
Evolving the Semantic Web with Mangrove

Luke McDowell, Oren Etzioni, Steven D. Gribble, Alon Halevy,
Henry Levy, William Pentney, Deepak Verma, and Stani Vlasseva

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195 U.S.A

flucasm,etzioni,gribble,alon,levy,bill,deepak,stanig@cs.washington.edu

ABSTRACT
Despite numerous proposals for its creation, thesemantic webhas
yet to achieve widespread adoption. Recently, some researchers
have argued that participation in the semantic web is too difficult
for “ordinary” people, limiting its growth and popularity.

In response, this paper introduces MANGROVE, a system whose
goal is to evolve a portion of the semantic web from the enormous
volume of factsalready available in HTML documents. MAN-
GROVE seeks to emulate three key conditions that contributed to
the explosive growth of the web: ease of authoring, instant grati-
fication for authors, and robustness of services to malformed and
malicious information. In the HTML world, a newly authored page
is immediately accessible through a browser; we mimic this feature
in MANGROVE by making semantic content instantly available to
services that consume the content and yield immediate, tangible
benefit to authors.

We have designed and implemented a MANGROVE prototype,
built several semantic services for the system, and deployed
those services in our department. This paper describes MAN-
GROVE’s goals, presents the system architecture, and reports on
our implementation and deployment experience. Overall, MAN-
GROVEdemonstrates a concrete path for enabling and enticing non-
technical people to enter the semantic web.

Categories and Subject Descriptors
H.3.m [Information Storage and Retreival]: Miscellaneous;
C.2.4 [Computer Communication Networks]: Distributed Systems

Keywords
Semantic Web, applications, gradual evolution, structured data, RDF, anno-
tation, tagging, instant gratification

1. INTRODUCTION AND MOTIVATION
Today’s web was built to present documents for humans to

view, rather than to provide data for software-based processing and
querying. In response, numerous proposals for creating asemantic
webhave been made in recent years (e.g., [4, 8, 24]), yet adoption
of the semantic web is far from widespread.

Several researchers have recently questioned whether participa-
tion in the semantic web is too difficult for “ordinary” people [13,
35, 23]. Indeed, a key barrier to the growth of the semantic web
is the need tostructuredata: technical sophistication and substan-
tial effort are required whether one is creating a database schema
or authoring an ontology. The database and knowledge represen-
tation communities have long ago recognized this challenge as a

Technical Report UW-CSE-03-02-01
February 2003
.

barrier to the widespread adoption of their powerful technologies.
The semantic web exacerbates this problem, as the vision calls for
large-scale and decentralized authoring of structured data. As a re-
sult, the creation of the semantic web is sometimes viewed as a
discontinuous divergence from today’s web-authoring practices —
technically sophisticated people will use complex tools to create
new ontologies and services.

While the discontinuous approach will certainly yield many use-
ful semantic web services, this paper is concerned with theevolu-
tionary approach: a significant part of the semantic web can evolve
naturally and gradually as non-technical people structure their ex-
isting HTML content.In fact, the two approaches are not compet-
ing but complementary. Each focuses on a different user base, data
sources, and services. Furthermore, each approach gives rise to a
somewhat different set of challenges. A key question for the evo-
lutionary approach ishow do we entice people to structure their
data?Structuring must be madeeasy, incremental, andrewarding;
it must not require duplicating existing HTML content, and must
support easy maintenance of consistency between related HTML
and semantic information over time.

This paper presents the architecture of MANGROVE, a semantic
web system that embodies an evolutionary approach to semantic
content creation and processing. In particular, MANGROVE seeks
to emulate three key conditions that contributed to the explosive
growth of the web. The first condition isease of authoring:MAN-
GROVE includes a convenient syntax for semantic markup, accom-
panied by a graphical web-page tagger that enables users to tag
existing HTML content without having to replicate any data. The
second condition isinstant gratification: in the HTML world, a
newly authored page is immediately accessible through a browser;
we mimic this feature in MANGROVE by making tagged content in-
stantly available to services. We posit that semantic tagging will be
motivated by services that consume the tags and result in immedi-
ate, tangible benefit to authors. MANGROVE provides several such
services and the infrastructure to create additional ones over time.
The third condition isrobustness:when authoring an HTML page,
authors are not forced to consider the contents of other, pre-existing
pages. Similarly, MANGROVE does not require authors of seman-
tic content to obey integrity constraints, such as data uniqueness or
consistency. Data cleaning is deferred to the services that consume
the data.

As one example of the MANGROVE approach, consider the
homepage of an individual, a university course, or a small orga-
nization. Such pages contain numerous facts including contact in-
formation, locations, schedules, publications, and relationships to
other information. If this information could be easily taggedwith-
outdisrupting standard web activities, then thevery samepages and
text could be used to support both the semantic web and standard

1

Pages RDF Database

Search

Parser

Services

Who's Who

Query

Notify
Cache

Personal
Homepage

Course
Homepage

Project
Homepage

Tagging

Published

Publication

Crawled
Pages

Google

Graphical Tagger
or Text Editor

Calendar
Cache

Browser

Crawler

Feedback

Authors

Notifier

Figure 1: The MANGROVE architecture and sample services.

HTML-based browsing and searching. For example, we can eas-
ily produce a departmental phone list by extracting phone numbers
from semantically-tagged home pages for the faculty and students
in our department. Similarly, we have created a departmental calen-
dar that draws on tagged information found on existing web pages,
which describe courses, seminars, and other events. Both services
instantly consume tagged facts and help motivate people to partici-
pate in the semantic web.

This paper uses MANGROVE as a testbed to answer several fun-
damental architectural questions about the support of semantic con-
tent on the web. We also describe our initial experience with MAN-
GROVE services and present measurements that help us to charac-
terize the behavior of our prototype implementation. Overall, we
aim to introduce the MANGROVE architecture and show how its
novel features support the evolutionary approach to semantic web
creation.

The remainder of this paper is organized as follows. The next
section introduces MANGROVE’s architecture and explains how it
supports instant gratification. Section 3 describes our initial seman-
tic services and explains some of the ways that they facilitate the
gradual evolution of the web. Section 4 examines how MANGROVE

maintains robustness in the presence of malformed or malicious
data, while Section 5 presents some of our initial experience us-
ing and evaluating our MANGROVE prototype. Section 6 discusses
related work on this problem, and Section 7 concludes.

2. THE ARCHITECTURE OF MANGROVE
This section presents the high-level architecture of the MAN-

GROVE system, details some of the key components, and relates
the architecture and design to MANGROVE’s goals. As noted ear-
lier, MANGROVE seeks to enable and entice authors to structure
their data, by mimicking the conditions that led to the explosive
growth of content creation on the web. In particular, we aim to
provide:

� Ease of Authoring: we aim to enable today’s web authors
to conveniently and incrementally transform their billion or
more web pages into semantic web content without disrupt-
ing standard HTML-based authoring, browsing, and search-
ing.

� Instant Gratification: we seek to motivate semantic tagging
by providing an immediate, tangible benefit to authors from
services that consume their tagged content.

� Robustness: in contrast with logic-based systems where
contradictions result in failure, we seek to make MANGROVE

robust to malformed data and to malicious misinformation.

As we consider the above principles, we also need to keep in
mind the scalability of the system. Our goal is to enable distributed
authoring at web scale and efficient access to the data once it is
structured.

2.1 Architecture Overview
Figure 1 shows the architecture of MANGROVE organized

around the following three phases of operation:

� Tagging: Authors use ourgraphical tagger or an editor to
insert tags into existing HTML documents. The syntax we
use for tagging, MTS, is explained in Section 2.2.1.

