm

Exploiting these advantages has enabled us to design and bui
effective automated staged compilation system.
This paper makes three main contributions:

1. It motivates and formulates the design of a staged compile
terms of systematic specialization of an unstaged compiler.

2. It describes a set of techniques for specializing comp
optimizations so as to get a substantial speedup.
Novel aspects of these techniques include a very expres
domain for our online partial evaluator, a simple but effecti
finiteness analysis over this domain to determine argume
for specialization, a context sensitivity strategy tailored to t
concrete behavior of the input program, and a dead assignm
elimination algorithm that co-operates with the parti
evaluator to enable effective dead assignment eliminat
through commonly used data structures.

3. It evaluates an implementation of the design, targeted at sta
compilation of C programs. The evaluation shows o
techniques can produce staged compilers that are several t
faster than their unstaged versions.

The rest of the paper is structured as follows. Section 2 presen
brief overview of the design of SCF followed by a detailed examp
of how our system works. Sections 3 and 4 describe the framew
in some detail, with particular attention to novel aspects necess
for effective specialization. Section 5 presents an evaluation of
the framework. Section 6 discusses related work, and sectio
presents a summary and future work.

2 Overview and example
Section 2.1 presents a high-level schematic of SCF. Section 2.2
presents a detailed example to illustrate inputs and outputs
various parts of the framework.

2.1 High-level description of SCF
Figure 1(a) illustrates the compiler writers’ view of SCF. They wri
a set of optimizations Oi some subset of which may be sequenc
to form a conventional optimizing compiler pipeline O1..On that
takes in a program P to produce an optimized program Popt.
Each optimization Oi is a program transformer that takes in
an arbitrary ML data structure Pi (typically a tree
representation of the procedure to be optimized and possibly
additional context information about the properties of the
procedure’s formal parameters, the target mach
characteristics, or the program’s class hierarchy) a
produces a transformed ML data structure Pi+1. Writing
these optimizations should be the same amount of work
writing an optimization pipeline in a regular unstage
compiler.

Figure 1(b) illustrates the compiler users’ view of staging an initial
pipeline of optimizations O1..On with respect to a partial
description I of any of its eventual inputsP, to produce a specialized
pipeline O’1..O’n. The partial description I defines the set of
possible inputs (i.e., programs and context information) on which
the specialized pipeline might be invoked. The specialized pipeline
can then be run on any input P that is a member of the set described
by I, to produce a corresponding optimized program Popt.

Each specialized optimization O’i is what is left of the original
optimization Oi after all the parts of its work that can be
precomputed based solely on information in Ii have been; the work
that remains will finish the optimization when it is finally given the
complete program and context information Pi. When staging a
whole pipeline, a pipeline of specialized optimizations is produced.
The specialized pipeline O’1..O’n can be run just like the original
pipeline O1..On, with exactly the same result Popt, as long as its
input P is a member of the set of expected inputs described by I.

The stager does not run its input optimization, but rather takes as
input the source code of the optimization Oi and the partial
description Ii of the optimization’s possible inputs to produce the
source code of the specialized optimizer O’i and a partial
description Ii+1 of the optimization’s possible outputs. In the second
stage, the specialized optimization pipeline O’1..O’n can be run on
an input program P to produce an optimized program Popt.

2.2 An example

We show in this section how SCF may be used to stage a compiler
containing n = 3 optimization phases, with constant propagation,
copy propagation and dead-assignment elimination as
optimizations O1, O2, and O3. We will apply this compiler to
staged compilation of the function mul_add in figure 2. Say this
function is in file mul_add.c. Also, for concreteness, say the
early stage is separate compile time and the late stage is run time.

2.2.1 Inputs to SCF
SCF has two kinds of inputs: the concrete optimizations Oi
provided by the compiler writer(s), and the input information I1
about the function to be optimized, provided by the compiler user.
The compiler writer must write the three optimizations in the
pipeline in the SCF-ML language. Figure 3 shows how dead-
assignment elimination may be written in SCF-ML. We assume that
this module is defined in a file dae.scf-ml. The optimization is
implemented as an analysis pass (function analyze_fun), followed
by a transformation pass (function transform_fun). The analysis
function computes, using a threaded set (lSet) of live variables, a
map (aMap) which indicates whether each assignment in the
incoming AST is live or dead. The transformation consults the map
to prune out the dead assignments.
As the figure shows, the optimization may be specified quite
naturally using SCF-ML. This has been our experience with the two
other intraprocedural dataflow-based optimizations we
implemented as well. SCF-ML provides built-in support for map
and set datastructures. The Set and Map functor applications in the
figure serve merely as syntactic sugar to facilitate introduction of
the corresponding pre-defined data structures while ensuring that
the optimization remains a valid ML program.
For purposes of this example, we assume that the constant
propagation optimization (implemented, say, in module CoP and
file const_prop.scf-ml) has a slightly non-traditional
interface. Say the optimization uses the traditional constant-
propagation lattice with elements that belong to the sum type
lattice_val = non_const | const of int |
unknown. Say, however, that in addition to the body of the
function f to be optimized, the entry function CoP.optimize of
the constant propagator takes as argument a bindings list providing
the constant-propagation lattice values to which the formals of f
should be bound at the beginning of constant propagation on f, i.e.,
CoP.optimize: AST.Fun * (CoP.lattice_val
list) -> AST.Fun.
Finally, we assume the copy propagation pass is implemented as a
conventional function-to-function transformer in module CyP, in
file copy_prop.scf-ml i.e., CyP.optimize: AST.Fun->
AST.Fun.
We now turn to how the compiler user stages a pipeline containing
the above three optimizations. The user is interested in compiling
and running a C program, of which the mul_add function of
figure 2 is a part. Typically, at static compile time, the user would
have determined via profiling that the function is heavily used by
their C program, and is therefore worth dynamically optimizing.
Further, value-profiling may have revealed that the variable a
changes infrequently and is therefore a good candidate to be
designated as a run-time constant. At this point, the user might want
to use the SCF framework to stage the optimization pipeline
O1..On and thereby produce a version of this pipeline specialized
to optimize the mul_add function under the assumption that its
third argument a is some integer constant, whose value will be
revealed at run time.
Figure 4 shows the ML expression the user would have to evaluate
(at static compile time) to achieve this end. The expression
essentially constructs a representation I1 of the early-stage partial
description of the value of the argument to the first optimization in
the pipeline i.e. constant propagation, parses in the SCF-ML
programs corresponding to the three optimizations, and uses the
stager on the optimizations Oi in a sequential manner to produced
specialized optimizations Oi’ . Note that the values I2 and I3 ,
which represent the possible results of executing optimizations O1
and O2 are used as inputs to stage the next optimization in the
pipeline. Finally, the optimization programs output by the stager are
written back to disk.

Figure 1: High-level views of SCF

O1 On
O2

O’1 O’nO’2

O1 On
O2

stager stager stager
I = I 1 I2 In

P = P1 P2 Pn Pn+1 = Popt

 (a)

PnP2P = P1 Pn+1 = Popt

 (b)

early stage

late stage

int mul_add(int x, int y, int a) {
int u = x * a;
int w = u + y;
return w; }

Figure 2: Function to be optimized

y

st,
ile

is
 in
or

AST
sing
s to

d or
rify
One part of figure 4 requires further explanation. The call to
toAbsValue converts a concrete ML value containing the special
construct SomeInt into an abstract value I1 which represents a
set of concrete values. SomeInt should be considered a special 0-
ary variant of type int. In this case, the set of concrete values
represented by I1, written |I1| is {(P1,
[CoP.non_const,CoP.non_const,CoP.const(i)]) | i ∈
Integers}, where P1, as defined in figure 4, is simply an ML data
structure representing the function of figure 2.

At run time, when the C program containing mul_add is about to
invoke it with some concrete value of argument a, it first invokes

the specialized optimizers (written to the files suffixed
“.staged.scf-ml” in figure 4) by calling the ML-function of
figure 5 with the value of a as argument, and then jumps to the arra
of machine code returned by this function call.

