
Semantic Email

Luke McDowell, Oren Etzioni, Alon Halevy, and Henry Levy
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195 U.S.A

{lucasm,etzioni,alon,levy}@cs.washington.edu

ABSTRACT
This paper investigates how the vision of the Semantic Web can
be carried over to the realm of email. We introduce a general
notion of semantic email, in which an email message consists of
an RDF query or update coupled with corresponding explanatory
text. Semantic email opens the door to a wide range of automated,
email-mediated applications with formally guaranteed properties.
In particular, this paper introduces a broad class of semantic email
processes. For example, consider the process of sending an email
to a program committee, asking who will attend the PC dinner,
automatically collecting the responses, and tallying them up. We
define both logical and decision-theoretic models where an email
process is modeled as a set of updates to a data set on which we
specify goals via certain constraints or utilities. We then describe
a set of inference problems that arise while trying to satisfy these
goals and analyze their computational tractability. In particular, we
show that for the logical model it is possible to automatically infer
which email responses are acceptable w.r.t. a set of constraints in
polynomial time, and for the decision-theoretic model it is possi-
ble to compute the optimal message-handling policy in polynomial
time. Finally, we discuss our publicly available implementation of
semantic email and outline research challenges in this realm.1

Categories and Subject Descriptors
D.4.3 [Communications Applications]: Electronic mail;
F.2 [Analysis of Algorithms and Problem Complexity]: Miscel-
laneous; H.2.8 [Database Applications]: Miscellaneous;
G.3 [Probability and Statistics]: Probabilistic algorithms

General Terms
Algorithms, Design, Theory

Keywords
Semantic web, formal model, satisfiability, decision-theoretic

1. INTRODUCTION
While the WWW is a rich information space in which we spend

significant amounts of time, many of us spend even more time on
email. With the exception of the generic header fields associated
with each message, email messages typically do not have seman-
tic features. While the majority of email will remain this way, this

1See http://www.cs.washington.edu/research/semweb/email for a
publicly accessible server (no installation required); source code
is also available from the authors.

Copyright is held by the author/owner(s).
WWW2004, May 17–20, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

paper argues that adding semantic features to email offers opportu-
nities for improved productivity while performing some very com-
mon tasks. To illustrate the promise, consider several examples:
• Information Dissemination: In the simplest case, suppose

you send a talk announcement via email. With suitable se-
mantics attached to the email, sending the announcement can
also result in automatically (1) posting the announcement to a
web calendar, and (2) sending reminders a day before the talk.

• Event Planning: Imagine you are organizing a program com-
mittee meeting and you want to know which PC members will
stay for dinner after the meeting. Currently, you must send out
the question and compile the replies manually, leafing through
emails one by one. With semantic email, the PC members can
provide the reply in a way that can be automatically interpreted
and compiled, enabling such planning to scale to much larger
numbers of people. In addition, after a few days, unrespon-
sive PC members can be automatically reminded to respond,
and those who have said they’re not coming to the PC meeting
need not be bothered with this query at all. Alternatively, sup-
pose that you are organizing a balanced potluck, where people
should bring either an appetizer, entree, or dessert, and you
want to ensure that the meal is balanced. Here semantic email
can help ensure that the potluck is indeed balanced by examin-
ing the replies and requesting changes where necessary.

• Report Generation: Suppose you need to collect projected
budget numbers from a large set of managers. With semantic
email, you could send a single email request and have the sys-
tem automatically tabulate the responses, possibly requiring
the values to satisfy certain individual or aggregate constraints.
The system could then easily generate a spreadsheet report or
integrate this data with other sources (e.g., prior budgets).

• Auction/Giveaway: Imagine you want to give away concert
tickets that you cannot use. You would like to send out an
announcement and have the semantic email system give out (or
auction) the tickets to the first respondents. When the tickets
are gone, the system should respond politely to later requests.

These examples are of course illustrative rather than exhaustive.
In general, there are at least three ways in which semantics can be
used to streamline aspects of our email habitat:

1. Update: We can use an email message to add data to some
source (e.g., a web page, as in our first example).

2. Query: Email messages can be used to query other users
for information. Semantics associated with such queries can
then be used to automatically answer common questions (e.g.,
seeking my phone number or directions to my office).

3. Process: We can use semantic email to manage simple but
tedious processes that we currently handle manually.

�����
�����	��
�����

�������������������

�! �"$#&%�'

(�)* +'-,/.�%�"0�1 *"�#&%�'

2 �����1�43�� 5 �6�7�8�:9��<;4�����:=> ?�@�ACB����	D A7?
����CECF �

����G&EC��H� HIJ���7KLD ?HM7�7N
���OOPOA7?����

Q+�7K�RHST�7

U0PCPCF D B����	D A7?

> ?�V �7N �7?OBH�
W*?�X&D ?�� Y ?�� A7F A�XCZ[���� B�\O�7N

]�^1_�`badc!ebf�g�`ba�hji	k+`-l

�1"�%*)�"<m�n

Figure 1: The invocation and execution of a SEP. The originator is typically a person, but also could be an automated program. The originator
invokes a SEP via a simple web interface, and thus need not be trained in the details of SEPs or even understand RDF.

Because email is not set up to handle these tasks effectively, ac-
complishing them by hand can be tedious, time-consuming, and
error-prone. The techniques needed to support the first two uses of
semantic email depend on whether the message is written in text by
the user or formally generated by a program on the sender’s end. In
the user-generated case, we would need sophisticated methods for
extracting the precise update or query from the text (e.g., [12, 20]).
In both cases, we require some methods to ensure that the sender
and receiver share terminologies in a consistent fashion.

This paper focuses on the third use of semantic email to stream-
line processes, as we believe it has the greatest promise for increas-
ing productivity and is where users currently feel the most pain.
These processes support the common case of asking people a set of
questions, collecting their responses, and ensuring that the results
satisfy some set of goals. Some hardcoded email processes, such
as the meeting request feature in Outlook, invitation management
via Evite, and contact management via GoodContacts, have made
it into popular use. Each of these commercial applications is lim-
ited in its scope, but validates our claim about user pain. Our goal
in this paper is to sketch a general infrastructure for semantic email
processes, and to analyze the inference problems it needs to solve
to manage processes effectively and guarantee their outcome.

Workflow and collaboration systems such as Lotus Notes/Domino
and Zaplets offer scripting capabilities and some graphical tools
that could be used to implement sophisticated email processes. How-
ever, these systems lack support for reasoning about data collected
from a number of participants (e.g., as required to balance a potluck
or ensure that a collected budget satisfies aggregate constraints). In
addition, such processes are constructed from arbitrary pieces of
code, and thus lack the formal properties that our declarative model
provides. We describe these properties and the limitations of exist-
ing workflow systems in more detail in Sections 3 and 4. Finally,
messages in such systems lack the RDF content of semantic email,
precluding automated processing by the recipient (e.g., to decline
invitations for unavailable times).

Our work is the first to articulate and implement a general model
of semantic email processes (SEPs). Our technical contributions
are the following. Section 2 introduces a formalization for seman-
tic email processes. The formalization specifies the meaning of se-
mantic email processes and exposes several fundamental reasoning
problems that can be used by the semantic email manager to facili-
tate SEP creation and execution. In particular, a key challenge is to
decide when and how the manager should direct the process toward
an outcome that meets the originator’s goals. Section 3 addresses
this challenge by describing a model of logical SEPs (L-SEPs)
and demonstrating that it is possible to automatically infer which

email responses are acceptable with respect to a set of ultimately
desired constraints in polynomial time. Section 4 describes a model
of decision-theoretic SEPs (D-SEPs) that alleviates several short-
comings of the logical model, and presents results for the complex-
ity of computing optimal policies for D-SEPs. Finally, Section 5
discusses implementation issues that arise for semantic email and
how we have addressed these in our system, and Section 6 contrasts
our approach with related work.