� Publication: Authors can explicitlypublishtagged content,
causing theparser to immediately parse and store the con-
tents in aRDF database. Thenotifier then notifies registered
services about relevant updates to this database. Services can
then sendfeedbackto the authors in the form of links to up-
dated content (or diagnostic messages in case of errors). In
addition, MANGROVE’s crawler supplies data to the parser
periodically, updating the database when authors forego ex-
plicit publishing.

� Service Execution:Newly published content is immediately
available to a range ofservicesthat access the content via
database queries. The services are representative of the ways
users interact with the web today, but boosted by semantics:
we support semantic browsing, search, and more complex
services such as an automatically generated department cal-
endar.

These three phases are overlapping and iterative. For instance,
after tagging, publication, and service execution, an author may re-
fine her tagged documents to add additional tags or to improve data

2

usage by the service. Supporting this complete life-cycle of content
creation and consumption is important to fueling the semantic web
development process.

Below, we describe each of the elements of MANGROVE’s archi-
tecture in more detail. We focus on the novel elements and omit
many aspects of components that use standard technology, such as
our crawler, parser, and tagger.

2.2 Semantic Tagging inMANGROVE
Semantic tagging of HTML content is central to MANGROVE.

In our context, manual tagging of a significant portion of the con-
tent is a requirement. We considered the use of “wrapper” tech-
nology (e.g., [12, 38]) for automatically extracting structured data
from HTML. However, such technology relies on heavily regular
structure; it is appropriate forrecoveringdatabase structure that is
obscured by HTML presentation (e.g., Amazon.com product de-
scriptions that are automatically generated from a database), but
not for analyzing pages authored by hand. Thus, MANGROVE uti-
lizes a small number of wrappers to generate “seed” data to initially
populate semantic services, but this is not sufficient for solving the
general problem. MANGROVE also supports the use of wrappers
to “read” semantic information from external databases and appli-
cations (e.g., an Exchange server containing calendar and contact
information). We also considered natural language processing and,
specifically, information extraction techniques (e.g., [49]), but such
approaches are domain-specific and often unreliable. As a result,
we formulated the more pragmatic approach described below.

2.2.1 TheMTS Syntax
We developed MTS (the MANGROVE Tagging Syntax) to en-

able easy tagging while deviating as little as possible from existing
HTML authoring practices. Ideally, we would have liked to use
RDF for annotating data.1 However, RDF is currently inadequate
for our purposes, because RDF cannot intermingle with HTML
tags; that is, existing data must bereplicated in a separate RDF
section (as also noted by [23]). Since HTML documents are fre-
quently updated by their authors, this data replication can easily
lead to inconsistency between the RDF and its data source, partic-
ularly if “semantically-unaware” tools (e.g., Microsoft FrontPage)
are used for editing.

In essence, MTS is a syntax that enables authors toembedRDF
within their HTML document.2 As a consequence, MTS does not
have the aforementioned redundancy problem, because HTML and
MTS tags may interleave in any fashion, permitting “inline” an-
notation of the original data. Therefore, factual changes to the an-
notated data using any tool will result in a seamless update to the
semantic content on the page. In contrast to much of the related
work on semantic web languages, the focus in the design of MTS
is on syntax and convenience rather than semantics and expressive
power. MTS’s expressive power is equivalent to that of basic RDF;
for simplicity we omitted advanced RDF features such as contain-
ers and reification. Finally, we note that the goal of MTS is to
express base data rather than models or ontologies of the domain
(as in RDF Schema, DAML+OIL [26], OWL [7]).

MTS consists of a set of XML tags chosen from a sim-
ple local schema. The tags enclose HTML or plain text.
For instance, a phone number that appears as “543-6158 ”
on a web page would become “<uw:workPhone >543-
6158</uw:workPhone >”. Here “uw” is the namespace prefix
for our local domain and “workPhone ” is the tag name. Nested

1We use the terms ’tag’ and ’annotate’ interchangeably.
2In fact, the MTS parser converts MTS into RDF for storage in our RDF
database.

tags convey property information. For instance, Figure 2 shows a
sample tagged document where the<workPhone > tag is a prop-
erty of the<instructor > named “Prof. John Fitz.” Our syntax
also permits RDF-likeabout attributes (e.g., of the<course >
element) that enable information about an object to appear in mul-
tiple locations and be fused later.

In order to enable users to tag existing data regardless of its
HTML presentation, the MTS parser disregards HTML tags when
parsing (though images and links are reproduced in the parser out-
put to permit their use by services). Finally, in order to reduce
the annotation burden for items such as lists and tables that exist
inside HTML documents, MANGROVE provides a simple regular
expression syntax. For instance, the<reglist > element in Fig-
ure 2 enables the table to be automatically tagged based on existing
HTML patterns.

<html xmlns:uw="http://wash.edu/schema/example" >

<uw:course about="http://wash.edu/courses/692" >

<h1><uw:name>Networking Seminar
</ uw:name></h1 >

<p>Office hours for additional assistance:
<uw:instructor>

<uw:name>Prof. John Fitz </ uw:name>
<uw:workPhone>543-6158 </ uw:workPhone>

</ uw:instructor>
<uw:instructor>

<uw:name>Prof. Helen Long </ uw:name>
<uw:workPhone>543-8312 </ uw:workPhone>

</ uw:instructor>

<table > <tr ><th >2003 Schedule</tr>
<uw:reglist=

’ <tr ><uw:event>
<td ><uw:date>*</ uw:date>
<td ><uw:topic>*</ uw:topic>

</ uw:event></tr >’ >

<tr > <td >Jan 11 <td >Packet loss </tr >

<tr > <td >Jan 18 <td >TCP theory </tr >

</ uw:reglist>
</table >

</ uw:course> </html >

Figure 2: Example of annotated HTML. The uw: tags provide se-
mantic information without disrupting normal HTML browsing. The
<reglist > element specifies a regular expression where ‘* ’ indicates
the text to be enclosed inMTS tags.

2.2.2 The Graphical Tagger
To facilitate semantic tagging, we developed the simple graph-

ical tagger shown in Figure 3. The tool displays a rendered ver-
sion of the HTML document alongside a tree view of the relevant
schema. Users highlight portions of the HTML document, and the
tool automatically pops up a list of MTS tags that may be selected,
based on the current annotation context. The tool also displays
a simplified tree version of the tagged portion of the document,
showing the value of each property. This enables the author to eas-
ily verify the semantic interpretation of the document or, by click-
ing on a node in the tree, to browse through the document based
on its semantics. The graphical tagger can be downloaded from
http://www.cs.washington.edu/research/semweb/tagger.html.

2.2.3 Schema inMANGROVE
Currently, MANGROVE provides a predefined set of XML

schemas to support the tagging process. Providing schemas is cru-
cial, as we can’t expect casual users to design their own (and that
would certainly not entice people to use the system). The intent

3

Figure 3: The MANGROVE graphical tagger. The pop-up box presents the set of tags that are valid for tagging the highlighted text. Items in gray
have been tagged already, and their semantic interpretation is shown in the “Semantic Tree” pane on the lower left. The user can navigate the schema
in the upper left pane.

of the schemas is to capture most aspects of the domain of interest.
The pages being annotated do not have to containall the details of a
certain schema, and more importantly, they do not have to conform
to the nesting structure of a particular XML schema. Instead, they
map the data on their page to the appropriate tags in the schema. In
the future, we anticipate a process by which users can collectively
evolve the schema as necessary.

