
Crossing the Structure Chasm

Alon Halevy Oren Etzioni AnHai Doan Zachary Ives Jayant Madhavan
Luke McDowell Igor Tatarinov

University of Washington
{alon, etzioni, anhai, zives, jayant, lucasm, igor}@cs.washington.edu

1 Introduction and Motivation

Online information comes in two flavors: unstructured
corpora of text on the one hand, and structured data
managed by databases and knowledge bases on the other.
These two different kinds of data lead to very different
authoring, management and search paradigms. In the
first, search is based on keywords and answers are ranked

according to relevance. In the second, search is based on
queries in a formal language (e.g., SQL), and all the an-
swers returned for the query are correct according to the
underlying semantics of the system. In the u-world of
unstructured data, authoring data is straightforward. In
contrast, in the s-world of structured data, authoring
data is a conceptual effort that requires technical exper-
tise and substantial up front effort; the author is required
to provide a comprehensive structure (i.e., schema) of the
domain before entering data.

This paper is focused on the profound difference be-
tween the u-world and the s-world: we argue that
there is a structure chasm between these two worlds.
Crossing this structure chasm means introducing tech-
nology that imports some of the attractive properties of
the u-world into the s-world, facilitating the creation
of large-scale data sharing systems. Our first goal is to
try to place the problem of crossing the chasm promi-
nently in the data management community’s agenda.
While many research efforts have addressed specific as-
pects of the problem, we introduce a paradigm that
places these efforts in context. Our second goal, which
occupies the bulk of the paper, is to provide an example
architecture for a system that crosses the chasm: we de-
scribe the Revere system, which focuses on the chasm
present on the World Wide Web.

1.1 The Structure Chasm

We begin by discussing the key differences between the
u-world and s-world in more detail.

1. Authoring: in the u-world, authoring is concep-
tually straightforward. It is a matter of writing coherent
natural language text. In the s-world, authoring is
much more complex. One needs to first conceptually or-
ganize the data into a schema (or some domain model in
a knowledge representation language), before any data
can be entered. Designing the schema (even ignoring
its physical aspects) is a major undertaking in any real-

world domain. Many potential customers of s-world

tools are lost immediately: they either do not want to,
or simply cannot create a model of their domain. Those
who do proceed must invest a significant amount of ef-
fort, and they will want some return on their investment.

2. Querying: the difficulties of querying in the s-

world are more subtle. In the u-world, a user need
not know very much in order to query a collection of
data. A set of keywords suffices, and even if those are
not the exact words used by the authors, the system will
typically still find relevant documents using techniques
such as stemming. On the other hand, in the s-world,
a user needs to know the precise schema of the data he
wishes to query — otherwise, the query will fail. There
is no graceful degradation: if a query is not completely
appropriate for the schema, the user will get no answers.
This means that a user needs to understand how some-

one else structured the data, which is often a difficult
task.

3. Sensitivity to change: the u-world is relatively
insensitive to change. If an author rewords phrases in
a document or adds to them, the user does not need to
change his queries. In contrast, in the s-world, certain
changes to the schema of the data may completely inval-
idate the queries running against the system. In many
cases, this will require significant changes to applications
using the database. Again, there is no graceful degrada-
tion here: the s-world is brittle in this sense.

4. Ease of sharing data: as a consequence of the
difficulties in authoring and querying data, sharing and
integrating data is very challenging in the s-world. In
the u-world all documents can simply be combined
within the same corpus (or indexed by the same search
engine), and they can be queried uniformly. In the
s-world, because of different domains and tastes in
schema design, different data sources are unlikely to use
the same schema constructs to represent the same con-
cepts. Thus we must mediate between different schemas
(or ontologies): we need to define relationships between
data providers and map queries back and forth between
them. This is a major effort and typically requires an
understanding of both schemas.

5. Accuracy of answers: on the flip side, we can
pose much richer queries in the s-world, and the an-
swers returned are exact. That is, the semantics of the

underlying system defines a boolean condition for ev-
ery candidate answer — it is either true or false. This
allows one to automate many tasks and build applica-
tions (e.g., managing bank accounts, reserving flights,
purchasing books on Amazon, and soon, perhaps, mak-
ing an appointment with the local dentist via web ser-
vices). In the u-world, answers are approximations
based on expected relevance, and they are ultimately
evaluated by a human. Hence, they are useful only in
applications where the answers go directly to a user who
sifts through them “by hand.” The approximate nature
of the u-world does not mesh well with our expecta-
tions from the s-world — we are seldom happy with
approximate, incomplete, or incorrect answers. The vast
majority of the applications in the s-world simply do
not tolerate such answers (and neither do the end users).

The points in the above comparison come as no sur-
prise to anyone who has worked with structured data.
The surprising thing is how often these issues are for-
gotten, especially when people try to design large-scale
data sharing systems (e.g., the Semantic Web [7]). The
problems of creating and sharing structured data are ex-
tremely challenging and very deeply ingrained in the way
people think of structured data. Even sharing structured
information within a single, large organization, where
presumably everyone is working for the same cause, is
known to be a very difficult problem.

Where is the chasm exactly?

One may wonder where exactly the chasm between struc-
tured and unstructured data lies. As a rule of thumb, if
posing a query requires that the user know the domain-

specific structure of the data, then it is an s-world

query. Hence, a SQL query on a relational database
is an s-world query because the author needs to know
the schema. Knowledge bases (and queries over them)
are even more elaborate versions of the s-world. An
XQuery or XPath posed over XML document structure
is also in the s-world1, but a keyword query on an
XML document is in the u-world. A keyword query
on a text document is obviously in the u-world as well
– while the query author needs to know that the doc-
ument’s structure is a sequence of words, he need not
know the domain-specific structure.

1.1.1 Crossing the Chasm

Crossing the structure chasm does not mean merely com-
bining structured and unstructured data in a single sys-
tem: the two kinds of data already coexist in documents
(e.g., [4]), although their coexistence is far from seamless:
disparate operations are applied to the different parts.

Our goal is to build tools for the s-world that im-
port that attractive properties of the u-world. We do
not expect that managing data in the s-world will ever

1There are a few subtle exceptions here. For example, one can
pose a query that asks for all the elements under the root (or within
a fixed distance from the root) without knowing the structure.
Similarly, one can ask whether there are any book elements in an
XML document without knowing the structure.

be as easy as in the u-world, but we claim that much
of the chasm is an artifact of current data management
tools and techniques, rather than the results of inher-
ent differences between the u-world and s-world. In
particular, we offer the following desiderata for s-world

tools:

Authoring: the structure of a content sharing environ-
ment can be developed locally and incrementally, match-
ing the requirements and mental model of the content au-
thor. Global structure can be developed piecewise across
local domains by defining mappings between small sub-
sets of links, and exploiting transitive relationships be-
tween these links. Content authoring should be bottom-
up rather than top-down: each author should be free to
create content without having to coordinate with other
authors.

Querying: while a user is required to learn a local struc-
ture, he should not be required to learn a global schema
that incorporates unfamiliar concepts or models. The
user should be able to pose queries from the perspective
of the local schema, and the system should map other
data into this familiar frame of reference.

Sensitivity to change: Control of the system should
be decentralized, both physically and logically. Thus,
the system would be robust to changes to both data and
schema, which could occur at any place and at any time.

Ease of sharing data: Tools and resources should be
available to facilitate mapping between local schemas
and sharing of data.

Accuracy of answers: We should retain the s-world

properties of providing accurate answers to complex
queries, and thus of supporting applications that do not
require human intervention.

To illustrate the benefits of crossing the chasm, we
now turn to a hypothetical example that runs through
the paper.

Example 1.1 Imagine DElearning, an on-line educa-
tion company, which leverages existing distance learn-
ing courses at different universities and weaves them
into its own educational programs. Thus, a customer
of DElearning could take an introductory ancient history
course at Berkeley, followed by an intermediate course at
Cornell, and culminating in a graduate course at Oxford.
DElearning pays for the right to send students to differ-
ent courses, but charges a its customers a premium for
creating coherent specialized programs that suit their ed-
ucational needs, schedule constraints, etc. DElearning’s
strategy for dominating the global distance education
market is twofold. First, it plans to rapidly grow its in-
ventory of courses by making it as easy as possible for
non-technical educators to add in their distance learn-
ing courses. Second, it seeks to make tailoring a custom
eductational program as easy as possible for a potential
customer.