A few points are worth noting about the function of figure 5. Fir
note that it is a function specifically generated (at static comp
time) to allow its caller to optimize function mul_add with respect
to the late-stage value of a and the pipeline discussed above. Th
“stub-function” is typically generated as part of the expression
figure 4 (but not shown there for clarity). Second, although f
clarity we show the run-time optimizer as parsing the mul_add
function from disk, since mul_add was known at static compile
time, it could have been parsed at that stage, and its resulting
stored in the text segment of the C program so that run-time par
could be avoided. Third, note that the last action of the parser i
generate machine code for the optimized mul_add function via the
codegen function. This illustrates a useful level of flexibility
provided by our framework: a staged pipeline may be precede
succeeded by unstaged optimizations. Finally, we should cla

structure DAE = struct
open AST import declarations of input program representation
datatype Liveness = dead | live
(* LiveSets hold the set of live variables at each point *)
structure LiveSetMod = Set(type value=Var)

type LiveSet = LiveSetMod.set
(* AssignMaps record whether each assignment is live or dead *)
structure AssignMapMod = Map(type key=Label

type value=Liveness)
type AssignMap = AssignMapMod.map

fun optimize(f:Fun):Fun =
transform_fun(f, analyze_fun(f))

and analyze_fun(func(_,_,c,_):Fun):AssignMap =
let val (_, aMap) =

analyze_cmd(c, LiveSetMod.empty, AssignMapMod.empty)
in aMap end

and analyze_cmd(c:Cmd, lSet:LiveSet, aMap:AssignMap)
:(LiveSet * AssignMap) =

case c of
assign(v, e, lbl) =>

let val lv = if LiveSetMod.member(lSet, v)
then live else dead

in (analyze_expr(e, LiveSetMod.delete(lSet, v)),
AssignMapMod.insert(info, lbl, lv)) end

| seq(c,c’,_) =>

let val (lSet,aMap) = analyze_cmd(c’,lSet,aMap)
in analyze_cmd(c,lSet,aMap) end

| return (e,_) => (analyze_expr(e, lSet), aMap)

| while_do(e, c, _) =>
let val (lSet’, aMap’) = fix(lSet, aMap, e, c)
in (analyze_expr(e, lSet’), aMap’) end

| ... other Cmd cases here ...

and analyze_expr(e:Expr, lSet:LiveSet):LiveSet =
case e of

var_ref(v, _) => LiveSetMod.add(lSet, v)

| primop(op,es) => analyze_exprs(es, lSet)
| ... other Expr cases here ...

and analyze_exprs(es:Exprs, lSet:liveSet):LiveSet=
case es of

 exprs(e,es) => analyze_exprs(es,analyze_expr(e))
| exprs_none => lSet

and fix(live_fix:LiveSet, live_entry:LiveSet,
assigns:AssignMap, test:Expr, body:Cmd)

:(LiveSet * AssignMap) =
let val live_head = analyze_expr(test, live_fix)

val (live_back, assigns1) =
analyze_cmd(body, live_head, assigns)

val new_live_fix = meet(live_entry, live_back)
in

if LiveSetMod.equal(live_fix, new_live_fix)
then (live_head, assigns1)
else fix(new_live_fix, live_entry,

assigns, test, body)
end

and meet(live1:LiveSet, live2:LiveSet):LiveSet =
LiveSetMod.union(live1, live2)

and transform_fun(func(fname, formals, c, lbl):Fun,
aMap:AssignMap):Fun =

func(fname, formals, transform_cmd(c, aMap), lbl)

and transform_cmd(c:Cmd, assigns:AssignMap):Cmd =
case c of

assign(v, e, lbl) =>
case AssignMapMod.find(assigns, c) of

SOME dead => skip(lbl)(* replace with empty cmd *)
| SOME _ => c (* leave unoptimized *)
end

| seq(c,c’,lbl) =>

seq(transform_cmd(c,aMap),transform_cmd(c’,aMap),lbl)
| while_do(e, c, lbl) =>

while_do(e, transform_cmd(c), lbl)
| return _ => c
| ... other Cmd cases here ...

end (* DAE structure *)

Figure 3: Implementation of dead-assignment elimination in SCF-ML

let val P1: AST.func = AST.parse “mul_add.c”
val I1: AbsValue = toAbsValue

(P1, [CoP.non_const,
 CoP.non_const,
 CoP.const(SomeInt)])

val O1: SCF_ML.Program =
SCF_ML.parse “const_prop.scf-ml”

val O2 = SCF_ML.parse “copy_prop.scf-ml”
val O3 = SCF_ML.parse “dae.scf-ml”

val (O1’, I2) = stager (O1, I1)
val (O2’, I3) = stager (O2, I2)
val (O3’, _) = stager (O3, I3)

in (SCF_ML.print(O1’, “const_prop.staged.scf-ml”);
 SCF_ML.print(O2’, “copy_prop.staged.scf-ml”);
 SCF_ML.print(O3’, “dae.staged.scf-ml”))

end

Figure 4: Invoking the stager at static compile time

fun optimize_mul_add_on_arg_a(a:int): code array =
let val P1 = AST.parse “mul_add.c”

val P2 = CoP.optimize
(P1,[CoP.non_const,CoP.non_const,

CoP.const a])
val P3 = CyP.optimize P2
val Popt= DAE.optimize P3

in CGen.codegen Popt end

Figure 5: Run-time interface to staged optimizers

that the language inter-operability support required for this
exchange of values between a C program and its ML compiler is not
yet integrated into SCF.

2.2.2 Structures produced by SCF

To get a better feel of how SCF-ML works, we now examine values
produced by SCF when it is used. Figure 6 presents the structure of
values I2 and I3 of figure 4. In practice, these values are ML
values of the AbsValue type defined in the next section: figure 6
is a human-readable representation of these values. I2 is an
abstract value that, intuitively, represents the set of ASTs that result
from concretely executing the constant propagation optimization on
each input value in |I1| above. I3 is related similarly to I2. In
what follows, we assume that the constant propagation phase folds
all expressions in the input program that evaluate to constant values
as usual, and that it also performs the extra simplification step of
replacing all expressions 1*e (or e*1) with e.

Now consider the input value (P1, [CoP.non_const,
CoP.non_const, CoP.const(1)]) ∈ |I1|, i.e., the
possibility that at the late stage, argument a has constant value 1.
The result of constant propagation on this input would be the same
AST as P1, except that the expression x*a of figure 4 would be
folded to x. On the other hand, any other input (P1,
[CoP.non_const, CoP.non_const, CoP.const(i)])
s.t. i ∈ Integers-{1} would result in an output program where x*a
is folded to {x*i | i∈ Integers-{1}}, which is contained in the set
{x*i | i∈ Integers}. This latter set is written x*‘Int . Finally,
the expression that results from combining the two cases (i.e. a =
1 and a <> 1) is written as x|(x*‘Int) in figure 6(a).

Figure 6(b) represents, in turn, the effect of performing copy
propagation on the ASTs in |I2|. In the case that the incoming AST
has assignment int u = x , the copy will propagated to the later
use of u. Otherwise, no copy will be propagated. The two
alternatives are captured by the transformation of expression u+y
in figure 6(a) to (u|x)+y in figure 6(b).

We now turn our attention to the specialized optimizers produced
by SCF. Figure 7 shows the specialized optimizer O3’ that results
from specializing the dead-assignment elimination pass O3 (which
was specified in figure 3) with respect to the abstract value I3
(specified in figure 6(b))*.

Intuitively, the specialized optimization is the result of making a
specialized version of the appropriate analysis and transformation
function from figure 3 for each AST node in the input in figure 6(b),
and running a dead-assignment elimination pass on the resulting
SCF-ML program. In figure 7, we use comments in bold to indicate
the correspondence between specialized code fragments and
commands from figure 6(b). We precede each sequence of code
with a comment with the number (see figure 6(b)) of the command
the code is supposed to analyze or transform. Since the analysis part
of dead-assignment elimination is a reverse analysis, the code

analyzing commands is produced in the reverse order to which the
commands appear in the input program.

The specialization enables two important classes of optimizer
instructions to be eliminated:

1. Since a separate specialized fragment of code is produced for
each node, the case test on node type may often be folded
away. For instance, the code for analyzing each command
(function analyze_cmd) in figure 3 begins with a case
statement selecting among the different command variants.
However, command 2 of figure 6(b) is known to be an
assignment command. Consequently the code for analyzing
command 2 begins with the unconditional binding val
assign(v,e,_) = c2, the case statement having been folded
away. Such folding is a standard effect of partial evaluation.