2. SEMANTIC EMAIL PROCESSES
Our formalization of SEPs serves several goals. First, the for-

malization captures the exact meaning of semantic email and the
processes that it defines. Second, it clarifies the limitations of SEPs,
thereby providing the basis for the study of variations with differ-
ent expressive powers. Finally, given the formalization, we can
pose several reasoning problems that can help guide the creation of
semantic email processes as well as manage their life cycle. We
emphasize that the users of SEPs are not expected to understand
a formalization or write specifications using it. Generic SEPs are
written by trained authors (who create simple constraints or util-
ity functions to represent the goal of a process) and invoked by
untrained users. The semantic email system then coordinates the
process to provide the formal guarantees we describe later.

Figure 1 illustrates the three primary components of a SEP:
• Originator: A SEP is initiated by the originator, who is typi-

cally a person, but could be an automated program or agent.
• Manager: The originator invokes a new SEP by sending a

message to the semantic email manager. The manager sends
email messages to the participants, handles responses, and re-
quests changes as necessary to meet the originator’s goals. The
manager stores all data related to the process in an RDF sup-
porting data set, which may be configured to allow queries by
external services (or other managers). To accomplish its tasks,
the manager may also utilize external services such as infer-
ence engines, ontology matchers, and other Semantic Web ap-
plications, as described further below. The manager may be a
shared server or a program run directly by the originator.

• Participants: The participants respond to messages received
about the process. A participant may be a person, a standalone
program (e.g., to represent a resource such as a room), or a
software agent that acts on behalf of a person (e.g., to auto-
matically respond to requests where possible, deferring others
to the person). We assume that email addresses uniquely deter-
mine individuals or sets of potential participants in the process.

Informally speaking, the execution of a process is achieved by
the supporting data set and the set of data updates that email recip-

ients make as they respond. In the model we describe, data is rep-
resented as a set of relations (i.e., the relational database model).
However, as the application domains get more complex, we ex-
pect to use a richer representation language. To enable these future
extensions as well as interactions with other Semantic Web appli-
cations, our system implements this representation using the Jena
RDF storage system [25].

We illustrate our formalization with the running example of a
“balanced potluck.” The originator invokes a process to announce
the potluck and ask everyone whether they are bringing an appe-
tizer, entree, or dessert. The originator also expresses a set of goals
for the potluck. For example, he may specify that the number of ap-
petizers, entrees, or desserts should differ by at most two. Note that
analogous problems occur in many other contexts (e.g., distributing
N persons among K committees or time slots).

The manager seeks to expedite the execution of this process and
to achieve the originator’s goals. There are a number of ways in
which reasoning can enhance the manager’s operation:
• Predicting responses: The manager may be able to infer the

likely response of some participants even before sending any
requests. For instance, the manager could employ another se-
mantic web application or data source to detect that a sug-
gested meeting time is unacceptable for a certain participant,
based on information from calendars, course schedules, or other
processes. The manager could use this information either to
warn the originator as the process is being created, or to serve
as a surrogate response until a definitive answer is received.
Also, the manager could add a helpful annotation to the re-
quest sent to the participant, indicating what time is likely to
be a conflict and why. As suggested above, this same reason-
ing could also be profitably employed on the participant’s end,
where an agent may have additional information about the par-
ticipant’s schedule.

• Interpreting responses: Typically, the originator will pro-
vide the participants with a finite set of choices (e.g., Appe-
tizer, Entree, Dessert). However, suitable reason-
ing could enable substantially more flexibility. For instance,
we could allow a potluck participant to respond with any value
(either in plain text or in some formal language). Then, the
manager could use a combination of information extraction or
wrapper techniques (e.g., [12, 20]) and/or ontology matching
algorithms (e.g., [11, 10]) to map the participant’s response
into the potluck’s ontology. There are several interesting out-
comes to this mapping. First, the response may directly map
to one of the original potluck choices (e.g., “Cake” is an in-
stance of Dessert). Second, the response may map to mul-
tiple choices in our ontology (e.g., “Jello salad” may be both
an Appetizer and a Dessert). In this case, the manager
might consider the response to be half of an appetizer and a
dessert, or postpone the decision to a later time and classify it
as is most convenient.2 Third, the response may not map to any
given choice, but may still be a subclass of Food (e.g., a “Sor-
bet” is a Palette Cleanser); here the manager might ac-
cept the response but exclude it from the goal calculations.
Fourth, the response may map to a known ontology element
that is not Food (e.g., “A hat”). Finally, the response may
not map to any known element. In these latter two cases, the
manager may either reject the response or notify the originator.

• Recommending interventions: Reasoning can also assist the
manager with directing the process towards outcomes consis-
tent with the originator’s goals. For instance, if the manager

2This a very simple form of semantic negotiation; more complex
techniques could also be useful [36].

detects that a potluck process is becoming unbalanced, it could
refuse to accept certain responses, request changes from some
participants, or warn the originator that further action is needed.
In this case reasoning is needed to deduce the likely outcome
of a process from the current state, and the likely effects of
possible interventions.

In this work we focus on using reasoning for recommending in-
terventions, leaving the other two items for future work. Specifi-
cally, we provide two different approaches for modeling the orig-
inator’s goals and when to intervene. In the logical model (Sec-
tion 3), the originator specifies a set of constraints over the data
set that should be satisfied by any process outcome, while in the
decision-theoretic model (Section 4) the originator provides a func-
tion representing the utility of possible process outcomes. Below
we consider each in turn, discuss possible variants, and present re-
sults for fundamental reasoning tasks that can determine how and
when the manager should intervene.

3. LOGICAL MODEL OF SEPS
We now introduce our model of a logical semantic email process

(L-SEP) and analyze important inference problems for this model.

3.1 Definition of L-SEPs
A L-SEP is a 5-tuple Λ(P, D, R, M, CD) with parts as follows:

Participants P : the set of participants in the process. Note that P
may include the originator.

Supporting data set D: the set of relations that holds all data re-
lated to the process. The initial contents of D are specified by the
originator (usually to be a set of default values for the columns).
With each relation in D we associate a schema that includes:
• a relation name and names, data types, and range constraints

for the attributes. A special data type is emailAddress, whose
values are the set P . Attributes may have default values.

• possibly a distinguished from attribute, of type emailAddress,
which means that rows in the relation whose from value is p
can only result from messages from the participant p. The
from attribute may be declared unique, in which case every
participant can only affect a single row in the table.

Responses R: the set of possible responses to the originator’s email.
R is specified as follows:
• Attributes: the set of attributes in D that are affected by re-

sponses from participants. This set of attributes cannot include
any from attributes.

• Insert or Update: a parameter specifying whether participants
can only add tuples, only modify tuples, or both. Recall that if
there is a from field then all changes from p pertain only to a
particular set of tuples.

• Single or Many: a parameter specifying whether participants
can send a single response or more than one. As we explain
in the next section, some responses may be rejected by the
system. By single, we mean one non-rejected message.

Messages M : the set of messages that the manager may use to
direct the process, e.g., to remind the participants to respond or to
reject a participant’s response.

Constraints CD: the set of constraints for every relation in D.
These constraints CD are specified in a language that includes con-
junction and disjunction of atomic predicates. Atomic predicates
compare two terms, or a term with a set. We allow comparison
predicates (=, 6=, <,≤), LIKE, and ∈, 6∈ between a constant and
an enumerated finite set. A term may be a constant, an attribute

variable (the value of a specific attribute in a row), an expression
combining two terms with any arithmetic operator, or an aggregate
applied to a column of a relation (or to a subset of the rows that
satisfy an (in)equality predicate).