Note that neither the u-world nor the s-world

offers technology that can meet DElearning’s require-
ments. u-world technology makes joining DElearning

easy for educators, they would only need to point DE-
learning at the URLs for their course web sites. How-
ever, searches of HTML pages by potential customers
are a tedious way to try and build a custom curriculum.
Customers would find that they need to manually check
requirements, schedules, and would have to do so across
HTML pages constructed using different languages, and
different vocabularies. s-world technology sporting a
global mediated schema would alleviate these problems,
but only at the prohibitive upfront cost of authoring a
schema that would cover a large number of universities
and departments internationally. 2

1.1.2 Roadmap

The paper is organized as follows. In the next section,
we describe the Revere system and describe how it
tackles the problems of the structure chasm. Section 3
describes content authoring and local querying support
in Revere. Section 4 describes how Revere supports
data sharing between local domains, and it presents our
decentralized system architecture. Section 5 proposes
the use of a corpus of structured data and its associated
statistics as the basis for tools that facilitate schema cre-
ation and mapping. Section 6 puts related work into the
perspective of crossing the chasm, and Section 7 con-
cludes.

2 Overview of Revere

Revere (Figure 1) is a highly distributed data manage-
ment system that addresses the problems of the structure
chasm on the Web. The goal of Revere is to build a
semantic web from data that is currently embedded in
HTML pages, but which could be used in numerous novel
applications if it were available in structured form. Re-

vere supports local migration of HTML data at each
site into structured form; provides facilities for estab-
lishing mappings between the local schemas of different
participants; and presents a query processor that accepts
queries over any participant’s local schema, and uses the
transitive closure of mappings to return all relevant data
to the user in his local schema. Revere is comprised of
three components, each designed to import certain at-
tractive properties of the u-world into the s-world.
We describe each component in turn below.

Creating structured data

The first hurdle in building any large-scale data shar-
ing system is to structure the existing data. On the top
of Figure 1 illustrates the U2S component, which facil-
iates (and motivates) authoring of semantically tagged
content locally (this component is detailed in Figure 2).
In the case of Revere, much of the data that we focus
on (e.g., contact information, course scheduling, publi-
cations, etc.) already resides in HTML pages, and the
challenge is to entice users to take the effort to struc-
ture the data. To achieve this goal, Revere tries to
replicate the principles behind the Web that we believe
made HTML authoring explosively popular:

1. Ease of use: we develop an annotation tool that
enables users to mark up their data with a given
schema, retaining the data in its current location
(i.e., inside their HTML pages).

2. Instant gratification: on the Web, users enjoy
instant gratification as they create HTML files and
link them up to others. We mimic that instant grat-
ification by building a set of applications over the
structured data, so users can immediately benefit
from their annotations.

3. Deferring integrity constraints: there are no in-
tegrity constraints on the Web. A user can put his
phone number on a web page without considering
whether it already appears anywhere else (e.g., in an
employer’s directory). Despite that, users can effec-
tively assess the correctness of the information they
find (e.g., by inspecting the URL of the page). Our
tool enables users to author any data they want. We
shift the burden of enforcing integrity constraints to
the applications using the data. Depending on the
application, different levels of data cleanliness may
be required.

Sharing data

After data has been locally structured, it needs to be
shared with other institutions. The second component
of the system is a peer data management system (PDMS)
that enables data to be developed, mapped, and man-
aged in a decentralized and ad hoc fashion. In a sense,
our PDMS presents a first step in bringing the uncon-
strained extensibility of the Web into the s-world by
distributing data management across multiple nodes and
management domains. The principles underlying our
PDMS are the following:

1. Peers: In a PDMS, peers can serve as data
providers, logical mediators, or mere query nodes.

2. Local mappings: Data is authored separately on
every peer, and semantic mappings between dis-
parate schemas are given locally between two (or
a small set of) peers. Using these semantic map-
pings transitively, peers can make use of relevant
data anywhere in the system.

3. Querying local schemas: Queries can be formu-
lated using the peer’s local schema, and the appro-
priate translations are made to schemas of other
peers.

We note that PDMSs are a natural step beyond data
integration systems, where queries are formulated via
a global mediated schema, and all peers must provide
mappings from their schemas to this mediated schema.
In fact, a PDMS allows for building data-integration and
warehousing like applications locally where needed.

Corpus-
based
Design
Tools

Corpus of
Structured Data

Peer 1

U2S
Content

Annotation
Tool

HTML Annotated
HTML

Peer 2

Peer 3

Structuring

Data Sharing

Peer 4 Schema

Mapping

S
chem

a

M
apping

Schema
Mapping

Sc
he

m
a

M
ap

pi
ng

Schema

Storage

Schema

Storage

Schema

Storage
Schema

Storage

Query
over Peer4

Schema

Results from
All Mapped

Peers' Stored
Data

Schema and
Mapping Design

Tools
Schema

Sc
he

m
a

M
ap

pi
ng

s

Statistics over
Structure

Figure 1: The Revere system consists of tools for annotating or structuring existing data; a peer-to-peer data sharing
environment in which users can pose queries in any of the peers’ schemas, and receive answers from all peers; and tools for
defining schemas and mappings, which make use of a corpus of structured data to advise and assist the user. Points where
the system interacts with a human are identified with a person icon.

Facilitating authoring and schema mapping

The third component of our system is a tool that facili-
tates the data authoring and sharing tasks sketched ear-
lier. This tool is based on a corpus of schemas and struc-
tured data, and its goal is to extract from this corpus
statistical information on how terms are used in struc-
tured data. In a sense, we are adapting the Information
Retrieval paradigm, namely the extraction of statistical
information from text corpora, to the s-world. Our
hypothesis is that tools built over a corpus of structured
data with associated statistics can alleviate some of the
key bottlenecks associated with distributed authoring,
querying and sharing of structured data. For example,
while authoring data, a corpus-tool can be used as an
auto-complete tool to suggest more complete schemas to
a user. When mapping data from different peers in a
PDMS, another tool can be used to propose semantic
mappings between schemas.

We note that while we are embarking on an initial
corpus effort on our own, we fully expect the creation
of the corpus to be a community effort, and the task of
devising the most useful statistics to compute from it is
a long term research effort.

Deploying Revere for DElearning:

Revere is ideally suited as a platform for our hypo-
thetical DElearning. It enables a potential customer to

inquire about courses, requirements, schedules from any
Revere node. Moreover, the query can use the famil-
iar vocabulary of that node and rely on the system to
automatically translate the query (and results) appro-
priately. Revere also makes the entrance of a new
university, or university department into DElearning’s
network as painless as possible. Since any participating
university already has a course web site, all it has to
do is use the three components of Revere to join DE-
learning’s “inventory.” First, the university’s instructors
mark up (and periodically update) their course content
using Revere markup tool. Second, the university’s
distance learning specialist relies on the Revere corpus
to identify peer universities whose schemas are “seman-
tically close” to his own. Finally, the specialist relies on
the Revere PDMS to fully specify the exact pairwise
mapping between the two universities’ schemas. That is
all that is required.

The next three sections detail each of the components
of Revere.

3 The Creation of Structured Data in
U2S

In this section, we describe how the U2S module facil-
itates the authoring of structured content. We consider
ease of use, instant gratification applications as an in-
centive to structure content, and deferred enforcement

SWORLD Data
(Annotated

HTML)

UWORLD Data
(HTML) Annotation

Tool

Instant
Gratification
Applications

Schema

Figure 2: Architecture of the U2S module. This module faciliates the structuring of data to move it from the u-world to
the s-world.

of integrity constraints.

3.1 Ease of Use

To entice a large population of users to structure their
data, we must make the process as easy as possible. A
huge amount of useful data already exists in personal
and organizational web pages, and the active viewing of
this data over the web motivates users to keep this in-
formation up-to-date. We believe that users should not
need to replicate this data in a separate system. Instead,
the U2S module facilitates the structuring of such data,
by providing an annotation language that allows users
to mark-up their data in its current place using a conve-
nient annotation tool. Annotations are embedded in the
HTML files but invisible to the browser. This method
both ensures backwards compatibility with existing web
pages and eliminates inconsistency problems arising from
having multiple copies of the same data.
The annotation language: The annotation language
is the mechanism that enables adding structure to data
in HTML pages. An example of our annotation lan-
guage is shown in Figure 3. The annotation tags are
self-documenting (in the spirit of XML). Two aspects of
the language are noteworthy. First, the optional about
attributes (e.g. of the course element) specify unique
identifiers (in Uniform Resource Indicator form) for ob-
jects. This enables information about an object to be
spread in multiple locations and be fused later. Sec-
ond, for convenience we enable users to tag an entire list
or table by specifying a simple regular expression (the
ann:reglist element) at the top. The “...” refers to the
text to be tagged.