2. Instances of operations on data structures (variables lSet and
aMap in our case) representing the abstract store may be
eliminated if the results of the operation are not used
downstream. In figure 7, one sequence of instructions thus
eliminated is in bold italics. To see why this sequence is dead,
note that since this fragment of code is specialized to the
command return w; , the operation LiveSetMethod.
add(lSet,v0) on lSet adds the variable w to lSet . Even
though the set lSet is accessed twice later (via add and
member operations, marked in bold in the figure), none of
these operations depends on the presence of variable w in
lSet . The add and member operations are on variables u|x
and u respectively, and so do not depend on the presence of w

* Aside from variable renaming and removal of some extraneous copies
between temporaries, this is the code produced by SCF.

Figure 6: Structure of abstract result values

(* I2: After staged constant propagation on I1 *)
int mul_add(int x, int y, int a) {

int u = x | (x * ‘Int);
int w = u + y;
return w; }

(* I3: After staged copy propagation on I2 *)
int mul_add(int x, int y, int a) {

int u = x | (x * ‘Int); (* cmd 1 *)
int w = (u | x) + y; (* cmd 2 *)
return w; } (* cmd 3 *)

 (b)

 (a)
fun optimize f =
let (* Specialized version of analyze_fun *)

val func(_,_,c,_) = f
val (lSet, aMap) =

(LiveSetMod.empty, AssignMapMod.empty)
val seq(c1_2,c3,_) = c

(* cmd 3 analysis(body folded away) *)
(* Eliminated dead code in italics below *)

val return(e0) = c3
val var_ref(v0,_) = e0
val lSet = LiveSetMod.add(lSet,v0)
val seq(c1,c2,_) = c1_2

(* cmd 2 analysis *)
val assign(_,e1,_) = c2
val primop(_,es0,_) = e1
val exprs(e3,_,_) = es0
val var_ref(v1,_) = e3
val lSet = LiveSetMod.add(lSet, v1)

(* cmd 1 analysis *)
val assign(v2,_,lbl) = c1
val lv = if LiveSetMod.member(lSet, v2)

then live else dead
val aMap = AssignMapMod.insert(aMap, lbl, lv)

(* Specialized version of transform_fun *)
val func(fname, formals, c, lbl) = f
val seq(c1_2,c3,lbl1_2_3) = c
val seq(c1,c2,lbl1_2) = c1_2
val assign(_,_,lbl1) = c1

(* cmd 1 transform *)
val temp_c1 =

case AssignModMap.find(aMap,lbl1) of
live => c1 | dead => skip(lbl1)

(* cmd 2 transform (body folded away)*)
val temp_c2 = c2
val temp_c1_2 = seq(temp_c1,temp_c2,lbl_1_2)

(* cmd 3 transform (body folded away) *)
val temp_c3 = c3
val temp_c1_2_3 = seq(temp_c1_2,temp_c2,lbl_1_2_3)

in func(fname,formals,temp_c1_2_3,lbl) end

Figure 7: Dead-assignment elimination after specialization

ng

ese
hich
the
tract

vity

er,

e
re

and

s

n list

he

at
in lSet. The add operation can therefore be eliminated. The
first two operations in the sequence are clearly dead if the third
is.
The italicized code is only an example of the dead assignment
elimination required to obtain figure 7. For instance, the
analysis of figure 3 performs an update of the live-variables set
at every use of a variable in the incoming function. Even
though commands 2 and 3 contain five uses of the variables u,
x and y (see figure 6(b)), the specialized analysis code for
these commands contain just one update of the live-variables
set (all other updates are found to be dead).
This form of pruning cannot be effected by standard partial
evaluators, and requires a novel flavor of dead assignment
elimination.

3 The partial evaluator
As described in the previous section, the stager performs partial
evaluation followed by dead-assignment elimination. Figure 8
specifies its high-level structure. PE is the partial evaluator and
DAE is the dead assignment eliminator. Types Program
(optimization programs written in Core SCF-ML) and AbsValue
(abstract values), which have so far been described intuitively, will
be defined precisely below. The role of the extra map cs will also
be explained. The rest of this section describes the key aspects of
PE and section 4 describes DAE.

3.1 Overall structure
The partial evaluator in SCF is an online partial evaluator. Given a
program and an abstract value (representing a possible set of
concrete values of the arguments of the program), online partial
evaluation (PE) abstractly interprets (with a collecting semantics;
we call this abstract interpretation abstract execution below) the
program on the abstract value. For each subexpression e abstractly
executed in some abstract environment E, in addition to the abstract
value v that would be produced by abstract execution, PE also
produces a residual subexpression e’ that produces the same result
as e, under any concrete environment that is an instance of E.
Typically, this is achieved by “folding away” e into the constant
expression |v0| in the case that v represents the singleton set of
concrete values {v0}.

Traditionally, the result of the online partial evaluator is a
residualized program and an abstract value representing the result
of abstract execution. SCF extends this by recording the value of
each residual subexpression it generates. The resulting map from
expression labels to abstract values is one of the outputs of the SCF
partial evaluator. This map is named cs in the definition of the
stager function above. The map is useful for precise dead-
assignment elimination, as will be explained in section 4.

Aside from the residualization strategy which decides what code to
fold and how, the challenge of partial evaluation is essentially that
of accurate abstract execution. The two issues key to effective
online partial evaluation in SCF are the same as those for accurate
abstract execution:

• designing a domain that is expressive enough to represent certain
sets of concrete values accurately, but on which operations are
fast in the common case, and

• achieving a degree of context sensitivity in the abstract execution
of function calls sufficient to maintain accuracy while

guaranteeing termination on all inputs, and achievi
termination quickly in the common case.

In what follows, we discuss in detail how our design addresses th
issues. In section 3.2, we introduce a simple core language to w
SCF-ML may be de-sugared. In section 3.3, we present
augmented regular tree expression domain used as the abs
domain in SCF. In section 3.4, we present SCF’s context-sensiti
strategy.

3.2 Core SCF-ML: The input language for PE
SCF-ML programs are desugared into the Program datatype of the
core language of figure 9. It is a fairly standard untyped, first ord
call-by-value, purely functional language. c(e1,...,en) generates n-
ary tuples with tag c. c? e checks whether the value v that e evaluates
to is tagged with c, and c-k e projects the k’th field of v if e evaluates
to a tuple tagged with c (and is undefined otherwise). The languag
provides built-in primitives for map operations. All expressions a
labelled with labels of type SCFLabel = Int (not shown in figure 9).
Given Core SCF-ML expression e, labelOf e returns e’s label.
The concrete execution domain for this language is the Herbr
Universe H, given by the smallest set satisfying the equation:

H = C0 ∪ {c(t1,...,tarity(c))| c ∈Constructor ∧ ti ∈ H }

Co ⊂ Constructor is the set of 0-ary constructors, which include
integer and boolean constants.
For concreteness, assume that built-in maps have an associatio
based implementation*:

‘‘a ‘‘b map = (‘‘a * ‘‘b) list

Sets may be implemented by maps representing their membership
function, and will not be discussed explicitly below:

‘‘a set = (‘‘a, boolean) map

Built-in maps and sets therefore have a concrete representation in
H.

3.3 Augmented regular tree expressions: The
domain of the partial evaluator

Since the partial evaluator performs a collecting-semantics abstract
interpretation of Core SCF-ML programs, its domain AbsValue is
simply 2H, the powerset of the above concrete domain. Much prior
work in abstract interpretation and set-based program analysis [28,
20, 2, 17] has gone into formalisms for representing this domain.
We choose as our representation a version of the Regular Tree
Expression (RTE) representation of Aiken and Murphy [3]. The
syntax and semantics of our version of RTEs, simply called
“abstract values” below, is in table 1. On the left of the figure is t
syntax of abstract values v. These may include variables α. On the
right is the set, written Ψ(v,σ), of concrete values represented by v
under a substitution σ from variables to abstract values. We say th
t conforms to v under σ iff t ∈ Ψ(v,σ). If abstract value v has no free
occurrences of variables α, we say that v is closed. For closed v, we

fun stager(p:Program,v:AbsValue):
(Program, AbsValue) =

let (cs:(SCFLabel, AbsValue) map, p’,v’) = PE p v
in (DAE p’ cs,v’) end

Figure 8: High-level structure of the stager

* Strictly speaking, untagged tuples are disallowed in core SCF-ML, but
these can be simulated using tagged tuples.