2.3 Document Publication
In today’s web, changes to a web page are immediately visible

through a browser. We create the analogous experience in MAN-
GROVEby publishingsemantically tagged content, which instantly
transmits that content to MANGROVE’s database and from there to
services that consume the content.

MANGROVE authors have two simple interfaces for publishing
their pages. They can publish by pressing a button in the graphi-
cal tagger, or they can enter the URL of a tagged page into a web
form. Both interfaces send the URL to MANGROVE’s parser, which
fetches the document, parses it for semantic content, and stores that
content in the RDF database. This mechanism ensures that users
can immediately view the output of relevant services, updated with
their newly published data, and then iterate either to achieve dif-
ferent results or to further annotate their data. In addition, before
adding new content, the database purges any previously published
information from the corresponding URL, allowing users to retract
previously published information (e.g., if an event is canceled).

Some services, such as search, compute their entire result in re-
sponse to a user’s input. These services obtain data solely through
RDF database queries. Other services, however, maintain a cache
of precomputed information in order to provide faster response to
user queries. These services specify data of interest by providing
a query to the MANGROVE notifier. When the database is updated
by a new data publication or a web crawl, the notifier forwards data
matching that query to the corresponding services for processing.

For instance, the calendar service registers its interest in all pages
that contain<event > tags (or that had such tags deleted). When
it receives notification of relevant new data, the calendar processes
that data and updates its internal data structures, ensuring that view-
ers of the calendar see fresh data with minimal delay.

Crawling or polling all potentially relevant pages is an obvious
alternative to explicit publication. While MANGROVEdoes utilize a
crawler, it seems clear that crawling is insufficient given a reason-
able crawling schedule. This is an important difference between
MANGROVE and current systems (e.g., [8, 24]) that do not attempt
to support instant gratification and so can afford to rely exclusively
on crawlers. MANGROVE’s web crawler regularly revisits all pages
that have been previously published, as well as all pages in a cir-
cumscribed domain (e.g.,cs.washington.edu). The crawler
enables MANGROVE to find semantic information that a user ne-
glected to publish. Thus, publication supports instant gratification
as desired, while web crawls provide a convenient backup in case
of errors or when timeliness is less important.

Conceivably, we could leave the data in the HTML files and
access them only at query time. In fact, several data integration
systems (e.g., [17, 19, 1, 31, 28]) do exactly this type of polling.
The difference between MANGROVE and data integration systems
is that in the latter, the system is givendescriptionsof the con-
tents of every data source. At query time, a data integration system
can therefore prune the sources examined to only the relevant ones
(typically a small number). In MANGROVE we cannot anticipatea
priori which data will be on a particular web page, and hence we
would have to access every page for any given query – clearly not
a scalable solution.

An additional reason why we chose publishing to a database
over query-time access is that the number of queries is typically
much higher than the number of publication actions. For exam-
ple, people consult event information in the department calendar
much more frequently than announcing new events or changing the

4

events’ time or location.

2.4 ScalingMANGROVE
Scalability is an important design consideration for MANGROVE,

and it has influenced several aspects of MANGROVE’s architec-
ture. For example, our explicit publish/notification mechanisms
were chosen to improve scalability, as well as to support our in-
stant gratification goals. Nevertheless, the scalability of our current
prototype is limited in two respects. First, at the logical level, the
system does not currently provide mechanisms for composing or
translating between multiple schemas or ontologies. Second, at the
physical level, the central database in which we store our data could
become a bottleneck.

We address both scalability issues as part of a broader project de-
scribed in [20]. Specifically, once a department has tagged its data
according to a local schema, it can collaborate with other structured
data sources using apeer-data management system(PDMS) [21].
In a PDMS, semantic relationships between data sources are pro-
vided usingschema mappings, which enable the translation of
queries posed on one source to the schema of the other. Our group
has developed tools that assist in the construction of schema map-
pings [9, 10], though these tools are not yet integrated into MAN-
GROVE.3

Given a network of peers and a query posed over one of them,
the algorithms described in [21] willchain through the semantic
mappings and obtain data from any relevant peer. In doing so, the
system will only retrieve data that is relevant to the query. Relying
on a PDMS resolves the potential bottleneck of querying a central
database.4

3. SEMANTIC SERVICES IN MANGROVE
One of the goals of MANGROVE is to demonstrate that even

modest amounts of tagging can significantly boost the utility of
the web today. To illustrate this, MANGROVE supports a range of
semantic services that represent several different web-interaction
paradigms, including Google-style search, novel services that ag-
gregate semantically tagged information, and semantic browsing.
Below, we introduce our service construction template, and then
consider each of the above services in turn.

3.1 Service Construction Template
Services are written in Java and built on top of a MANGROVEser-

vice template that provides the basic infrastructure needed for ser-
vice creation. Currently, we use the Jena [36] RDF-based storage
and querying system, which enables our services to pose RDF-style
queries to extract basic semantic information from the database via
a JDBC connection. Alternatively, services may use higher-level
methods provided by the template. For instance, the template con-
tains methods to retrieve all relevant information about a given re-
source from the RDF database, augmented with a summary of the
sources of that information. The template also provides methods
to assist with data cleaning and interpretation, as explained in Sec-
tion 4.

The MANGROVE service template also aids service construc-
tion with support for incrementally computing and caching results.
First, the template provides a standardrunUpdate() method;
this method is invoked by the MANGROVE notifier, which passes

3See [46] for a recent survey on the topic of schema mapping in the
database literature.
4The peer-to-peer architecture of a PDMS accommodates as special cases
several data-sharing architectures that have been discussed in the literature,
such as federated databases and data integration systems.

in a handle to the complete RDF dataset as well as a handle to
the new RDF data for which the notification has occurred. Upon
notification, invoked services rely primarily on the new data and
local cached state, but an application can consult the complete
dataset as necessary. Second, the template also provides a sim-
ple caching mechanism that maintains pre-computed information
(e.g., processed event descriptions) and a mapping between each
piece of information and its source page(s). For instance, when the
calendar is invoked by the notifier, it uses those source mappings to
determine what events may have changed, then updates the cache
with the new information. The calendar viewer then uses this cache
to quickly access the information requested by users.

Overall, MANGROVE makes services substantially easier to
write by encapsulating commonly-used functionality in this service
template.

3.2 Semantic Search
We believe that tagging will be an incremental process starting

with “light” tagging of pages and gradually increasing in scope and
sophistication as more services are developed to consume an in-
creasing number of tags. It is important for this “chicken and egg”
cycle that even light tagging yield tangible benefit to users. One
important source of benefit is a Google-style search service that re-
sponds appropriately to search queries that freely mix tags and text.
The service returns the set of web pages in our domain that contain
the text and tags in the query.

The interface to the service is a web form that accepts standard
textual search queries. The service also accepts queries such as
“assistant professor”<facultyMember> <portrait>? , which com-

bines the phrase “assistant professor” with MTS tags. Like
Google, the query has an implicit AND semantics and returns
exactly the set of pages in our domain containing the phrase
“associate professor” and the specified tags. The? after the
<portrait> tag instructs the service to extract and return the
HTML inside that tag (as with the SELECT clause of a SQL
query).

The service is implemented by sending the textual portion of the
query (if any) to Google along with instructions to restrict the re-
sults to the local domain (cs.washington.edu). The MAN-
GROVE database is queried to return the set of pages containing all
the tags in the query (if any). The two result sets are then inter-
sected to identify the relevant set of pages. When multiple relevant
pages are present, their order in the Google results is preserved to
enable more prominent pages to appear first in the list. Finally, any
extraction operations indicated by one or more question marks in
the query are performed and included in the result (see Figure 4).
Like Google, not every result provides what the user was seeking;
the search service includessemantic contextwith each result — a
snippet that assists the user in understanding the context of the in-
formation that was extracted. The snippet is thename property of
the enclosing object for the extracted tag. For instance, when ex-
tracting the<portrait > information as shown in Figure 4, the
snippet is the name of the faculty member whose portrait is shown.