Our annotation language is functionally equivalent to
basic RDF [45]. We developed our own language in-
stead of using RDF directly for two reasons. First, our
language has a simpler and more concise syntax, an im-
portant feature for the many users who would prefer to
author web pages using a simple text editor. Even more
importantly, our language integrates with HTML to al-
low inline tagging of existing data without disrupting
normal browsing, a key requirement for ease of use that
is not possible with standard RDF. We expect that a
better understanding of the relationship between RDF
and XML will emerge shortly (see [59] for a start), and
as a result, we will see tools that manipulate the two for-
malisms uniformly. Currently, we are using the Jena [51]
RDF-based storage and querying system in our imple-
mentation, because it most closely suits our needs.

Schema in U2S: Users of U2S are required to adhere
to one of the schemas provided by the U2S adminis-

<html xmlns:ann="http://wash.edu/schema/example">

<ann:course about="U2S://wash.edu/courses/692">

<h1><ann:name>Networking Seminar
</ann:name></h1>

<p>Office hours for additional assistance:

<ann:instructor>Prof. John Fitz

<ann:officeHours>Tue 3-4 pm</ann:officeHours>

</ann:instructor>

<ann:instructor>Prof. Helen Randolph

<ann:officeHours>Fri 1-2 pm</ann:officeHours>

</ann:instructor>

<table> <tr><th>2002 Schedule

<ann:reglist=
’<tr><ann:event>

<td><ann:date>...</ann:date>

<td><ann:topic>...</ann:topic>

</ann:event></tr>’>

<tr> <td>Jan 11 <td>Packet loss</tr>

<tr> <td>Jan 18 <td>TCP theory</tr>

</ann:reglist>

</table>

</ann:course> </html>

Figure 3: Example of annotated HTML. The ann: tags
provide structured information without disrupting normal
HTML browsing.

trator at their organization. For instance, a university
or department would provide an appropriate domain-
specific schema for their users, which may be borrowed
or adapted from a schema developed elsewhere (Sec-
tion 5 describes tools to assist with this schema cre-
ation). This use of predefined schemas provides simplic-
ity and tractability for the initial development of struc-
tured data and associated applications, while still allow-
ing local variations in data expression. Note, however,
that U2S users are only required to use a set of standard-
ized tag names (and their allowed nesting structure).
They are not required to adhere to integrity constraints
(that are often viewed as part of a database schema).
Hence, users are free to provide partial, redundant, or
conflicting information, which simplifies the process of
annotating HTML pages that were originally designed
without semantics in mind. As we discuss in Section 3.3,
we defer the enforcement of integrity constraints.

The annotation tool: Our annotation tool provides
a simple GUI interface to enable annotation of existing
HTML content. The tool displays a rendered version of
the HTML document alongside a tree view of the rel-
evant schema. Users highlight portions of the HTML
document, then annotate by choosing a corresponding
tag name from the schema. By default, the tool requires
users to annotate the document top-down, starting with

the top of the schema tree and working down, which
assists the user with tag selection and ensures that the
resultant structured data conforms to the schema. Ad-
vanced users may instead apply annotations in any order
and then be warned later about schema violations.

When the user has finished annotating her HTML
document, she uses the tool to publish her content, as
described in the next section.

3.2 Instant Gratification Applications

In the u-world, rendering a new HTML page on the
browser enables the user to immediately see the fruits of
her labor. Adding links enables her to immediately par-
ticipate in a web of data. U2S tries to replicate these
conditions for editing s-world data. Instant gratifica-
tion is provided by building a set of applications over
U2S that immediately show the user the value of struc-
turing her data. For example, an online department
schedule is created based on the annotations depart-
ment members add to course home pages, talk calendars,
readings group pages, etc. Other applications that we
are constructing include a departmental paper database,
“Who’s Who”, and an annotation-enabled search engine.

When the user publishes new content, the annota-
tion tool sends a message to the U2S server, which im-
mediately parses the new document and updates the
database. Thus, when the user subsequently executes
a U2S-enabled application, she gets the instant gratifi-
cation of seeing her changes take effect. Moreover, this
tangible result encourages a feedback cycle where users
expand and tweak their documents to get the desired
data result, just as users modify traditional HTML docu-
ments to achieve the desired visual effects. This feedback
cycle would be crippled if changes relied upon periodic
web crawls before they took effect.

For ease of implementation, we currently store the
data in a relational database using a simple graph rep-
resentation. In addition to being updated by publish

operations, the data is also updated by periodic crawls.

3.3 Treatment of integrity constraints

The third principle underlying the construction of U2S is
that on the Web there are no integrity constraints. When
a user edits her homepage to add her phone number,
she does not need to check whether her phone number
appears elsewhere on the web, and whether the number
is consistent. In U2S any author is free to publish any
data, regardless of what else is published. Hence, the
database created from the web pages may have dirty
data: it may be inconsistent; certain attributes may have
multiple values, where there should be only one; there
may even be wrong data that was put on some web page
maliciously.

The burden of cleaning up the data is passed to the
application using the data, based on the observation that
anyway different applications will have varying require-
ments for data integrity. In some applications, clean
data may not be as important, possibly because users
can tell easily whether the answers they are receiving

are correct or not (possibly by following an addional hy-
perlink). For other applications, it may be important
that data be very consistent (e.g., that you show only a
single phone number), and there may be some obvious
heuristics on how to resolve conflicts. For example, if the
application is creating a phone directory of the depart-
ment’s faculty, then the application can be instructed to
extract a phone number from the faculty’s web space,
rather than anywhere on the web. The source URL of
the data is stored in the database and can serve as an
important resource for cleaning up the data. In a sense,
using the URL parallels the operation of the web today,
where users examine web content and/or its apparent
source to determine the usefulness of the content. Fi-
nally, in addition to dealing with inconsistent data as
necessary, one can also build special applications whose
goal is to proactively find inconsistencies in the database
and notify the relevant authors.

3.4 Example

Returning to our example, assume that Tsinghua Uni-
versity desires to make it easier for students and staff
to find relevant course information. Tsinghua offers a
very large number of courses, and each course already
has an existing web page that provides descriptive and
schedule information. While it might be possible for the
administrator to annotate the web pages of each course,
the large number of courses presents a heavy initial and
maintenance burden. Instead, the instructors annotate
their own course web pages, aided by the U2S annota-
tion tool. Instructors are motivated to annotate (along
with perhaps some encouragement from the university!)
by the instant gratification they receive from seeing their
course added to the U2S-enabled applications. Because
the annotated information is part of the standard course
page, the information on the page itself will stay current,
and it is simple to maintain the proper annotations when
the course web page changes.

While this example focuses upon the annotation of
web pages that are constructed by hand, annotations
could also be easily added to pages that are generated
from a database. Furthermore, U2S also enables some
web pages that are currently compiled by hand, such as
department-wide course summaries, to be dynamically
generated based upon U2S queries in the spririt of sys-
tems like Strudel [25].

3.5 U2S and the chasm

The U2S module takes several steps towards crossing
the structure chasm. First, it enables users to author
structured data in a familiar environment while leaving
the data where it already is. It provides a convenient
tool for annotating pre-existing data. The instant grati-
fication applications create an environment that entices
users to incrementally structure their data, where even
small amounts of annotation can produce tangible re-
sults. As annotations become common, more sophisti-
cated applications will arise to exploit them, which will
in turn promote the creation of more structured data.

4 Decentralized Data Sharing

In the previous section, we described how Revere facil-
itates authoring of local structured content. This section
describes how Revere supports large scale data sharing

of structured content across multiple, disparate commu-
nities.

Most of the challenges in data sharing arise from one
central problem: different sources of data will naturally
use different schemas to structure their information. As
described in the introduction, this can arise simply be-
cause one content developer has a different way of con-
ceptualizing a domain from others; it can also arise be-
cause two different data sources have somewhat differ-
ent domains or requirements. In either case, combining
data from multiple schemas lies at the heart of solving
the data sharing problem for structured data.