Example: In our example, D contains one table named Potluck
with two columns: email, a from attribute of type emailAd-
dress and declared to be unique, and bringing, with the range
constraint Potluck.bringing ∈ { not-coming, appetizer,
entree, dessert, NULL }. In addition, CD contains a few
constraint formulas similar to the abstract one below, specifying
that the potluck should be balanced:

(COUNT(*) WHERE bringing = ’dessert’) ≤
(COUNT(*) WHERE bringing = ’appetizer’) + 2

Finally, the set of messages in our example includes (1) the ini-
tial message announcing the potluck and asking what each person
is bringing, (2) messages informing each responder whether their
response was accepted or not, (3) a reminder to those who have not
responded 2 days before the potluck, (4) regular messages to the
originator reporting the status of the RSVPs, and (5) a message to
the originator in the event that everyone has responded.

3.2 Inference for L-SEPs
Given the formal model for an L-SEP we can now pose a wide

variety of inference problems, whose results can serve to assist in
the manager’s operation. This section describes the first such infer-
ence problem, which has different variations.

The core problem we want to address is determining whether
an L-SEP will terminate in an acceptable state, i.e., a state that
satisfies CD. The input to the inference problem includes the con-
straints CD and possibly the current state of D along with a re-
sponse r from a participant. The output of the inference problem is
a condition that we will check on D and r to determine whether to
accept r. In our discussion, we assume that r is a legal response,
i.e., the values it inserts into D satisfy the range constraints on the
columns of D; if not, the manager can respond with error messages
until a legal response is received. Our goal is to automatically de-
termine whether to accept r given the current state and CD.

The space of possible inference problems is defined by several
dimensions:
• Necessity vs. possibility: As in modal logics for reasoning

about future states of a system [31, 14], one can either look for
conditions that guarantee that any sequence of responses ends
in a desired state (the 2 operator), or that it is possible that
some sequence ends in a desired state (the 3 operator).

• Assumptions about the participants: In addition to assuming
that all responses are legal, we can consider other assumptions,
such as: (1) all the participants will respond to the message or
(2) the participants are flexible, i.e., if asked to change their
response, they will cooperate.

• The type of output condition: At one extreme, we may want
a constraint Cr that the manager checks on D when a response
r arrives, where Cr is specified in the same language used to
specify CD. At another extreme, we may produce an arbi-
trary procedure with inputs D and r that determines whether
to accept r. We note that a constraint Cr will inevitably be
weaker than an arbitrary algorithm, because it can only inspect
the state of D in very particular ways. As intermediate points,
we may consider constraints Cr in more expressive constraint
languages. Note that in cases where we can successfully derive
Cr, we can use database triggers to implement modifications
to D or to indicate that r should be rejected.

As a very simple example, consider the case where we want all
response sequences to end in an acceptable state, we make no as-
sumptions on the participants except that we can elicit a legal re-
sponse from them, and we are interested in deriving a constraint
Cr that will be checked when a response arrives. If the initial state
of D is an acceptable state, then simply setting Cr to be CD pro-
vides a sufficient condition; we only let the data set D be in states
that satisfy CD . In the example of the balanced potluck, we would
not accept a response with a dessert if that would lead to having 3
more desserts than entrees or appetizers. For an auction process,
we would not accept a bid that is less than the current high bid.

In many cases, such a conservative strategy will be overly re-
strictive. For example, we may want to continue accepting desserts
so long as it is still possible to achieve a balanced potluck. This
leads us to the following inference problem.

3.3 Ultimate Satisfiability
We now describe our central result concerning inference for L-

SEPs. Our goal is to find necessary and sufficient conditions for
accepting a response from a participant. To do that, we cut across
the above dimensions as follows. Suppose we are given the data
set D after 0 or more responses have been accepted, and a new
response r. Note that D does not necessarily satisfy CD, either be-
fore or after accepting r. The manager will accept r if it is possible
that it will lead to a state satisfying CD (i.e., considering the 3 tem-
poral operator). We do not require that the acceptance condition be
expressed in our constraint language, but we are concerned about
whether it can be efficiently verified on D and r. Furthermore,
we assume that participants can only update their (single) row, and
only do so once. Hence, the columns that can be affected by the
participants start out with the NULL value, and can get assigned
values in a1, . . . , an.

DEFINITION 3.1. (ultimate satisfiability) Given a data set D,
a set of constraints CD on D, and a response r ∈ R , we say
that D is ultimately satisfiable w.r.t. r if there exists a sequence of
responses from the participants, beginning with r, that will put D

in a state that satisfies CD. 2

In what follows, let C be our constraint language where we al-
low both conjunction and disjunction of atomic predicates. A term
in a predicate of CD may select a group of rows in an attribute
A, and aggregate the value of the corresponding values in an at-
tribute B. We say that the predicates in CD are constant-bounded
if the predicates refer to at most K distinct constants. If, in ad-
dition, each predicate only refers to attributes whose domain size
is at most some constant L, then we say that the constraints are
domain-bounded. We consider the aggregation functions COUNT,
MIN, MAX, SUM, and AVERAGE.

THEOREM 3.1. Let Λ be an L-SEP where CD is in the lan-
guage C. Then,
• If CD may contain any predicate allowed by C, then ultimate

satisfiability is NP-complete in the size of D.
• If the predicates in CD are domain-bounded, then ultimate sat-

isfiability is polynomial time in the size of D and CD.
• If the predicates in CD are just constant-bounded, but the only

permitted aggregate is COUNT, then ultimate satisfiability is
polynomial time in the size of D and CD . 2

All of the examples in this paper may be described by constraints
that satisfy the constant-bounded, COUNT-only condition above,
while the domain-bounded case may be useful for SEPs that re-
quire more complex interactions. As an example of applying this
theorem to the balanced potluck, suppose a new dessert response
arrives. At that point, the inference procedure will (1) determine

the maximal number of people who may come to the potluck (i.e.,
the number of participants minus the number of people who replied
not-coming), (2) check that even if the dessert response is ac-
cepted, then there are still enough people who have not answered
such that the ultimate set of dishes could be balanced. Similar rea-
soning applies to other processes, e.g., to ensure that at least one
person will sign up for each spot in a colloquium series.

The theorem is proved by enumerating representative states of
the data set, each of which corresponds to a number of potential
data sets that are all equivalent with respect to the constraints. The
key is to express the constraints in terms of variables represent-
ing aggregates on the number of participants with each response.
Space limitations preclude describing the complete proof here.

In comparison to related work, the challenge here is reasoning
about the possible relationships between aggregate values (current
and future), given a particular state of D. Reasoning about aggre-
gation has received significant attention in the query optimization
literature [33, 21, 9, 16] and some in the description logic literature
(e.g., [3]). This body of work considered the problem of optimiz-
ing queries with aggregation by moving predicates across query
blocks, and reasoning about query containment and satisfiability
for queries involving grouping and aggregation. In contrast, our
result involves considering the current state of the database to de-
termine whether it can be brought into a state that satisfies a set of
constraints. Furthermore, since CD may involve several grouping
columns and aggregations, they cannot be translated into single-
block SQL queries, and hence the containment algorithms will not
carry over to our context.