With its ability to mix text and tags, this kind of search is
different from the standard querying capability supported by the
MANGROVE database and other semantic web systems such as
SHOE [24] and WebKB [34]. Our search service has value to users
even when pages are only lightly tagged, supporting our design
goal of gradual evolution. In Section 5 we attempt to quantify the
added value of our semantic search.

3.3 Aggregation Services
In this section we describe some of the additional services that

5

Figure 4: The semantic search service’s results page. The page reproduces the original query and reports the number of results returned at the top.
Matching pages contain the phrase “assistant professor” and the tags<facultyMember> and<portrait >. The ? in the query instructs the service
to extract the<portrait > from each matching page.

we have deployed in our department using MANGROVE.5 We fo-
cus, in particular, on our automatically-generated department cal-
endar.

First, ourWho’s Whoservice compiles pictures, contact infor-
mation, and personal information about people within an organiza-
tion. In our department, a staticWho’s Whohad existed for years,
but was rarely updated (and was woefully out-of-date) because of
the manual creation process required. Our dynamicWho’s Whodi-
rectly uses more up-to-date information from users’ home pages,
permitting users to update their own data at any time to reflect their
changing interests.

Our experience with theWho’s Whoservice illustrates an impor-
tant advantage of the MANGROVE approach over asking users to
enter information into databases via web forms. A large amount
of useful data already exists in hand-crafted personal and organi-
zational web pages, and the active viewing of this data over the
web motivates users to keep this information up-to-date. Once
these pages are tagged, MANGROVE automaticallyleveragesthe
author’s HTML updates to keep the information in its database up-
to-date without additional effort on the author’s part. Thus, man-
ually maintained databases often become stale over time whereas
MANGROVE’s information is as fresh as HTML.

WhereasWho’s Whomerely collects information from a set of
web pages, our Research Publication Database compiles a search-
able database of publications produced by members of our depart-
ment based on the information in home pages and project pages.
This service is able to infer missing information (e.g. the author of a
paper) from context (e.g., the paper was found on the author’s home
page) and applies simple heuristics to avoid repeated entries by de-
tecting duplicate publications. Consistent with our goal of enabling
light, incremental tagging, only a single<publication > tag
enclosing a description of the publication is required in order to add
an entry to the database. However, users may improve the quality
of the output and the duplicate removal by specifying additional
tags such as<author > and<title >.

5Accessible at http://www.cs.washington.edu/research/semweb.

Our most sophisticated service, the department calendar (shown
in Figure 5), automatically constructs and updates a unified view
of departmental events and displays them graphically. As with our
other services, the calendar requires only a date and name to in-
clude an event in its output, but will make use of as much other
information as is available (such as time, location, presenter, etc.).

Department members are motivated to tag their events’ home
pages in order to publicize their events. The calendar has only been
in active use for a few weeks but already averages about 27 distinct
visits per weekday, with an average of 1.9 page views per visit.6

The number of visits has been rising steadily as members of the
department have begun to rely on the service.

We initially seeded the calendar with date, time, and location in-
formation for courses and seminars by running a single wrapper
on a university course summary page. Users then provide more
detail by annotating a page about one of these events (e.g., users
have tagged pre-existing HTML pages to identify the weekly top-
ics for seminars). Alternatively, users may annotate pages to add
new events to the calendar (e.g., an administrator has annotated a
web page listing qualifying exams). Typically, users annotate and
publish their updated pages, the calendar is immediately updated,
and users then view the calendar to verify that their events have
been included. For changes (e.g., when an exam is re-scheduled),
users may re-publish their pages or rely on the MANGROVE web
crawler to capture such updates at a later time.

It is easy to conceive of other services as well. We view the ser-
vices described above as informal evidence that even light tagging
can facilitate a host of useful services, which motivates further tag-
ging, etc. Of course, more experience with deployed services and
actual users in the context of multiple organizations is necessary to
validate and fine-tune our architecture.

3.4 Semantic Browser
MANGROVE interleaves tags with HTML in a manner that is in-

visible to standard browsers such as Internet Explorer or Netscape.

6These statistics exclude traffic from MANGROVE project team members.

6

Figure 5: The calendar service as deployed in our department. Seehttp://www.cs.washington.edu/research/semweb for the live ver-
sion. The popup box appears when the user mouses over a particular event, and displays additional information and its origin.

Other researchers have developed browsers that either display only
semantic content [39] or simply insert comments about an HTML
document [29]. Instead, we developed a semantic browser that dy-
namically transforms its page presentation based on user prefer-
ences. The browser’s transformation set includes highlighting se-
lected items or links, adding links to a page, and omitting elements
of a page. For example, items that match user preferences may be
highlighted in color. In addition, MTS tags enable the browser to
turn text into links. For example, when a faculty member lists stu-
dents under the<advisedStudent > tag, the student’s name
can become a link to the student’s homepage.

The omission of information can improve the browsing experi-
ence for cluttered pages, particularly on devices such as PDAs. We
refer to this practice assubwebbing. A user can rely on one of
two models of subwebbing. The browser can omit any content that
is not explicitly tagged to be of interest; e.g., a teaching assistant
accessing student pages may ask to see only content that is rele-
vant to her course. Alternatively the browser can omit content if
it is explicitly tagged as information that isnot of interest; e.g., a
prospective student may wish the browser to omit information that
is tagged as being only of local interest.

We utilize a plug-in to Internet Explorer that enables a user to
indicate his preferences through toolbar selections. For example,
the user may only be interested in research content, or in content
relevant to undergraduates. That information is stored in a cookie
that is transmitted to a proxy server with every page request. The
server queries the MANGROVE database to decide what portion of
the page to transmit to the user.7 The server relies on caching to
improve efficiency for computationally expensive queries. Our se-
mantic browser is only partly implemented at this point.

4. PRACTICAL DATA MAINTENANCE
Database and knowledge base systems have a set of mechanisms

that ensure that the contents of a database are clean and correct. For
example, database systems enforce integrity constraints on data en-
7Architecturally, the browser is simply another service that consumes tags.

try, and therefore eliminate many opportunities for entering “dirty”
data. In addition, database applications control carefully who is al-
lowed to enter data, and therefore malicious data entry is rarely an
issue. One of the novel aspects of a system like MANGROVE is that
we can no longer rely on such mechanisms because we do not have
a central administration of our database. Below we describe how
MANGROVE handles such issues in large-scale data sharing.

4.1 Malformed Data
On the HTML web, a user can put his phone number on a web

page without considering whether it already appears anywhere else
(e.g., in an employer’s directory), or how others have formatted or
structured that information. Despite that, users can effectively as-
sess the correctness of the information they find (e.g., by inspecting
the URL of the page) and interpret the data according to domain-
specific conventions. In contrast, existing systems often restrict
the way information may be expressed. For instance, in WebKB-
2 [34], a user may not add information that contradicts another user
unless the contradictions are explicitly identified first. Likewise, in
SHOE [24], all data must conform to a specified type (for instance,
dates must conform to RFC 1123).