A commonly proposed approach is the one used by
data warehousing [16] and data integration [30, 32, 3,
47, 24, 44, 29, 50]: create a common, mediated schema
that encompasses the concepts to be shared, and define
mappings between each source’s schema and the medi-
ated schema2. Users can query over the individual data
sources’ schemas, only getting answers from the local
data, or over the mediated schema, getting answers from
all sources with mappings. This approach works well
enough to be practical for many problems, but it scales
poorly, for two reasons. First, the mediated schema can
be extremely difficult and time-consuming to create, and
also slow to evolve, as all users of the system must agree
how the data can be represented and consent to any fu-
ture changes. Schema creation at the global level is sim-
ply too heavyweight for quick data sharing tasks. Sec-
ond, data providers must learn a new (and often entirely
different) schema if they are to actually benefit from the
data sharing arrangement. They may not consider the
rewards to be worth the effort.

In Revere, our goal is to provide mediation between
schemas in a decentralized, incremental, bottom-up fash-
ion that does not require global standardization, and
which does not require users to learn a new schema. The
goal of our peer data management system component is
to create an ad hoc environment in which every partic-
ipant can add new structured data, new schemas, and
new mappings between schemas. Every user of the sys-
tem can pose a query over his or her preferred schema.
The PDMS will find all data sources related through
this schema via the transitive closure of mappings, and
it will use these sources to answer the query in the user’s
schema. Our approach addresses the problems cited
above, and it brings many u-world-like capabilities to
schema creation and mediation. We support incremen-
tal creation of new schema concepts and new mappings,
meaning that each user can easily extend the system,
without needing global agreement. We allow users to
continue to query using their existing schemas, rather
than forcing them to learn new ones, meaning that data

2We observe that the standardized schema of a data ware-
house is typically very different from the operational data sources’
schemas, since it is designed for decision-support queries rather
than transactions.

sharing becomes nearly automatic and transparent once
the appropriate mappings are established.

The natural extensibility of a PDMS can best be il-
lustrated by continuing with our running example. In
Section 3, we saw how individual university web sites
could be annotated with semantic information.

Example 4.1 Suppose that universities throughout the
world have adopted Revere’s content authoring tools
and annotated their web pages. These universities also
made use of the Revere query tools to support ad hoc
queries from users, and they developed dynamic web
pages (e.g., university-wide seminar calendar) from views
defined over the structured data.

Now these universities want to join the DElearn-
ing network of distance-education courses. Naturally,
each university used a different, independently evolved
schema to mark up its web pages. For the reasons cited
above, creating a single mediated schema for all universi-
ties is infeasible. Furthermore, with a mediated schema
it is hard to leverage the work done by others — if the
Universita of Rome maps its schema information from
Italian to a mediated schema in English, this does not
help the University of Trento.

Peer data management techniques are much more ap-
propriate for this task, as shown in Figure 4. Initially,
a few universities define mappings among their schemas,
such that they are transitively connected. Now, as other
universities agree to join the coalition, they form map-
pings to the schema most similar to theirs (e.g., Trento
maps to Rome) — they will be transitively connected to
the others. The moment a peer establishes mappings to
other sources, it can pose queries using its native schema,
which will return answers from all mapped peers. As
a result, every participating university will feature the
full set of distance-education courses, without having to
make any significant modifications to its infrastructure
(beyond possibly extending its schema to include a few
new concepts such as the language in which each course
is taught). A student now can choose courses from all
over the world, but all interactions will be done directly
through the local university, in as transparent a fashion
as possible. 2

The example illustrates an important characteristic
about mappings in a PDMS. One of the advantages of
data integration systems is that the number of semantic
mappings we need to specify is only linear in the number
of data sources. We emphasize that in a PDMS, we
do not need to specify mappings between every pair of
peers. Instead, every peers specifies a mapping to the
most convenient other peer(s). Hence, the number of
mappings is still linear, but peers are not forced to map
to a single mediated schema.

The reason we refer to our system as a peer data man-
agement system is that it not only focuses on ad hoc,
decentralized logical extensibility (in which every par-
ticipant can define its own schema and provide its own
data), but we couple that with a flexible, decentralized,
peer-to-peer system architecture. Peer-to-peer systems
(popularized by file-sharing systems such as Napster [57]

Berkeley
Roma

TsinghuaOxfordStanford

MIT

Figure 4: PDMS for our university example. The arrows correspond to schema mappings between peers. No central mediated
schema is necessary. As long as the mapping graph is strongly connected, any peer can access data at any other peer by
following schema mapping “links”.

and Gnutella [23], but also the topic of a significant body
of research in distributed systems [18, 70, 10, 67, 62])
seek to provide a fully decentralized infrastructure in
which every participant or peer provides resources to the
overall system, resulting in a system that scales well as
members are added; and every member can join or leave
at will.

Our initial PDMS implementation is in a system
called Piazza [31], and we now highlight some aspects
of the Piazza system architecture.

4.1 System architecture

Piazza consists of an overlay network of peers connected
via the Internet. Each peer may provide new content and
services to the overall system, plus it may make use of
the system by posing queries. Piazza assumes an XML
data model, since this is general enough to encompass re-
lational, hierarchical, or semi-structured data, including
marked up HTML pages.

A peer can provide any or all of three different types of
content: (1) new XML data (which we refer to as stored

relations3 to emphasize the fact that they are material-
ized source data), (2) a new logical schema that others
can query or map to (we refer to this as a peer schema

or a set of peer relations), and (3) new mappings be-
tween peer relations and source relations or other peer
schemas. A peer’s services may include query answering
(with respect to its peer schema, or even the schema of
another peer), materialization of views (to replicate data
for performance or reliability), and potentially storage
and processing of meta-information for coordinating the
overall PDMS.

4.1.1 Query Answering in a PDMS

The problem at the heart of Revere’s PDMS is that of
query answering: every user query is posed over a logical
peer schema and must be rewritten so it ultimately refers
only to stored relations on the various peers.

In data integration, we find a two-tiered architec-
ture, with a mediated schema defined over a set of data

3Note that our use of the term “relation” is in a very loose sense,
referring to any sort of flat or hierarchical structure, including
XML.

Berkeley peer schema (XML DTD):
Element schedule(college*)
Element college(name, dept*)
Element dept(name, course*)
Element course(title, size)

MIT peer schema:
Element catalog(course*)
Element course(name, subject*)
Element subject(title, enrollment)

Figure 5: Example peer schemas (in XML DTD form)
for Berkeley and MIT.

sources. Two classes of formalisms were developed to
express relationships between sources and the mediated
schema (see [33]): global-as-view, in which the mediated
schema is defined as a set of queries over the data sources;
and local-as-view, in which the data sources are defined
as views over the mediated schema.

In Piazza, we find two significant issues that need to
be addressed. The first is that our mappings are speci-
fied between small subsets of peers, and query answering
must be done using the transitive closure of the map-
pings. The second is that our mapping formalism needs
to support querying over XML, rather than conjunctive
queries over relations.

Our initial work on query answering in a PDMS [34]
addresses the first issue. We examined how the tech-
niques used for conjunctive queries in data integration
can be combined and extended to deal with the more
general PDMS architecture. The key challenge in query
answering is how to make use of the mappings to answer
a query. We must extend from the two-tier architecture
of data integration to a graph structure of interrelated
mappings: a query should be rewritten using sources
reachable through the transitive closure of all mappings.
However, mappings are defined “directionally” — peer
P ’s relation R is mapped from peer Q’s relations S and
T — and a given user query may have to be evaluated
against the mapping in either the “forwards” or “back-
wards” direction. This means that our query answering
algorithm has aspects of both global-as-view and local-

<catalog>
<course> {$c = document("Berkeley.xml")/schedule

/college/dept}
<name> $c/name/data() </name>
<subject> { $s = $c/course }

<title> $s/title/data() </title>
<enrollment> $s/size/data() </enrollment>

</subject>
</course>

</catalog>

Figure 6: Berkeley-to-MIT schema mapping. The tem-
plate matches MIT’s schema. The brace-delimited anno-
tations describe, in query form, how variables (prefixed
with dollar-signs) are bound to values in the source doc-
ument; each binding results in an instantiation of the
portion of the template with the annotation.

as-view: it performs query unfolding and query refor-
mulation. In addition, our query answering algorithm is
aided by heuristics that prune redundant and irrelevant
paths through the space of mappings.