To the best of our knowledge, formalisms for reasoning about
workflow [29, 28] or about temporal properties of necessity and
possibility have not considered reasoning about aggregation. For
instance, Abiteboul et. al [1] define a notion of goal reachability
for relational transducers that is similar to our ultimate satisfiabil-
ity (see also [17] for extensions to this model and a survey of other
related work). Various restrictions on the model allow decidabil-
ity of goal reachability in P, NP, or NEXPTIME, but none of these
restrictions permit goals involving aggregation. Likewise, work-
flow formalisms have generally been restricted to reasoning about
temporal and causality constraints. Such formalisms could poten-
tially convert aggregation constraints to temporal constraints by
enumerating all possible data combinations, but this may result in
an exponential number of states. One exception is the recent work
of Senkul et al. [34], who extend workflows to include resource
constraints based on aggregation. Each such constraint, however,
is restricted to performing a single aggregation with no grouping
(and thus could not express the potluck constraint given in the ear-
lier example). In addition, their solution is based on general con-
straint solving and thus will take exponential time in the worst case.
We have shown, however, that in our domain L-SEPs can easily
express more complex aggregation constraints while maintaining
polynomial-time inference complexity for bounded constraints.

4. DECISION-THEORETIC MODEL
The logical model of SEPs described above supports a number

of useful inferences that have both theoretical and practical ap-
plications. This model, however, has a number of shortcomings.
First, L-SEPs, like logical theories in general, make no distinc-
tions among unsatisfied outcomes. In our example, there is no way
for L-SEPs to strive for a “nearly-balanced” potluck, since all un-
balanced potlucks are equivalently undesirable. Second, an L-SEP
ignores the cost of the actions taken in pursuit of its goals. For in-
stance, a potluck L-SEP will always reject a response that results in
unsatisfiable constraints, even if rejecting that response (e.g., from

an important official) may produce far worse effects than a slightly
unbalanced potluck. Finally, L-SEPs make a very strong assump-
tion that participants are always willing to change their responses
if rejected. For instance, participants in a meeting scheduling pro-
cess may be somewhat accommodating, but may refuse to modify
a rejected response due to other commitments.

To address these limitations, we offer a decision-theoretic ap-
proach. We describe the goal of a decision-theoretic SEP (D-SEP)
by a utility function over the outcome of the process that takes
into consideration the cost of all actions required to achieve that
outcome. In addition, instead of rejecting responses, the decision-
theoretic model sometimes suggests that participants modify their
choices. For instance, the balanced potluck uses a utility function
that measures the extent to which the final meal selection is bal-
anced, minus the costs (social or otherwise) of asking some partici-
pants to switch their responses. Below we formalize this model and
then examine the tractability of finding optimal policies for it.

4.1 Definition of D-SEPs
A decision-theoretic SEP is a 6-tuple, δ(P, S, V, A,U, T). Note

that the first five components of this tuple correspond roughly to
the five components in our model for L-SEPs.
• Participants P : the set of participants, of size N .
• States S: the set of possible states of the system. The state

describes both the current responses received and the outgoing
change requests sent by the system.

• Values V : the set of possible values for participants to choose
from (e.g., V = {appetizer, entree, dessert}), of size K.

• Actions A: the set of actions available to the system after send-
ing out the initial message. Actions we consider are NoOp (do
nothing until the next message arrives), SWv (ask a participant
to switch their response from v to something else), or Halt
(enter a terminal state, typically only permitted when a mes-
sage has been received from every participant). Other variants
of actions are also useful (e.g., ask a participant to switch from
v to a particular value w); such additions do not fundamentally
change the model or our complexity results.

• Utilities U(s, a): the utility from executing action a in state
s. For the potluck example, U(s, SWv) is the (negative) util-
ity from making a change suggestion, while U(s, Halt) is the
utility based on the final potluck balance.

• Transitions T (s, a, s′): the probability that the system will
transition to state s′ after performing action a in state s. How-
ever, rather than having to specify a probability for each transi-
tion, these are computed from a smaller set of building blocks.
For instance, ρv is the probability that a participant will orig-
inally respond with the value v; ρvw is the probability that,
when asked to switch from the choice v, a participant will
change their response to w (ρvv is the probability that a partic-
ipant refuses to switch).

The execution of the process proceeds in discrete steps, where
at each step the manager decides upon an action to take (possibly
NoOp). The outcome of this action, however, is uncertain since
the manager is never sure of how participants will respond. The
transition function T () models this uncertainty.

A policy π describes what action the manager will take in any
state, while π(s) denotes the action that the manager will take in a
particular state s. An optimal policy π? is a policy that maximizes
the expected utility U(δ) of the process, where

U(δ) = U(s1, a1) + U(s2, a2) + ... + U(sj , aj)

for the sequence of states and actions {(s1, a1), ..., (sj , Halt)}.
D-SEPs are a special case of Markov Decision Processes (MDPs),

a well-studied formalism for situations where the outcome of per-

forming an action is governed by a stochastic function and costs
are associated with state transitions [32]. Consequently, we could
find the optimal policy for a D-SEP by converting it to an MDP
and using known MDP policy solvers.3 However, this would not
exploit the special characteristics of D-SEPs that permit more effi-
cient solutions, which we consider below.

4.2 Variations of D-SEPs
As with our logical model, the space of possible D-SEPs is de-

fined by several dimensions:
• Restrictions on making suggestions: Most generally, the man-

ager may be allowed to suggest changes to the participants at
any time, and to do so repeatedly. To be more user-friendly, we
may allow the manager to make suggestions anytime, but only
once per participant. Alternatively, if users may be expected
to make additional commitments soon after sending their re-
sponse (e.g., purchasing ingredients for their selected dish),
then we may require the manager to respond with any sugges-
tion immediately after receiving a message, before any addi-
tional messages are processed.

• Assumptions about the participants: In addition to the as-
sumed probabilities governing participant behavior, we may
also wish to assume that all participants will eventually re-
spond to each message they receive. Furthermore, we might
assume that participants will respond immediately to any sug-
gestions that they receive (particularly if the manager also re-
sponds immediately to their original message), or instead that
they can respond to suggestions anytime.

• The type of utility functions: At one extreme, we might allow
complex utility functions based upon the individual responses
of the participants (e.g., “+97 if Jay is bringing dessert”). Of-
ten, however, such precision is unnecessary. For instance, all
potluck outcomes with 8 desserts and 1 entree have the same
low utility, regardless of who is bringing what dish.

Below we consider the impact of these variations on the com-
plexity of computing the optimal policy.

4.3 Computing the Optimal Policy
In this section we examine the time complexity of computing the

optimal policy π? for a D-SEP. We begin by considering a D-SEP
with an arbitrary utility function and then examine how restrictions
to the utility function and the permitted quantity and timing of sug-
gestions make computing π? more tractable. In all cases we as-
sume that the participants will eventually respond to each message
and suggestion that they receive. The following theorem is proved
by reduction from QBF and the EXPTIME-hard game G4 [35, 22]:

THEOREM 4.1. Let δ be a D-SEP with N participants where
the utility U(s, a) is any deterministic function over the state s
and the current action a. If the manager can send only a bounded
number of suggestions to each participant, then determining π? is
PSPACE-hard in N . If the manager can send an unlimited number
of suggestions, then this problem is EXPTIME-hard in N . The cor-
responding problems of determining if the expected utility of π? for
δ exceeds some constant θ are PSPACE-complete and EXPTIME-
complete, respectively.2

3Specifically, D-SEPs are “Stochastic Shortest-Path” MDPs where
the terminal state is reachable from every state, so an optimal policy
is guaranteed to exist [4]. Incorporating additional features from
temporal MDPs [8] would enable a richer model for D-SEPs (e.g.,
scheduling a meeting should be completed before the day of the
meeting). However, existing solution techniques for TMDPs do
not scale to the number of participants required for semantic email.