MANGROVE purposefully does not enforce any integrity con-
straints on tagged data or restrict what claims a user can make.
With the calendar, for instance, annotated events may be miss-
ing a name (or have more than one), dates may be ambigu-
ous, and some data may even be intentionally misleading. In-
stead, MANGROVE defersall such integrity constraints to allow
users to say anything they want, in any format. Furthermore,
MTS allows users to decide how extensively to tag their data.
For instance, the<instructor > tag may refer to a resource
with further properties such as<name> and<workPhone >
(e.g., of John Fitz in Figure 2), or simply to a string lit-
eral (e.g., “<instructor >John Fitz </instructor >”).
These features simplify the tagging and gradual evolution of exist-
ing HTML.

The primary burden ofcleaning the data is passed to the ser-
vice consuming the data, based on the observation that different

7

services will have varying requirements for data integrity. In some
services, clean data may not be as important because users can tell
easily whether the answers they are receiving are correct or not
(possibly by following a hyperlink). For other services, it may be
important that data be consistent (e.g., that an event have the cor-
rect location), and there may be some obvious heuristics on how
to resolve conflicts. The source URL of the data is stored in the
database and can serve as an important resource for cleaning up the
data. To assist with this process, MANGROVE’s basic service tem-
plate enables services to apply a simple rule-basedcleaning policy
to results from the database. For example, for calendar course and
seminar events, our calendar specifies a simple policy that prefers
information from the department’s domain over information from
elsewhere on the web. Thus, factual conflicts are resolved in the
department’s favor. This policy also helps the calendar to deal with
different degrees of tagging. For instance, to identify the instructor
for a course lecture, the calendar simply requests the value of the
<instructor > tag, and the template library automatically re-
turns the<name> sub-property of the instructor if it exists, or the
complete value of that tag if sub-properties are not specified. Ser-
vices may create their own cleaning policy or use a default provided
by the system.

Even when data is consistent and reliable, services still face
the problem ofinterpreting the semantic data. For instance, dates
found on existing web pages are expressed in natural language and
vary widely in format. We note that while this problem of data in-
terpretation is difficult in general, once users have explicitly iden-
tified different semantic components (e.g., with a<date > tag),
simple heuristics are sufficient to enable useful services for many
cases. For instance, MANGROVE’s service template provides a sim-
ple date and time parser that we have found very effective for the
calendar service. In addition, semantic context can assist the clean-
ing process, e.g., to provide a missing year for an event specified as
part of a course description.

4.2 Overcoming Malicious Misinformation
The highly distributed nature of the web can lead to abuse, which

popular services such as search engines have to grapple with on
a regular basis. Potential abuse is an issue for semantic services
as well. What is to prevent a user from maliciously publishing
misleading information? Imagine, for example, that a nefarious
AI professor purposefully publishes a misleading location for the
highly popular database seminar in an attempt to “hijack” students
and send them to the location of the AI seminar.

We have considered several approaches to combating this kind of
“semantic spoofing.” We could have an administrator verify infor-
mation before it is published, creating a “moderated” semantic web.
However, this non-automated approach prevents instant gratifica-
tion and does not scale. Alternatively, we could enable automated
publishing for password-authenticated users, but investigate com-
plaints of abuse and respond by disabling an abuser’s publishing
privileges. This approach, however, is more complicated for users
and prevents the same data from being easily shared by more than
one semantic domain. Instead, we chose a fully automated system
that mirrors the solution adopted by search engines — associating
a URL with every search result and leaving decisions about trust to
the user’s discretion.

Thus, an important design principle for MANGROVE services is
to associate an easily-accessible source (i.e., a URL) with each
fact made visible to the user. For example, as shown in Figure
5, a user can “mouse over” any event in the calendar and see ad-
ditional facts including one or more originating URLs. The user
can click on these URLs to visit these pages and see the orig-

inal context for the facts. Naturally, service writers are free to
implement more sophisticated policies based on freshness, URL,
or further authentication. For instance, in case of conflict, our
department calendar uses its previously mentioned cleaning pol-
icy to enable facts published from pages whose URL starts with
http://www.cs.washington.edu/education/ to over-
ride facts originating elsewhere.

4.3 Service Feedback
Another fundamental difference between MANGROVE and tradi-

tional data management applications is that authors who enter data
may not be aware of which services consume their data and what
is required in order for their data to be well formed. Hence, an
author may annotate data and publish it, but then fail to find the
desired event in the calendar (perhaps because the calendar did not
understand the dates specified). The challenge is to create an envi-
ronment where a novice user can easily understand and rectify this
situation.

To address this problem, we provide aservice feedbackmech-
anism that accepts a URL as input. Services registered with the
notifier then process all tagged data at that URL and output infor-
mation about problems encountered (e.g., a date was ambiguous
or missing) and/or about successful processing (e.g., a link to the
newly added calendar event).8 As a convenience, we invoke the
service feedback mechanism whenever authors publish new data.
Thus, this mechanism supports both robustness (by helping authors
to produce well-formed data) and instant gratification (by mak-
ing it easier for authors to find the tangible output resulting from
their new semantic data). Furthermore, the mechanism enables au-
thors to receive serendipitous feedback from services previously
unknown to the author, thus creating a discovery mechanism for
potentially relevant semantic services.

4.4 Discussion
MANGROVE is designed to support the goals listed in the begin-

ning of Section 2. First, MANGROVE supportsease of authoring
with the convenient MTS syntax, the graphical tagger, and the abil-
ity to seamlessly inline tags inside pre-existing HTML documents.
In addition, deferring integrity constraints to the application, and
the ability to tag HTML lightly and incrementally also help to ease
the burden of semantic tagging. Next, MANGROVE supportsin-
stant gratificationwith a loop that takes freshly published semantic
content through the parser, to the database, through the notifier, to
MANGROVE services, and then back to the user through the ser-
vice feedback mechanism described above. Finally, MANGROVE

supportsrobustnesswith its service feedback mechanism, by as-
sociating a URL with every fact in the database, and by providing
the service construction template, which assists services in cleaning
and interpreting the data based on these URLs.

5. EXPERIENCE WITH MANGROVE
This section presents some of our initial experience using and

evaluating our MANGROVE prototype. It is not meant to be con-
clusive: the system and its services are new and still evolving.
Therefore, our goals here are modest, namely, to address some ba-
sic questions about the MANGROVE approach:

1. Feasibility: Can MANGROVE be used to successfully tag
and extract the factual information found in existing HTML
pages?

8We restrict the processing to a limited number of services for tractability,
and because not all services will have this feedback capability.

8

Search Objective Google Tag-only Search Tag+Text Search
f (Prec.,Rec.) f (Prec.,Rec.) f (Prec., Rec.)

Assistant Professor photos 0.75 (100%,60%) 0.82 (100%,70%) 0.84 (89%, 80%)
Associate Professor photos 0.52 (75%,40%) 0.89 (100%,80%) 0.91 (83%,100%)

Assistant Professor phone numbers0.64 (58%,70%) 0.89 (100%,80%) 0.95 (91%,100%)
Associate Professor phone numbers0.29 (19%,60%) 0.67 (75%,60%) 0.80 (80%, 80%)

Table 1: Comparison of Search Services. In each box, the first value is thef-scoreof the query, followed by theprecisionand recall in parentheses.
Within each row, the values in bold represent the maximum value for that metric.

2. Benefit: Can MANGROVE services actually benefit users
when compared with popular commercial services? Specif-
ically, we attempt to quantify the potential benefit of MAN-
GROVE’s semantic search service as compared with Google.

These questions are mostly qualitative, however we develop some
simple measures in an attempt to quantify the feasibility and the
potential benefits of our approach.