We are now developing a mapping language for re-
lating XML data, and a set of reformulation algorithms
to operate over them. (See Figure 5 for an example of
peer schemas for the DElearning example). Our map-
ping language begins with a “template” defined from a
peer’s schema; the peer’s database administrator will an-
notate portions of this template with query information
defining how to extract the required data from source
relations or other peer schemas. This approach bears
similarities to the XDR mapping representation of Mi-
crosoft SQL Server [64] and the annotations used by
IBM’s XML Extender [69], but we actually use a sub-
set of XQuery to define the mappings from XML data
to an XML schema, rather than from relational data to
an XML schema. In Figure 6, we see an example of a
mapping from Berkeley’s peer schema to MIT’s schema.
We have a preliminary version (and implementation) of
the mapping language, which supports hierarchical XML
construction and limited path expressions, but avoids
most of the complex (and hard-to-reason-about) features
of XQuery; our goal is to keep query translation tractable
but to support the most common language constructs.

4.1.2 Peer-based Query Processing

The logical schema mapping and query translation facil-
ities discussed above would be sufficient to provide the
decentralized data sharing system we desire. One could
imagine building a central server that receives a query
request made over a particular schema, translates the
query to reference only source data, fetches the data, and
processes the data according to the query plan. However,
this approach does not make good use of the compute
and storage resources available across the peers within
the PDMS, and it ultimately would become a bottleneck.
We would vastly prefer a more Web-like environment in
Revere, in which each peer can receive and process re-
quests — and in which peers can also perform the duties
of cooperative web caches [72] and content distribution
networks like Akamai.

Thus, a major focus of research in the Piazza system is
on distributed query processing and data placement. Our
ultimate goal is to materialize the best views at each peer
to allow answering queries most efficiently, given network
constraints; and to distribute each query in the PDMS
to the peer that will provide the best performance. How-
ever, we must also do this in an environment where the
data sources are subject to update at any point, and
hence view updates can become expensive.

Propagation of updates is also a major challenge in
a PDMS: we would prefer to make incremental updates
versus simply invalidating views and re-reading data. Pi-
azza treats updates as first-class citizens, as any other
data source, in the form of “updategrams” [54]. Update-
grams on base data can be combined to create update-
grams for views. When a view is updated on a Piazza
node, the query optimizer decides which updategrams to
use in a cost-based fashion.

4.2 Piazza and the chasm

Piazza contributes to crossing the structure chasm by
combining the ad hoc extensibility of the Web with the
rich semantics of database systems. The schema is not
in one place any longer — it is distributed across many
peers, and managed by local relationships. In fact, there
may not even be a global consistent schema for the entire
system.

5 Statistics over Structures

In the previous sections we presented the architecture
of two components of the Revere system that ease the
process of authoring and sharing structured data. How-
ever, even with these tools significant design effort is re-
quired, e.g., in creating schemas appropriate for markup
of data, and in creating the mappings that relate differ-
ent peers’ schemas. In this section, we describe a third
component that will provide intelligent support to the
previously mentioned design tools, thereby significantly
reducing the tedium in authoring, querying, and sharing
data.

We propose to build for the s-world the analog of
one of the most powerful techniques of the u-world,
namely the statistical analysis of corpora. A number
of techniques in the u-world are based on statistical
information on word usage and occurrence patterns in
large corpora of text documents. For example, consider
the popular TF/IDF [66] (Term Frequency/Inverse Doc-
ument Frequency) measure. This measure is commonly
used to decide the relevance of a document to a keyword
query: a document is considered relevant if the num-
ber of occurrences of the keyword in the document is
statistically significant w.r.t. the number of appearances
in an average document. Furthermore, co-occurrences of
words in multiple documents can be used to infer the rel-
evance of one word to another. Such document corpora
are compiled for specific domains, thereby exploiting the
special domain characteristics of word usage.

Our goal is to build corpora of structured data (see
Figure 7) from which we will be able to extract extensive

Corpus

Statistics

Design
Advisor

Matching
Advisor Tools

 U2S
Authoring

PDMS

Applications

}

}

Figure 7: We propose the use of statistical information
about structures to alleviate some of the key difficul-
ties of the s-world. The technique is based on collect-
ing corpora (perhaps domain-specific) of structures, and
computing a set of statistics on how terms are used in
structures. The statistics will be used in a set of general
purpose tools that are embedded in various applications.

statistics about how data is structured. Based on these
statistics, we will build a set of general purpose tools to
assist structuring and mapping applications.

5.1 Corpus of structures

Each corpus will include:

• forms of schema information: relational, OO and
XML schemas (possibly including their associated
integrity constraints), DTDs, knowledge-base ter-
minologies (ontologies),

• queries over these schemas and ontologies,

• known mappings between schemas in the corpus,

• actual data: example tables, XML documents,
ground facts of a knowledge base,

• relevant metadata that is associated with structured
data (e.g., database statistics).

It is important to emphasize that a corpus is not ex-
pected to be a coherent universal database in the spirit of
the Cyc knowledge base [46], which attempts to model
all common-sense knowledge. It is just a collection of
disparate structures. We expect that the schema infor-
mation of the corpus will be stored and accessed using
tools for model management [9], which provides a basic
set of operations for manipulating models of data (e.g.,
schemas, XML DTDs).

5.2 The statistics

Given the contents of the corpus, there is a plethora
of statistics that can be maintained over it. Finding
the most effective types of statistics to compute for the
corpus is a long term research challenge. In what follows
we describe the types of statistics we initially plan to
compute and maintain in the corpus. We consider two
kinds of statistics: basic and composite.

Basic statistics

Basic statistics are associated with words in the English
(or for that matter, any) language. Informally, these
statistics indicate how a word is used in different roles
in structured data. For each of these statistics, we
maintain different versions, depending on whether we
take into consideration word stemming, synonym tables,
inter-language dictionaries, or any combination of these
three; the basic statistics include:
Term usage: How frequently the term is used as a
relation name, attribute name, or in data (both as a
percent of all of its uses and as a percent of structures
in the corpus).
Co-occurring schema elements: For each of the dif-
ferent uses of a term, which relation names and at-
tributes tend to appear with it? What tend to be the
names of related tables and their attribute names? What
tend to be the join predicates on pairs of tables? Are
there clusters of attribute names that appear in con-
junction? Are there mutually exclusive uses of attribute
names?
Similar names: For each of the uses of a term, which
other words tend to be used with similar statistical char-
acteristics?

Composite statistics

Composite statistics are similar to the ones above, but
maintained about partial structures. Examples of par-
tial structures are sets of data instances, relations with
associated attribute names, a relation with some data
(possiby with missing values).

Clearly, a key challenge we face is that the number
of partial structures is virtually infinite, and we will
not be able to maintain all possible statistics. Hence,
we will maintain only statistics on partial structures
that appear frequently (discovered using techniques such
as [71, 28, 60]), and estimate the statistics for other par-
tial structures.

5.3 The Tools

We now describe two tools that will be built using a cor-
pus and associated statistics and used to support com-
ponents of Revere. Note that in both cases we envision
a tool that interacts with the user to achieve the desired
result.

Authoring Structured Data

The first tool, DesignAdvisor, assists with the author-
ing of structured data, and will be used in U2S. By au-
thoring, we mean any kind of user activity whose end
result is a set of structured data.

The idea of DesignAdvisor is illustrated in our
distance learning example. Suppose the University of
Washington is planning to join the DELearning consor-
tium. A coordinator is assigned the task of creating
the schema that will be used to publish course offer-
ings. While this would have otherwise been a daunting
task, the coordinator now proceeds as follows. First, she

creates a schema fragment and some data about course
names, contents, and instructors. Then, she uses the
DesignAdvisor to propose extensions to the schema
using the corpus. Note that in this case, the set of
schemas already in Revere is an excellent starting point
for a useful corpus.

DesignAdvisor uses the corpus and its statistics and
returns a ranked list of similar schemas. The coordinator
chooses a schema from the list and modifies it further to
fit the local context. The chosen schema may not com-
pletely model what the coordinator requires. For exam-
ple, it may not model information about teaching assis-
tants (TAs). So the coordinator proceeds to add several
attributes such as name and contact-phone to the course
table. At this point, DesignAdvisor, which has been
monitoring the coordinator’s actions, steps in and tells
the coordinator that in similar schemas at most other
universities, TA information has been modeled in a table
separate from the course table. The coordinator takes
this input and modifies the schema design accordingly.