P ∈ Program ::= g1,..., gn
g ∈ FunDef ::= f x = e
e ∈Expr ::= x | c(e1,...,en) | c? e | c-k e| if e1 e2 e3 |

let x = e1 in e2 | f e | p e
p ∈ Primop ::= map_insert, map_find, map_equal, + , -, ...
f ∈ FunName,
c ∈ Constructor = FunName ∪ Int ∪ Bool,
x ∈ Variable

Figure 9: Core SCF-ML

ems
the

alue
uch

 the
e
ey

ng

lues
e
er
ical
ring
the
 in a
ent
ues.
 and
our

ive
 use
say that t conforms to v iff t ∈ Ψ(v,[]), where [] is the empty
substitution.
Our abstract values do not provide for some of the conventional
variants of RTEs such as intersection and negation RTEs. On the
other hand, they have two unconventional features.

3.3.1 Identity tags
First, each abstract value is tagged with an integer identity tag. The
intention is that the partial evaluator maintain the following identity
tag invariant: if, during abstract execution, the abstract values
corresponding to two expressions have the same tag at some
program point, then on any concrete execution of that program
point along the paths abstractly executed thus far , the two variables
are guaranteed to have the same concrete value. To understand this
better, consider the function:

fun foo x = (x = x)

It is clear by inspection of this function that it can only ever return
the value true. However, if foo is abstractly executed with x bound
to abstract value 1 (i.e., all possible concrete values) in the absence
of identity tags, the equality test will evaluate to the abstract test 1
= 1. This test will be interpreted as {t = t’| t ∈ 1 ∧ t’ ∈ 1}, which
evaluates to {true, false}. In the presence of identity tags, the
abstract test will have the form 1#i = 1#i for some tag i. The identity
tag invariant then allows the abstract equality operation to evaluate
to the singleton {true} (i.e the abstract value true#j where j is a fresh
tag).
Accurate abstract execution of equality is particularly important for
PE of optimization programs, because fixpoint loops guarded by
equality tests are common in these programs. Inaccurate equality
tests cause the partial evaluator to loop excessively on the fixpoint
loops, and to use widening strategies that finally terminate the
looping, but lose information.

3.3.2 Abstract maps
The second distinctive feature of our abstract values is the special
representation for sets of maps. This representation consists of two
association lists. Both map abstract values to abstract values. The
first list, tagged must in the figure, is used for keys that are required

to be in any conforming concrete map and that are known exactly,
i.e., that are singleton abstract values. If an abstract value pair (v,v’)
is in the must list of abstract map m, then every concrete map that
conforms to m under some substitution σ must map the single
member of Ψ(v,σ) to a member of Ψ(v’,σ). The second list, tagged
may, records more approximate key/value bindings. For every entry
(t,t’) in a conforming concrete map such that t is not in the domain
of the must list, there must exist a pair (v,v’) in the may list such t is
in Ψ(v,σ) and t’ is in Ψ(v’,σ). Thus, any key in a conforming map
that is not in the must list is required to be in the may list, but not all
keys in the may list need be in a conforming map.

As an example, consider abstractly executing the following
function:

foo m = let m’ = map_insert (m,1,7) in map_find (m’,1) end

Suppose, during abstract execution, the incoming map m may be
one of the concrete maps t=[(1,2)] or t’= [(3,2)]. A possible abstract
value for m is map(must [], may [(1|3,2)]). The map_insert
operation could result in the abstract value map(must [(1,7)], may
[(1|3,2)]). The conforming maps now are [(1,7)] and [(1,7),(3,2)]
which are as expected given t and t’ above (the occurrence of the
key 1 in the must list shadows that in the may list). The shadowing
semantics allows SCF to return the singleton abstract value
SOME(7) as the result of the final map_find primitive operations.

Without special support for maps, we would have to partially
evaluate user-defined function definitions for map accessors with
respect to the RTE(s) representing the incoming map(s). Faced with
this task, all partial evaluators and abstract interpreters [2, 29, 20,
28] of which we are aware produce inaccurate results (at best
NONE|SOME(7)) on the above example. In partially evaluating
optimization programs, it is particularly important to perform
abstract operations on maps and sets as accurately as possible, since
these data structures are often used to represent the abstract store
and are therefore threaded throughout the optimization.
Inaccuracies are therefore propagated globally, and tend to
compound catastrophically.

The details we have presented in this section on our special
representation for abstract maps are meant not so much to specify
“the right way to do abstract maps” as to present a design that se
sufficient (where the more conventional approach was not) for
task of partially evaluating optimization programs.

3.3.3 Internal representation and implementation

We have discussed the semantics desired of our abstract v
representation, but not described how to implement operations s
as (widening) meets, equality tests and abstract versions of
operations of figure 9. Aiken and Murphy report exponential-tim
lower bounds for many of these operations over RTEs [4]. Th
recommend an internal representation of RTEs called a leaf linear
system, and discuss heuristics that are fairly effective in keepi
overheads low in practice for their application.

In SCF, we do not use an internal representation of abstract va
different from that implied by the definition of table 1. We ar
willing to sacrifice some missed optimization opportunities in ord
to have a tractable implementation. We adopt simple canon
forms where easy, such as constructing an arbitrary total orde
over abstract values and using this ordering to represent
elements of a set of abstract values and the bindings in a map
fixed order. We then use linear structural traversals to implem
equality, ordering, and greatest lower bound over abstract val
We use structural traversals even for recursive abstract values,
accept the possible (conservative) loss of accuracy since in
domain we do not expect to encounter different recurs
descriptions of the same abstract value. For widening meets, we
heuristics similar to those suggested by Aiken and Murphy [3].

v ∈ AbsValue ::= v’ # id
id ∈ Int

v’ ::= Set represented by RTE: Ψ(v’,σ) ∈ 2H

0 {}

1 H

c(v1,...,vn) {c(t1,....,tm) | ti ∈ Ψ(vi,σ)}

v1|...| vn Ψ(v1,σ) ∪ ... ∪ Ψ(vn,σ)

fix α. v least fixpoint of T = Ψ(v, σ[α → T])

α σ[α]

map (
must[(u1,u1’)...(un,un’)],
may[(v1,v1’)...(v1,vm’)])

{[(t 1, t1’) ... (tn, tn’)] ∈ map |
(∀ (si = Ψ(ui,σ), si’= Ψ(ui’,σ)).

∃ (tj,tj’). {t j} = si ∧ tj’ ∈ si’)
∧
(∀ (tj,tj’) s.t. tj ∉ Ψ(u1|...|un,σ).

∃ (si = Ψ(vi,σ), si’= Ψ(vi’,σ)).
tj ∈ si ∧ tj’ ∈ si’)}

Table 1: Augmented regular tree expressions (abstract values):
Syntax and semantics

f
ete
t at

ext:

ect
lls

and
of
n
g

ter
on
few
ed
ize
 to
the

PE
ation
key

ow)
the
aps

am

over

 of

, if
le
the
ften
e
y be
the
ws.
hat
3.4 Context-sensitivity strategy
To enable precise abstract execution during PE, the stager
specializes aggressively the functions of the Core SCF-ML
optimization program. The primary goal of this specialization is to
replicate and then specialize the logical “flow functions” (and
“transformation functions”) in the program for each node in the
input program, in effect unrolling the optimization program over
the input program. Figure 10 shows how the specialization works.
On the left (figure 10(a)) is the abstract value
assign(x, primop(-, exprs(var(y,4)|var(z,5), exprs_none(6), 3),2),1)
This abstract value represents the set of concrete commands
{assign(x, primop(-, exprs(var(z,5), exprs_none(6), 3),2),1),
assign(x, primop(-, exprs(var(y,4), exprs_none(6), 3),2),1)}.
The integers 1 through 6 in the abstract value (highlighted in bold
in figure 10(a)) constitute the label field of the commands and their
subexpressions. On the right (figure 10(b)) is the corresponding
specialized function call graph we expect SCF to generate when
partially evaluating the dead-assignment analysis from figure 3
with respect to this abstract command.
Whenever we partially evaluate a call to analysis function f where
one of the formals* (called a finite argument) is bound to an abstract
sub-tree v of the original abstract function that was input to the
analysis, we produce and analyze a specialization f_|v| of f (|v| is a
unique textual representation for v; in figure 10, as a mnemonic aid,
we have chosen |v| to be the label of the phrase that v represents).
The pair (f,v) is called a specialization key. If a function f ’ called
from a specialization f_|v| does not have its own finite argument
(e.g., the helper function meet in figure 5), it is partially evaluated
with key (f ’,v), i.e., helper functions are replicated for every node.
To ensure termination, we need to ensure that the number of
abstract sub-trees generated as values of finite arguments during PE
is finite. In SCF, specializable arguments are discovered by a simple
finiteness analysis. To begin the analysis, the argument of the entry
function of the optimization is assumed to be finite (in the sense that
abstract execution will see only a finite number, in this case one, of
abstract values bound to this formal). The finiteness analysis
proceeds by deducing that any value that is the result of a sequence
of projection operations on a finite value is itself finite.
The rules used by this finiteness analysis are a simple variant of
those proposed previously in the context of offline partial
evaluation [18]. The main complication in adapting the analysis to
the online case is in showing that the rules are sound in the case of
online partial evaluation. In particular, we need to show that for any
abstract value v, there exists a finite set V={v1,...,vn} of abstract
values such that if we perform any sequence p1, p2,...,pm of abstract
projection operations on v, the result v’, if defined, is guaranteed to