5.1 Information Capture
To test the extent to which (1) our system can successfully ex-

tract a range of information from existing HTML pages, and (2)
our existing web actually contains the information of interest, we
created a copy of our department’s web space for experimentation.
The department web consists of about 68,000 pages whose HTML
content is about 480 MB. We then tagged the home pages of all 44
faculty members using the graphical tagger, focusing particularly
on adding 10 common tags such as<name>, <portrait >,
and <advisedStudent >. Four graduate students were in-
structed to tag and publish each document, but not to makeany
other changes to the original HTML. The students were familiar
with MANGROVE, though some had previously tagged only their
own home page.

We evaluate tagging success by examining the output of our
Who’s Whoservice and comparing it with the original HTML doc-
uments. Of the 440 possible data items (e.g., a faculty member’s
name or picture), 96 were not present in the original HTML. For in-
stance, only half of the professors had their office location on their
home page. Of the remaining 344 facts, the vast majority (318,
or 92.4%) were correctly displayed byWho’s Who, while 26 had
some sort of problem. Nine of these problems were due to simple
oversight (i.e., the data was present but simply not tagged), while
8 items had tagging errors (e.g., using an incorrect tag name). For
6 data items, it was not possible to succinctly tag the data with
MTS. For instance, MTS presently cannot tag a single string as
both a home and office phone number. Finally, three tagged items
revealed minor bugs with theWho’s Whoservice itself.

Thus, despite the variety of HTML pages (we have no standard
format for personal home pages) and the presence of some in-
evitable annotation errors, we successfully extracted a large amount
of relevant information and constructed a useful service with the
data. This simple measurement suggests that while additional
MANGROVE features may improve the tagging process, the overall
annotation and extraction approach is feasible in practice.

5.2 Benefits ofMANGROVE Search
Using the tagged data discussed above, we examined the

effectiveness of MANGROVE’s search service (described in Section
3.2). As a simple search exercise, we issued a small set of queries
to retrieve the picture and phone number of all assistant and
associate professors in our department. For comparison, we sent
the same search queries to Google and to MANGROVE’s tag-only
search, which accepts sets of tags as queries. For example, we

issued the query:
<facultyMember> <jobTitle=“assistant professor”> <portrait>?

Obviously, Google has different goals than our search service, so
the results are not necessarily comparable, however the exercise
helps to illustrate the potential benefit from even a modest amount
of tagging.

When sending queries to Google, we included
site:cs.washington.edu to restrict the query to our
site. We tried several variants of each query (e.g.,"assis-
tant professor" , "assistant professor" phone ,
"assistant professor" phone OR voice , etc.). For
finding photos, we also queried the Google image search directly.
In each case, we inspected all results returned by Google for the
desired photo or phone number.

In addition, we wanted to assess how robust MANGROVE is to
tagging omissions or errors. What happens, for example, when the
<jobTitle > is omitted or applied incorrectly? Users can fall
back on MANGROVE’s tag+text search, which filters Google results
using tag information as explained in Section 3.2. In our tag+text
queries, we combined a phrase (e.g.,"assistant profes-
sor") with the tag<facultyMember > and the tag to be ex-
tracted (<workPhone > or<portrait >). Figure 4 shows the
results of one such query.

Table 1 summarizes the results for our three experimental con-
ditions: Google, tag-only search, and tag+text search. We use the
standard information retrieval metrics of precision (p) and recall
(r), and combine them into an f-score (f) as follows:

f = 2(� + 1)pr=2(�p+ r)

The f-score is a standard method of combining recall and precision
to facilitate comparison [48].9 As is commonly done, we set the
parameter� to 1 in order to weight precision and recall equally.
In this experiment, precision is the percentage of the results, for
each engine, that were correct; recall is the percentage of the total
correct answers returned by each engine.

The table supports several tentative observations. First, we see
that tags can substantially improve precision over Google’s results.
Second, and more surprising, tags often result in improved recall
over Google as well. The reason is that querying Google with a
query such as"assistant professor" , restricted to our site,
returns 176 results with very low precision. A query that yields
much better precision and a much higher f-score for Google is
"assistant professor" phone OR voice ; this longer
query yields lower recall than the tag-based searches, though, be-
cause it only returns pages that contain the word ’phone’ or the
word ’voice’. Since the tag-based searches yield both better preci-
sion and better recall, it is not surprising that their f-score is sub-
stantially better than Google’s. Of course, far more extensive ex-

9To be fair to Google, we tried multiple formulations of each query as men-
tioned above. The results reported for Google in each row are the ones
whose f-score was maximal.

9

periments are necessary to see whether the above observations are
broadly applicable.

The table also enables us to compare the two variants of tag-
based search. We see that tag-only search tends to have very
high precision, but lower recall when compared to tag+text search.
Tag+text has higher recall because it is more robust to omitted or
incorrect tags. For example, in some cases a professor’s rank was
not tagged properly due to human error. Tag+text search also of-
fers the ability to search based on data that was not tagged because
a suitable tag did not exist, as would be the case if we had omitted
the<jobTitle > from the schema.

Both of our tag-based searches have the further benefit that they
can extract the tagged information from web pages (see Figure 4),
whereas Google only sometimes manages to extract this informa-
tion with its image search or in its result snippets. This feature
of our service makes it much simpler to quickly view the results
and facilitates the use of search queries as building blocks for more
sophisticated services.

5.3 Discussion
All of our measurements are preliminary and the results, while

thought provoking, are far from definitive. Nevertheless, the mea-
surements do provide evidence for the feasibility of MANGROVE

and its potential for supporting value-added services for users.
One might argue that the comparison of MANGROVE’s search with
Google is not fair because the semantic search makes use of ad-
ditional information in the form of tags that have to be inserted
into HTML pages manually. However, our goal is not to argue that
MANGROVE has a better search algorithm, but rather to quantify
the benefit that can result from this tagging effort.

6. RELATED WORK
Much of the related work on the semantic web has focused on

designing single components or analyzing particular semantic is-
sues whereas in MANGROVE we have designed, implemented, and
deployed one of only a handful of complete semantic web systems.
As a result, we have been able to report on measurements validating
aspects of our design. Furthermore, MANGROVE services are used
daily in our department providing the pragmatic lessons discussed
earlier.

This paper is the first to articulate and focus oninstant gratifica-
tion as a central design goal for a semantic web system. Many of
the key differences between MANGROVE’s architecture and that of
related semantic web systems follow from this distinct design goal.
We discuss these differences in more detail below.

The systems most closely related to our work are OntoBroker [8]
and SHOE [24], both of which make use of annotations inside
HTML documents. Although SHOE’s language did permit users
to inject annotations into HTML pages, their annotations do not
actually use the existing HTML content. Thus, both with SHOE
and with OntoBroker’s RDF-based annotations, all factual HTML
data must be repeated in the semantic annotation, leading to the
redundancy and maintenance problems discussed earlier.10

SHOE’s services, like those of many other systems, primarily
consisted of tools to simply search or view semantic data, although
their “Path Analyzer” [25] provided a convenient interface for ex-
ploring relationships among concepts. OntoBroker did implement
a number of services, such as a Community Web Portal [50] and

10Early work with OntoBroker’s HTML-A annotation language and On-
toPad [50] originally permitted annotations to reuse existing data; however,
later work with CREAM [22] lost this very useful feature as the group fo-
cused on an RDF encoding.

services intended to assist business processes [42]. However, with
both SHOE and OntoBroker, it is not clear whether these services
were used in practice, nor have we found any measurements re-
lating to them. In addition, MANGROVE has the advantage of en-
abling useful services even when content is only lightly tagged. For
instance, while OntoBroker’s “SoccerSearch” service [42] tries a
semantic search and then a textual search if the former fails, MAN-
GROVE’s tag+text search service can profitably combine both types
of information.