More concretely, DesignAdvisor performs the fol-
lowing function. It is given a fragment of a database,
i.e., a pair (S, D), where S is a partial schema and D is
a (possibly empty) set of data that conforms to S. The
tool returns a ranked set of schemas S ′, where for each S′

there is a mapping of S into S ′. That is, S′ models a su-
perset of the attributes and relations in S, but may also
modify the way S models the domain. The tool may cre-
ate the mappings by employing the SchemaMatcher

tool which we describe shortly.
DesignAdvisor ranks the schemas in the proposed

set in decreasing order of their similarity. A general tem-
plate for a similarity function can be defined as follows:

sim(S′, (S, D)) = α · fit(S′, S, D) + β · preference(S ′),

where α and β are weights on the following terms:

• fit(S′, S, D) measures the basic fit for S and S ′

(i.e., do S and S′ model the same domains), and
is currently defined to be the ratio between the to-
tal number of mappings between S ′ and S and the
total number of elements of S ′ and S.

• preference(S ′) incorporates user preference crite-
ria, such as whether S′ is commonly used, conforms
to a particular set of schemas, or is relatively concise
and minimal.

The benefits of a tool such as DesignAdvisor are
the following:

1. time savings: similar to other auto-compete fea-
tures, the author can begin to design the schema
and immediately be proposed a complete (or near
complete) one,

2. better design: instead of the user having to design
(and redesign) the schema, the proposed schema
may already be one that is known to be well de-
signed, and

3. conformance to standards: the system may be able
to guide the user into schemas that conform to stan-
dards or otherwise commonly used schemas.

Note that the last case would have to be reflected in
the ranking criteria that DesignAdvisor uses.

Assisting Schema Matching

The second tool, MatchingAdvisor, assists local coor-
dinators in mapping their schemas to others, and hence
facilitates creation of the semantic mappings that un-
derlie a PDMS. The general problem of schema match-
ing has recently attracted significant interest in both the
DB and AI communities (see [61] for a recent survey).
Schema matching is also one of the proposed operations
in model management, and hence our MatchingAdvi-

sor tool can be viewed as another (yet very different)
type of semi-automatic tool for schema matching.

The goal of schema matching is the following. Given
two schemas, S1 and S2, we want a mapping M that
relates the concepts of S1 and S2. There are several
variants to mappings. In the simple case, a mapping
only provides correspondences between terms in S1 and
terms in S2, whereas in more complex cases, the mapping
will include query expressions that enable mapping the
data underlying S1 to S2 or vice versa. Note that there
may be only a partial match between S1 and S2, and
hence some terms in one may not have corresponding
terms in the other. In addition, inputs to the schema
mapping problem may also include data instances of one
or both schemas.

We illustrate one way of building MatchingAdvi-

sor, which extends our previous work on schema match-
ing in the LSD [20] and GLUE [21] Systems. We first
briefly recall the main ideas in LSD.

LSD considered the schema matching problem in
the context of data integration, where the system ex-
poses a single mediated schema, and we need to pro-
vide mappings from the mediated schema to each of
the data sources. The idea in LSD was that the first
few data sources be manually mapped to the mediated
schema. Based on this training, the system should be
able to predict mappings for subsequent data sources.
To do this, LSD uses the information in the manual
mappings to learn a classifier for every element in the
mediated schema (in our case, a classifier for every
tag in the mediated XML DTD). The system uses a
multi-strategy learning method that can employ mul-
tiple learners, thereby having the ability to learn from
different kinds of information in the input (e.g., values
of the data instances, names of attributes, proximity of
attributes, structure of the schema, etc). The results of
applying LSD on some real-world domain show matching
accuracies in the 70%-90% range.

The classifiers computed by LSD actually encode a
statistic for a composite structure that includes the set
of values in a column and the column name. Given such
a structure for a new column in a data source, the classi-
fiers return the likelihood that the structure corresponds
to a mediated schema element.

We can use these classifiers to build MatchingAd-

visor, which finds a mapping between two previously

unseen schemas. Given two schemas, S1 and S2, we
apply the classifiers in the corpus to their elements re-
spectively, and finds correlations in the predictions for
elements of S1 and S2. For example, if we find that all
(or most) of the classifiers had the same prediction on
element s1 ∈ S1 and s2 ∈ S2, then we may hypothesize
that s1 matches s2.

An alternative way to use the corpus for schema
matching is via the DesignAdvisor tool. The idea here
would be to find two example schemas in the corpus that
are deemed by DesignAdvisor to be similar to S1 and
S2, respectively, and then use mappings between those
schemas within the corpus to map between S1 and S2.
In general, the corpus and its associated statistics act as
a domain expert because numerous existing schemas and
schema fragments might be similar to the schemas being
matched. This domain expert can be used in a variety
of ways to facilitate schema mappings.

5.4 Corpus and the Chasm

Exploiting statistics over structures holds great potential
in simplifying many of the hardest activities involved in
managing structured data. As discussed, the corpus and
its statistics can be used to facilitate authoring struc-
tured data (and hence useful in U2S) and discovering
semantics mappings between different structures (and
therefore useful in creating mappings for Piazza).

Another area where the corpus is relevant to the
chasm is in facilitating the querying of unfamiliar data.
Specifically, a user should be able to access a database
(or set of databases), the schema of which she does not
know, and pose a query using her own terminology (or
possibly using natural language). One can imagine a
tool that uses the corpus to propose reformulations of
the user’s query that are well formed w.r.t. the schema at
hand. The tool may propose a few such queries (possibly
with example answers), and let the user choose among
them or refine them.

6 Related work

While we believe that the problem of crossing the struc-
ture chasm has not previously been addressed in a om-
prehensive fashion, our line of research clearly builds
upon a great deal of work from the database, AI, and
information retrieval communities. Because of space lim-
itations, we can only cover these works very briefly.

Clearly, one approach to crossing the chasm is to
leave the data unstructured and try to answer s-world

queries over it. Answering queries directly over un-
structured data is typically very difficult, as it requires
natural-language understanding techniques and unam-
biguous text, but it may work for certain cases, e.g., as
in the natural language query answering system of [43].

The current approach to building the Semantic
Web [7] is based on annotating the data with ontologies.
Ontologies, written in an expressive knowledge repre-
sentation language (e.g., SHOE [37], DAML+OIL [38]),

enhance the understanding of the data, and therefore fa-
cilitate sharing and integration. Our belief is that differ-
ent groups inherently need different structures for their
data, and that mediation between schemas or ontologies
must be a key part of any structured data sharing sys-
tem. Mediation has received very little attention to date
in the Semantic Web community.

In our view, neither of these classes of techniques pos-
sesses the level of robustness, accuracy, and scalability
required by many applications. Hence, we have focused
on an approach that encodes structure within the data,
maps across different structures, and queries the struc-
tured data.

6.1 Adding and Querying Structure

Structured annotation of HTML pages has been pro-
posed in the “lightweight databases” of [22], but their ap-
proach enforced integrity constraints (which we view as
too constraining on flexibility), and our system is unique
on emphasizing instant gratification and decentralized
data sharing across schemas. Other researchers have
used the full RDF standard as a way to annotate HTML
pages. However, Annotea [39] stores the RDF separately
from the document, making the approach less robust to
change; CREAM [35] allows the simultaneous creation of
new content and associated RDF in the same HTML file,
but often requires redundancy between human-readable
and machine-readable forms of the data [36]; Haustein
and Pleumann [36] store all semantically relevant infor-
mation in a database and dynamically generate both
RDF and human-readable versions from the database,
but we believe this is too unwieldy for average users to
do in today’s web environment. Instead, our annota-
tion language integrates the semantic content with the
HTML presentation, allowing easy extraction of struc-
tured information from HTML without browser compat-
ibility or redundancy problems.

Ideally, one would not need to annotate HTML at all,
and would rely on automated techniques to handle this.
In a sense, this is the motivation for information extrac-
tion and wrapper induction techniques [42, 65, 49, 5].
These techniques — especially those that support auto-
matic learning of what data to extract (e.g., [42]) —
would be a very useful complement to Revere’s au-
thoring tool, which currently requires annotations to be
made by hand.