be in V. The corresponding finiteness argument is easy in the case
of offline partial evaluation, since the projections in that case are
performed on concrete values, and a simple montonicity argument
about the size of concrete values resulting from projections is
sufficient to establish finiteness.
The level of context sensitivity provided by specializing on finite
arguments is not quite enough for accurate PE of optimization
programs. For iterative analysis of some input program nodes, we
often wish to specialize each call of the recursive function
separately, even though each recursive call has the same input
program node argument and hence has the same specialization key.
For example, the fix function in the dead-assignment elimination
example of figure 3 iteratively analyzes while_do nodes,
returning the final fixpoint solution to its dataflow equation. If we
merged each of these recursive calls, then our analysis would meet
each of the intermediate stages of the iteration into a combined
summary of the whole loop, causing a loss of precision.
Our solution is to maintain call chains of specialization keys rather
than individual specialization keys as the specialization context.
Every time abstract execution encounters an abstract call with
specialization key (f,v), it appends the caller’s chain o
specialization keys to the key to obtain the callee’s compl
specialization context. We ensure termination by requiring tha
most k instances (where k is fixed for each program being partially
evaluated) of a specialization key occur in a specialization cont
when we find ourselves building a chain with k+1 instances of
some key, we use the shortest suffix of the chain with k instances of
the key instead as the specialization context. Since we exp
iterative analyses to reach fixed-point in only a few recursive ca
per level of loop nesting, we typically use a small value (2 or 3) for
k.
The addition of call chains makes the worst-case running time (
size) of the analysis exponential in the size of the result
performing finite-argument-based specialization on a
optimization program (or equivalently, in the size of the incomin
abstract function). However, in the common case, af
specialization on finite arguments, the resulting optimizati
program tends to have a tree-shaped callgraph with relatively
merges. With a tree-shaped callgraph, call-chain-bas
specialization costs drop from exponential to linear. Also, the s
of both (intraprocedural) optimizations and their inputs tend not
be very large. Our experimental results so far indicate that
exponential blow up does not affect us in most cases.

4 Dead-assignment elimination
As discussed in section 2.2.2, the residualized code after
contains many dead assignments, and SCF contains an optimiz
designed to delete these assignments. Figure 11 specifies
details of dead-assignment elimination (abbreviated as DAE bel
in SCF. The main interesting features of the optimization are
machinery it provides to track liveness across data structures (m
in particular) and its use of the collecting semantics of a progr
(see figure 8) to identify dead operations in it.
The analysis is structured as a backward abstract interpretation
the domain of liveness patterns (written LP’s below), defined at the
top of figure 11. Intuitively, a liveness pattern is a generalization
the lattice values live and dead associated with scalar variables in
traditional dead-assignment elimination. In the traditional setting
a variable is live at a program point, we conclude that the variab
may be read downstream of the program point. However, if
variable is not a scalar (i.e., it has more than one field), we are o
interested in which fields of the possible values contained in th
variable are read downstream, so that stores to these fields ma
eliminated if possible. Liveness patterns allow us to express
liveness of sub-fields of values produced by expressions as follo
A LP of 1 for some expression at some program point indicates t

* In general, more than one formal may be specializable, and the
specialization key used in that case is the tuple of corresponding abstract
values.

assign

1

primop

2
x

y

_
exprs

3

var

4
exprs_none

6

analyze_expr_4_5

analyze_expr_2

analyze_exprs_3

analyze_exprs_6

(a) (b)

analyze_cmd_1

z

var

5

Figure 10: Level of specialization desired in SCF

used
dy
ch

ions

re

e

t

any field of a value it evaluates to may be read downstream. A LP
of 0 indicates that no field of a value it evaluates to is read
downstream. A LP of c(l1,...ln) requires the value to have the form
c(v1,...,vn), where each value vi satisfies LP li. A LP {l1|...|ln}
requires the value satisfies at least one of LP’s li. Finally, [l1,l2]
requires the value to be a map such that every key of the map
satisfies l1 and every range value satisfies l2.

The interprocedural part of DAE (not shown) associates every
function being analyzed with one LP representing its return value,
and one representing its argument. The return LP of a function
captures the requirements placed on the return value by callers of
the function. The argument LP captures requirements placed by the
function body on the argument values passed to the function. The
analysis begins by assuming that the optimization program as a
whole has return LP 1, i.e., that every field of any return value of
the program may be used. LP’s are propagated from callees to
callers in a fixpoint loop. Termination is guaranteed by widening to
1 the LP’s associated with a function after it is processed a fixed
number of times.

The intraprocedural part of DAE (figure 11) associates a LP with
each subexpression of the function body. The LP specifies which

parts of the values produced by the subexpression may be
downstream. To start things off, the LP of the function bo
expression is set to the return LP of the function. For ea
subexpression e, the backward pass returns a pair containing:

1. the expression resulting from pruning out dead subexpress
of e, and

2. a map from variables in e to LPs.

Figure 13 is an example of how DAE works. Consider (figu
13(a)) an invocation of DAEe on the body of function foo (in which
e[i] indicates that subexpression e is labelled with integer i), with LP
l = 1 and collecting-semantics map cs. Say tr is a 3-ary constructor.

The value 1 of l indicates that any part of any concrete valu
produced by the body of foo may be required downstream. We
process the let-bindings in foo from the inside out. Since the resul
of foo is the result of the map_find operation on map m’, we deduce
that all concrete values produced by map_find may be required
downstream as well. We conclude therefore that the map_find
operation is not dead and cannot be pruned away, and also that map
m’ may have any concrete value in its range (since downstream uses
do not constrain the range). Further, since we are performing a
lookup on m’ with key y[5], and map cs indicates that at this
program point y[5] may only have values 44 or 46 on any concrete
execution, we conclude that the domain of m’ need only contain 44
or 46. Putting requirements on the domain and range together, we
get a LP of [{44 | 46}, 1] for m’. We conservatively set the LP of y
to its value {44 | 46} in cs, since in a correct program, y cannot be
required to produce values other than those it can evaluate to in any
concrete execution.

l ∈ LivenessPattern (LP) =
1| 0 | c(l1,...ln) | {l1|...|ln} | [l1,l2]

cs ∈ CollectingSemanticsMap= (Label,AbsValue) map
lm ∈ LPMap = (Variable, LivenessPattern) map

DAEe : Expr → LivenessPattern →
CollectingSemanticsMap → Expr * LPMap

DAEe e 0 cs = (| cdead |, []) (* dead expression *)

DAEe |x| l cs = (|x|, [x → l])
DAEe |c

-k e| l cs =
(* l is k’th place of arity(c)-sized tuple *)
let l’= c(0, 0,...l,... 0, 0)