Thus, for the case of arbitrary utility functions determining π?

for a D-SEP is impractical for large values of N . (Conversion to
an MDP offers little help, since the MDP would require a number
of states exponential in N .) Note that this is a significant limita-
tion, since for many D-SEPs it is natural to wish to scale to large
numbers of participants (e.g., for large meetings or company-wide
surveys). Below, we begin to make the calculation of π? more
tractable by restricting the type of utility function:

DEFINITION 4.1. (K-Partitionable) The utility function U(s, a)
of a D-SEP is K-partitionable if it can be expressed solely in terms
of the variables a, C1, ..., CK where a is the current action cho-
sen by the manager and each Ci is the number of participants who
have responded with value Vi in state s. 2

Intuitively, a utility function is K-partitionable if what matters
is the number of participants that belong to each of a fixed num-
ber of K groups, rather than the specific participants in each of
these groups. For instance, the utility function of our example
potluck is 4-partitionable, because all that matters for evaluating
current and future utilities is the current number of participants that
have responded Appetizer, Entree, Dessert and Not-
Coming. In this case a simple utility function might be:

U(s, Halt) = −α(|CA − CE |2 + |CA − CD|2 + |CE − CD|2)

U(s, SWv) = −1

where α is a scaling constant and CA, CE, CD are the numbers of
appetizers, entrees, and desserts, respectively. Note that the maxi-
mum utility here is zero.

A K-partitionable utility function is analogous to the COUNT-
only constraint language of Theorem 3.1. As with Theorem 3.1,
we could allow more complex utility functions (e.g., with variables
representing the MAX, SUM, etc. of the underlying responses); with
suitable restrictions, such functions yield polynomial time results
similar to those described below. Note, however, that the simpler
K-partitionable definition is still flexible enough to support all of
the SEPs discussed in this paper. In particular, a K-partitionable
utility function may still distinguish among different types of peo-
ple by counting responses differently based on some division of the
participants. This technique increases the effective value of K, but
only by a constant factor. For instance, the utility function for a
meeting scheduling process that desires to have the number of fac-
ulty members attending (Cyes,F) be at least three and the number
of students attending (Cyes,S) be as close as possible to five, while
strongly avoiding asking faculty members to switch, might be:

U(s, Halt) = −α · [max(3− Cyes,F , 0)]2 − β|Cyes,S − 5|2

U(s, SWno,faculty) = −10

U(s, SWno,student) = −1

A D-SEP that may make an unlimited number of suggestions but
that has a K-partitionable utility function can be represented as an
“infinite-horizon” MDP with just O(N2K) reachable states. Con-
sequently, the D-SEP may be solved in polynomial time with the
use of linear programming (LP), though alternative methods (e.g.,
policy iteration, simplex-based LP solvers) that do not guarantee
polynomial time may actually be faster in practice due to the large
polynomial degree of the former approach [23].

Furthermore, if we also restrict the system to send only one sug-
gestion to any participant (likely a desirable property in any case),
then computing the optimal policy becomes even more tractable:

Restrictions Description of Restrictions Complexity with
arbitrary utility function

Complexity when
K-partitionable

AnyUnlimited Manager may suggest changes at any time, and may send an unlimited
number of suggestions to any participant.

EXPTIME-hard MDP with O(N2K) states

AnyOnce Manager may suggest changes at any time, but only once per participant. PSPACE-hard O(N 3K) time

Immediate Manager may suggest changes only immediately after receiving a re-
sponse, once per participant.

PSPACE-hard O(N2K) time

Synchronous Same as “Immediate”, but each participant is assumed to respond to any
suggestion before the manager receives any other message.

PSPACE-hard O(NK) time

Table 1: Summary of theoretical results for D-SEPs. The last two columns show the time complexity of finding the optimal policy for a D-SEP with
N participants. In general, this problem is EXPTIME-hard but if the utility function is K-partitionable then the problem is polynomial time in N .
Adding restrictions on how often the manager may send suggestions makes the problem even more tractable. Note that the size of the optimal policy
is finite and must be computed only once, even though the execution of a SEP may be infinite (e.g., with “AnyUnlimited”).

THEOREM 4.2. Let δ be a D-SEP with N participants where
U(s, a) is K-partitionable for some constant K and where the sys-
tem is permitted to send at most one suggestion to any participant.
Then π? for δ can be determined in O(N3K) time. (If the system
can send at most L suggestions to any participant, then the total
time needed is O(N (2L+1)K).) 2

Proof Sketch: Although the formalisms are very different, the key
observation underlying this proof is similar to that of Theorem 3.1.
Here we also create a state space that only models the number of
participants in each group, rather than their specific members.

We define a summary state function S = {C̄, D̄, Ē} where
• C̄ = (C1, ..., CK) where Ci is the number of responses Vi

that were received that do not have a suggestion pending.
• D̄ = (D1, ..., DK) where Di is the number of responses Vi

that were received that do have a suggestion pending.
• Ē = (E1, ..., EK) where Ei is the number of responses Vi

that were received as a response to a suggestion.
In what follows, the notation C̄ − v indicates “subtract one from

the variable in C̄ specified by value v.” Given S, we can define
the following transitions (omitting details for states where everyone
has already responded):

T ({C̄, D̄, Ē}, SW v, {C̄−v,D̄+v,Ē }) = 1

T ({C̄, D̄, Ē}, NoOp,{C̄+v,D̄, Ē }) = ρo(C̄, D̄, Ē)·ρv

T ({C̄, D̄, Ē}, NoOp,{C̄, D̄−v,Ē+w}) = ρsv(C̄, D̄, Ē)·ρvw

The first equation represents the manager requesting that some
respondent switch their response from the value v; the state is up-
dated to note that a suggestion has been made (with probability 1).
The next two equations handle the uncertainty when the manager
decides to wait for the next message to arrive. Specifically, the sec-
ond equation handles the case when the next message is an origi-
nal response from a previously unheard from participant (probabil-
ity ρo(C̄, D̄, Ē)), while the third equation handles the case where
the next message is a response to a previously made suggestion to
switch from value v (probability ρsv(C̄, D̄, Ē)).

At any time each participant’s response is either counted once
among the K variables of each of C̄, D̄, or Ē, or has not yet been
received. The number of possible states is thus the number of ways
of dividing N participants among 3K + 1 groups, which is:

|S| =

(

N + 3K

3K

)

= O(N3K)

Because of the restriction to send at most one suggestion to each
participant, the graph formed by the transition function over these
states is acyclic. Thus, the optimal policy may be computed via a
depth-first search over the graph in total time O(N3K). 2

Table 1 summarizes the results presented above as well as a few
other interesting cases (“Immediate” and “Synchronous”). These
results rely on two key optimizations. First, we can dramatically
reduce the number of distinct states via K-partitioning4; this per-
mits π? to be found in polynomial time. Second, we can ensure
that the state transition graph is acyclic (a useful property for MDPs
also noted in other contexts [5]) by bounding the number of sug-
gestions sent to each participant; this enables us to find π? with
simple graph search algorithms instead of with policy iteration or
linear programming. Furthermore, this approach enables the use of
existing heuristic search algorithms where an exact computation re-
mains infeasible. Consequently, with appropriate restrictions many
useful D-SEPs can be efficiently solved in polynomial time.

4.4 Discussion
Compared to L-SEPs, the primary advantage of D-SEPs are

their ability to balance the utility of the process’s goals vs. the cost
of additional communication with the participants, and their grace-
ful degradation when goals cannot be completely satisfied. On the
other hand, the need to determine suitable utilities and probabili-
ties is an inherent drawback of any decision-theoretic framework.
Below we consider techniques to approximate these parameters.

First, the π? for a D-SEP depends upon the relative value of
positive utilities (e.g., having a well-balanced potluck) vs. nega-
tive utilities (e.g., the cost of making a suggestion). Our discussion
above exhibited a number of simple but reasonable utility func-
tions. In practice, we expect that D-SEPs will provide default util-
ity functions based on their functionality, but would allow users to
modify these functions by adjusting parameters or by answering a
series of utility elicitation questions [6].