The problem of querying structured data, but allow-
ing for approximations or ranked results in the query,
has been quite well-studied in the database community
(see [11] for a survey of a recent workshop on flexi-
ble query answering). Examples include query relax-
ation [17], cooperative query answering [53], returning
approximate and imprecise answers [2, 55], and exten-
sions of SQL or XQuery to support ranked queries over
unstructured text fields or elements (e.g., IBM’s DB2
Text Extender and [27, 68, 12]). The semantics of these
query languages still tend to be heavily biased towards
querying structure, but the answers are no longer guar-
anteed to be correct.

Originally, semi-structured data was touted as the so-
lution to flexible construction of structured data. XML,
the most prevalent form of semi-structured data, was in-
tended to ease authoring of data: one did not need to de-
sign the schema before entering the data. However, both
the uses of XML and the tools and techniques developed
for managing XML in recent years have focused exclu-
sively on s-world issues. For instance, XML Schema
has been developed to provide richer semantics to XML
documents; XQuery and other languages for querying
semi-structured data [13, 1, 26] or Web hyperlink struc-
ture [52] provide some more flexibility in querying: they
support irregularities in the structure, but are still es-
sentially s-world languages. XML is primarily used to
exchange data that is encodable in an s-world formal-
ism. The u-world uses of XML mostly relate to using
it as a format for exchanging marked-up text documents
(e.g., reports or news articles).

6.2 Sharing Data from Multiple Schemas

The idea of mediating between different databases us-
ing local semantic relationships is not new. Feder-
ated databases and cooperative databases have used
the notion of inter-schema dependencies to define se-
mantic relationships between databases in a federation
(e.g., [48, 41, 63, 14]). However, they assumed that each
database in the federation stored data, and hence the
focus was on mapping between the stored relations in
the federation. Our emphasis is on supporting schema
mediation among large numbers of peers, so we need
to be able to map both relationships among stored re-
lations and among conceptual relations (i.e., extensional
vs. intentional relations), and we must be able to quickly
chain through multiple peer descriptions in order to lo-
cate data relevant to a query.

In [31] we first described some of the challenges in-
volved in building a PDMS. The focus there was on in-
telligent data placement, a technique for materializing
views at different points in the network in order to im-
prove performance and availability. In [40] the authors
study a variant of the data placement problem, focus-
ing on intelligently caching and reusing queries in an
OLAP environment. Recently, [8] described LRM (the
local relational model) as a formalism for mediating be-
tween different peers in a PDMS, along with an inference
procedure for formulas in the language. However, that
paper does not describe how LRM’s relate in expressive
power or efficiency to the more familiar data integration
formalisms for mediating between schemas. In contrast,
our language is couched as a generalization of schema
mediation languages for data integration.

Model management systems [9] are much more gen-
eral than schema matching tools: they manipulate, map
between, and compose schemas (and other structures)
in a uniform way. A model management system would
be extremely useful as a foundation for our corpus-based
tools, as it could provide many of the basic mechanisms
for matching schemas and creating schema mappings.
Several researchers [61, 6, 20] have even suggested the use

of prior mappings to aid in building new ones. Our goals
with the corpus include those aspects of model manage-
ment, but go beyond them: we emphasize obtaining sta-
tistical information from the corpus, and we also intend
to leverage the corpus not only to help design new map-
pings, but also as a way of aiding schema designers by
suggesting standard structures. We expect that a variety
of techniques that have been developed for summarizing,
mining, and clustering XML [71, 28, 60] will be useful
for computing the statistics associated with the corpus.

Finally, when different data sources are involved, not
only are there differences in structure, but there may
also be inconsistencies among the data sets or query in-
terfaces. Work has been done on “fusion queries” [73, 56]
that try to combine data from multiple sources; on us-
ing information-retrieval and probabilistic information
to match objects [19, 58], and on doing approximate
translations of queries to different sources [15].

7 Conclusion

At first glance, the structure chasm between u-world

and the s-world seems all-but-unbridgable as a result of
the inherent differences between the two worlds — after
all, in the u-world, we have insufficient semantic infor-
mation to provide precise and complete answers, enforce
integrity constraints, or combine information in mean-
ingful ways. While this is indeed true, the chasm has
actually been widened by tools on the structured data
management side, which have made content creation dif-
ficult.

Our focus in crossing the structure chasm has been
on re-thinking the design of structured tools for con-
tent creation and data sharing. We have presented a de-
tailed path for crossing the chasm by developing the Re-

vere data system, which facilitate the authoring, query-
ing and sharing of data in the s-world. In Revere,
we have begun building a content annotation tool that
makes marking up text easy and rewarding, we have de-
veloped a peer data management system that mediates
between different schemas while providing the user with
a familiar schema in which they can pose queries, and
we have proposed the use of tools that exploit statistics
over structured corpora to advise and assist schema and
mapping designers. Together, these three components of
Revere make it much easier to convert the vast wealth
of unstructured content into structured form. Morever,
Revere enables incremental, bottom-up structuring of
data rather than requiring the massive, upfront effort of
creating a single, universal schema as a prelude to any
data sharing.

While we believe that Revere is an important step in
crossing the chasm, it is also clear to us that the bigger
problem — building data management tools that effec-
tively handle the vast body of real-world data, which
lies outside the database — is an immense one that re-
quires significant contributions by our entire community
(as well as related communities). We would like to con-
clude by urging others in the database community to
take a fresh look at the problems of the chasm, and to

see where techniques from the structured world can be
extended to be more broadly applicable.

Acknowledgements

We would like to thank Pedro Domingos, Steve Grib-
ble, Hank Levy, Peter Mork, Maya Rodrig, Dan Suciu,
Deepak Verma and Stanislava Vlasseva for the contribu-
tions to the design and implementation of several compo-
nents of the Revere system. We thank Phil Bernstein
for many thoughtful discussions. Phil Bernstein, Hank
Levy, Dan Suciu, and Steve Gribble provided excellent
comments on earlier versions of the paper.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Winer. The Lorel query language for semistructured
data. In Proceedings of International Journal on Digital
Libraries, volume 1(1), pages 68–88, April 1997.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. The Aqua approximate query answering sys-
tem. In SIGMOD ’99, pages 574–576, 1999.

[3] S. Adali, K. Candan, Y. Papakonstantinou, and V. Sub-
rahmanian. Query caching and optimization in dis-
tributed mediator systems. In Proc. of SIGMOD, pages
137–148, Montreal, Canada, 1996.

[4] A. Bairoch and R. Apweiler. The SWISS-PROT protein
sequence database and its supplement TrEMBL. Nucleic
Acids Research, 28:45–48, 2000.

[5] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web
information extraction with (lixto). In VLDB ’01, 2001.

[6] J. Berlin and A. Motro. Database schema matching us-
ing machine learning with feature selection. In Proceed-
ings of the 14th International Conference on Advanced
Information Systems Engineering, 2002.

[7] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[8] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. My-
lopoulos, L. Serafini, and I. Zaihrayeu. Data manage-
ment for peer-to-peer computing : A vision. In ACM
SIGMOD WebDB Workshop 2002, 2002.

[9] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision
of management of complex models. SIGMOD Record,
29(4):55–63, December 2000.

[10] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system deployed
on an existing set of desktop pcs. In Proc. Measurement
and Modeling of Computer Systems, 2000, pages 34–43,
June 2000.

[11] P. Bosc, A. Motro, and G. Pasi. Report on the fourth
international conference on flexible query answerng sys-
tems. SIGMOD Record, 30(1), 2001.

[12] L. J. Brown, M. P. Consens, I. J. Davis, C. R. Palmer,
and F. W. Tompa. A structured text ADT for object-
relational databases. In TAPOS, volume 4(4), pages
227–244, 1998.

[13] P. Buneman, S. B. Davidson, M. F. Fernandez, and
D. Suciu. Adding structure to unstructured data. In
ICDT ’97, volume 1186, pages 336–350. Springer, 1997.

[14] T. Catarci and M. Lenzerini. Representing and using
interschema knowledge in cooperative information sys-
tems. Journal of Intelligent and Cooperative Informa-
tion Systems, pages 55–62, 1993.

[15] C.-C. K. Chang and H. Garcia-Molina. Approxi-
mate query translation across heterogeneous informa-
tion sources. In VLDB ’00, pages 566–577, 2001.