(e’, lm) = DAE e e l’ cs
in (|c -k e’|, lm) end

DAEe |if e 1 e 2 e 3 | l cs =
let (e 1, lm 1) = DAE e e 1 1 cs

((e 2, lm 2),(e 3, lm 3)) =
(DAEe e 2 l cs, DAE e e 3 l cs)

in (|if e 1 e 2 e 3|, meet lm 1 (meet lm 2 lm 3)) end

DAEe |let x = e 1 in e 2| l cs =
let (e 2, lm 2) = DAE e e 2 l cs in

if e 2 = |c dead| then (|c dead|, []) else
let v = find lm 2 x in

if v = NONE orelse v = SOME 0 then (e 2, lm 2)
else

let (e 1, lm 1) = DAE e e 1 cs in
(|let x = e 1 in e 2|,

meet lm 1 (delete lm 2 x))
end end end

DAEe |map_find e m e k| l cs =
let l k = toLivenessPattern

(find cs (labelOf e k))
(e m, lm m) = DAE e e m [l k , l] cs
(e k, lm k) = DAE e e k l k cs

in (|map_find e m e k|, meet lm m lm k) end

DAEe |map_insert e m e k e v| [l,l’] cs =
let v k = find cs (labelOf e k)

(e m, lm m) = DAE e e m [l , l’] cs
in

if mustBeDisjoint l v k then (e m, lm m) else
let (e k, lm k) = DAE e e k l cs

(e v, lm v) = DAE e e v l’ cs
in (|map_insert e m e k e v|,

meet lm m (meet lm v lm k))
end end

DAEe ...
(* Handle other kinds of expressions & LPs*)

Figure 11: Dead-assignment elimination (DAE)

meet: LPMap → LPMap → LPMap
meet lm lm’ =

(* Take the union of maps lm and lm’ . If a
variable x maps to LP’s l and l’ in lm and lm’
respectively, bind x to meetLP l l’ (see below)
in the resulting map *)

meetLP: LP → LP → LP
meetLP l l’ =

(* Let V and V’ be the sets of all concrete
values matching l and l’ respectively. Return a
LP that matches all of V ∪ V’ *)

mustBeDisjoint: LP → AbsValue → Boolean
mustBeDisjoint l V =

(*false if a concrete value v ∈ V may match l*)

toLivenessPattern: AbsValue option → LP
toLivenessPattern (SOME V) =

(* return a LP that matches every concrete value
v ∈ V *)

Figure 12: Helper functions for DAE

fun foo a =
let m = tr-1 a in
let x = tr-2 a in
let y = tr-3 a in
let m’ = map_insert m x[2] 10 in

map_find m’ y[5]
end end end end

l = 1

cs = [2 → {22|32},
5 → {44 | 46}, ...]

Figure 13: DAE example

 (b) (a)

fun foo a =
let m = tr-1 a in
let y = tr-3 a in
let m’ = m in

map_find m’ y
end end end

We next process the innermost let binding, let m’ = Given that
m’ is only required to contain keys 44 or 46, and that (looking up
the value corresponding to label 2 in cs) the insert operation only
ever inserts (via key x[2]) keys 22 or 32, we conclude that the
inserted binding is dead and so the insert is unnecessary. We replace
the whole insert expression |map_insert m x[2]| with its
subexpression |m| (which just computes the map the being inserted
into). This simplification results in the let binding let m’ = m in ...,
which simply copies m into m’, and we correspondingly set the LP
of m to that of m’, i.e., to [{44 | 46}, 1].

We now process the binding let y = tr-3 a. Since we have found
above that y has LP {44 | 46} we conclude that tr-3 a must have the
same pattern, i.e., it is only required to have concrete values 44 or
46, and that consequently the third field of a is also only required to
have these values, i.e., it has LP {44 | 46}. Similarly, from the
binding m = tr-1 a of m, we conclude that the first field of a has LP
[{44 | 46}, 1]. Finally, given that x did not have a LP associated with
it above (because its use in the map_insert was pruned away), the
second field of a remains unconstrained (i.e., has liveness value 0)
and the dead binding let x = tr-2 a in... is eliminated. The resulting
liveness pattern for a is tr([{44 | 46}, 1], 0, {44 | 46}). The resulting
pruned body of foo is in figure 13(b).

The interaction between collecting semantics and the dead-
assignment elimination to accurately model partial deadness of
maps (and thereby set) data structures is critical to effective
removal of dead code. Even with very aggressive specialization, if

we treat map and set accessors as user-defined functions, the
resulting analysis would not be accurate enough for our purposes.

5 Evaluation
We have implemented a prototype of SCF in Standard ML [24]. We
provide an SCF-ML front-end to allow specification of
optimization programs. We also provide a C front-end (which
parses C programs into abstract values) to specify functions, called
input functions below, whose optimization is to be staged.
As discussed in the introduction, the main goal of SCF is to enable
the easy construction of effective staged compiler pipelines. We
have so far staged pipelines containing three traditional dataflow
optimizations: constant propagation, copy propagation and dead-
assignment elimination. Compared to our experience hand-writing
staged versions of these optimizations for DyC [15], using SCF to
stage automatically unstaged versions of these optimizations has
been far easier in design, implementation and debugging. The
remaining issue, which can be evaluated by measurement, is
whether automatic staging as in SCF is effective: how do
automatically staged optimization pipelines compare with unstaged
pipelines and with hand-staged ones? In this section, we examine
this issue.
In all experiments below, we stage an optimization pipeline
consisting of the constant propagation, copy propagation and dead-
assignment elimination passes, i.e., the pipeline of figure 4. This
pipeline is used to optimize the various input functions over two
stages, as specified in table 2. In the second stage, we provide fully

Config.
No.

Input Function Description of Input Function
Abstract Values to Which Staged

Arguments of f are Bound

1 mul_add mul_add from figure 2:
computes a * x + y;
a is fixed at run time

stage1: a = ‘Int
stage2: a = 1

2 mul_add stage1: a = 0 | 1
stage2: a = 1

3 mul_add stage1: a = 3 | 1
stage2: a = 1

4 dotproduct finds the dotproduct of two vectors v1 and v2 of size s;
v2 and s are fixed at run time

stage1: v2 = some 1-D array, s = ‘Int
stage2: v2 = (0, 1, 7), s = 3

5 dotproduct stage1: v2 = some 1-D array, s = 3
stage2: v2 = [0, 1, 7], s = 3

6 doconvol convolves 2-D image matrix i with a 2-D convolution
matrix c; c is fixed at run time
(from the pnmconvol program of the netpbm library)

stage1: c = some 2-D array
stage2: c = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]

7 doconvol_1d 1-D version of above stage1: c = some 2-D array
stage2: c = [0, 1, 0]

8 main_loop main loop of the Dinero cache simulator; invokes
routines for finding, fetching and updating cache entries;
cache configuration parameters fixed at run time

stage1:
Cache configuration parameters:
i-cache size in kilobytes, i = ‘Int
d-cache size in kilobytes, d = ‘Int
i/d cache associativity, a = ‘Int
...
stage2:
i = 8
d = 8
b = 1
...

9 main_loop_f As in 8, with routine for fetching cache entries inlined

10 main_loop_f_u As in 9, with routine for updating cache entries inlined

11 main_loop_f_u_f As in 10, with routine for finding cache entries inlined

Table 2: Description of benchmark inputs

of
ses.
ast

ot
ion
to
0
tual
 the

this
11

tion
e

the
ring
wo

son

s

s to
xtra

ize
he
ent
in
put
 is
6

concrete values of pipeline inputs, and concretely execute the
pipeline on these inputs to produce a concrete output, i.e., the
optimized version of the input function specified as the pipeline
input. Since we do not currently have a code-generation pass in our
compiler pipeline, we pretty-print the optimized input function as a
C function, and use a conventional C compiler (gcc) to compile the
function and link it into its calling C program to produce an
optimized C program.
Given this framework, we focus on answering the following two
questions:

1. How fast are the staged optimizers? In particular, how much
faster are the staged optimizers produced by SCF, when
concretely executed, than the original (i.e., completely
unstaged) pipeline?*

2. How effective are the staged optimizers? In particular, how
much faster is the code optimized with the staged optimizers
than without the optimization?

5.1 Speedup of run-time stage of compiler
To answer question 1 above, we measured the overhead of concrete
execution of the two versions of the pipeline. We compiled both
versions of the pipeline into machine code and executed them
directly on the hardware, and measured overhead in microseconds
(all times are minimum user times on a lightly loaded 350MHz
Pentium-based machine with 256MB RAM and 8kB L1 instruction
and data caches and a 512kB L2 cache). In order to get a less
machine-dependent picture, we also executed the pipeline on an
instrumented Core SCF-ML interpreter, and measured the number
of instructions executed†. Column 2 of table 3 shows the ratio of the
time taken to execute unstaged pipelines to that to execute staged
ones. Column 3 shows the ratio of abstract instructions executed by

the unstaged optimizer to that executed by the staged version. A few
key points are worth noting:

• The staged pipelines are significantly (up to an order
magnitude) faster than their unstaged versions in most ca
Thus, automatic staging via SCF is capable of producing f
staged compilers.