SHOE and OntoBroker primarily rely upon periodic web crawls
to obtain new information from annotated HTML, thus preventing
instant gratification and content creation feedback. Alternatively,
some systems provide a web interface for users to directly enter se-
mantic knowledge [34, 8] or to instruct the system to immediately
process the content of some URL [34]. However, we are aware of
no existing systems that support this feature in a manner that pro-
vides instant gratification for typical web authors. For instance, the
WebKB-2 system supports a command to load a URL, but this com-
mand must be embedded within a script, and existing data must be
manually deleted from the repository before a (modified) document
can be reprocessed.

WebKB-1 and WebKB-2 [33, 34] also provide a way to em-
bed semantic knowledge in HTML documents, this time using ex-
pressive conceptual graphs and an extensive ontology, but gener-
ally require the duplication of information in those documents. In
addition, their services are currently limited to either information
browsing or a semantic-only search. The OntoSeek project [18]
addresses goals of information retrieval similar to WebKB but does
not support the encoding of information in HTML pages and does
not provide any services beyond search.

Many semantic systems strive to provide a rich set of inferenc-
ing capabilities, some of which might be a useful addition to MAN-
GROVE. However, these capabilities can also cause a performance
bottleneck, without necessarily improving results (e.g., the expe-
rience of OntoBroker in [14]). MANGROVE instead focuses on
providing simple, scalable mechanisms that can provide useful ser-
vices in practice.

Other researchers have constructed semantic web systems
that are restricted to a single application domain, for instance
ITTALKS [43] and SemTalk [16]. These systems provide use-
ful services but their overall architecture, including storage mech-
anisms, is domain specific. Recently, QuizRDF [6] introduced
a search service that combines textual and semantic content.
QuizRDF’s service has an elegant user interface, but is not yet de-
ployed on the web for general use, nor have they reported on any
measurements of its precision and recall.

Since MANGROVE represents data internally as RDF, we can
leverage existing work for processing and querying RDF, and ex-
port RDF content to other systems. In particular, MANGROVE

utilizes Jena [36], a toolkit we have found very useful for stor-
ing and accessing semantic information. Other systems that also
offer centralized RDF storage include Kaon [37] and Sesame [5].
Edutella [41] extends these approaches to provide RDF annotation,
storage, and querying in a distributed peer-to-peer environment,
and proposes some services [40], but primarily assumes the pre-
existence of RDF data sources rather than considering the neces-
sary architectures and services to motivate semantic web adoption.
We view these systems as valuable modules for complete seman-
tic web systems such as MANGROVE. In contrast, MANGROVE

supports the complete cycle of content creation, real-time content
aggregation, and execution of services that provide instant gratifi-
cation to content authors.

Other systems that have permitted the annotation of HTML doc-

10

uments include the “lightweight databases” of [11] and the anno-
tation tool of [51], but both systems are merely modules for com-
plete semantic web systems. CREAM [22] provides a sophisticated
graphical tool that allows annotation of HTML documents similar
to our graphical tagger, but it must replicate data due to its use of
RDF. Some systems (i.e., Annotea [29]) avoid redundancy by using
XPointers to attempt to track which part of a document an annota-
tion refers to, but this approach may fail after document revisions
and only applies to XHTML documents, which makes it incompati-
ble with the majority of information on the web. Haustein and Pleu-
mann [23] instead store all semantically relevant information in a
database and dynamically generate both RDF and human-readable
versions from the database, but we believe this is too unwieldy for
average users in today’s web environment.

Ideally, one would not need to annotate HTML at all, and would
rely on automated techniques to handle this. In a sense, this is
the motivation for information extraction and wrapper induction
techniques [30, 47, 32, 3]. These techniques — especially those
that support automatic learning of what data to extract (e.g., [30])
— would be a very useful complement to MANGROVE’s graphical
tagger.

MTS syntax is not based on XHTML because most existing
pages are in HTML and hence would require reformatting to be-
come valid XHTML, and many users are averse to any such en-
forced reformatting. Furthermore, a large fraction of HTML docu-
ments contain HTML syntax errors (generally masked by browsers)
and thus would require manual intervention to reliably convert to
legal XHTML. However, existing XHTML (or XML) documents
that are annotated with MTS will still be valid XHTML (XML)
documents, and thus tools that produce or manipulate these formats
may still be freely used with MTS-annotated documents.

The W3C and many others have advocated the use of digitally
signed RDF to ensure the reliability of RDF data [53, 54, 27]. This
approach may be logical in cases where data integrity is essential,
but is too heavyweight for average users, and is not necessary for
most services (where usability and freshness are more important).
Furthermore, signed RDF only solves half of the data authentica-
tion problem — the part MANGROVE solves by simply maintaining
the source URL for all content. The more difficult problem is, given
the known source of all data, how should services decide what data
sources and data are reliable, and how should this information be
presented to the user? This paper highlights how some simple poli-
cies can work well for common services and argues for revealing
the source of the data to the end user, similar to the way users as-
certain the validity of web content today.

Finally, our semantic browser is inspired by work on adaptive
web sites originally proposed by [44]. Adaptive web sites automat-
ically modify and customize their layout and organization based
on their analysis of traffic patterns [45, 2]. Several papers have
noted that such efforts would benefit from the sort of information
available in the semantic web [45, 15]. Our browser’s transforma-
tions are also similar to those achievable with XSL stylesheets [52]
for XML documents, but our technique provides an easy way for
browser users, not just content providers, to control the document
presentation.

7. CONCLUSION
This paper presented MANGROVE as a means of demonstrating

how a component of the semantic web can evolve over time from
today’s HTML-based web. Specifically, the paper reports on the
following contributions:

1. We introduced the MANGROVEarchitecture that supports the
complete semantic web “life-cycle” from content authoring
to semantic web services. MANGROVE’s key design goals
areease of authoring, support forinstant gratification(i.e.,
immediate, tangible value resulting from semantic tagging),
androbustnessto malformed data and malicious misinforma-
tion. We showed how elements of the architecture support
each design goal.

2. We sketched a catalog of deployed semantic services that
motivate the tagging of HTML content by consuming tagged
information. We showed how to update tagged information
over time, and how to overcome “semantic spoofing” (the
attempt to introduce erroneous information into the system).
We reported on preliminary measurements that lend credence
to the claim that our services are both feasible and beneficial.

3. We analyzed the impact of semantic markup in MANGROVE

on web authoring, browsing, and searching. We demon-
strated how our semantic tags can be interleaved with ex-
isting HTML in a non-redundant manner that is invisible to
today’s browsers. We showed how the markup can improve
search precision and recall over Google. We also explained
how MANGROVE can improve the browsing experience par-
ticularly for devices with limited screen size such as PDAs.

Our goal in designing MANGROVE and in deploying it locally
has been to test our design on today’s HTML web against the re-
quirements of ordinary users. Clearly, additional deployments in
different universities, organizations, and countries are necessary
to further refine and validate MANGROVE’s design. New instant
gratification services are necessary to drive further adoption, and a
broad set of measurements is essential to test the usability and scal-
ability of the system. Finally, we plan to incorporate MANGROVE

as part of a peer-data management system to achieve web scale.

8. REFERENCES
[1] S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian.

Query caching and optimization in distributed mediator systems. In
Proc. of SIGMOD, pages 137–148, Montreal, Canada, 1996.

[2] C. R. Anderson, P. Domingos, and D. S. Weld. Personalizing web
sites for mobile users. InWorld Wide Web, pages 565–575, 2001.

[3] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information
extraction with Lixto. InVLDB0́1, 2001.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, May 2001.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An
architecture for storing and querying RDF data and schema
information, 2001.