Second, D-SEPs also require probabilistic information about
how participants are likely to respond to original requests and sug-
gestions. This information can be determined in a number of ways:
• User-provided: The process originator may be able to provide

reliable estimates of what responses are likely, based on some
outside information or past experience.

• History-based: Alternatively, the system itself can estimate
probabilities by examining the history of past processes.

• Dynamically-adjusted: Instead of or in addition to the above
methods, the system could dynamically adjust its probability
estimates based on the actual responses received. If the number
of participants is large relative to the number of choices, then
the system should be able to stabilize its probability estimates
well before the majority of responses are received.

Thus, although the need to provide utility and probability esti-
mates is a drawback of D-SEPs compared to L-SEPs, simple tech-

4See Boutilier et al. [7] for an alternative (though not guaranteed)
use of domain structure to reduce the effective number of states.

o6p$q r7q s-t&u v&p

wjx-yz�{}| ~O� ~����

wjxjy�C���1� � ��| � w/x&y�j��� � ��� �H| � ~�{�1� u �&v�p$q s7r

�1� u �-v7p

� s&�Ou t7s&u q t&u q v7s
������ ~�� �

Figure 2: The creation of a semantic email process. Initially, a SEP
template is authored by the “Author”, then is later instantiated by the
“Originator”. Typically, a template is authored once and then instanti-
ated many times.

niques can produce reasonable approximations for both. In prac-
tice, the choice of whether to use a D-SEP or L-SEP will depend
on the target usage and the feasibility of parameter estimation.

5. IMPLEMENTATION AND USABILITY
We have implemented a complete semantic email system and

deployed it in several applications. In doing so, we faced several
challenges. This section describes the desiderata for a usable se-
mantic email system, highlights the challenges to achieving these
desiderata, and discusses our particular implementation choices.

5.1 Desiderata
To be successful, we argue that any semantic email system (both

SEP-based and otherwise) should fulfill the following desiderata:

• Instant Gratification: Most importantly, semantic email must
provide an immediate, tangible benefit to users. Users must
not be expected to annotate outgoing or incoming mail with
semantic content for some vague future benefit. Instead, a se-
mantic email system must provide users with existing services
that yield immediately obvious benefits. In fact, the notion of
instant gratification is key to getting people to invest in adding
semantics to their data, and has been the motivation behind our
MANGROVE semantic web system [26].

• Gradual Adoption: At first, semantic email will be initiated
by only a small number of “early adopters.” If semantic email
could be profitably exchanged only among these users, it would
have very limited applicability. Thus, to succeed, semantic
email must be usable even when some or all of the participants
have no experience with or software installed for it.

• Ease of use: Semantic email must be simple enough for a non-
technical person to use. It should not expect such users to
understand RDF, disrupt normal email processing, or require
email senders or recipients to use a particular email client.

Below we elaborate on the challenges in implementing a system
that achieves these goals.

5.2 Process Creation and Execution
Translating SEP theory to real problems: Applying our SEP
theory to real problems requires enabling an originator to easily
create an L-SEP or D-SEP model that corresponds to his goals.
One option is to build a GUI tool that guides the originator through
constructing the appropriate choices, messages, and constraints or
utilities for the process. Practically, however, a tool that is general
enough to build an arbitrary process is likely to be too complex for
untrained users.

Instead, our system is based on the construction of reusable tem-
plates for specific classes of SEPs. Figure 2 demonstrates this ap-
proach. Initially, a trained user authors a SEP template using an
editor (most likely by modifying an existing template). The tem-
plate is written in OWL based on a SEP ontology that describes the

possible queries, constraints, and messages for a process. For in-
stance, the “balanced potluck” template defines the general balance
constraints for the process, but has variable placeholders for the
participants’ addresses, the specific choices to offer, and how much
imbalance to permit. To enable an originator to provide these val-
ues later, the author also constructs a simple web form that prompts
the originator for each variable (see Figure 3).

Our implementation provides a simple tool that can automati-
cally generate such web forms from some additional OWL infor-
mation describing each required variable. This same tool could
also be used to generate a service description for the template, e.g.,
in WSDL or OWL-S [2]. Then, a program could also serve as an
originator by utilizing the service description and template to auto-
matically invoke the process directly.

An untrained originator finds a SEP from a public library of
SEP templates and instantiates the template by filling out the cor-
responding web form, yielding a SEP declaration (also in OWL).
The originator then invokes the process by forwarding this declara-
tion to the manager. Given the formal declaration, the manager then
executes the process, using appropriate L-SEP and D-SEP algo-
rithms to decide how to direct the process via appropriate message
rejections and suggestions.

Facilitating responses: Another key challenge is enabling partic-
ipants to respond to messages in a way that is convenient but that
can be automatically interpreted by the manager. A number of dif-
ferent solutions are possible:

• Client software: We could provide a custom email client that
would present the participant with an interface for construct-
ing legal responses, or automatically respond to messages it
knows how to handle (e.g., “Decline all invitations for Friday
evenings”). This client-based approach, however, requires all
participants in a process to install additional software (conflict-
ing with our gradual adoption goal) and is complicated by the
variety of mail clients currently in use.

• Information extraction: We could allow participants to re-
spond in a natural language (e.g., “I’ll bring a dessert”). We
could then use wrappers or information extraction techniques
to attempt to convert this response to one of the offered choices.
This approach is promising but risks having the wrapper fail to
extract the correct information.

• Email or web forms: We could provide participants with a
text-encoded form to fill out, or we could send them a link to
a suitable web-based form to use for their response. Embed-
ded HTML forms are also attractive, but unfortunately are not
handled uniformly by existing email clients.

While web forms have some advantages, we chose to use email
text forms instead (see Figure 4) because we feel they fit more nat-
urally with how people typically handle incoming messages. In
addition, text forms offer a simple solution that works for any par-
ticipant. Participants respond by replying to the process message
and editing the original form.

Manager deployment: Potentially, the manager could be a pro-
gram run on the originator’s personal computer, perhaps as part of
his mail client. This permits an easy transition between authoring
traditional mails and invoking SEPs, and can also benefit from di-
rect access to the originator’s personal information (e.g., calendar,
contacts). However, as with providing client software for partic-
ipants, this approach requires software installation and must deal
with the wide variety of existing mail clients.

Our implementation instead deploys the manager as a shared
server. The server receives invocations from the originator and

Figure 3: A web form used to initiate a “balanced collection” process,
such as our balanced potluck example. For convenience, clicking sub-
mit converts the form to text and sends the result to the server and a
copy to the originator. The originator may later initiate a similar pro-
cess by editing this copy and mailing it directly to the server.

sends out an initial message to the participants. Participants reply
via mail directly to the server, rather than to the originator, and the
originator receives status and summary messages from the server
when appropriate. The originator can query or alter the process via
additional messages or a web interface.

Discussion: Our server-based approach is easy to implement and
meets our gradual adoption and ease-of-use goals since it requires
no software installation, works for all email clients, and does not re-
quire users (as originators) to read or write RDF/OWL. In addition,
this method supports our instant gratification goal by providing un-
trained users with existing, useful SEPs that can be immediately
invoked and yield a tangible output (in the form of messages sent
and processed on the users’ behalf). Finally, we believe that di-
vorcing the processing of semantic email (in the server) from the
standard email flow (in the client) will facilitate adoption by ame-
liorating user concerns about privacy5 and about placing potentially
buggy code in their email client.