• Large reductions in number of instructions executed do n
always translate to correspondingly large gains in execut
time. For instance, comparing configurations 10 and 11
configuration 8, we would expect to get speedups of roughly 1×
in the former cases, as in the latter case. However, the ac
speedup is half of that expected. Column 5, which presents
ratio of the size of the staged pipeline in the final stage to that of
the unstaged version, provides a possible reason for
anomaly: The staged pipelines for configurations 10 and
occupy roughly six times as much space as that of configura
8. It is very likely that these pipelines perform poorly in th
(small) hardware cache on our machine.

• The speedup due to staging may be quite sensitive to
particular abstract values provided at each stage. Compa
configurations 2 and 3, for instance, even though the t
configurations differ only in that the former binds argument a of
function mul_add to 0|1 and the latter to 1|3, the speedup in
the latter case is more than thrice that in the former. The rea
is that since the product of any value with 0 is 0, constant
propagating a potential 0 value results in a chain of computation
that potentially need to be folded away (to 0). A staged constant
propagator that handles these extra potential cases need
perform more checks than one that does not, resulting in e
compile-time overhead.

• The size of the staged compiler usually grows linearly in the s
of the input program, rather than exponentially, as is t
theoretical worst case described in section 3.4). This is evid
from comparing columns 4 and 5 of table 3. Each entry
column 4 of the table represents the total size of stager in
programs in the penultimate stage. The one anomaly
configuration 6. The convolution routine in configuration

Config.
No.

Compiler
Speedup

Reduction in
Instructions
Executed

Input function size
Increase in Compiler Size

(final stage pipeline/
unstaged pipeline)

Compiled Code
Speedup

(speedup due to hand
staging)

1 1.9× 2.1× 4 loc 148 nodes 1.4× 1.2×

2 2.9 2.2 4 148 1.4 1.2

3 5.5 7.9 4 148 1.3 1.2

4 2.9 2.6 8 198 1.6 2.7

5 2.5 2.9 8 198 3.6 2.7 (5.7)

6 1.1 1.2 102 2880 47.7 1.7 (3.1)

7 4.7 4.2 50 1097 7.9 1.9

8 12.2 9.8 39 1084 6.7 1.0

9 4.7 6.0 150 3960 19.2 1.1

10 4.8 8.5 292 7656 36.3 1.1

11 4.7 9.0 322 8396 38.5 1.3 (1.7)

Table 3: Benchmark results

* Ideally, we would also like to compare the overhead with that of a hand-
staged pipeline. Unfortunately, since the latter overheads are reported in
terms of late-stage compile cycles per machine instruction generated, and
we do not yet stage a code generation phase, we cannot provide this
number.

† We only show the decrease in map-manipulation instructions here because
they account for most (over 90%) of the compiler execution time

be
ann

er in
ugh
 not
tic”
t
rtial
ion
f the

ore
tem

st
9].
ly
ral
ons
ract
to
 set
ue
s

rate
ram
tree
sions
ains

ours.
, an

res
ese
 in

d a
our
s) is
ric
ad-

n, a
de.

ed
n
ns,
nd
 to
he
sed
ns
an
t-
ted
ted
te-

that
 the
e

 the
er,
and
ing
ut
contains a four-way nested loop. Specializing the recursive calls
that process this loop results in code bloat.

5.2 Speedup of compiled program
To answer the question 2 above, we executed the optimized and
unoptimized versions of the C program containing the input
function and compared the times spent in the input function in the
two cases. In the case of the mul_add and dotproduct input
programs, because time spent in the input functions was below the
resolution of the timer, we invoked the input function a large
number of times and averaged over the invocations to get the
overhead for a single call. Column 6 of table 3 presents, for each
configuration, the ratio of time spent in the unoptimized version of
the input function for that configuration to that spent in the
optimized version. Where available, the corresponding ratio for
hand-staged systems is included in bold parentheses. Two points are
especially worth noting:

• The staged optimizations do provide noticeable speedups. In a
sense, this is not surprising since prior work on hand-staged
systems [15, 8] has already shown that the optimizations in our
pipeline are effective in speeding up input functions. However,
most optimizations have versions with different levels of
aggressiveness, e.g., a constant propagator may or may not
reduce multiplies by powers of two to shifts, or fold multiplies
by zero to the constant zero. Our measurements demonstrate that
the particular SCF-ML specification of the three optimizations in
our pipeline is aggressive enough to achieve good speedups.

• The speedup due to the hand-staged pipeline is significantly
greater than that achieved by the SCF pipelines. One possible
reason for this gap is that the optimizations as specified in the
SCF pipeline may not be as aggressive as that in the hand-staged
pipelines. Another is that the two sets of speedup numbers were
obtained on different hardware systems, and the utility of a given
optimization can vary widely across systems. We do not know
the precise reason yet.

6 Related work
This work is motivated by our previous work on DyC [15], which
included a hand-staged optimization pipeline consisting of partial
evaluation, zero/copy propagation, and dead-assignment
elimination. The system demonstrated that staging the latter
optimizations can yield substantial speed up at low late-stage
overhead in realistic programs. However, the technique used for
staging was impractical for staging pipelines with many
optimizations. The stager for each optimization communicated the
effects of the optimization to downstream stagers using the standard
technique of annotating the outgoing program with “action
annotations” [7], which are specific to each optimization. Each
staged optimization must therefore know the semantics of the
action annotations used by all predecessor optimization stages, and
how they may interact. By replacing optimization-specific action
annotations with a uniform regular-tree-expression-based
description of sets of programs, our current work enables staging of
arbitrary optimizations to be implemented mechanically in a
generic way, and enables whole pipelines of arbitrary optimizations
to be staged mechanically.

Work on staged dynamic partial evaluation [14, 21, 8, 25] has
focused on adapting offline partial evaluation to support a run-time
stage. These systems have developed a suite of techniques to
increase late-stage performance while reducing late-stage
overhead. In particular, the optimized program produced by the late
stage is in executable machine code format (instead of the usual
source format), the late stage is restricted to a single non-iterative
pass (trading optimization quality for speed), late optimization of
parts of the input program may be performed on demand or
conditionally, and the stager may be parameterized by policy and

program information. Our staging framework can potentially
extended to support all these techniques. Sperber and Thiem
have shown how to compose a code generator with a specializ
a staged way, by viewing them both as catamorphisms [30]. Tho
the generic optimizations we seek to compose and stage are
catamorphisms, it is possible to automatically create “pessimis
versions of many optimizations that are catamorphisms. Marleet
al. discuss using multi-level staging to speed up late-stage pa
evaluation [23], but they assume that the incremental informat
available at each stage is the concrete value of some argument o
function being partially evaluated, rather than possibly just a m
refined set of possible values of the argument, as our sys
supports.
Accurate online partial evaluation is key to our system. A va
literature exists on this topic. Ruf provides a good overview [2
Handling recursive functions accurately but finitely is wide
identified as the key problem, one with provably no gene
solution. Common solutions are the use of finiteness annotati
[33] to guarantee that arguments have a finite number of abst
values, and finiteness analyses (similar to ours) [18, 33]
automatically detect such arguments. Our predefined map and
datatypes may be viewed as a variation on the former techniq
(the optimization writer uses a predefined library of function
whose properties are known to the partial evaluator).
One issue that Ruf does not address is the definition of accu
domains for PE. This issue is discussed extensively in the prog
analysis literature, however [28, 20, 2, 17]. Formalisms such as
grammars, graph grammars, set constraints and tree expres
have been studied in this context, and in many cases the dom
used by the analyses have been more expressive than
However, none of these analyses have been context sensitive
aspect we have found crucial to our application.
Dead-assignment elimination through partially-dead data structu
has been studied by Liu and Stoller and by Reps [22, 27]. Both th
works support recursive liveness patterns, a capability missing
SCF. We have deferred adding recursive patterns until we fin
need for them in our application. We have found so far that for
purposes, custom description of particular datatypes (e.g., map
much more effective than providing more expressive gene
liveness patterns. Neither of the other techniques allows the de
assignment analysis to consult the results of partial evaluatio
technique we found critical to obtaining good pruning of dead co