[16] S. Chaudhuri and U. Dayal. An overview of data ware-
house and OLAP technology. SIGMOD Record, 26(1),
March 1997.

[17] W. W. Chu, M. A. Merzbacher, and L. Berkovich. The
design and implementation of CoBase. In SIGMOD ’93,
pages 517–522, 1993.

[18] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In ICSI Workshop on Design Is-
sues in Anonymity, Berkeley, CA, July 2000.

[19] W. W. Cohen. Integration of heterogeneous databases
without common domains using queries based on textual
similarity. In SIGMOD ’98, pages 201–212, 1998.

[20] A. Doan, P. Domingos, and A. Halevy. Reconciling
schemas of disparate data sources: a machine learning
approach. In Proc. of SIGMOD, 2001.

[21] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map between ontologies on the semantic
web. In Proc. of the Int. WWW Conf., 2002.

[22] S. A. Dobson and V. A. Burrill. Lightweight databases.
Computer Networks and ISDN Systems, 27(6):1009–
1015, 1995.

[23] C. DSS. Gnutella: To the bandwidth barrier and be-
yond. World Wide Web: www.clip2.com/gnutella.html,
November 2000.

[24] O. M. Duschka and M. R. Genesereth. Answering re-
cursive queries using views. In Proc. of PODS, pages
109–116, Tucson, Arizona., 1997.

[25] M. Fernandez, D. Florescu, A. Levy, and D. Su-
ciu. Declarative specification of web sites with strudel.
VLDB Journal, 9(1):38–55, 2000.

[26] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and
D. Suciu. Catching the boat with strudel: Experiences
with a web-site management system. In SIGMOD ’98,
pages 414–425, 1998.

[27] D. Florescu, I. Manolescu, and D. Kossman. Integrating
keyword search into XML query processing. In Ninth
International World Wide Web Conference, May 2000.

[28] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Simeon. StatiX: Making XML count. In SIGMOD
’02, 2002.

[29] M. Friedman and D. Weld. Efficient execution of in-
formation gathering plans. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence,
Nagoya, Japan, pages 785–791, 1997.

[30] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
The TSIMMIS project: Integration of heterogeneous in-
formation sources. Journal of Intelligent Information
Systems, 8(2):117–132, March 1997.

[31] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What can databases do for peer-to-peer? In WebDB
Workshop on Databases and the Web, June 2001.

[32] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Op-
timizing queries across diverse data sources. In Proc. of
VLDB, Athens, Greece, 1997.

[33] A. Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[34] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
Submitted for publication, 2002.

[35] S. Handschuh and S. Staab. Authoring and annotation
of web pages in cream. In World Wide Web, 2002.

[36] S. Haustein and J. Pleumann. Is participation in the
semantic web too difficult? In Proceedings of the In-
ternational Semantic Web Conference, pages 448–453,
2002.

[37] J. Heflin, J. Hendler, and S. Luke. SHOE: A knowl-
edge representation language for internet applications.
Technical Report CS-TR-4078, 1999.

[38] I. Horrocks, F. van Harmelen, and
P. Patel-Schneider. DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index.html,
March 2001.

[39] J. Kahan and M.-R. Koivunen. Annotea: an open RDF
infrastructure for shared web annotations. In World
Wide Web, pages 623–632, 2001.

[40] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L.
Tan. An adaptive peer-to-peer network for distributed
caching of olap results. In Proc. of SIGMOD, 2002.

[41] R. Krishnamurthy, W. Litwin, and W. Kent. Language
features for interoperability of databases with schematic
discrepancies. In Proc. of SIGMOD, pages 40–49, Den-
ver, Colorado, 1991.

[42] N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper
induction for information extraction. In Proceedings of
the 15th International Joint Conference on Artificial In-
telligence, 1997.

[43] C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling
question answering to the web. In World Wide Web,
pages 150–161, 2001.

[44] E. Lambrecht, S. Kambhampati, and
S. Gnanaprakasam. Optimizing recursive information
gathering plans. In Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence, pages
1204–1211, 1999.

[45] O. Lassila and R. Swick. Resource description
framework (rdf) model and syntax specification.
http://www.w3.org/TR/REC-rdf-syntax/, 1999. W3C
Recommnedation.

[46] D. B. Lenat and R. Guha. Building Large Knowledge
Bases. Addison Wesley, Reading Mass., 1990.

[47] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source descrip-
tions. In Proc. of VLDB, pages 251–262, Bombay, India,
1996.

[48] W. Litwin, L. Mark, and N. Roussopoulos. Interoper-
ability of multiple autonomous databases. ACM Com-
puting Surveys, 22 (3):267–293, 1990.

[49] L. Liu, C. Pu, and W. Han. XWRAP: An XML-
enabled wrapper construction system for web informa-
tion sources. In ICDE ’00, pages 611–621, 2000.

[50] I. Manolescu, D. Florescu, and D. Kossmann. Answering
xml queries on heterogeneous data sources. In Proc. of
VLDB, pages 241–250, 2001.

[51] B. McBride. Jena: Implementing the rdf
model and syntax specification. http://www-
uk.hpl.hp.com/people/bwm/papers/20001221-paper/,
2001. Hewlett Packard Laboratories.

[52] A. Mendelzon, G. Mihaila, and T. Milo. Querying the
world wide web. International Journal on Digital Li-
braries, 1(1):54–67, Apr. 1997.

[53] J. Minker. An overview of cooperative query answering
in databases. In Proceedings of FQAS, 1998.

[54] P. Mork, S. Gribble, and A. Halevy. Propagating up-
dates in a peer data management system. Unpublished.,
February 2002.

[55] A. Motro. Accommodating imprecision in database sys-
tems: Issues and solutions. SIGMOD Record, 19(4):69–
74, 1990.

[56] A. Motro, P. Anokhin, and J. Berlin. Intelligent meth-
ods in virtual databases. In Flexible Query Answering
Systems (FQAS) 2000, pages 580–591, 2000.

[57] Napster. World-wide web: www.napster.com, 2001.

[58] H. Pasula and S. J. Russell. Approximate inference for
first-order probabilistic languages. In ICJCAI ’01, pages
741–748, 2001.

[59] P. Patel-Schneider and J. Simeon. Building the Semantic
Web on XML. In Int’l Semantic Web Conference ’02,
pages 147–161, 2002.

[60] N. Polyzotis and M. N. Garofalkis. Statistical synopses
for graph-structured xml databases. In SIGMOD ’02,
2002.

[61] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10(4):334–
350, 2001.

[62] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM ’01, 2001.

[63] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specify-
ing interdatabase dependencies ina multidatabase envi-
ronment. IEEE Computer, 24:12, 1991.

[64] M. Rys. Bringing the internet to your database: Us-
ing SQLServer 2000 and XML to build loosely-coupled
systems. In ICDE ’00, pages 465–472, 2001.

[65] A. Sahuguet and F. Azavant. Building light-weight
wrappers for legacy web data-sources using W4F. In
VLDB ’99, pages 738–741, 1999.

[66] G. Salton, editor. The SMART Retrieval System—
Experiments in Automatic Document Retrieval. Prentice
Hall Inc., Englewood Cliffs, NJ, 1971.

[67] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. of ACM SIG-
COMM ’01, 2001.

[68] A. Theobald and G. Weikum. The XXL search engine:
Ranked retrieval of XML data using indexes and ontolo-
gies. In SIGMOD ’02, 2002.

[69] H. Treat. Plugging in to XML. DB2
Magazine, Winter 1999. Also available at
http://www.db2mag.com/winter99/treat.shtml.

[70] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius:
A robust, tamper-evident, censorship-resistant web pub-
lishing system. In Proceedings of the the Ninth USENIX
Security Symposium, Denver, CO, August 2000.

[71] K. Wang and H. Liu. Discovering typical structures of
documents: A road map approach. In 21st Annual ACM
SIGIR Conference, pages 146–154, 1998.

[72] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. Levy. The scale and performance of
cooperative web proxy caching. In SOSP ’99, Kiawah
Island, SC, Dec 1999.

[73] R. Yerneni, Y. Papakonstantinou, S. Abiteboul, and
H. Garcia-Molina. Fusion queries over internet
databases. In Proc. of EDBT, pages 57–71, Valencia,
Spain, 1998.