In addition, specifying SEP templates and declarations in OWL
has a number of advantages. First, unlike the original version of
semantic email [13] (which used process-specific code), a SEP is
described entirely by its OWL declaration. This greatly simplifies
the deployment of a new SEP, both because no programming is
required and because authors need not run their own server (since
shared servers can accept and execute OWL declarations from any-
one, something they are unlikely to do for arbitrary code). Second,
authoring SEPs in OWL enables the use of a variety of automated
tools to ensure that a SEP declaration is valid. Finally, OWL spec-
ifications could enable future work that automatically composes
several SEPs to accomplish more complicated goals.

5Only semantic email goes through the server, personal email is
untouched. Of course, when the semantic email also contains sen-
sitive information, the security of the server becomes significant.

Figure 4: A message sent to participants in a “balanced potluck” pro-
cess. The bold text in the middle is a form used for human recipients
to respond, while the bold text at the bottom is a query that maps their
textual response to a formal language (e.g., RDF).

5.3 Human/Machine Interoperability
The discussion above highlighted how semantic email messages

can be handled by either a human or by a program operating on
their behalf. Thus, an important requirement is that every mes-
sage must contain both a human-understandable (e.g., “You’re in-
vited to the potluck on Oct 5...”) and a corresponding machine-
understandable portion. For messages sent to a participant, this
approach supports gradual adoption by permitting the originator to
send the same message to all participants without any knowledge of
their capabilities. For responses, a machine-understandable portion
enables the manager to evaluate the message against the process
constraints/utilities and take further action. The human-readable
component provides a simple record of the response if needed for
later review.

In our implementation, we meet this interoperability requirement
with a combination of techniques. For responses, a human can fill
out the included text form (see Figure 4), which is then converted
into RDF at the server with a simple mapping from each field to an
unbound variable in a RDQL query associated with the message.
Alternatively, a machine can respond to the message simply by an-
swering the query in RDF, then applying the inverse mapping in
order to correctly fill out the human-readable text form.

For messages to the participants, the challenge is to enable the
manager to construct these textual and RDF/RDQL portions di-
rectly from the SEP declaration. Here there is a tension between
the amount of RDF content that must be provided by the SEP au-
thor (in the template) vs. that provided by the SEP originator (when
instantiating the template). Very specific SEP templates (e.g., to
balance N people among appetizer, entree, and dessert choices) are
the easiest to instantiate, because the author can specify the RDF
terms needed in advance. General SEP templates (e.g., to balance
N people among K arbitrary choices) are much more reusable, but
require substantially more work to instantiate (and may require un-
derstanding RDF). Alternatively, authors may provide very general
templates but make the specification of RDF terms for the choices

optional; this enables easy template reuse but fails to provide se-
mantic content for automated processing by the participants.

In our current system, we offer both highly specialized SEPs
(e.g., for meeting scheduling) and more general SEPs (e.g., to give
away some type of item). Enabling originators to easily customize
general SEPs with precise semantic terms, perhaps from a set of
offered ontologies, is an important area of future work.

5.4 Integrating with Non-Semantic Messages
Despite the advantages of semantic email, we do not want to cre-

ate a strict dichotomy in our email habitat. In our potluck example,
suppose that one of the participants wants to know whether there
is organized transportation to the potluck (and this information af-
fects his decision on what to bring). What should he do? Com-
pose a separate non-semantic email to the originator and respond
to the semantic one only later? A better (and easier to use) solution
would be to treat both kinds of emails uniformly, and enable the
participant to ask the question in replying to the semantic email,
ultimately providing the semantic response later on in the thread.

Our implementation supports this behavior by supplying an ad-
ditional Remarks field in each response form, where a participant
may include a question or comment to be forwarded to the origina-
tor. For a question, the originator can reply, enabling the participant
to respond to the original semantic question with the included form
or pose another question.

5.5 Experience
Our semantic email system is deployed and may be freely used

by anyone without any software installation; the source code for
deploying other instances of the server is also available. So far
we have developed simple processes for functions like collecting
RSVPs, giving tickets away, scheduling meetings, and balancing a
potluck. Our system uses standard ontologies where possible (e.g.,
RDF Calendar [37]), augmented as needed with a local semantic
email schema.

Despite very limited publicity, our semantic email server has
seen growing interest over the six months that it has been avail-
able. For instance, a DARPA working group has adopted semantic
email for all of its meeting scheduling and RSVP needs, students
have used semantic email to schedule seminars and Ph. D. exams,
and semantic email has been used to organize our annual database
group and departmental-wide potlucks. Furthermore, a number of
other institutions have expressed interest in deploying copies of se-
mantic email locally at their sites. These are merely anecdotes but
lend credence to our claim that semantic email is both useful and
practical.

Our prototype is integrated within our larger MANGROVE [26]
semantic web system. This provides us with an RDF-based infras-
tructure for managing email data and integrating with web-based
data sources and services. For instance, the MANGROVE web cal-
endar accepts event information via email or from a web page.
In addition, MANGROVE provides semantic email with an RDF
data source about courses, people, etc. that could be used to sup-
port the prediction of likely responses by the manager discussed
in Section 2. Likewise, a semantic email client could utilize data
from MANGROVE to answer common questions. When previously
unknown questions are answered manually by the user, these re-
sponses could be stored for future use, thus enabling the automatic
acquisition of semantic knowledge over time. Future work will
consider additional ways to synergistically leverage data from both
the web and email worlds in MANGROVE.

6. RELATED WORK
Information Lens [24] used forms to enable a user to generate a

single email message with semi-structured content that might assist
recipients with filtering and prioritizing that message. Our SEPs
generalize this earlier work by enabling users to create an email
process consisting of a set of interrelated messages, and by extend-
ing Information Lens’s rule-based message processing to support
more complex constraint and utility reasoning based on informa-
tion from the entire set of messages. Consequently, SEPs sup-
port a much broader range of possible applications. More recently,
Kalyanpur et al. [18] proposed having users semantically annotate
messages to improve mail search, sorting, and filtering. This ap-
proach can potentially result in rich semantic content, but requires
users to invest significant annotation effort for some potential fu-
ture benefit (e.g., in improved searching for an old email) or primar-
ily for the benefit of the recipient. SEPs instead generate both the
semantic content and the text of the email message directly from
simple forms, and provide instant gratification by immediately uti-
lizing this content for simple but time-saving email processes.

Our vision for semantic email was initially described in Etzioni
et al. [13]. Possible uses of semantic email are similar to those
of some existing semantic web systems (e.g., [30, 19, 27], cf., RDF
Calendar group discussions [37]). For instance, Rcal [30] uses mes-
sages between participants to agree upon meeting times and McIl-
raith et al. [27] describe an agent that makes travel arrangements by
invoking various web services (which could be modeled as partic-
ipants in a SEP). These systems, however, enable full interaction
only between two parties that are both executing domain-specific
software. For instance, though Rcal provides a web interface to
let anyone schedule an appointment with an installed Rcal user, an
Rcal user cannot use the system to request an appointment with a
non-“Rcal-enabled” person. Likewise, McIlraith et al.’s agent is
designed only to communicate with specific web services, not with
humans (such as human travel agents) that could offer the same
functionality. Our system instead permits processes to include any
user, regardless of their capabilities. An additional, though less
critical, distinction is our use of email instead of HTTP or a cus-
tom protocol (cf., Everyware [15]). Email provides a convenient
transport mechanism because the vast majority of users already
have well-known addresses (no additional directories are needed),
messages can be sent regardless of whether the recipient has per-
formed any configuration, and existing email clients provide a use-
ful record of messages exchanged. The combination of these fac-
tors makes semantic email a lightweight, general approach for au-
tomating many tasks that would be impractical with other systems.