[6] J. Davies, R. Weeks, and U. Krohn. QuizRDF: Search technology for
the semantic web. InWorkshop on Real World RDF and Semantic
Web Applications, WWW, 2002.

[7] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks,
D. McGuinness, P. Patel-Schneider, and L. Stein. OWL web ontology
language 1.0 reference, 2002. Manuscript available from
http://www.w3.org/2001/sw/WebOnt/ .

[8] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker:
Ontology based access to distributed and semi-structured
information. InEighth Working Conference on Database Semantics
(DS-8), pages 351–369, 1999.

[9] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
disparate data sources: a machine learning approach. InProc. of
SIGMOD, 2001.

[10] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to
map between ontologies on the semantic web. InProc. of the Int.
WWW Conf., 2002.

11

[11] S. A. Dobson and V. A. Burrill. Lightweight databases.Computer
Networks and ISDN Systems, 27(6):1009–1015, 1995.

[12] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable
comparison-shopping agent for the world-wide web. In W. L.
Johnson and B. Hayes-Roth, editors,Proceedings of the First
International Conference on Autonomous Agents (Agents’97), pages
39–48, Marina del Rey, CA, USA, 1997. ACM Press.

[13] O. Etzioni, S. Gribble, A. Halevy, H. Levy, and L. McDowell. An
evolutionary approach to the semantic web. InPoster presentation at
the First International Semantic Web Conference, 2002.

[14] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr,
R. Studer, and A. Witt. On2broker: Lessons learned from applying
AI to the web. Technical Report Institute AIFB Research report no.
383, 1998.

[15] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Declarative
specification of web sites with Strudel.VLDB Journal, 9(1):38–55,
2000.

[16] C. Fillies, G. Wood-Albrecht, and F. Weichardt. A pragmatic
application of the semantic web using SemTalk. InWWW, pages
686–692, 2002.

[17] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
Y. Sagiv, J. Ullman, and J. Widom. The TSIMMIS project:
Integration of heterogeneous information sources.Journal of
Intelligent Information Systems, 8(2):117–132, March 1997.

[18] N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Content-based
access to the web, 1999.

[19] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries
across diverse data sources. InProc. of VLDB, Athens, Greece, 1997.

[20] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell,
and I. Tatarinov. Crossing the structure chasm. InFirst Biennial
Conferenece on Innovative Data Systems Research, Asilomar, CA,
January 5-8, 2003.

[21] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. InProc. of ICDE, 2003.

[22] S. Handschuh and S. Staab. Authoring and annotation of web pages
in CREAM. In World Wide Web, pages 462–473, 2002.

[23] S. Haustein and J. Pleumann. Is participation in the semantic web too
difficult? In First International Semantic Web Conference, Sardinia,
Italy, June 2002.

[24] J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge
representation language for internet applications. Technical Report
CS-TR-4078, 1999.

[25] J. Heflin, J. A. Hendler, and S. Luke. Applying ontology to the web:
A case study. InIWANN (2), pages 715–724, 1999.

[26] I. Horrocks, F. van Harmelen, and P. Patel-Schneider. DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index.html, March 2001.

[27] D. Huynh, D. Karger, and D. Quan. Haystack: A platform for
creating, organizing and visualizing information using RDF.

[28] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An
adaptive query execution engine for data integration. InProc. of
SIGMOD, pages 299–310, 1999.

[29] J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure
for shared web annotations. InWorld Wide Web, pages 623–632,
2001.

[30] N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper induction for
information extraction. InProc. of the 15th Int. Joint Conf. on
Artificial Intelligence(IJCAI), 1997.

[31] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous
information sources using source descriptions. InProc. of VLDB,
pages 251–262, Bombay, India, 1996.

[32] L. Liu, C. Pu, and W. Han. XWRAP: An XML-enabled wrapper
construction system for web information sources. InICDE ’00, pages
611–621, 2000.

[33] P. Martin and P. W. Eklund. Embedding knowledge in web
documents.WWW8 / Computer Networks, 31(11-16):1403–1419,
1999.

[34] P. Martin and P. W. Eklund. Large-scale cooperatively-built KBs. In
ICCS, pages 231–244, 2001.

[35] B. McBride. Four steps towards the widespread adoption of a
semantic web. InFirst International Semantic Web Conference,
Sardinia, Italy, June 2002.

[36] B. McBride. Jena: Implementing the RDF model and syntax
specification.
http://www-uk.hpl.hp.com/people/bwm/papers/20001221-paper/,
2001. Hewlett Packard Laboratories.

[37] B. Motik, A. Maedche, and R. Volz. A conceptual modeling
approach for building semantics-driven enterprise applications. In
Proceedings of the First International Conference on Ontologies,
Dataases and Application of Semantics (ODBASE-2002), 2002.

[38] I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to
wrapper induction. In O. Etzioni, J. P. M¨uller, and J. M. Bradshaw,
editors,Proceedings of the Third International Conference on
Autonomous Agents (Agents’99), pages 190–197, Seattle, WA, USA,
1999. ACM Press.

[39] A. Naeve. The concept browser - a new form of knowledge
management tool. In2nd European Web-based Learning
Environments Conference (WBLE 2001), Lund, Sweden.

[40] W. Nejdl. Semantic web and peer-to-peer technologies for distributed
learning repositories. In17th IFIP World Computer Congress,
Intelligent Information Processing /IIP-2002.

[41] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palmr, and T. Risch. Edutella: a P2P networking
infrastructure based on RDF. InWWW, pages 604–615, 2002.

[42] Ontoprise. Demo applications.
http://www.ontoprise.de/com/coprodu appl2.htm.

[43] F. Perich, L. Kagal, H. Chen, S. Tolia, Y. Zou, T. W. Finin, A. Joshi,
Y. Peng, R. S. Cost, and C. Nicholas. ITTALKS: An application of
agents in the semantic web. InESAW, pages 175–194, 2001.

[44] M. Perkowitz and O. Etzioni. Adaptive web sites: an AI challenge. In
Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, 1997.

[45] M. Perkowitz and O. Etzioni. Adaptive web sites: Conceptual
framework and case study. InProceedings of the Eighth Int. WWW
Conference, 1999.

[46] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching.VLDB Journal, 10(4):334–350, 2001.

[47] A. Sahuguet and F. Azavant. Building light-weight wrappers for
legacy web data-sources using W4F. InVLDB ’99, pages 738–741,
1999.

[48] W. M. Shaw Jr., R. Burgin, and P. Howell. Performance standards
and evaluations in IR test collections: Cluster-based retrieval models.
Information Processing and Management, 33(1):1–14, 1997.

[49] S. Soderland. Learning to extract text-based information from the
World Wide Web. InKnowledge Discovery and Data Mining, pages
251–254, 1997.

[50] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche,
H.-P. Schnurr, R. Studer, and Y. Sure. Semantic community web
portals.WWW9 / Computer Networks, 33(1-6):473–491, 2000.

[51] M. Vargas-Vera, E. Motta, J. Domingue, S. B. Shum, and
M. Lanzoni. Knowledge extraction by using an ontology-based
annotation tool. InK-CAP 2001 workshop on Knowledge Markup
and Semantic Annotation, Victoria, 2001.

[52] W3C. The extensible stylesheet language (XSL).
http://www.w3.org/Style/XSL/.

[53] W3C. W3C issues recommendation for resource description
framework (RDF). W3C press release 24 February 1999.
http://www.w3.org/Press/1999/RDF-REC.

[54] W3C. XML digital signatures activity statement.
http://www.w3.org/Signature/Activity.html, 2002.

12