7 Summary and future work
We have presented a framework for constructing stag
optimizations that allows the optimizations to be writte
independently as unstaged dataflow-based optimizatio
composed into pipelines of arbitrary length in arbitrary order, a
specialized automatically over compilation stages. The key
modular composability of optimizations in the face of staging is t
use of a uniform, but expressive, regular-tree-expression-ba
representation to communicate information between optimizatio
within a stage. We achieve automatic staging by applying
extended form of online partial evaluation followed by pos
specialization dead-assignment elimination. We have implemen
and evaluated a prototype of the framework, which demonstra
that our techniques are capable of producing fast, effective la
stage compilers.
This work establishes a baseline staged compilation system
produces exactly the same optimized code as one where
optimizations were run solely during the final stage, with th
specialized compilers targeted for high speed while maintaining
behavior of the original unspecialized optimizations. Howev
these quality and speed constraints can lead to overly large
expensive late-stage optimizers. In addition to investigating stag
of additional optimizations and developing front-ends for new inp

.

e

e

al
on

e

n-

In

In

n,

H.

tial

 an

tial
languages, our future work will study alternative trade-offs among
optimized code quality, late-stage compiler size, and late-stage
compiler speed. For example, we plan to study principled ways to
sacrifice some optimization opportunities in order to make the late-
stage compilers require only linear passes. We also plan to
investigate having the stager produce specialized program
representations instead of specialized compilers; the former can be
much more compact than the latter. Finally, we wish to study having
the late-stage optimizations accept and return only the parts of the
program being optimized that weren’t known to the earlier stages,
to minimize their data traversal and construction costs, and to allow
fusion of adjacent optimizations to eliminate intermediate data
structures [32].

Acknowledgments
This work has been supported by ONR contract N00014-96-1-
0402, ARPA contract N00014-94-1-1136, NSF Grant CCR-
9975057, and NSF Young Investigator Award CCR-9457767. We
thank Brian Grant and Markus Mock for joint work and discussions
about dynamic compilation and staging, and Josh Redstone for help
with formatting the paper. We thank the anonymous referees for
useful feedback, especially that on improving the presentation.

References
[1] A. Aho, R.Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[2] A. Aiken and B. R. Murphy: Static type inference in a dynamically typed
language. In Symposium on Principles of Programming Languages, pages 279–
290, Jan. 1991.

[3] A. Aiken and B. Murphy. Implementing Regular Tree Expressions. In
J. Hughes, editor, 5th ACM Conference on Functional Programming Languages
and Computer Architecture, number 523, Cambridge, MA, USA, August 26-30,
1991. Springer.

[4] A. Aiken and B. R. Murphy. Implementing regular tree expressions. In
Proceedings of the Fifth Conference on Functional Programming Languages
and Computer Architecture, pages 427–447, Berlin, West Germany, Sept. 1991.

[5] V. Bala and E. Duesterwald. Dynamo: A transparent runtime optimization
system. In Conference on Programming Language Design and Implementation,
pages 1–12, June 2000.

[6] C. Chambers, J. Dean, and D. Grove. Whole-program optimization of object-
oriented languages. Technical Report TR-96-06-02, Department of Computer
Science and Engineering. University of Washington, June 1996.

[7] C. Consel and O. Danvy. From interpreting to compiling binding times. In 3rd
European Symposium on Programming, LNCS 432, pages 88–105. Springer-
Verlag, May 1990.

[8] C. Consel and F. Noël. A general approach for run-time specialization and its
application to C. In Symposium on Principles of Programming Languages,
pages 145–156, Jan. 1996.

[9] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An
optimizing compiler for object-oriented languages. In OOPSLA’96 Conference
Proceedings, pages 83–100, Oct. 1996.

[10] A. Diwan, E. Moss, and K. McKinley. Simple and effective analysis of
statically-typed object-oriented programs. In OOPSLA’96 Conference
Proceedings, Oct. 1996.

[11] M. Fernandez. Simple and effective link-time optimization of modula-3
programs. In Conference on Programming Language Design and
Implementation, pages 103–115, June 1995.

[12] R. Fitzgerald, T. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi. Marmot: An
optimizing compiler for Java. Software: Practice and Experience, 30(3):199–
232, Mar. 2000.

[13] R. Glück and J. Jorgensen. An automatic program generator for multi-level
specialization. Lisp and Symbolic Computation, 10(2):113–158, 1997.

[14] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Annotation-
directed run-time specialization in C. In Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 163–178, June 1997.

[15] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers. An evaluation of
staged, run-time optimizations in DyC. In Conference on Programming
Language Design and Implementation, pages 293–304, May 1999.

[16] M. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. Fiat: A framework
for interprocedural analysis and transformation. In The Sixth Annual Workshop
on Parallel Languages and Compilers, Aug. 1993.

[17] N. Heintze. Set-based analysis of ML programs. In ACM Conference on Lisp
and Functional Programming, pages 306–317, 1994.

[18] C. Holst. Finiteness analysis. In Functional Programming Languages and
Computer Architecture, LNCS 523, pages 473–495. Springer-Verlag, Aug
1991.

[19] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with run-tim
type feedback. In Conference on Programming Language Design and
Implementation, pages 326–336, June 1994.

[20] N. Jones and S. Muchnick. Flow analysis and optimization of lisp-lik
structures. In Symposium on Principles of Programming Languages, pages 244–
256, Jan. 1979.

[21] M. Leone and P. Lee. Optimizing ML with run-time code generation. Technic
report CMU-CS-95-205, School of Computer Science, Carnegie Mell
University, December 1995.

[22] Y. A. Liu and S. D. Stoller. Eliminating dead code on recursive data. In Static
Analysis Symposium, pages 211–231, 1999.

[23] R. Marlet, C. Consel, and P. Boinot. Efficient incremental run-tim
specialization for free. In Conference on Programming Language Design and
Implementation, pages 281–292, May 1999.

[24] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, MA, 1997.

[25] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based ru
time specialization: Implementation and experimental study. In International
Conference on Computer Languages, pages 132–142, May 1998.

[26] T. Proebsting. Optimizing an ANSI C interpreter with superoperators.
Symposium on Principles of Programming Languages, pages 322–332, Jan.
1995.

[27] T. Reps and T. Turnidge. Program specialization via program slicing.
O. Danvy, R. Glück, and P. Thiemann, editors, Proceedings of the Dagstuhl
Seminar on Partial Evaluation, pages 409–429, Schloss Dagstuhl, Wader
Germany, 12–16 1996. Springer-Verlag, New York, NY.

[28] J. C. Reynolds. Automatic computation of data set definitions. In A. J.
Morrell, editor, Information Processing 68, volume 1, pages 456–461,
Amsterdam, 1969. North-Holland.

[29] E. Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University,
February 1993. Technical report CSL-TR-93-563.

[30] M. Sperber and P. Thiemann. Two for the price of one: Composing par
evaluation and compilation. In Conference on Programming Language Design
and Implementation, pages 215–225, June 1997.

[31] F. Tip, C. Laffra, P. Sweeney, and D. Streeter. Practical experience with
application extractor for Java. In OOPSLA’99 Conference Proceedings, pages
292–305, Oct. 1999.

[32] P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

[33] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Automatic online par
evaluation. In Conference on Functional Programming Languages and
Computer Architecture, LNCS 523, pages 165–191. Springer-Verlag, 1991.

	Towards Automatic Construction of Staged Compilers
	1 Introduction
	2 Overview and example
	2.1 High-level description of SCF
	2.2 An example
	2.2.1 Inputs to SCF
	2.2.2 Structures produced by SCF

	3 The partial evaluator
	3.1 Overall structure
	3.2 Core SCF-ML: The input language for PE
	Table 1: Augmented regular tree expressions (abstract values): Syntax and semantics

	3.3 Augmented regular tree expressions: The domain of the partial evaluator
	3.3.1 Identity tags
	3.3.2 Abstract maps
	3.3.3 Internal representation and implementation

	3.4 Context-sensitivity strategy

	4 Dead-assignment elimination
	Table 2: Description of benchmark inputs

	5 Evaluation
	Table 3: Benchmark results
	5.1 Speedup of run-time stage of compiler
	5.2 Speedup of compiled program

	6 Related work
	7 Summary and future work