7. CONCLUSIONS
This paper generalizes the original vision of the semantic web to

also encompass email. We have introduced a paradigm for seman-
tic email and described a broad class of semantic email processes.
These automated processes offer tangible productivity gains on email-
mediated tasks that are currently performed manually in a tedious,
time-consuming, and error-prone manner. Moreover, semantic email
opens the way to scaling similar tasks to large numbers of people in
a manner that is infeasible today. For example, large organizations
could carry out surveys, auctions, and complex meeting coordina-
tion via semantic email with guarantees on the behavior of these
processes.

Our technical contributions are as follows. We presented a for-
malization that teases out the issues involved, and used this for-
malization to explore several central inference questions. We then
defined and explored two useful models for specifying the goals

of a process and formalizing when and how the manager of the
process should intervene. For our logical model we showed how
the problem of deciding whether a response was ultimately accept-
able relative to the constraints could be solved in polynomial time
for bounded constraints. With our decision-theoretic model we
addressed several shortcomings of the logical model and demon-
strated how appropriate restrictions could enable the optimal policy
for this model to be computed in polynomial time. In both cases we
identified restrictions that greatly improved the tractability of the
key reasoning problem while still enabling a large number of use-
ful processes to be represented. Finally, we described our publicly
available semantic email system and how it satisfies the implemen-
tation desiderata of instant gratification, gradual adoption, and ease
of use.

There are a number of interesting directions for future work.
First, we want to consider interactions between semantic email and
other semantic web applications to support more sophisticated rea-
soning techniques (e.g., check calendars and other resources to help
constrain the number of messages and responses from some partic-
ipants). We also plan to incorporate our recent work on schema
and ontology mapping [11] to support more flexibility in respond-
ing to a semantic email message. Finally, we identified specific
cases where our reasoning is tractable, but there are many opportu-
nities for studying other cases within the framework we provided
for modeling SEPs.

8. ACKNOWLEDGEMENTS
This research was supported in part by NSF grant IIS-0312988,

DARPA contract NBCHD030010, and ONR grant N00014-02-1-
0324 for Oren Etzioni; NSF CAREER grant IIS-9985114 and ITR
grant IIS-0205635 for Alon Halevy; and by NSF Graduate Re-
search and Microsoft Endowed Fellowships for Luke McDowell.
Jeff Lin assisted with the server implementation. Thanks to Abra-
ham Bernstein, Phil Bernstein, Sandy Liu, Mausam, Matthew Rich-
ardson, Stani Vlasseva, Dan Weld, and the anonymous reviewers
for their helpful comments on improving this work.

9. REFERENCES
[1] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Relational

transducers for electronic commerce. In Proc. of PODS, 1998.
[2] A. Ankolenkar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,

S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and
H. Zeng. DAML-S: A semantic markup language for web services.
In Proc. of the Semantic Web Working Symposium, pages 411–430,
2001.

[3] F. Baader and U. Sattler. Description logics with concrete domains
and aggregation. In Proc. of the European Conference on Artificial
Intelligence, pages 336–340, 1998.

[4] D. Bertsekas. Dynamic programming and optimal control. Athena
Scientific, 1995.

[5] B. Bonet and H. Geffner. Planning with incomplete information as
heuristic search in belief space. In Proc. of Artificial Intelligence
Planning Systems, pages 52–61, 2000.

[6] C. Boutilier. A POMDP formulation of preference elicitation
problems. In Proc. of AAAI, pages 239–246, 2002.

[7] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in
policy construction. In Proc. of IJCAI, 1995.

[8] J. A. Boyan and M. L. Littman. Exact solutions to time-dependent
MDPs. In Proc. of Advances in Neural Information Processing
Systems (NIPS), pages 1026–1032, 2000.

[9] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries
using views. In Proc. of PODS, pages 155–166, 1999.

[10] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
disparate data sources: a machine learning approach. In Proc. of
SIGMOD, 2001.

[11] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to
map between ontologies on the semantic web. In Proc. of WWW,
2002.

[12] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable
comparison-shopping agent for the world-wide web. In Proc. of the
First International Conference on Autonomous Agents, 1997.

[13] O. Etzioni, A. Halevy, H. Levy, and L. McDowell. Semantic email:
Adding lightweight data manipulation capabilities to the email
habitat. In Proc. of Sixth Int. Workshop on the Web and Databases,
2003.

[14] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About
Knowledge. M.I.T Press, 1995.

[15] F. Ferreira, D. Schwabe, and C. Lucena. Using semantic web
services now. In Proc. of IX Brazilian Symp. on Hypermedia and
Multimedia, 2003.

[16] S. Grumbach and L. Tininini. On the content of materialzed
aggregate views. In Proc. of PODS, 2000.

[17] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A
look behind the curtain. In Proc. of PODS, 2003.

[18] A. Kalyanpur, B. Parsia, J. Hendler, and J. Golbeck. SMORE -
semantic markup, ontology, and RDF editor.
http://www.mindswap.org/papers/.

[19] S. Kumar, A. Kunjithapatham, M. Sheshagiri, T. Finin, A. Joshi,
Y. Peng, and R. S. Cost. A personal agent application for the
semantic web. In AAAI Fall Symposium on Personalized Agents,
2002.

[20] N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper induction for
information extraction. In Proc. of IJCAI, 1997.

[21] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimization by
predicate move-around. In Proc. of VLDB, pages 96–107, 1994.

[22] M. L. Littman. Probabilistic propositional planning: Representations
and complexity. In Proc. of AAAI, 1997.

[23] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of
solving Markov decision problems. In Proc. of UAI, 1995.

[24] T. Malone, K. Grant, F. Turbak, S. Brobst, and M. Cohen. Intelligent
information-sharing systems. Comm. of the ACM, 30(5):390–402,
1987.

[25] B. McBride. Jena: Implementing the RDF model and syntax
specification. In Proc. of the 2001 Semantic Web Workshop, 2001.

[26] L. McDowell, O. Etzioni, S. D. Gribble, A. Halevy, H. Levy,
W. Pentney, D. Verma, and S. Vlasseva. Mangrove: Enticing
ordinary people onto the semantic web via instant gratification. In
Proc. of Second International Semantic Web Conference, October
2003.

[27] S. A. McIlraith, T. C. Son, and H. Zeng. Mobilizing the semantic
web with daml-enabled web services. In Proc. of Semantic Web
Workshop, 2001.

[28] C. Mohan. Workflow management in the internet age.
www.almaden.ibm.com/u/mohan/workflow.pdf, 1999.

[29] S. Mukherjee, H. Davulcu, M. Kifer, P. Senkul, and G. Yang. Logic
based approaches to workflow modeling and verification. In Logics
for Emerging Applications of Databases, 2003.

[30] T. Payne, R. Singh, and K. Sycara. Calendar agents on the semantic
web. IEEE Intelligent Systems, 3(11):84–86, 2002.

[31] A. Pnueli. The temporal logic of programs. In Proc. of the 18th
Annual IEEE Symposium on Foundations of Computer Science,
1977.

[32] M. Puterman. Markov decision processes. Wiley Inter-science, 1994.
[33] K. Ross, D. Srivastava, P. Stuckey, and S. Sudarshan. Foundations of

aggregation constraints. In Principles and Practice of Constraint
Programming. LNCS, 874. Springer Verlag, 1994.

[34] P. Senkul, M. Kifer, and I. H. Toroslu. A logical framework for
scheduling workflows under resource allocation constraints. In Proc.
of VLDB, 2002.

[35] L. J. Stockmeyer and A. K. Chandra. Provably difficult
combinatorial games. SIAM Journal on Computing, 8(2):151–174,
1979.

[36] V. Tamma, M. Wooldridge, and I. Dickinson. An ontology-based
approach to automated negotiation. In Proc. of AMEC, 2002.

[37] W3C. RDF calendar workspace. http://www.w3.org/2002/12/cal/.

